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Abstract. One of the most general and effective models for
calculating the complex electrical conductivity and relative
dielectric permittivity of rocks saturated with pore fluids is
that of Bussian. Unlike most models, it is non-linear and
cannot be solved algebraically. Consequently, researchers
use reiterating numerical routines to obtain a solution of the
equation, and then only for the real part of the solution. Here
we present a different approach to the solution that uses con-
formal mapping in the complex plane, and implements it
within MapleTM . The method is simple and elegant in that
it requires, for example, only 3 lines of code in MapleTM 11
and little programming experience. The approach has been
shown to be as precise as using the classical reiterating bisec-
tion method for real data implemented in C++ on an ordinary
desktop computer to within a probability over 1 in 109. How-
ever, the conformal mapping approach is 52 times as fast. We
show once more that the Bussian equation breaks down for
low fluid conductivities, but recommend it (with the modified
Archie’s law) for use with rocks saturated with high salinity
fluids when the matrix is conductive.

1 Introduction

The measurement and understanding of the electrical con-
ductivity of porous media has applications in many areas of
science and technology. Perhaps the most important is its
use in the oil and gas industry for calculating the reserves of
hydrocarbons in reservoirs from electrical well logging mea-
surements. The original relationship for interpreting resistiv-
ity logs is Archie’s law (Archie, 1942), which was arrived at
empirically. Its use is restricted to rocks where water satu-
rating the pores is the only conductor (i.e., clean sandstones
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and carbonates without conductive accessory minerals at low
temperatures). Archie’s law has been modified to extend its
range of applications many times: (i) for a matrix of water
saturated conductive particles (Wyllie and Southwick, 1954;
de Witte, 1957). Later, Waxman and Smits (1968) proposed
the first model for shaly sand formations. In 1977, Clavier
et al. (1977) suggested a model that assumes that Stern layer
cations contribute to the conductivity of the clay water and
bulk water separately, and is consequently called the dual-
water model. More recently Archie’s law has been extended
to work for two conducting phases (Glover et al., 2000a),
and is particularly useful for applications at high tempera-
tures where the matrix has a finite conductivity (Glover et
al., 2000b). Even more recently a generalised Archie’s law
for n phases has been published (Glover, 2010).

Until 1980 Archie’s law had an empirical pedigree. Then
it was shown by Sen (1980, 1981) and Sen et al. (1981) that
Archie’s law follows from the work of Bruggeman (1935)
and Hanai (1960a, b, 1961), which is a well-defined theoret-
ical model that is based upon classical physics and geometry
and assumes that non-conducting rock particles are dispersed
in a continuous phase of saline water. The Bruggeman-
Hanai-Sen (BHS) equation can be expressed as(

σ ∗

eff − σ ∗
p

σ ∗

f − σ ∗
p

) (
σ ∗

p

σ ∗

eff

)d

= 1 − φp, (1)

where the effective complex conductivity of the mixtureσ ∗

eff
is expressed relative to the complex electrical conductivity
of dispersed particlesσ ∗

p within a continuous medium with
a complex electrical conductivityσ ∗

f . Hereφp is the vol-
ume fraction of particles andd is the so-called depolarisation
factor. The conductivities are complex and follow the rela-
tionshipσ ∗ =σ + iωεoκ, whereω is the angular frequency,
εo is the electric constant (εo = 8.854× 10−12 F/m), κ is the
relative dielectric constant, andi =

√
−1. Hence the equation

implicitly includes AC current transport.
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Bussian (1983) reinterpreted the BHS approach to include
a conducting lattice-like matrix. His model relates the elec-
trical properties of any heterogeneous two-component mix-
ture to the properties of the individual components at any
frequency, and replaces the depolarisation factord with a pa-
rameterm = 1/(1 -d), that can be shown to be the same as
the classical Archie cementation exponent. In the Bussian
equation the complex effective conductivityσ ∗

eff, the complex
dielectric permittivityε∗

eff, and the complex relative permit-
tivity κ∗

eff of a two phase medium follow the equations

σ ∗

eff = σ ∗

f φm

(
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f
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eff

)m

, (2)
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f
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k∗
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f φm

(
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f
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eff
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wherem is the cementation exponent, which describes the ef-
fect that the arrangement of the pore space has on the electri-
cal parameters,σ ∗

m, ε∗
m andκ∗

m are the complex conductivity,
complex dielectric permittivity and complex relative permit-
tivity of the matrix,σ ∗

f , ε∗

f andκ∗

f are the complex conduc-
tivity, complex dielectric permittivity and complex relative
permittivity of the fluid that saturates the pores, andφ is the
porosity.

This equation is (i) general, treating the electrical transport
properties as complex parameters, (ii) valid for all frequen-
cies, and (iii) reduces to classical laws for special cases. It
should be the equation of choice when modelling the electri-
cal properties of porous media with saline fluids. However,
the equation is not valid at low fluid conductivities. This
limitation arises from its origins in effective medium theory
(Bussian, 1983). Unfortunately, the equation is non-linear.
The definition of a non-linear system is one in which the vari-
able(s) to be solved for cannot be written as a linear combi-
nation of independent components, i.e., it is a system which
does not satisfy the superposition principle. Hence, the Bus-
sian equation cannot be solved algebraically. The compli-
cations and limitations involved in solving the equation us-
ing reiterative numerical methods means that it is often over-
looked.

Another method that is based on the mixing of conductiv-
ities of two components, and that is derivable analytically, is
that of Korvin (1982) and Tenchov (1998). We later compare
the Bussian equation with the modified Archie’s law and the
Korvin and Tenchov approach.

2 Conventional approaches to solving Bussian’s
equation

There are many methods available for the solution of non-
linear equations numerically and it is beyond the scope of this

paper to review them all. An excellent and accessible review
of all of the methods discussed below is available together
with code in Numerical Recipes in C++: The Art of Scien-
tific Computing, 3rd edition (Press et al., 2007), in which the
bisection method is described as an extremely robust method
that cannot fail for smoothly varying well defined functions.
They also recommend the Brent method and Ridder’s method
especially if the function cannot easily be differentiated, as
in our case. Differentiable functions can make use of the
Newton-Raphson method with Press et al.’s suggested ad-
ditional safeguards, and this is the only simple method that
is useful to find a multi-dimensional solution, which we do
not require. All of the previously mentioned methods are
only applicable to real data. The Lehmer-Schur algorithm is
one of a number of complicated methods that is capable of
solving in the complex plane, and then only for well defined
polynomials (Acton, 1970). Unfortunately the Bussian equa-
tion cannot be cast in that form. Other less efficient methods
include the secant method, the false position method, reit-
erated bracketing, Van Wijngaarden’s method and Dekker’s
method. The Jenkins-Traub method has become fairly stan-
dard in commercially available solvers, but is extremely com-
plicated to implement. A description of all of these methods
with references is available in Press et al. (2007).

Returning to the bisection method. It is a very robust
method with a long pedigree. Press et al. (2007) state that
it cannot fail in the sense that it will always find one root of a
single or multi-rooted function, and where there are no roots
it will converge on a singularity. It converges “linearly” to a
solution in the terminology of root finding algorithms, which
means that convergence is mathematically exponential, or in
other words, successive significant figures in the solution are
won linearly with computational effort (Press et al., 2007).
This rate of convergence is not bad, but may be considered
slow compared to methods that converge superlinearly (i.e.,
improving the precision of the solution by more than an or-
der of magnitude for each iteration). However, it does not
readily overshoot a solution, which is a problem to which su-
perlinear algorithms are prone, and which should be avoided
when dealing with non-linear equations such as the Bussian
equation. The concept of the method is simple. Over some
interval the function is known to pass through zero because it
changes sign. The method evaluates the function at its mid-
point, examines its sign and replaces whichever of the inter-
vals limits has the same sign with the midpoint. Hence the
interval decreases by a factor of two for each iteration. We
have used the classical bisection method as a reference with
which to compare our new approach.

3 New approach

The Bussian equation can be written in terms of complex
conductivities (σ ∗ =σ ′ + iσ ′′), complex dielectric permittiv-
ities (ε∗

≡ ε′
− iε′′), or complex relative permittivities
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(κ∗ =κ ′
− iκ ′′), as in Eqs. (2) to (4), respectively. This is

a consequence of the interchangeability of the complex con-
ductivity and the dielectric permittivity through the relation-

shipsσ ∗ =
(
σ ′

+ ωε′′
)

+ iωε′ andε∗ = ε′
− i
(
ε′′

+
σ ′

ω

)
, and

κ∗ =κ ′
− i
(
κ ′′

+
σ ′

ωεo

)
, the latter of which arises due to the

definition of the relative permittivity asκ ≡ εεo, whereεo
is the electric constant. Note that the termωε′′ is equivalent
to a conductivity and represents the contribution to energy
dissipation made by the displacement currents, whileσ ′ rep-
resents the contribution to energy dissipation made by the
conduction currents (Guéguen and Palciauskas, 1994).

The Bussian equation is non-linear as we have already dis-
cussed. The equation cannot be solved algebraically and one
must use numerical methods. There is a further difficulty if
the equation is to be solved for complex parameters and if
m is not an integer because it then has an infinite number
of roots and the trick is to be able to recognise which root
corresponds to the physical solution.

Our solution of the final equation is implementable in the
mathematical manipulation software MapleTM . It should
also be possible to implement the method in Mathematica®

and Matlab®, but we have not confirmed this. We have trans-
formed the equation into a numerically solvable form using
a complex number conformal mapping.
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any point where it has a nonzero derivative. Conversely, any
conformal mapping of a complex variable which has continu-
ous partial derivatives is analytic. Hence, conformal mapping
is extremely important in many areas of physics and engi-
neering as it allows complex variables to be converted into an
analytically solvable form. By lettingw ≡ f (z), the real and
imaginary parts ofw(z) must satisfy the Cauchy-Riemann
equations and Laplace’s equation, so they automatically pro-
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Figure 1. Code required to run the conformal mapping solution. 

 

Maple 11 implementation 
 
Solution of BHS Equation 
> BHS:=proc(km,kw,m,phi2) 
> local f,finv: 
> f:=z->evalf((z-1)/z^(1/m)): 
> finv:=w->fsolve(f(z)-w,z): 
> km/finv(phi2*f(km/kw)): 
End Procedure 
> end proc; 

Fig. 1. Code required to run the conformal mapping solution.

we obtain a solution, which may have been very difficult to
obtain directly, by working backwards.

The implementation of this solution in MapleTM code is
given as Fig. 1. It is worth noting that there are only three
active lines in the code, which is extremely efficient.

4 Testing

A number of validation tests have been carried out on the
method. In all tests we have used conductivities, but note
that replacement of the conductivity parameters with relative
or absolute permittivities is equally valid. Hence the follow-
ing results apply equally to using the Bussian equation and
the conformal mapping method with relative or absolute per-
mittivities.

In the first test we have examined that the method pro-
vides the same results as the Bussian equation for a set of
limiting values. The limits of the Bussian equation by math-
ematical analysis are set out in Table 1, together with the
results of the bisection method and the conformal mapping
approach, as well as the physical limits that one might expect
for a saturated rock. It should be noted that both the bisec-
tion method and the conformal mapping method provide the
same limiting results as the mathematical analysis indicates
except forσm → ∞, where both the bisection method and
the conformal mapping approach has difficulty in providing
a root. This is more likely to be a problem with the internal
solver routines of MapleTM 11 than the conformal mapping
method itself, but does not impose a significant restriction
because applications in this limit are negligible. The limiting
solutions indicate that the results of the conformal mapping
method are consistent with the Bussian equation.

The question arises whether the Bussian equation accu-
rately describes the physical situation. The two cases where
σm → 0 and σf → 0 are interesting because although
both the conformal mapping method and classical bisection
method provide the result one would expect from taking the
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Table 1. Limiting values of the Bussian equation solutions.

Limit By mathematical From the classical bisection Physical constraints
analysis and conformal mapping methods

φ → 0 σeff → σm σeff → σm σeff → σm
φ = 1 σeff =σf σeff =σf σeff =σf
σm → 0 σeff → 0 σeff → 0 σeff → σfφ

m

σm → ∞ σeff → ∞ No solution σeff → ∞

σf → 0 σeff → 0 σeff → 0 σeff → σm(1−φ)m

σf → ∞ σeff → 0 σeff → 0 σeff → ∞

σf =σm σeff =σf =σm σeff =σf =σm σeff =σf =σm
m → 0 σeff → σf σeff → σf σeff → σf
m = 1 σeff =σfφ +σm(1−φ) σeff =σfφ +σm(1−φ) σeff =σfφ +σm(1−φ)

m → ∞ σeff →
σm(

1−φ
(

σf−σm
σf

)) σeff →
σm(

1−φ
(

σf−σm
σf

)) σeff → σm whenφ = 0

 
 
Figure 2.  Effective electrical conductivity σeff  calculated as a function of porosity at 1001 points for the 

Bussian equation (blue) using the conformal mapping method, Archie`s law (black), Modified Archie`s 

law (red) and the model of Korvin and Tenchov (green); all for φ = 0.2; m = 1, 1.5, 2, 2.5, 3; σm  = 10-3 

S/m; 10-5 S/m ≤σf ≤ 1 S/m). Note that all methods except Archie`s law converge at 
310eff fσ σ −= =  S/m. 

 
 

Fig. 2. Effective electrical conductivityσeff calculated as a function of porosity at 1001 points for the Bussian equation (blue) using the
conformal mapping method, Archie’s law (black), Modified Archie’s law (red) and the model of Korvin and Tenchov (green); all forφ = 0.2;
m = 1, 1.5, 2, 2.5, 3;σm = 10−3 S/m; 10−5 S/m≤ σf ≤ 1 S/m). Note that all methods except Archie’s law converge atσeff =σf = 10−3 S/m.

mathematical limit of the Bussian equation, that limit is not
reasonable from a physical point of view. These two limit-
ing cases show a failing in the Bussian equation that makes it
invalid at low fluid conductivities or low matrix conductivi-
ties. The failure, which is due to its derivation from effective
medium theory, can be seen clearly in Fig. 2. This figure
compares that Bussian equation with Archie’s law (Archie,
1942), the modified Archie’s law (Glover et al., 2000a) and
the Korvin and Tenchov method (Korvin, 1982; Tenchov,
1998). Asσf → 0, the effective conductivity should tend
towards a value defined by the porosity, cementation expo-
nent and the conductivity of the matrixσeff → σm(1−φ)m,
whereas it is clear in the figure that the Bussian solution tends
towards zero like the classical Archie’s law. The other two

curves in Fig. 2 are the solutions by Korvin and Tenchov
method (Korvin, 1982; Tenchov, 1998) and by the modified
Archie’s law (Glover et al., 2000a). Both of these methods
work better than the Bussian equation in the limitσf → 0,
while the modified Archie’s law provides the exact limiting
value. Note that all three models are all in fairly good agree-
ment forσf ≥ σm.

In the second test we have compared the method with the
classical bisection method for a loop that requires the cal-
culation of 1001 datapoints, where a datapoint represents a
set of solution parameters (i.e., [εm, εf , φ andm], [κm, κf , φ

andm] or [σm, σf , φ andm]). In our case we chose to op-
erate with conductivities rather than permittivities. We kept
the porosity (φ = 0.2), cementation exponent, (m = 1, 1.5, 2,
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Figure 3.  Effective electrical conductivity σeff  calculated using the Bussian equation as a function of 

porosity at 1001 points for both the bisection method and the conformal mapping method (φ = 0.2; m = 

1, 1.5, 2, 2.5, 3; σm  = 10-3 S/m; 10-5 S/m ≤σf ≤ 1 S/m). Note that the bisection method and the conformal 

mapping method are indistinguishable for all values of φ, m, σm , σf  used: A graph of one versus the 

other is a 1:1 straight line. 

 

Fig. 3. Effective electrical conductivityσeff calculated using the Bussian equation as a function of porosity at 1001 points for both the
bisection method and the conformal mapping method (φ = 0.2;m = 1, 1.5, 2, 2.5, 3;σm = 10−3 S/m; 10−5 S/m≤ σf ≤ 1 S/m). Note that the
bisection method and the conformal mapping method are indistinguishable for all values ofφ, m, σm, σf used: A graph of one versus the
other is a 1:1 straight line.

2.5, 3.0) and matrix conductivity (σm = 10−3 S/m) constant,
and made a calculation for 1001 different values of fluid con-
ductivity from 1×10−5 S/m to 1 S/m with twenty points per
decade, distributed logarithmically. The results of the tests
are shown in Fig. 3. It can be seen that both tests perform
well insofar as they qualitatively produce the same results
(i.e., their curves are indistinguishable). It is impossible to
compare each method against a known solution, however,
this test validates the conformal mapping method against a
well known and respected method that is considered to be
extremely robust.

On a more quantitative basis, correlation tests be-
tween the results obtained using the classical bisec-
tion method and the conformal mapping method that
are given in Fig. 3, show them to be statistically the
same with a covariance of (3.66± 6.19)× 10−4 S2/m2, a
value of 1− r = (5.96± 1.14)× 10−14, and a value of 1−
r2 = (11.92± 2.28)× 10−14, wherer is the correlation coef-
ficient andr2 is the coefficient of determination. Please note
that the values 1− r and 1− r2 have been used because the
correlation coefficient and coefficient of determination are,
respectively, too close to unity to be written down effectively
with precision. In these statistics, the values represent the
mean calculations from each of the 5 tests for 5 differentm

values that are shown in Fig. 3, and the uncertainties repre-
sent the standard deviations calculated from those measure-
ments. Applying Student’st test is a trivial exercise because
the correlation coefficients are so close to unity. The similar-
ity in the precision of the results from the two methods de-
rives from setting values of precision and maximum number
of iterations in the classical bisection method that correspond

to those implicit in the MapleTM 11 solution code. This sim-
ilarity of precision allows makes a direct comparison of the
speed of the two methods meaningful.

Consequently, we have measured the time required to
carry out the calculation of 1001 data points. The results
depend upon the values of the input parameters. The results,
which are given as a mean over 12 runs± standard deviation,
are given in Table 2.

The classical bisection method required between
220.69 and 280.36 s for real data depending on the value
of the cementation exponent. It was fastest form = 1,
slightly slower for integer values ofm and slowest when
the cementation exponent was not an integer. The classical
bisection method cannot be used to solve Bussian’s equation
if any of the input parameters are complex. By comparison,
the conformal mapping method required between 3.46 and
5.41 s for real data, depending on the value of the exponent
m, and between 4.02 and 27.59 s for complex data, with
the time depending once again on the value of the exponent
m. Hence, on elapsed time the conformal mapping method
is about 52 times faster than the classical bisection method
taking the most general case wherem is not an integer.

Since there is a small but finite computing time associated
with the structure of the program (defining variables, report-
ing the data etc) we have calculated the mean speed of calcu-
lation in the following way. We have run the programme for
1001 datapoints and for 1 datapoint, while retaining the same
input parameters, and noting the elapsed time in each case.
The mean speed was calculated by subtracting the elapsed
time tor 1 datapoint from that for 1001 datapoints and divid-
ing by 1000 (i.e., the number of datapoints calculated within
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Table 2. Timing tests (mean over 12 runs± standard deviation).

Time for 1001 solutions (s) Speed (solutions per second)

Real data Complex data Real data Complex data

Conformal mapping method using MapleTM 11

m = 1 3.46± 0.21 4.02± 0.38 289± 17 248± 24
Integerm (m 6=1) 5.69± 0.52 11.75± 0.75 176± 16 85± 5
Non-integerm 5.41± 0.63 27.59± 1.13 185± 22 36± 2

Bisection method using C++

m = 1 220.69± 13.6 No solution 4.5± 0.3 No solution
Integerm (m 6=1) 226.86± 15.6 No solution 4.4± 0.3 No solution
Non-integerm 280.36± 20.7 No solution 3.6± 0.3 No solution

 
 
Figure 4.  Complex effective electrical conductivity σeff  calculated as a function of porosity at 1001 

points for the Bussian equation using the conformal mapping method for φ = 0.2; m = 1, 1.2, 1.5, 2, 2.5; 

σm  = 10-3+i10-3 S/m; 10-5 S/m ≤σf ≤ 1 S/m). 

Fig. 4. Complex effective electrical conductivityσeff calculated as a function of porosity at 1001 points for the Bussian equation using the

conformal mapping method forφ = 0.2;m = 1, 1.2, 1.5, 2, 2.5;σm = 10−3 + i10−3 S/m; 10−5 S/m≤ σf ≤ 1 S/m).

the elapsed time difference). The mean speed for the clas-
sical bisection method was 3.6± 0.3 and 4.5± 0.3 solutions
per second compared to between 176± 16 and 289± 17 so-
lutions per second needed by the conformal mapping method
for real data, and between 36± 2 and 248± 24 for complex
data. Hence for real data the conformal mapping method is
51 times faster than the classical bisection method, again tak-
ing the most general case wherem is not an integer.

It is worth noting in Figs. 2 and 3 that all methods ex-
cept Archie’s law converge atσeff =σf = 10−3 S/m. The Bus-
sian equation provides a reasonable solution in the range
σf ≥ σm. However, it should be noted that in this high
salinity range the results provided by the Bussian, Korvin and
Tenchov and the Modified Archie’s method provide different
results.

Finally, Fig. 4 shows an example of the conformal map-
ping method being used to solve the Bussian equation with
complex input parameters. In this figure the matrix conduc-
tivity is complexσm = 10−3 + i10−3 S/m, the pore fluid varies
in the range 10−5 S/m≤ σf ≤ 1 S/m, for a porosityφ = 0.2,
and for five values of the cementation exponent,m = 1, 1.2,
1.5, 2, 2.5. It is no longer true thatσeff =σf = 10−3 S/m. It is
also worth noting that the solution of Bussian’s equation in
complex space suffers from the same difficulties as in the real
space when it comes to fluids with low conductivities (i.e., as
σf → 0). The innaccuracies in this limit exhibit themselves
both in the real and imaginary parts of the solution and be-
come more pronounced asσf → 0 and as the cementation
exponent increases. The problem, as described previously,
resides in the formulation of the Bussian equation rather than
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the solution method, and arises due to assumptions that are
inherent in the effective medium approach.

It should be noted that the classical bisection method is
fairly straightforward to implement under any of the com-
mon programming languages, but requires a greater level of
programming skill than the conformal mapping implementa-
tion in MapleTM 11.

It should also be noted that all tests were carried out on
a standard desktop PC (Intel Core 2 Quad 2.4 GHz, 4 core,
3 Gb RAM, Microsoft windows XP Professional) running
MapleTM 11 for the conformal mapping method. The clas-
sical bisection method was implemented using the simpli-
fied code available in Numerical Recipes in C++: The Art
of Scientific Computing, 3rd edition (Press et al., 2007) and
Borland C++ 5.5. In both cases the tests were run after a
complete reboot of the PC and with no background tasks ac-
tive. Elapsed timing was carried out using timestamps for the
classical bisection method and using the MapleTM 11 native
timer. There were no significant usages of physical memory
for either method.

5 Conclusions

A new, simple and elegant method for the solution of Bussian
equation for the complex effective conductivity, complex di-
electric permittivity and complex relative permittivity of two
phase mixtures such as water saturated rocks has been devel-
oped. The implementation of this method in MapleTM 11 al-
lows effective and swift solution of these equations. Compar-
ison of the conformal mapping method with the classical bi-
section method on the same computer shows the new method
to be as precise, easier to implement and about 52 times faster
to run. The new method is almost as efficient when solv-
ing the equation with parameters that are complex numbers,
which is something that the bisection method, and the great
majority of root finding methods is not capable of doing.
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