

Supplement of

Monitoring of induced distributed double-couple sources using Marchenko-based virtual receivers

Joeri Brackenhoff et al.

Correspondence to: Joeri Brackenhoff (j.a.brackenhoff@tudelft.nl)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

S1 Classical homogeneous Green's function representation

S1.1 Definition of the homogeneous Green's function

Consider an inhomogeneous lossless acoustic medium with mass density $\rho(\mathbf{x})$ and compressibility $\kappa(\mathbf{x})$. In this medium a space- and time-dependent source distribution $q(\mathbf{x},t)$ is present, with q defined as the volume-injection rate density. The acoustic wave field, caused by this source distribution, is described in terms of the acoustic pressure $p(\mathbf{x},t)$ and the particle velocity $v_i(\mathbf{x},t)$. These field quantities obey the equation of motion and the stress-strain relation, according to

$$\rho \partial_t v_i + \partial_i p = 0, \tag{S1}$$

$$\kappa \partial_t p + \partial_i v_i = q. \tag{S2}$$

When q is an impulsive source at $x = x_A$ and t = 0, according to

$$q(\boldsymbol{x},t) = \delta(\boldsymbol{x} - \boldsymbol{x}_{\mathrm{A}})\delta(t),\tag{S3}$$

then the causal solution of Eqs. (S1) and (S2) defines the Green's function, hence

$$p(\boldsymbol{x},t) = G(\boldsymbol{x},\boldsymbol{x}_{\mathrm{A}},t). \tag{S4}$$

By eliminating v_i from Eqs. (S1) and (S2) and substituting Eqs. (S3) and (S4), we find that the Green's function $G(x, x_A, t)$ obeys the following wave equation

$$\partial_i(\rho^{-1}\partial_i G) - \kappa \partial_t^2 G = -\delta(\boldsymbol{x} - \boldsymbol{x}_A)\partial_t \delta(t).$$
(S5)

Wave equation (S5) is symmetric in time, except for the source on the right-hand side, which is anti-symmetric. Hence, the time-reversed Green's function $G(x, x_A, -t)$ obeys the same wave equation, but with opposite sign for the source. By summing the wave equations for $G(x, x_A, -t)$ and $G(x, x_A, -t)$, the sources on the right-hand sides cancel each other, hence, the homogeneous Green's function

$$G_{\rm h}(\boldsymbol{x}, \boldsymbol{x}_{\rm A}, t) = G(\boldsymbol{x}, \boldsymbol{x}_{\rm A}, t) + G(\boldsymbol{x}, \boldsymbol{x}_{\rm A}, -t)$$
(S6)

obeys the homogeneous equation

.

$$\partial_i (\rho^{-1} \partial_i G_{\mathbf{h}}) - \kappa \partial_t^2 G_{\mathbf{h}} = 0.$$
(S7)

S1.2 Reciprocity theorems

We define the temporal Fourier transform of a time-dependent quantity u(t) as

$$u(\omega) = \int_{-\infty}^{\infty} u(t) \exp(i\omega t) dt.$$
(S8)

In the frequency domain, Eqs. (S1) and (S2) transform to

$$-i\omega\rho v_i + \partial_i p = 0,\tag{S9}$$

$$-i\omega\kappa p + \partial_i v_i = q. \tag{S10}$$

We introduce two independent acoustic states, which will be distinguished by subscripts A and B. Rayleigh's reciprocity theorem is obtained by considering the quantity $\partial_i \{p_A v_{i,B} - v_{i,A} p_B\}$, applying the product rule for differentiation, substituting Eqs. (S9) and (S10) for both states, integrating the result over a spatial domain \mathbb{V} enclosed by surface \mathbb{S} with outward pointing

normal n_i , and applying the theorem of Gauss (de Hoop, 1988; Fokkema and van den Berg, 1993). Assuming that in \mathbb{V} the medium parameters $\rho(\mathbf{x})$ and $\kappa(\mathbf{x})$ in the two states are identical, this yields Rayleigh's reciprocity theorem of the convolution type

$$\int_{\mathbb{V}} \{p_{\mathrm{A}}q_{\mathrm{B}} - q_{\mathrm{A}}p_{\mathrm{B}}\} \mathrm{d}\boldsymbol{x} = \oint_{\mathbb{S}} \frac{1}{i\omega\rho} \{p_{\mathrm{A}}(\partial_{i}p_{\mathrm{B}}) - (\partial_{i}p_{\mathrm{A}})p_{\mathrm{B}}\} n_{i} \mathrm{d}\boldsymbol{x}.$$
(S11)

We derive a second form of Rayleigh's reciprocity theorem for time-reversed wave fields. In the frequency domain, timereversal is replaced by complex conjugation. When p is a solution of Eqs. (S9) and (S10) with source distribution q (and real-valued medium parameters), then p^* obeys the same equations with source distribution $-q^*$. Making these substitutions for state A in Eq. (S11) we obtain Rayleigh's reciprocity theorem of the correlation type (Bojarski, 1983)

$$\int_{\mathbb{V}} \{p_{\mathrm{A}}^* q_{\mathrm{B}} + q_{\mathrm{A}}^* p_{\mathrm{B}}\} \mathrm{d}\boldsymbol{x} = \oint_{\mathbb{S}} \frac{1}{i\omega\rho} \{p_{\mathrm{A}}^* (\partial_i p_{\mathrm{B}}) - (\partial_i p_{\mathrm{A}}^*) p_{\mathrm{B}}\} n_i \mathrm{d}\boldsymbol{x}.$$
(S12)

S1.3 Representation of the homogeneous Green's function

We choose point sources in both states, according to $q_A(x,\omega) = \delta(x - x_A)$ and $q_B(x,\omega) = \delta(x - x_B)$, with x_A and x_B both in \mathbb{V} . The fields in states A and B are thus expressed in terms of Green's functions, according to

$$p_{\mathbf{A}}(\boldsymbol{x},\omega) = G(\boldsymbol{x},\boldsymbol{x}_{\mathbf{A}},\omega),\tag{S13}$$

$$p_{\rm B}(\boldsymbol{x},\omega) = G(\boldsymbol{x},\boldsymbol{x}_{\rm B},\omega),\tag{S14}$$

with $G(\boldsymbol{x}, \boldsymbol{x}_{A}, \omega)$ and $G(\boldsymbol{x}, \boldsymbol{x}_{B}, \omega)$ being the Fourier transforms of $G(\boldsymbol{x}, \boldsymbol{x}_{A}, t)$ and $G(\boldsymbol{x}, \boldsymbol{x}_{B}, t)$, respectively. Making these substitutions in Eq. (S12) and using source-receiver reciprocity of the Green's functions gives (Porter, 1970; Oristaglio, 1989; Wapenaar, 2004; Van Manen et al., 2005)

$$G_{\rm h}(\boldsymbol{x}_{\rm B}, \boldsymbol{x}_{\rm A}, \omega) = \oint_{\mathbb{S}} \frac{1}{i\omega\rho(\boldsymbol{x})} \Big(\{\partial_i G(\boldsymbol{x}, \boldsymbol{x}_{\rm B}, \omega)\} G^*(\boldsymbol{x}, \boldsymbol{x}_{\rm A}, \omega) - G(\boldsymbol{x}, \boldsymbol{x}_{\rm B}, \omega) \partial_i G^*(\boldsymbol{x}, \boldsymbol{x}_{\rm A}, \omega) \Big) n_i \mathrm{d}\boldsymbol{x}, \tag{S15}$$

where $G_{\rm h}(\boldsymbol{x}_{\rm B},\boldsymbol{x}_{\rm A},\omega)$ is the homogeneous Green's function in the frequency domain. It is defined as

$$G_{\rm h}(\boldsymbol{x}, \boldsymbol{x}_{\rm A}, \omega) = G(\boldsymbol{x}, \boldsymbol{x}_{\rm A}, \omega) + G^*(\boldsymbol{x}, \boldsymbol{x}_{\rm A}, \omega) = 2\Re\{G(\boldsymbol{x}, \boldsymbol{x}_{\rm A}, \omega)\},\tag{S16}$$

where \Re denotes the real part. Equation (S15) is an exact representation for the homogeneous Green's function $G_{\rm h}(x_{\rm B}, x_{\rm A}, \omega)$.

When S is sufficiently smooth and the medium outside S is homogeneous (with mass density ρ_0 , compressibility κ_0 and propagation velocity $c_0 = (\kappa_0 \rho_0)^{-1/2}$), the two terms under the integral in Eq. (S15) are nearly identical (but opposite in sign), hence

$$G_{\rm h}(\boldsymbol{x}_{\rm B}, \boldsymbol{x}_{\rm A}, \omega) = -2 \oint_{\mathbb{S}} \frac{1}{i\omega\rho_0} G(\boldsymbol{x}, \boldsymbol{x}_{\rm B}, \omega) \partial_i G^*(\boldsymbol{x}, \boldsymbol{x}_{\rm A}, \omega) n_i \mathrm{d}\boldsymbol{x}.$$
(S17)

The main approximation is that evanescent waves are neglected at S (Zheng et al., 2011; Wapenaar et al., 2011).

S2 Single-sided homogeneous Green's function representations

S2.1 Modification of the configuration

We replace the arbitrary closed surface S by a combination of two surfaces S_0 and S_A , as indicated in Fig. S1. Here S_0 may be curved, but S_A is a horizontal surface, with n = (0, 0, 1). The depth level of S_A is defined as $x_{3,A}$ (which is equal to

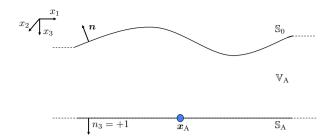


Figure S1. Modified configuration. The surface S consists of the combination of surfaces S_0 and S_A .

the x_3 -coordinate of the point x_A). The domain between surfaces \mathbb{S}_0 and \mathbb{S}_A is called \mathbb{V}_A . For this configuration, reciprocity theorems (S11) and (S12) are replaced by

$$\int_{\mathbb{V}_{A}} \{p_{A}q_{B} - q_{A}p_{B}\} d\boldsymbol{x} = \int_{\mathbb{S}_{0}} \frac{1}{i\omega\rho} \{p_{A}(\partial_{i}p_{B}) - (\partial_{i}p_{A})p_{B}\} n_{i}d\boldsymbol{x} + \int_{\mathbb{S}_{A}} \frac{1}{i\omega\rho} \{p_{A}(\partial_{3}p_{B}) - (\partial_{3}p_{A})p_{B}\} d\boldsymbol{x}$$
(S18)

and

$$\int_{\mathbb{V}_{A}} \{p_{A}^{*}q_{B} + q_{A}^{*}p_{B}\} d\boldsymbol{x} = \int_{\mathbb{S}_{0}} \frac{1}{i\omega\rho} \{p_{A}^{*}(\partial_{i}p_{B}) - (\partial_{i}p_{A}^{*})p_{B}\} n_{i}d\boldsymbol{x} + \int_{\mathbb{S}_{A}} \frac{1}{i\omega\rho} \{p_{A}^{*}(\partial_{3}p_{B}) - (\partial_{3}p_{A}^{*})p_{B}\} d\boldsymbol{x},$$
(S19)

respectively. In the following we use these reciprocity theorems as the basis for deriving several versions of single-sided homogeneous Green's function representations, each time by applying decomposition to one or more of the integrals in these theorems.

S2.2 Single-sided homogeneous Green's function representation: general formulation

Following a similar derivation as in Appendix B in Wapenaar and Berkhout (1989), we reformulate Eqs. (S18) and (S19) as

$$\int_{\mathbb{V}_{A}} \left(p_{A}q_{B} - q_{A}p_{B} \right) d\boldsymbol{x} = \int_{\mathbb{S}_{0}} \frac{1}{i\omega\rho} \left(p_{A}(\partial_{i}p_{B}) - (\partial_{i}p_{A})p_{B} \right) n_{i}d\boldsymbol{x} - \int_{\mathbb{S}_{A}} \frac{2}{i\omega\rho} \left((\partial_{3}p_{A}^{+})p_{B}^{-} + (\partial_{3}p_{A}^{-})p_{B}^{+} \right) d\boldsymbol{x}$$
(S20)

and, ignoring evanescent waves,

$$\int_{\mathbb{V}_{A}} \left(p_{A}^{*} q_{B} + q_{A}^{*} p_{B} \right) d\boldsymbol{x} = \int_{\mathbb{S}_{0}} \frac{1}{i\omega\rho} \left(p_{A}^{*}(\partial_{i} p_{B}) - (\partial_{i} p_{A}^{*}) p_{B} \right) n_{i} d\boldsymbol{x} - \int_{\mathbb{S}_{A}} \frac{2}{i\omega\rho} \left((\partial_{3} p_{A}^{+})^{*} p_{B}^{+} + (\partial_{3} p_{A}^{-})^{*} p_{B}^{-} \right) d\boldsymbol{x}.$$
(S21)

The superscripts + and – stand for downgoing and upgoing, respectively. For state A we consider the focusing function $f_1(x, x_A, \omega) = f_1^+(x, x_A, \omega) + f_1^-(x, x_A, \omega)$, introduced in section 3.1 in the companion paper "Green's theorem in seismic imaging across the scales" (Wapenaar et al., 2019). This focusing function is defined in a truncated version of the medium, which is identical to the actual medium in \mathbb{V}_A , but reflection free above \mathbb{S}_0 and below \mathbb{S}_A . The focusing conditions at the focal plane \mathbb{S}_A are (Wapenaar et al., 2014)

$$[\partial_3 f_1^+(\boldsymbol{x}, \boldsymbol{x}_{\mathrm{A}}, \omega)]_{\boldsymbol{x}_3 = \boldsymbol{x}_{3,\mathrm{A}}} = \frac{1}{2} i \omega \rho(\boldsymbol{x}_{\mathrm{A}}) \delta(\boldsymbol{x}_{\mathrm{H}} - \boldsymbol{x}_{\mathrm{H},\mathrm{A}}), \tag{S22}$$

$$[\partial_3 f_1^-(\boldsymbol{x}, \boldsymbol{x}_A, \omega)]_{\boldsymbol{x}_3 = \boldsymbol{x}_3, A} = 0.$$
(S23)

For state B we consider the Green's function $G(\boldsymbol{x}, \boldsymbol{x}_{\mathrm{B}}, \omega) = G^+(\boldsymbol{x}, \boldsymbol{x}_{\mathrm{B}}, \omega) + G^-(\boldsymbol{x}, \boldsymbol{x}_{\mathrm{B}}, \omega)$, with its source at $\boldsymbol{x}_{\mathrm{B}}$ anywhere in the half-space below \mathbb{S}_0 . Note that the superscripts + and - in $f_1^{\pm}(\boldsymbol{x}, \boldsymbol{x}_{\mathrm{A}}, \omega)$ and $G^{\pm}(\boldsymbol{x}, \boldsymbol{x}_{\mathrm{B}}, \omega)$ refer to the propagation

direction (downward or upward) at the observation point \boldsymbol{x} . The source of the Green's function at $\boldsymbol{x}_{\rm B}$ is omnidirectional. Substituting $q_{\rm A}(\boldsymbol{x},\omega) = 0$, $p_{\rm A}^{\pm}(\boldsymbol{x},\omega) = f_1^{\pm}(\boldsymbol{x},\boldsymbol{x}_{\rm A},\omega)$, $q_{\rm B}(\boldsymbol{x},\omega) = \delta(\boldsymbol{x}-\boldsymbol{x}_{\rm B})$ and $p_{\rm B}^{\pm}(\boldsymbol{x},\omega) = G^{\pm}(\boldsymbol{x},\boldsymbol{x}_{\rm B},\omega)$ into Eqs. (S20) and (S21), using Eqs. (S22) and (S23), gives

$$G^{-}(\boldsymbol{x}_{\mathrm{A}}, \boldsymbol{x}_{\mathrm{B}}, \omega) + \chi(\boldsymbol{x}_{\mathrm{B}}) f_{1}(\boldsymbol{x}_{\mathrm{B}}, \boldsymbol{x}_{\mathrm{A}}, \omega)$$

$$= \int_{\mathbb{S}_{0}} \frac{1}{i\omega\rho(\boldsymbol{x})} \Big(\{\partial_{i}G(\boldsymbol{x}, \boldsymbol{x}_{\mathrm{B}}, \omega)\} f_{1}(\boldsymbol{x}, \boldsymbol{x}_{\mathrm{A}}, \omega) - G(\boldsymbol{x}, \boldsymbol{x}_{\mathrm{B}}, \omega)\partial_{i}f_{1}(\boldsymbol{x}, \boldsymbol{x}_{\mathrm{A}}, \omega) \Big) n_{i} \mathrm{d}\boldsymbol{x}$$
(S24)

and

$$G^{+}(\boldsymbol{x}_{\mathrm{A}}, \boldsymbol{x}_{\mathrm{B}}, \omega) - \chi(\boldsymbol{x}_{\mathrm{B}}) f_{1}^{*}(\boldsymbol{x}_{\mathrm{B}}, \boldsymbol{x}_{\mathrm{A}}, \omega)$$

= $-\int_{\mathbb{S}_{0}} \frac{1}{i\omega\rho(\boldsymbol{x})} \Big(\{\partial_{i}G(\boldsymbol{x}, \boldsymbol{x}_{\mathrm{B}}, \omega)\} f_{1}^{*}(\boldsymbol{x}, \boldsymbol{x}_{\mathrm{A}}, \omega) - G(\boldsymbol{x}, \boldsymbol{x}_{\mathrm{B}}, \omega)\partial_{i}f_{1}^{*}(\boldsymbol{x}, \boldsymbol{x}_{\mathrm{A}}, \omega) \Big) n_{i} \mathrm{d}\boldsymbol{x},$ (S25)

respectively, where χ is the characteristic function of the domain \mathbb{V}_A . It is defined as

$$\chi(\boldsymbol{x}_{\mathrm{B}}) = \begin{cases} 1, & \text{for } \boldsymbol{x}_{\mathrm{B}} \text{ between } \mathbb{S}_{0} \text{ and } \mathbb{S}_{\mathrm{A}}, \\ \frac{1}{2}, & \text{for } \boldsymbol{x}_{\mathrm{B}} \text{ on } \mathbb{S} = \mathbb{S}_{0} \cup \mathbb{S}_{\mathrm{A}}, \\ 0, & \text{for } \boldsymbol{x}_{\mathrm{B}} \text{ outside } \mathbb{S}. \end{cases}$$
(S26)

Summing Eqs. (S24) and (S25) and using source-receiver reciprocity for the Green's function on the left-hand side yields

$$G(\boldsymbol{x}_{\mathrm{B}}, \boldsymbol{x}_{\mathrm{A}}, \omega) + \chi(\boldsymbol{x}_{\mathrm{B}}) 2i \Im\{f_{1}(\boldsymbol{x}_{\mathrm{B}}, \boldsymbol{x}_{\mathrm{A}}, \omega)\}$$

$$= \int_{\mathbb{S}_{0}} \frac{2}{\omega \rho(\boldsymbol{x})} \Big(\{\partial_{i} G(\boldsymbol{x}, \boldsymbol{x}_{\mathrm{B}}, \omega)\} \Im\{f_{1}(\boldsymbol{x}, \boldsymbol{x}_{\mathrm{A}}, \omega)\} - G(\boldsymbol{x}, \boldsymbol{x}_{\mathrm{B}}, \omega) \Im\{\partial_{i} f_{1}(\boldsymbol{x}, \boldsymbol{x}_{\mathrm{A}}, \omega)\}\Big) n_{i} \mathrm{d}\boldsymbol{x}, \qquad (S27)$$

where \Im denotes the imaginary part. Taking the real part of both sides of this equation, using Eq. (S16), gives the single-sided representation of the homogeneous Green's function

$$G_{\rm h}(\boldsymbol{x}_{\rm B}, \boldsymbol{x}_{\rm A}, \omega) = \int_{\mathbb{S}_0} \frac{2}{\omega \rho(\boldsymbol{x})} \Big(\{ \partial_i G_{\rm h}(\boldsymbol{x}, \boldsymbol{x}_{\rm B}, \omega) \} \Im\{ f_1(\boldsymbol{x}, \boldsymbol{x}_{\rm A}, \omega) \} - G_{\rm h}(\boldsymbol{x}, \boldsymbol{x}_{\rm B}, \omega) \Im\{ \partial_i f_1(\boldsymbol{x}, \boldsymbol{x}_{\rm A}, \omega) \} \Big) n_i \mathrm{d}\boldsymbol{x}.$$
(S28)

S2.3 Single-sided homogeneous Green's function representation: assuming a homogeneous upper half-space

From here onward we assume that also S_0 is a horizontal surface, with n = (0, 0, -1). Following a similar derivation as in Appendix B in Wapenaar and Berkhout (1989), we reformulate Eqs. (S18) and (S19) as

$$\int_{\mathbb{V}_{A}} \left(p_{A}^{+} q_{B}^{-} + p_{A}^{-} q_{B}^{+} - q_{A}^{+} p_{B}^{-} - q_{A}^{-} p_{B}^{+} \right) d\boldsymbol{x} = \\
\int_{\mathbb{S}_{0}} \frac{2}{i\omega\rho} \left((\partial_{3} p_{A}^{+}) p_{B}^{-} + (\partial_{3} p_{A}^{-}) p_{B}^{+} \right) d\boldsymbol{x} - \int_{\mathbb{S}_{A}} \frac{2}{i\omega\rho} \left((\partial_{3} p_{A}^{+}) p_{B}^{-} + (\partial_{3} p_{A}^{-}) p_{B}^{+} \right) d\boldsymbol{x} \quad (S29)$$

and, ignoring evanescent waves,

$$\int_{\mathbb{V}_{A}} \left(p_{A}^{+*} q_{B}^{+} + p_{A}^{-*} q_{B}^{-} + q_{A}^{+*} p_{B}^{+} + q_{A}^{-*} p_{B}^{-} \right) d\boldsymbol{x} =
\int_{\mathbb{S}_{0}} \frac{2}{i\omega\rho} \left((\partial_{3} p_{A}^{+})^{*} p_{B}^{+} + (\partial_{3} p_{A}^{-})^{*} p_{B}^{-} \right) d\boldsymbol{x} - \int_{\mathbb{S}_{A}} \frac{2}{i\omega\rho} \left((\partial_{3} p_{A}^{+})^{*} p_{B}^{+} + (\partial_{3} p_{A}^{-})^{*} p_{B}^{-} \right) d\boldsymbol{x}. \quad (S30)$$

We apply these theorems to the situation in which the upper half-space above \mathbb{S}_0 is homogeneous (for the Green's function as well as for the focusing function). For state A we consider again the focusing function $f_1(\boldsymbol{x}, \boldsymbol{x}_A, \omega) = f_1^+(\boldsymbol{x}, \boldsymbol{x}_A, \omega) + f_1^-(\boldsymbol{x}, \boldsymbol{x}_A, \omega)$, defined in a truncated version of the medium. For state B we consider the Green's function $G(\boldsymbol{x}, \boldsymbol{x}_B, \omega) = G^{+,+}(\boldsymbol{x}, \boldsymbol{x}_B, \omega) + G^{-,+}(\boldsymbol{x}, \boldsymbol{x}_B, \omega) + G^{+,-}(\boldsymbol{x}, \boldsymbol{x}_B, \omega) + G^{-,-}(\boldsymbol{x}, \boldsymbol{x}_B, \omega)$, with its source at \boldsymbol{x}_B anywhere in the half-space below \mathbb{S}_0 . Note that we introduced two superscripts. The first superscript refers again to the propagation direction at the observation point \boldsymbol{x} . The second superscript refers to the radiation direction of the source at \boldsymbol{x}_B . Substituting $q_A^+(\boldsymbol{x}, \omega) = q_A^-(\boldsymbol{x}, \omega) = 0$, $p_A^{\pm}(\boldsymbol{x}, \omega) = f_1^{\pm}(\boldsymbol{x}, \boldsymbol{x}_A, \omega)$, $q_B^{\pm}(\boldsymbol{x}, \omega) = \delta(\boldsymbol{x} - \boldsymbol{x}_B)$, $q_B^-(\boldsymbol{x}, \omega) = 0$ and $p_B^{\pm}(\boldsymbol{x}, \omega) = G^{\pm,+}(\boldsymbol{x}, \boldsymbol{x}_B, \omega)$ into Eqs. (S29) and (S30), using Eqs. (S22) and (S23) and $G^{+,+}(\boldsymbol{x}, \boldsymbol{x}_B, \omega) = 0$ for \boldsymbol{x} at \mathbb{S}_0 (since the upper half-space is homogeneous), gives

$$G^{-,+}(\boldsymbol{x}_{\mathrm{A}},\boldsymbol{x}_{\mathrm{B}},\omega) + \chi(\boldsymbol{x}_{\mathrm{B}})f_{1}^{-}(\boldsymbol{x}_{\mathrm{B}},\boldsymbol{x}_{\mathrm{A}},\omega) = \int_{\mathbb{S}_{0}} \frac{2}{i\omega\rho_{0}}G^{-,+}(\boldsymbol{x},\boldsymbol{x}_{\mathrm{B}},\omega)\partial_{3}f_{1}^{+}(\boldsymbol{x},\boldsymbol{x}_{\mathrm{A}},\omega)\mathrm{d}\boldsymbol{x}$$
(S31)

and

$$G^{+,+}(\boldsymbol{x}_{\rm A}, \boldsymbol{x}_{\rm B}, \omega) - \chi(\boldsymbol{x}_{\rm B}) \{f_1^+(\boldsymbol{x}_{\rm B}, \boldsymbol{x}_{\rm A}, \omega)\}^* = -\int_{\mathbb{S}_0} \frac{2}{i\omega\rho_0} G^{-,+}(\boldsymbol{x}, \boldsymbol{x}_{\rm B}, \omega) \{\partial_3 f_1^-(\boldsymbol{x}, \boldsymbol{x}_{\rm A}, \omega)\}^* \mathrm{d}\boldsymbol{x}.$$
 (S32)

Next, substituting $q_{\rm A}^+(\boldsymbol{x},\omega) = q_{\rm A}^-(\boldsymbol{x},\omega) = 0$, $p_{\rm A}^\pm(\boldsymbol{x},\omega) = f_1^\pm(\boldsymbol{x},\boldsymbol{x}_{\rm A},\omega)$, $q_{\rm B}^+(\boldsymbol{x},\omega) = 0$, $q_{\rm B}^-(\boldsymbol{x},\omega) = \delta(\boldsymbol{x}-\boldsymbol{x}_{\rm B})$ and $p_{\rm B}^\pm(\boldsymbol{x},\omega) = G^{\pm,-}(\boldsymbol{x},\boldsymbol{x}_{\rm B},\omega)$ into Eqs. (S29) and (S30), using Eqs. (S22) and (S23) and $G^{+,-}(\boldsymbol{x},\boldsymbol{x}_{\rm B},\omega) = 0$ for \boldsymbol{x} at \mathbb{S}_0 , gives

$$G^{-,-}(\boldsymbol{x}_{\mathrm{A}},\boldsymbol{x}_{\mathrm{B}},\omega) + \chi(\boldsymbol{x}_{\mathrm{B}})f_{1}^{+}(\boldsymbol{x}_{\mathrm{B}},\boldsymbol{x}_{\mathrm{A}},\omega) = \int_{\mathbb{S}_{0}} \frac{2}{i\omega\rho_{0}}G^{-,-}(\boldsymbol{x},\boldsymbol{x}_{\mathrm{B}},\omega)\partial_{3}f_{1}^{+}(\boldsymbol{x},\boldsymbol{x}_{\mathrm{A}},\omega)\mathrm{d}\boldsymbol{x}$$
(S33)

and

$$G^{+,-}(\boldsymbol{x}_{\rm A}, \boldsymbol{x}_{\rm B}, \omega) - \chi(\boldsymbol{x}_{\rm B}) \{f_1^-(\boldsymbol{x}_{\rm B}, \boldsymbol{x}_{\rm A}, \omega)\}^* = -\int_{\mathbb{S}_0} \frac{2}{i\omega\rho_0} G^{-,-}(\boldsymbol{x}, \boldsymbol{x}_{\rm B}, \omega) \{\partial_3 f_1^-(\boldsymbol{x}, \boldsymbol{x}_{\rm A}, \omega)\}^* \mathrm{d}\boldsymbol{x}.$$
 (S34)

Summing Eqs. (S31) – (S34), using source-receiver reciprocity for the Green's function on the left-hand side and $G^{+,+}(\boldsymbol{x}, \boldsymbol{x}_{\mathrm{B}}, \omega) = G^{+,-}(\boldsymbol{x}, \boldsymbol{x}_{\mathrm{B}}, \omega) = 0$ for \boldsymbol{x} at \mathbb{S}_0 , we obtain

$$G(\boldsymbol{x}_{\mathrm{B}}, \boldsymbol{x}_{\mathrm{A}}, \omega) + \chi(\boldsymbol{x}_{\mathrm{B}}) 2i\Im\{f_{1}(\boldsymbol{x}_{\mathrm{B}}, \boldsymbol{x}_{\mathrm{A}}, \omega)\}$$

=
$$\int_{\mathbb{S}_{0}} \frac{2}{i\omega\rho_{0}} G(\boldsymbol{x}, \boldsymbol{x}_{\mathrm{B}}, \omega) \partial_{3} (f_{1}^{+}(\boldsymbol{x}, \boldsymbol{x}_{\mathrm{A}}, \omega) - \{f_{1}^{-}(\boldsymbol{x}, \boldsymbol{x}_{\mathrm{A}}, \omega)\}^{*}) \mathrm{d}\boldsymbol{x}.$$
 (S35)

Taking the real part of both sides gives the single-sided representation of the homogeneous Green's function for the situation that the upper half-space is homogeneous

$$G_{\rm h}(\boldsymbol{x}_{\rm B}, \boldsymbol{x}_{\rm A}, \omega) = 4\Re \int_{\mathbb{S}_0} \frac{1}{i\omega\rho_0} G(\boldsymbol{x}, \boldsymbol{x}_{\rm B}, \omega) \partial_3 \left(f_1^+(\boldsymbol{x}, \boldsymbol{x}_{\rm A}, \omega) - \{f_1^-(\boldsymbol{x}, \boldsymbol{x}_{\rm A}, \omega)\}^* \right) \mathrm{d}\boldsymbol{x}.$$
(S36)

We conclude by deriving source-receiver reciprocity relations for the decomposed Green's functions $G^{\pm,\pm}(\boldsymbol{x}, \boldsymbol{x}_{\mathrm{B}}, \omega)$. We consider Eq. (S29), but replace \mathbb{V}_{A} by the entire space \mathbb{R}^3 . In this situation there are only outgoing waves at \mathbb{S} . Hence, Eq. (S29) simplifies to

$$\int_{\mathbb{R}^3} \left(p_{\rm A}^+ q_{\rm B}^- + p_{\rm A}^- q_{\rm B}^+ - q_{\rm A}^+ p_{\rm B}^- - q_{\rm A}^- p_{\rm B}^+ \right) \mathrm{d}\boldsymbol{x} = 0.$$
(S37)

First we substitute $q_{\rm A}^+ = \delta(\boldsymbol{x} - \boldsymbol{x}_{\rm A}), q_{\rm A}^- = 0, p_{\rm A}^{\pm} = G^{\pm,+}(\boldsymbol{x}, \boldsymbol{x}_{\rm A}, \omega), q_{\rm B}^+ = \delta(\boldsymbol{x} - \boldsymbol{x}_{\rm B}), q_{\rm B}^- = 0$ and $p_{\rm B}^{\pm} = G^{\pm,+}(\boldsymbol{x}, \boldsymbol{x}_{\rm B}, \omega)$. This gives

$$G^{-,+}(\boldsymbol{x}_{\mathrm{B}},\boldsymbol{x}_{\mathrm{A}},\omega) = G^{-,+}(\boldsymbol{x}_{\mathrm{A}},\boldsymbol{x}_{\mathrm{B}},\omega).$$
(S38)

Next, we substitute $q_{\rm A}^+ = \delta(\boldsymbol{x} - \boldsymbol{x}_{\rm A}), q_{\rm A}^- = 0, p_{\rm A}^\pm = G^{\pm,+}(\boldsymbol{x}, \boldsymbol{x}_{\rm A}, \omega), q_{\rm B}^+ = 0, q_{\rm B}^- = \delta(\boldsymbol{x} - \boldsymbol{x}_{\rm B})$ and $p_{\rm B}^\pm = G^{\pm,-}(\boldsymbol{x}, \boldsymbol{x}_{\rm B}, \omega)$. This gives

$$G^{+,+}(\boldsymbol{x}_{\mathrm{B}},\boldsymbol{x}_{\mathrm{A}},\omega) = G^{-,-}(\boldsymbol{x}_{\mathrm{A}},\boldsymbol{x}_{\mathrm{B}},\omega).$$
(S39)

Finally, we substitute $q_{\rm A}^+ = 0$, $q_{\rm A}^- = \delta(\boldsymbol{x} - \boldsymbol{x}_{\rm A})$, $p_{\rm A}^\pm = G^{\pm,-}(\boldsymbol{x}, \boldsymbol{x}_{\rm A}, \omega)$, $q_{\rm B}^+ = 0$, $q_{\rm B}^- = \delta(\boldsymbol{x} - \boldsymbol{x}_{\rm B})$ and $p_{\rm B}^\pm = G^{\pm,-}(\boldsymbol{x}, \boldsymbol{x}_{\rm B}, \omega)$. This gives

$$G^{+,-}(\boldsymbol{x}_{\mathrm{B}},\boldsymbol{x}_{\mathrm{A}},\omega) = G^{+,-}(\boldsymbol{x}_{\mathrm{A}},\boldsymbol{x}_{\mathrm{B}},\omega).$$
(S40)

Note that Eq. (S39) does not include a minus sign, unlike the corresponding relation for the flux-normalised decomposed Green's functions (Wapenaar, 1996). As a result of this definition, we have the following simple expression for the full Green's function

$$G(x, x_{\rm A}, \omega) = G^{+,+}(x, x_{\rm A}, \omega) + G^{-,+}(x, x_{\rm A}, \omega) + G^{+,-}(x, x_{\rm A}, \omega) + G^{-,-}(x, x_{\rm A}, \omega).$$
(S41)

References

- Bojarski, N. N.: Generalized reaction principles and reciprocity theorems for the wave equations, and the relationship between the timeadvanced and time-retarded fields, J. Acoust. Soc. Am., 74, 281–285, 1983.
- de Hoop, A. T.: Time-domain reciprocity theorems for acoustic wave fields in fluids with relaxation, J. Acoust. Soc. Am., 84, 1877–1882, 1988.

Fokkema, J. T. and van den Berg, P. M.: Seismic applications of acoustic reciprocity, Elsevier, Amsterdam, 1993.

Oristaglio, M. L.: An inverse scattering formula that uses all the data, Inverse Probl., 5, 1097–1105, 1989.

Porter, R. P.: Diffraction-limited, scalar image formation with holograms of arbitrary shape, J. Opt. Soc. Am., 60, 1051–1059, 1970.

- Van Manen, D.-J., Robertsson, J. O. A., and Curtis, A.: Modeling of wave propagation in inhomogeneous media, Phys. Rev. Lett., 94, 164301, https://doi.org/10.1103/PhysRevLett.94.164301, 2005.
- Wapenaar, C. P. A.: One-way representations of seismic data, Geophys. J. Int., 127, 178-188, 1996.
- Wapenaar, C. P. A. and Berkhout, A. J.: Elastic wave field extrapolation, Elsevier, Amsterdam, 1989.
- Wapenaar, K.: Retrieving the elastodynamic Green's function of an arbitrary inhomogeneous medium by cross correlation, Phys. Rev. Lett., 93, 254301, https://doi.org/10.1103/PhysRevLett.93.254301, 2004.
- Wapenaar, K., van der Neut, J., Ruigrok, E., Draganov, D., Hunziker, J., Slob, E., Thorbecke, J., and Snieder, R.: Seismic interferometry by crosscorrelation and by multidimensional deconvolution: a systematic comparison, Geophys. J. Int., 185, 1335–1364, 2011.
- Wapenaar, K., Thorbecke, J., van der Neut, J., Broggini, F., Slob, E., and Snieder, R.: Marchenko imaging, Geophysics, 79, WA39–WA57, 2014.
- Wapenaar, K., Brackenhoff, J., and Thorbecke, J.: Green's theorem in seismic imaging across the scales, Solid Earth, 10, 517–536, 2019.
- Zheng, Y., He, Y., and Fehler, M. C.: Crosscorrelation kernels in acoustic Green's function retrieval by wavefield correlation for point sources on a plane and a sphere, Geophys. J. Int., 184, 853–859, 2011.