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S1 Classical homogeneous Green’s function representation

S1.1 Definition of the homogeneous Green’s function

Consider an inhomogeneous lossless acoustic medium with mass density ρ(x) and compressibility κ(x). In this medium
a space- and time-dependent source distribution q(x, t) is present, with q defined as the volume-injection rate density. The
acoustic wave field, caused by this source distribution, is described in terms of the acoustic pressure p(x, t) and the particle
velocity vi(x, t). These field quantities obey the equation of motion and the stress-strain relation, according to

ρ∂tvi + ∂ip= 0, (S1)

κ∂tp+ ∂ivi = q. (S2)

When q is an impulsive source at x= xA and t= 0, according to

q(x, t) = δ(x−xA)δ(t), (S3)

then the causal solution of Eqs. (S1) and (S2) defines the Green’s function, hence

p(x, t) =G(x,xA, t). (S4)

By eliminating vi from Eqs. (S1) and (S2) and substituting Eqs. (S3) and (S4), we find that the Green’s function G(x,xA, t)
obeys the following wave equation

∂i(ρ
−1∂iG)−κ∂2tG=−δ(x−xA)∂tδ(t). (S5)

Wave equation (S5) is symmetric in time, except for the source on the right-hand side, which is anti-symmetric. Hence, the
time-reversed Green’s function G(x,xA,−t) obeys the same wave equation, but with opposite sign for the source. By sum-
ming the wave equations for G(x,xA, t) and G(x,xA,−t), the sources on the right-hand sides cancel each other, hence, the
homogeneous Green’s function

Gh(x,xA, t) =G(x,xA, t)+G(x,xA,−t) (S6)

obeys the homogeneous equation

∂i(ρ
−1∂iGh)−κ∂2tGh = 0. (S7)

S1.2 Reciprocity theorems

We define the temporal Fourier transform of a time-dependent quantity u(t) as

u(ω) =

∞∫
−∞

u(t)exp(iωt)dt. (S8)

In the frequency domain, Eqs. (S1) and (S2) transform to

−iωρvi + ∂ip= 0, (S9)

−iωκp+ ∂ivi = q. (S10)

We introduce two independent acoustic states, which will be distinguished by subscripts A and B. Rayleigh’s reciprocity
theorem is obtained by considering the quantity ∂i{pAvi,B−vi,ApB}, applying the product rule for differentiation, substituting
Eqs. (S9) and (S10) for both states, integrating the result over a spatial domain V enclosed by surface S with outward pointing
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normal ni, and applying the theorem of Gauss (de Hoop, 1988; Fokkema and van den Berg, 1993). Assuming that in V the
medium parameters ρ(x) and κ(x) in the two states are identical, this yields Rayleigh’s reciprocity theorem of the convolution
type ∫

V

{pAqB− qApB}dx=

∮
S

1

iωρ
{pA(∂ipB)− (∂ipA)pB}nidx. (S11)

We derive a second form of Rayleigh’s reciprocity theorem for time-reversed wave fields. In the frequency domain, time-
reversal is replaced by complex conjugation. When p is a solution of Eqs. (S9) and (S10) with source distribution q (and
real-valued medium parameters), then p∗ obeys the same equations with source distribution −q∗. Making these substitutions
for state A in Eq. (S11) we obtain Rayleigh’s reciprocity theorem of the correlation type (Bojarski, 1983)∫

V

{p∗AqB + q∗ApB}dx=

∮
S

1

iωρ
{p∗A(∂ipB)− (∂ip

∗
A)pB}nidx. (S12)

S1.3 Representation of the homogeneous Green’s function

We choose point sources in both states, according to qA(x,ω) = δ(x−xA) and qB(x,ω) = δ(x−xB), with xA and xB

both in V. The fields in states A and B are thus expressed in terms of Green’s functions, according to

pA(x,ω) =G(x,xA,ω), (S13)

pB(x,ω) =G(x,xB,ω), (S14)

with G(x,xA,ω) and G(x,xB,ω) being the Fourier transforms of G(x,xA, t) and G(x,xB, t), respectively. Making these
substitutions in Eq. (S12) and using source-receiver reciprocity of the Green’s functions gives (Porter, 1970; Oristaglio, 1989;
Wapenaar, 2004; Van Manen et al., 2005)

Gh(xB,xA,ω) =

∮
S

1

iωρ(x)

(
{∂iG(x,xB,ω)}G∗(x,xA,ω)−G(x,xB,ω)∂iG

∗(x,xA,ω)
)
nidx, (S15)

where Gh(xB,xA,ω) is the homogeneous Green’s function in the frequency domain. It is defined as

Gh(x,xA,ω) =G(x,xA,ω)+G∗(x,xA,ω) = 2<{G(x,xA,ω)}, (S16)

where < denotes the real part. Equation (S15) is an exact representation for the homogeneous Green’s functionGh(xB,xA,ω).
When S is sufficiently smooth and the medium outside S is homogeneous (with mass density ρ0, compressibility κ0 and

propagation velocity c0 = (κ0ρ0)
−1/2), the two terms under the integral in Eq. (S15) are nearly identical (but opposite in sign),

hence

Gh(xB,xA,ω) =−2
∮
S

1

iωρ0
G(x,xB,ω)∂iG

∗(x,xA,ω)nidx. (S17)

The main approximation is that evanescent waves are neglected at S (Zheng et al., 2011; Wapenaar et al., 2011).

S2 Single-sided homogeneous Green’s function representations

S2.1 Modification of the configuration

We replace the arbitrary closed surface S by a combination of two surfaces S0 and SA, as indicated in Fig. S1. Here S0
may be curved, but SA is a horizontal surface, with n= (0,0,1). The depth level of SA is defined as x3,A (which is equal to
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Figure S1. Modified configuration. The surface S consists of the combination of surfaces S0 and SA.

the x3-coordinate of the point xA). The domain between surfaces S0 and SA is called VA. For this configuration, reciprocity
theorems (S11) and (S12) are replaced by∫

VA

{pAqB− qApB}dx=

∫
S0

1

iωρ
{pA(∂ipB)− (∂ipA)pB}nidx+

∫
SA

1

iωρ
{pA(∂3pB)− (∂3pA)pB}dx (S18)

and ∫
VA

{p∗AqB + q∗ApB}dx=

∫
S0

1

iωρ
{p∗A(∂ipB)− (∂ip

∗
A)pB}nidx+

∫
SA

1

iωρ
{p∗A(∂3pB)− (∂3p

∗
A)pB}dx, (S19)

respectively. In the following we use these reciprocity theorems as the basis for deriving several versions of single-sided ho-
mogeneous Green’s function representations, each time by applying decomposition to one or more of the integrals in these
theorems.

S2.2 Single-sided homogeneous Green’s function representation: general formulation

Following a similar derivation as in Appendix B in Wapenaar and Berkhout (1989), we reformulate Eqs. (S18) and (S19) as∫
VA

(
pAqB− qApB

)
dx=

∫
S0

1

iωρ

(
pA(∂ipB)− (∂ipA)pB

)
nidx−

∫
SA

2

iωρ

(
(∂3p

+
A)p
−
B +(∂3p

−
A)p

+
B

)
dx (S20)

and, ignoring evanescent waves,∫
VA

(
p∗AqB + q∗ApB

)
dx=

∫
S0

1

iωρ

(
p∗A(∂ipB)− (∂ip

∗
A)pB

)
nidx−

∫
SA

2

iωρ

(
(∂3p

+
A)
∗p+B +(∂3p

−
A)
∗p−B

)
dx. (S21)

The superscripts + and − stand for downgoing and upgoing, respectively. For state A we consider the focusing function
f1(x,xA,ω) = f+1 (x,xA,ω)+ f−1 (x,xA,ω), introduced in section 3.1 in the companion paper “Green’s theorem in seismic
imaging across the scales” (Wapenaar et al., 2019). This focusing function is defined in a truncated version of the medium,
which is identical to the actual medium in VA, but reflection free above S0 and below SA. The focusing conditions at the focal
plane SA are (Wapenaar et al., 2014)

[∂3f
+
1 (x,xA,ω)]x3=x3,A

= 1
2 iωρ(xA)δ(xH−xH,A), (S22)

[∂3f
−
1 (x,xA,ω)]x3=x3,A

= 0. (S23)

For state B we consider the Green’s function G(x,xB,ω) =G+(x,xB,ω)+G−(x,xB,ω), with its source at xB anywhere
in the half-space below S0. Note that the superscripts + and − in f±1 (x,xA,ω) and G±(x,xB,ω) refer to the propagation
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direction (downward or upward) at the observation point x. The source of the Green’s function at xB is omnidirectional.
Substituting qA(x,ω) = 0, p±A(x,ω) = f±1 (x,xA,ω), qB(x,ω) = δ(x−xB) and p±B(x,ω) =G±(x,xB,ω) into Eqs. (S20)
and (S21), using Eqs. (S22) and (S23), gives

G−(xA,xB,ω)+χ(xB)f1(xB,xA,ω)

=

∫
S0

1

iωρ(x)

(
{∂iG(x,xB,ω)}f1(x,xA,ω)−G(x,xB,ω)∂if1(x,xA,ω)

)
nidx (S24)

and

G+(xA,xB,ω)−χ(xB)f
∗
1 (xB,xA,ω)

=−
∫
S0

1

iωρ(x)

(
{∂iG(x,xB,ω)}f∗1 (x,xA,ω)−G(x,xB,ω)∂if

∗
1 (x,xA,ω)

)
nidx, (S25)

respectively, where χ is the characteristic function of the domain VA. It is defined as

χ(xB) =


1, for xB between S0 and SA,
1
2
, for xB on S= S0 ∪ SA,

0, for xB outside S.
(S26)

Summing Eqs. (S24) and (S25) and using source-receiver reciprocity for the Green’s function on the left-hand side yields

G(xB,xA,ω)+χ(xB)2i={f1(xB,xA,ω)}

=

∫
S0

2

ωρ(x)

(
{∂iG(x,xB,ω)}={f1(x,xA,ω)}−G(x,xB,ω)={∂if1(x,xA,ω)}

)
nidx, (S27)

where = denotes the imaginary part. Taking the real part of both sides of this equation, using Eq. (S16), gives the single-sided
representation of the homogeneous Green’s function

Gh(xB,xA,ω) =

∫
S0

2

ωρ(x)

(
{∂iGh(x,xB,ω)}={f1(x,xA,ω)}−Gh(x,xB,ω)={∂if1(x,xA,ω)}

)
nidx. (S28)

S2.3 Single-sided homogeneous Green’s function representation: assuming a homogeneous upper half-space

From here onward we assume that also S0 is a horizontal surface, with n= (0,0,−1). Following a similar derivation as in
Appendix B in Wapenaar and Berkhout (1989), we reformulate Eqs. (S18) and (S19) as∫

VA

(
p+Aq

−
B + p−Aq

+
B − q

+
Ap
−
B − q

−
Ap

+
B

)
dx=

∫
S0

2

iωρ

(
(∂3p

+
A)p
−
B +(∂3p

−
A)p

+
B

)
dx−

∫
SA

2

iωρ

(
(∂3p

+
A)p
−
B +(∂3p

−
A)p

+
B

)
dx (S29)

and, ignoring evanescent waves,∫
VA

(
p+∗A q+B + p−∗A q−B + q+∗A p+B + q−∗A p−B

)
dx=

∫
S0

2

iωρ

(
(∂3p

+
A)
∗p+B +(∂3p

−
A)
∗p−B

)
dx−

∫
SA

2

iωρ

(
(∂3p

+
A)
∗p+B +(∂3p

−
A)
∗p−B

)
dx. (S30)
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We apply these theorems to the situation in which the upper half-space above S0 is homogeneous (for the Green’s function
as well as for the focusing function). For state A we consider again the focusing function f1(x,xA,ω) = f+1 (x,xA,ω)+
f−1 (x,xA,ω), defined in a truncated version of the medium. For state B we consider the Green’s function G(x,xB,ω) =
G+,+(x,xB,ω)+G

−,+(x,xB,ω)+G
+,−(x,xB,ω)+G

−,−(x,xB,ω), with its source at xB anywhere in the half-space below
S0. Note that we introduced two superscripts. The first superscript refers again to the propagation direction at the observation
point x. The second superscript refers to the radiation direction of the source at xB. Substituting q+A(x,ω) = q−A (x,ω) = 0,
p±A(x,ω) = f±1 (x,xA,ω), q+B (x,ω) = δ(x−xB), q−B (x,ω) = 0 and p±B(x,ω) =G±,+(x,xB,ω) into Eqs. (S29) and (S30),
using Eqs. (S22) and (S23) and G+,+(x,xB,ω) = 0 for x at S0 (since the upper half-space is homogeneous), gives

G−,+(xA,xB,ω)+χ(xB)f
−
1 (xB,xA,ω) =

∫
S0

2

iωρ0
G−,+(x,xB,ω)∂3f

+
1 (x,xA,ω)dx (S31)

and

G+,+(xA,xB,ω)−χ(xB){f+1 (xB,xA,ω)}∗ =−
∫
S0

2

iωρ0
G−,+(x,xB,ω){∂3f−1 (x,xA,ω)}∗dx. (S32)

Next, substituting q+A(x,ω) = q−A (x,ω) = 0, p±A(x,ω) = f±1 (x,xA,ω), q+B (x,ω) = 0, q−B (x,ω) = δ(x−xB) and p±B(x,ω) =
G±,−(x,xB,ω) into Eqs. (S29) and (S30), using Eqs. (S22) and (S23) and G+,−(x,xB,ω) = 0 for x at S0, gives

G−,−(xA,xB,ω)+χ(xB)f
+
1 (xB,xA,ω) =

∫
S0

2

iωρ0
G−,−(x,xB,ω)∂3f

+
1 (x,xA,ω)dx (S33)

and

G+,−(xA,xB,ω)−χ(xB){f−1 (xB,xA,ω)}∗ =−
∫
S0

2

iωρ0
G−,−(x,xB,ω){∂3f−1 (x,xA,ω)}∗dx. (S34)

Summing Eqs. (S31) − (S34), using source-receiver reciprocity for the Green’s function on the left-hand side and
G+,+(x,xB,ω) =G+,−(x,xB,ω) = 0 for x at S0, we obtain

G(xB,xA,ω)+χ(xB)2i={f1(xB,xA,ω)}

=

∫
S0

2

iωρ0
G(x,xB,ω)∂3

(
f+1 (x,xA,ω)−{f−1 (x,xA,ω)}∗

)
dx. (S35)

Taking the real part of both sides gives the single-sided representation of the homogeneous Green’s function for the situation
that the upper half-space is homogeneous

Gh(xB,xA,ω) = 4<
∫
S0

1

iωρ0
G(x,xB,ω)∂3

(
f+1 (x,xA,ω)−{f−1 (x,xA,ω)}∗

)
dx. (S36)

We conclude by deriving source-receiver reciprocity relations for the decomposed Green’s functions G±,±(x,xB,ω). We
consider Eq. (S29), but replace VA by the entire space R3. In this situation there are only outgoing waves at S. Hence, Eq.
(S29) simplifies to∫

R3

(
p+Aq

−
B + p−Aq

+
B − q

+
Ap
−
B − q

−
Ap

+
B

)
dx= 0. (S37)

First we substitute q+A = δ(x−xA), q−A = 0, p±A =G±,+(x,xA,ω), q+B = δ(x−xB), q−B = 0 and p±B =G±,+(x,xB,ω). This
gives

G−,+(xB,xA,ω) =G−,+(xA,xB,ω). (S38)
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Next, we substitute q+A = δ(x−xA), q−A = 0, p±A =G±,+(x,xA,ω), q+B = 0, q−B = δ(x−xB) and p±B =G±,−(x,xB,ω). This
gives

G+,+(xB,xA,ω) =G−,−(xA,xB,ω). (S39)

Finally, we substitute q+A = 0, q−A = δ(x−xA), p±A =G±,−(x,xA,ω), q+B = 0, q−B = δ(x−xB) and p±B =G±,−(x,xB,ω).
This gives

G+,−(xB,xA,ω) =G+,−(xA,xB,ω). (S40)

Note that Eq. (S39) does not include a minus sign, unlike the corresponding relation for the flux-normalised decomposed
Green’s functions (Wapenaar, 1996). As a result of this definition, we have the following simple expression for the full Green’s
function

G(x,xA,ω) =G+,+(x,xA,ω)+G−,+(x,xA,ω)+G+,−(x,xA,ω)+G−,−(x,xA,ω). (S41)
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