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Abstract. Earthquake aftershocks display spatiotemporal
correlations arising from their self-organized critical behav-
ior. Dynamic deterministic modeling of aftershock series is
challenging to carry out due to both the physical complexity
and uncertainties related to the different parameters which
govern the system. Nevertheless, numerical simulations with
the help of stochastic models such as the fiber bundle model
(FBM) allow the use of an analog of the physical model that
produces a statistical behavior with many similarities to real
series. FBMs are simple discrete element models that can be
characterized by using few parameters. In this work, the aim
is to present a new model based on FBM that includes ge-
ometrical characteristics of fault systems. In our model, the
faults are not described with typical geometric measures such
as dip, strike, and slip, but they are incorporated as weak
regions in the model domain that could increase the likeli-
hood to generate earthquakes. In order to analyze the sensi-
tivity of the model to input parameters, a parametric study
is carried out. Our analysis focuses on aftershock statistics
in space, time, and magnitude domains. Moreover, we ana-
lyzed the synthetic aftershock sequences properties assuming
initial load configurations and suitable conditions to propa-
gate the rupture. As an example case, we have modeled a
set of real active faults related to the Northridge, California,
earthquake sequence. We compare the simulation results to
statistical characteristics from the Northridge sequence de-
termining which range of parameters in our FBM version
reproduces the main features observed in real aftershock se-
ries. From the results obtained, we observe that two param-
eters related to the initial load configuration are determinant
in obtaining realistic seismicity characteristics: (1) parameter

P, which represents the initial probability order, and (2) pa-
rameter 7r, which is the percentage of load distributed to the
neighboring cells. The results show that in order to repro-
duce statistical characteristics of the real sequence, larger
Tfrac values (0.85 < mgrye < 0.95) and very low values of
P (0.0 < P <0.08) are needed. This implies the important
corollary that a very small departure from an initial random
load configuration (computed by P), and also a large differ-
ence between the load transfer from on-fault segments than
by off-faults (computed by ), is required to initiate a rup-
ture sequence which conforms to observed statistical proper-
ties such as the Gutenberg—Richter law, Omori law, and frac-
tal dimension.

1 Introduction

Most earthquakes occur when adjacent blocks move along
fractures in the Earth’s crust, as a consequence of stress
build-up arising from the regional strain and the stress change
caused by a preceding earthquake or by the tectonic stress
accumulation (Stein et al., 1994). These fractures, or faults,
are discontinuous geological features consisting of a num-
ber of discrete segments (Segall and Pollard, 1980), which
can be up to hundreds of kilometers in total length. Faults
are the weakest parts of the crust and thus are more likely
to release accumulated stresses, by means of slipping, than
non-fractured crust. Earthquakes may occur many times on
the same fault over millions of years. Known active faults
have ruptured several times in the last 120 000 years and are
considered likely to move again (Wallace, 1981). It has been
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observed that earthquakes are strongly correlated in space
around the active fault systems (Kroll, 2012).

Fault systems have a statistical self-similar structure over
a wide range of scales (Kagan and Knopoff, 1980; Sadovskiy
et al., 1984; Hirata and Imoto, 1991) which can be described
by means of fractal geometry, as introduced by Mandelbrot
and Pignoni (1983). Geometrical fractal structures such as
faults arise from self-organized criticality (SOC) phenomena
over large temporal periods (Bak and Creutz, 1994).

Moreover, earthquakes follow power statistical laws for
their observed scaling properties such as the Gutenberg—
Richter (GR) distribution (Gutenberg and Richter, 1942;
Scholz, 2002), the modified Omori (MO) law, (Omori, 1894,
Godano et al., 1996; Hirata and Imoto, 1991), or the fractal
dimension of their spatial distribution (Turcotte, 1997; Roy
and Ram, 2006).

SOC systems have been studied as a means to ex-
plain seismicity by several authors (Barriere and Turcotte,
1994; Scholz, 1991). In particular, models based on cellu-
lar automata have been used to describe SOC behavior in
earthquake series (Aki, 1965; Barriere and Turcotte, 1994;
Castellaro and Mulargia, 2001; Georgoudas et al., 2007;
Adamatzky and Martinez, 2016). The fiber bundle model
(FBM), a model based on cellular automata (Peirce, 1926;
Daniels, 1945; Coleman, 1956), provides a conceptual and
numerical description of the rupture process in heteroge-
neous media (Kun et al., 2006b). In this article, we present
a model that improves over the base model presented in
Monterrubio-Velasco et al. (2017) by projecting the geomet-
rical fault systems in a FBM algorithm. We developed a novel
and powerful simulation model with simple and straightfor-
ward input parameters that is capable of providing simula-
tion scenarios that are statistically consistent with real cases.
The model circumvents the high complexity related to the
derivation of deterministic models of by including faults as
an abstraction that try to explain weaker regions that are more
likely to generate earthquakes. In this version of the model,
the faults are represented as a projection on the surface as
a 2-D approximation. The extension to 3-D is being con-
sidered for a later phase of the study. We test the FBM’s
ability to capture the statistics coming from empirical laws
(i.e., the GR law, the fractal capacity dimension, the MO
law, and the Hurst exponent) by means of a parametric study.
As a case study, we consider the Northridge aftershock se-
quence (17 January 1994, My = 6.7) along with the geome-
try of its fault system. The statistical characteristics from the
Northridge aftershock sequence are compared with the statis-
tics obtained in synthetic catalogs generated with our FBM.
Even though we focus on one aftershock case, the applicabil-
ity of our model can be extended to analyze other aftershock
sequences using particular fault system as input configura-
tion. For example, in Monterrubio-Velasco et al. (2018), this
model was applied to classify, via machine learning algo-
rithms, three different aftershock sequences. Lastly, we study
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the event productivity as function of on-fault (or weakling ar-
eas) and off-fault parameters.

2 Background

This section gives a general description of the fiber bundle
model and the statistical relations used in this work.

2.1 Fiber bundle model: general description

The basic components necessary to construct an FBM are
(Andersen et al., 1997; Phoenix and Beyerlein, 2000; Prad-
han and Chakrabarti, 2003; Sornette, 1989; Kloster et al.,
1997):

1. Defining a discrete set of cells located in a regular (n-
dimensional) lattice. For our purpose, this lattice will be
two-dimensional, representing the geographical study
area in an azimuthal view.

2. Assigning a probability distribution function for the in-
ner properties of each cell. This failure law will define
the probability distribution function of the stress (in the
static case) or the probability distribution function of
the rupture time (in the dynamic version) (Hansen et al.,
2015).

3. Establishing the load-sharing rule. This component is
crucial in a FBM since the model shows a fundamental
change depending on the manner of the load transfer af-
ter a cell fail (Pradhan et al., 2010). The most used shar-
ing rules are the equal or global load sharing (Turcotte
et al., 2003) and the local sharing rule (LLS). This last
sharing rule favors the stress concentrations and pro-
motes nearest neighbors to reach a critical rupture state.

FBM was developed in two versions that simulate ma-
terial rupture by different effects: (1) the static version in
which the fiber strength is time independent (Vazquez-Prada
et al., 1999; Kun et al., 2006a; Pradhan et al., 2010), and
(2) the dynamic version where the study of the material rup-
ture is a time-dependent process, such as stress rupture, creep
rupture, static fatigue, or delayed rupture (Coleman, 1956;
Moral et al., 2001b). In this research work, we will use a
dynamic FBM with LLS in the probabilistic formulation de-
veloped in Moreno et al. (2001).

Probabilistic FBM

According to laboratory studies, the Weibull distribution de-
scribes the hazard rate (x) on materials subjected to a con-
stant load or stress, o (Coleman, 1956; Moreno et al., 2001):

o \”
K(6)=vo(a—0) ; ey

where vg is the hazard rate under stress o, and the p ex-
ponent is the Weibull index defined in the range 2 < p < 50
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(Yewande et al., 2003; Kun et al., 2006a; Nanjo and Turcotte,
2005). In the present work, we use a dimensionless represen-
tation of quantities, so that we can use normalized stresses
and Eq. (1) can be written as « (o) = ¢”, following Moreno
et al. (2001) and Monterrubio-Velasco et al. (2017).

Goémez et al. (1998) introduced a probabilistic approach
as an alternative formulation to the dynamic FBM which we
follow here.

The FBM model simulation starts by discretizing a hy-
pothetical surface in a bi-dimensional array (N, x Ny). At
the first step, the load of the cells in the bundle is as-
signed following a uniform distribution o, yy = U[0, 1), x =
I,...,Nx,and y =1,..., Ny. The notation U[0,1) is a mathe-
matical form to represents a uniform distribution with values
in the range equal to or greater than 0 and lower than 1. This
assumption simulates an initial heterogeneity in the load cell
properties. The hazard rate assigned at each cell is computed
using Eq. (1) (Moreno et al., 1999; Pradhan et al., 2010). Fur-
thermore, a rupture probability, Fi, y), is computed for each
individual element or cell, and at each step. This value is load
dependent and is defined by

F(x,y) ZU&J)(S, (2)

where § is the time interval (or inter-event time) until the
next rupture occurs, valid for any load-sharing rule (Moral
etal., 2001a), computed as (Moreno et al., 2001; Moral et al.,
2001a)

1

) o
2 xt1y=1%y)
From Eq. (3), § is a dimensionless quantity since o(x,y)
and p are dimensionless.
The time of occurrence or cumulative time 7 (k) is defined
as

k
T (k) = Zai, “)
i=1

where k =1, ..., kmax, being kpax the maximum number of
steps. Our model uses Egs. (2), (3), and (4) to compute the
rupture probability and the inter-event time.

2.2 Previous aftershock models

In our previous work, we developed a FBM version to simu-
late spatial and magnitude aftershock patterns. Following the
general assumptions proposed in Correig et al. (1997), we
modified it in order to define a computational domain that
describes a particular geographical area. Moreover, the initial
load values are ordered according to a probability value P.
P = O represents a random spatial distribution of initial loads
(heterogeneous), and P = 1 implies a homogeneous distri-
bution in agreement with a proxy of Coulomb stress changes
produced by a main event in the center of the computational
domain 2 (Monterrubio-Velasco et al., 2017).
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Table 1. Empirical relations, interpretation, and main parameters.

Relation Main Interpretation

parameters
Capacity Dy fractal measure of the epi-
dimension central spatial distribution
(Eq. Al)
Re-scaled H predictability of an inter-
range event time and inter-event
(Eq. A6) distance series
Gutenberg— b value earthquake magnitude dis-
Richter tribution
(Eq. A7)

Omori-Utsu
(Eq. All)

¢, K, p temporal behavior of after-

shocks

A local load-sharing rule including the eight nearest neigh-
bors, and a threshold load (o, = 1) are established a priori.
When the load in a cell exceeds this threshold load, a crit-
ical point is reached and a imminent rupture occurs (called
avalanches). If more than one cell exceeds oy, the cell to fail
is that which exhibits the maximum load. The rupture algo-
rithm is sequential, since at each time step one cell has to fail.
The inter-event time (6) must be updated at each discrete step
as described in Eq. (3). After a cell fails, they distribute its
respective percentage of load (o1 = oF - ) to its eight neigh-
bors. Perpendicular neighbors will receive the largest amount
of load ((or - 0.98)/4), while diagonal neighbors get a load
of (or-0.02) /4. The different weights were chosen consider-
ing what is expected for the maximum shear stress directions
with respect to the main stress orientation that gives rise to
both synthetic and antithetic faulting (e.g., Stein et al., 1994).
In Monterrubio-Velasco et al. (2017), a large number of nu-
merical experiments were carried out to define the appropri-
ate values of these quantities. Varying the weights results in
slight changes but as long as the main directional properties
in weight are preserved the output does not change signifi-
cantly.

2.3 Statistical and fractal relations

In order to quantify the resemblance between synthetic cat-
alogs and real seismic catalogs, we use statistical measures
which are relevant for evaluating the SOC behavior. These
measures are represented by power laws in magnitude (GR
law), time (MO law), and space (e.g., fractal dimension). In
Appendix A1, we introduce these relations, describing their
applicability, as well as the interpretation and the methods
of quantification. Table 1 summarizes the characteristics, ab-
breviations, and usefulness of the empirical relations used in
this work.
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3 Methodology
3.1 Extending the model

In our previous work (Monterrubio-Velasco et al., 2017),
we did not incorporate the information of the fault geome-
try which is a fundamental property to describe a particular
tectonic region. Therefore, the main contribution of this re-
search work is extending the model by the addition of the
fault system geometry by prescribing parameters that quan-
tify “weakness” properties, i.e., the capacity to produce load
concentrations that generate a rupture. In contrast to the clas-
sical definition that uses measures such as dip, strike, and
slip, here, the faults are considered the weakest parts of the
Earth’s crust. The parameter m quantifies the load transfer
and it controls the amount of load distributed from a failed
cell to its neighbors. Since the seismic rupture is not conser-
vative, the parameter 7 (x, y) defines the percentage of load
lost at each discrete step. The output of the model is a syn-
thetic catalog with statistical properties that change depend-
ing on the input parameters.

Algorithm

In the Appendix, three pseudo-codes are included to describe
the model algorithm. Our model is coded in Julia language
(Bezanson et al., 2017) for the sequential version and in
Python language for the paralleled version of the loops.

— The initial conditions are as follows:

In this work, and as a first attempt, we simplified the
real 3-D domain by choosing a bi-dimensional surface
to represent the epicentral distribution. Moreover, we
assume that considering that the seismicity of southern
California is shallow and mostly restricted to the pla-
nar strike-slip faults, the two-dimensional approach can
be used as a simplification. Therefore, the 2-D Carte-
sian grid is a rectangular domain € of Ny x Ny = Nt
square cells. The domain is a planar representation of
the study area for which we define three values at each
cell in x €[1,...,Ny] and y €[1,..., Ny] that assign
their properties:

a. 0(y,y): a discrete value of load where the initial
load distribution is taken from a uniform distribu-
tion function with values in the range [0,1).

b. 7 y): a load-transfer value that defines the per-
centage of the load distributed to the neighbors after
a cell fails. Since the fault geometry is an abstrac-
tion that simulates weaker regions in the model do-
main, the values of 7y yy that define the percent-
age of load distributed after a cell fails have either
a background value (mpack) or a fault value (7Tfrac).

c. F(y y): arupture probability described in Eq. (2).
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d. The Weibull index, p (Eq. 1): Monterrubio-Velasco
(2013) carried out an exhaustive study to analyze
the effect of p on the generated time series (Eq. 3).
It was found that an appropriate value of this pa-
rameter must fall within the range 30 < p < 50.

e. P, the heterogeneity of the initial load distribution:
this parameter has a global influence on the final
scenario but we have used the best configuration as
tested in Monterrubio-Velasco et al. (2017).

No external load is received after the initial load assig-
nation, so that our model describes the relaxation pro-
cess after a mainshock. Therefore, we do not discuss
or simulate the mainshock or foreshocks. The load in-
crease in a cell is due to internal load transfer pro-
cesses. In a companion study (Monterrubio-Velasco
et al., 2019), we present the TREMOL vO0.1 code which
studies the case of asperities. That model was developed
as a mainshock simulator based on the FBM to analyze
the case of Mexican subduction earthquakes. A version
of our model that includes the effect of tectonic loading
is still in progress.

The rupture conditions are as follows:

In this work, we choose the values proposed in
Monterrubio-Velasco et al. (2017, 2019) in order to re-
duce the degrees of freedom. The only two parameters
that change during the execution of the model are oy y)
and F(y,y). Throughout the iterations of the simulation,
we identify two possible outcomes: normal events, i.e.,
minor or background ruptures, and avalanches, i.e., a
collection of spatiotemporally clustered events that re-
sult in large rupture (Monterrubio-Velasco et al., 2017).
We remark that, in the present work, avalanches are ac-
tual secondary ruptures, whereas normal events are mi-
nor events of low magnitude that produce the rupture
of a single cell. The consecutive rupture of avalanches
events will produce a rupture cluster with a size deter-
mined by their area in (cell) units S(Na).

The completion of a simulation is as follows:

A FBM simulation is terminated when any cell in the
system is unable to exceed the threshold oy,. We have
empirically determined that the total number of steps
kmax When this situation occurs is typically kmax =
3Nt/4. Beyond this value, the system no longer gener-
ates loads that overpass oy,. Hence, we take this value as
a terminal condition in our simulations. After the simu-
lation is completed, we obtain a synthetic seismic cata-
log which includes the number of simulated earthquakes
(Na) with their corresponding area S(Na) (number of
events that produces a single rupture), occurrence time
ta (Eq. 3), and their spatial location (x, y). In Sect. 3.2,
we discuss how the avalanche size S(Na) can be con-
verted into magnitude. It should be noted that two
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realizations with identical parameters result in differ-
ent seismic catalogs due to the random component in
the initial load. A detail procedure is explained in the
pseudo-codes provided in Appendix A2.

3.2 Experimental procedure

The discrete planar faults of a particular region are modeled
by using an image of the real fault system. This image is
mapped in the domain 2 (see the example in Fig. 1). A para-
metric study is employed to determine the best range of val-
ues to produce synthetic catalogs with appropriate statistical
characteristics. In this work, we use the following param-
eters: p =30, oy, =1, op =0.02/4, and on = 0.98/4. We
also fix a background mp,cx = 0.65 value for all non-faulted
cells and assume a square grid, with same lateral size on the
x axis and y axis, i.e., Ny = Ny = +/N. These values are
considered from the results obtained in Monterrubio-Velasco
et al. (2017). The reasons to choose these values are summa-
rized as follows:

— 30 < p <50 produces features observed in real after-
shock time series (Monterrubio-Velasco, 2013; Monter-
rubio et al., 2015).

— ot =1 is the upper bound of the uniform distribution
and appears as a natural threshold.

— In Monterrubio-Velasco (2013), Monterrubio et al.
(2015), and Monterrubio-Velasco et al. (2017), a range
of 0.63 <m < (.70 was determined experimentally to
produce ruptures that mimic features of real catalogs
without considering any difference between regions
(i.e., no difference between faulting and non-faulting
regions). We considered mpack = 0.65 as a mid-range
value to be assigned to background cells.

The map of faults has a real physical size in km?. So, after
executing the Algorithm 1 in Sect. A2.1 (Appendix A2), in
the post-processing analysis, we assign an area at each cell
in km?, namely Acej;. To compute the avalanche area S(Np)
in km?, we use the relation

Aj=80j) Acell s )

for j =1,..., Nao. We computed an equivalent magnitude us-
ing the scale magnitude—area relation proposed by Hanks and
Bakun (2008) in Eq. (6).

My =4/31og A+ (3.07 £0.04), (©6)

where A, for j =1, ..., Na is the rupture area expressed in
km? and My is the moment magnitude. This relation is spe-
cific for events in a crustal-plate-boundary tectonic regime
(Stirling and Goded, 2012).

Careful attention has been given to minimum magnitudes
which depend on size of the cell Ace, i.€., are proportional to
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Figure 1. Map (azimuthal view) of the Northridge fault system. It
is digitalized to include in our computing domain where each pixel
of the map corresponds to a cell (x, y) in our array.

N ~2 Monterrubio-Velasco et al. (2018). In order to make re-
sults comparable for different grid sizes, we filter out events
rupturing less than a minimum amount of cells for the finer
grids. This is done because we want to show the influence of
different grid sizes over the statistical results, and we want to
compare our results with real cases where the smallest mag-
nitudes are not resolved by the seismograph networks.

We are left with three freely varying parameters for our
study. Based on previous results, we use N, = [180, 240,
300] cells, mfae = [0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95,
1.0], and P =[0.0, 0.08, 0.16, 0.24, 0.32, 0.38] (Monterrubio-
Velasco et al., 2018). This results in 162 samples in the para-
metric space.

The epicentral location of the simulated aftershocks is the
position of the first avalanche event ((Ex(j), Ey(j))) in the
cluster.

We define A(r) as series of the Euclidean distance be-
tween two consecutive epicenters and t(¢) the inter-event
time series corresponding to two consecutive avalanches (see
Eq. 4).

Table 2 defines the model parameters and provides optimal
search ranges.

4 Test case: Northridge aftershock sequence

In order to validate and compare our synthetic seismic cat-
alogs with real seismicity, we modeled as an example case
the fault system geometry and the seismic properties of the
Northridge aftershock sequence (Fig. 2). The Northridge
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Table 2. Model parameters.

Parameter  Search range or value  Definition

o(x,y) random initial value load at each cell in
Ul0, 1) (x,y) position

w(x,y) [0.65, 0.70, 0.75, load transfer value
0.80, 0.85, 0.90,
0.95, 1.0]

F(x,y) Eq. (2) rupture probability

P [0, 0.08, 0.16, 0.24, initial order probabil-
0.32, 0.38] ity

Nt 32400, 57 600, total number of cells
90000

o Eq. (1) Weibull index

mainshock (Mw = 6.7) occurred on 17 January 1994 at
04:31 UTC. The earthquake shook the San Fernando Valley,
which is 31 km northwest of Los Angeles, near the commu-
nity of Northridge. This earthquake is the largest recorded in
the Los Angeles metropolitan area in the last century. The
depth of the hypocenter was 18 £ 1 km. The seismic mo-
ment, M,, was estimated at 1.58 x 108 Nm, with a stress
drop of 27 MPa (Thio and Kanamori, 1996). The mainshock
occurred due to the rupture of a previously unrecognized
blind reverse fault with a moderate southward dip (Savage
and Svarc, 2010; Scientists of the U.S. Geological Survey,
1994). The Northridge mainshock occurred at a fault belong-
ing partly to a large fault system in the transverse ranges.
This fault system is under compression in the NNW direc-
tion related to the “big bend” of the San Andreas Fault (Nor-
ris and Webb, 1990; Hauksson et al., 1995). The Northridge
earthquake was followed by a sequence of aftershocks, be-
tween 17 January and 30 September 1999, including eight
aftershocks of magnitude Mw > 5 and 48 of 4 < Mw <5.
We computed the statistical parameters of the aftershocks
using the data recorded by the Southern California Seismic
Network. We consider the aftershock time period from the
mainshock (17 January 1994 at 04:31 UTC) until 1 year later
(17 January 1995). In space, we consider events that occur in
a square area of 0.6° x 0.6° taking as center the mainshock
epicenter (Turcotte, 1997) In Fig. 2, we show the spatial rep-
resentation of the faults analyzed in this work, and the seis-
micity of magnitude larger than 2.0 during 1981-2006. We
also assumed that the faulting area is the same, independently
of the model domain size 2. However, the number of cells
modify the size of each cell, resulting in 0.077, 0.043, and
0.027 km? for Ny =[180, 240, 300] cells, respectively.

In Table 3, we show the statistical parameters for the
Northridge sequence computed for different threshold mag-
nitudes from Mpin = 1.5 to Mpyin = 3.5. These values will
be used as a reference to determine the sets of FBM param-
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Table 3. Statistical parameters of the real catalog of Northridge af-
tershocks using different threshold magnitudes (M yin)-

Parameter My, > 1.5 >2.0 >25 >30 =35
N 5334 2412 970 373 151
Dy 1.58 1.48 1.49 1.40 1.27
(Mw) 2.15 2.59 3.07 3.57 455
b value 0.73 0.81 0.84 0.84 0.88
p Omori 1.35 1.32 1.31 1.24 1.18
¢ Omori 3.22 1.19 0.40  0.13 0.03
K Omori 3485.76  976.15 256.03 63.76 17.64
Hp 0.61 0.62 0.61 0.60  0.69
H: 0.92 0.90 0.83 0.81 0.76
H\ag, 0.75 0.75 076  0.71 0.71

] 34030

34025

rs
-118045' -118°35" -118025" -118°15" -118°05'

Figure 2. Map that includes the seismicity of magnitude larger than
2.0 during 1981-2006. The yellow star indicates the Northridge epi-
center (Mw 6.7, 1994). Red lines depict the faults of this region
considering an approximated area of 0.6° x 0.6°. Blue circles indi-
cate aftershock locations and the size of their magnitude.

eters that best reproduce the Northridge statistics. Figures 3
and 4 show the fitting of the GR law, MO law, and Hurst ex-
ponents (Ha, Hy, and Hyp,g) for different minimum magni-
tudes (M, > 1.5, > 2.0, > 2.5, > 3.0, and > 3.5). We note
that Wiemer and Wyss (2000) calculated the minimum mag-
nitude of completeness in the Los Angeles area as M ~ 1.5.

5 Results

We divide the results and their analysis in three domains:

— space: fractal capacity dimension, Dy, for the epicentral
distribution of synthetic earthquakes, and Hurst expo-
nent for epicentral distance between consecutive syn-
thetic earthquakes, H (A);

— magnitude: b value, maximum avalanche size
maxS(Na), mean magnitude, and maximum mag-
nitude; and
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Figure 3. Fitting of the (a) GR law and (b) MO law to the
Northridge aftershocks (NOR) considering different minimum
magnitudes: My, 1.5 (dark blue markers), 2.0 (turquoise), 2.5
(green), 3.0 (red), and 3.5 (pink), respectively.

— time: inter-event times H (t) and MO parameters (p, c,
K).

5.1 Parametric analysis over the synthetic series

For each parameter, we list its observed properties to facili-
tate the reading. We are analyzing simultaneously three pa-
rameters (the size of the domain N measured in cells units,
the initial order configuration P, and the percentage of trans-
fer load in a fault-on cell mg,c). However, it is worth noting
that they are coupled between them. Then, we analyze how
these three parameters are modifying the statistical and the
fractal properties of synthetic catalogs.

5.1.1 Fractal dimensions of synthetic catalogs

The first analysis is related to the fractal capacity dimension,
Dy (Sect. Al.1), shown in Fig. 5.

— As N increases, Dy becomes more sensitive to P (where
P is the initial load values ordered according to a proba-
bility value), because the larger the area, the more abun-
dant and scattered the events, and the effect of P over
the simulated events increases. The effect of an increase
in P is a reduction of Dg. On the other hand, as P tends
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to zero, the events are more scattered because random-
ness in the initial load causes sparsity in the event dis-
tribution.

— Tfrac does not seem to have a large impact in Dg across
our experimental range.

— For P <0.16 and 7, > 0.9 (for all N values), our
FBM simulations yield a Dy compatible with that com-
puted for the Northridge series with a My, ~2 (Ta-
ble 3).

5.1.2 The b value, mean, and maximum magnitude of
synthetic catalogs

The b value is clearly influenced by all three parameters (N,
P, and m,), as is shown in Fig. 6.

— The smallest array of N = 180 cells tends to produce
similar b values, independently of P and mgrac. On the
other hand, as N increases, the b value is more sensitive
to P and 7Tfrac.

— For values of N =240 and 300 cells, the b value
shows a clear dependency on . In these finer grids
(N = 240), we consider an initial random load distribu-
tion P = 0, we observe that the synthetic b approaches
b values computed for the Northridge sequence, if
Tfrac > 0.90. This last observation is important to jus-
tify the influence of include fractures regions in our
model. Because o > 0.90, it indicates a clear “non-
conservative” properties in the fault-on cells, and under
this assumptions b value is closer to the expected value
computed for Northridge.

The difference in the b values as a function of N might be
due to two possible causes:

1. the number of events included in the statistical fit and

2. the size of the earthquake-simulated avalanches, S(Na).
In fact, related to this observation in Fig. 7, we observe
that as P increases, the maximum magnitude also in-
creases, also modifying the frequency—magnitude dis-
tribution and the b value.

As an example, Fig. 8 shows the frequency—magnitude dis-
tribution for P =[0, 0.08, 0.16, 0.24, 0.32, 0.38], 7rfrac = 0.9,
Trac = 0.65, and N = 300. We observe that as P increases,
the productivity of intermediate size events decreases, and
the maximum magnitude increases. Large P values imply
that the probability to find cells with large loads clustered in
the middle increases (Monterrubio-Velasco et al., 2017). So,
in this condition, it is more likely to generate larger earth-
quakes. This behavior is similar to that observed in the char-
acteristic earthquake distribution (Wesnousky, 1994).

The results of the mean and maximum magnitudes are de-
picted in Fig. 7.
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Figure 4. Fitting of the Hurst exponents (Sect. A1.2) for three time series of the Northridge aftershocks: (a) inter-event distance, (b) inter-
event time, and (¢) magnitude, considering different minimum magnitudes (My;p)-

— From Fig. 7a, we observe that the mean magnitude is
independent of mgae and to a lesser extent of P. It is
worth pointing out that the b values are similar to those
shown in Table 3 when My, ~ 2 or 2.5.

— Fig. 7b shows that, in our model, an aftershock with
a magnitude such as that of the largest Northridge af-
tershock magnitude (Myw = 5.9) is obtained for a non-
unique combination of parameters. When P > 0.08
and g, > 0.7, this magnitude is overestimated. Given
that the largest aftershock has a magnitude Mw = 5.9,
larger-magnitude values are not described in the series.

From Figs. 6 and 7, we observe that the best range of b val-
ues, similar to that obtained for Northridge sequence, is for
P < 0.16, e > 0.90, and N > 240.

5.1.3 Hurst exponent of synthetic catalogs

Figure a and b show the results of the Hurst exponent

for inter-event distance H(A) and inter-event time H(T)
(Eq. A6).

Solid Earth, 10, 1519-1540, 2019

The re-scaled range analysis of the A(r) series reveals
their independence on N and 7, but shows a slightly
higher dependence with P. In general, as P increases,
H(A) also increases. As P decreases, H(A) — 0.5,
implying that the system tends to a random behavior of
the inter-event epicentral distribution. However, H (A)
always remains similar to the values of Table 3 for P ~
0. Gkarlaouni et al. (2017) showed that the seismicity in
the Corinth rift (Greece) corresponded to H(A) — 0.5
as the threshold magnitude decreased.

The analysis of H(t) reveals in general values > 0.5,
which implies a persistence in the dynamic system of
inter-event times; i.e., the behavior of future inter-event
time can be extrapolated from previous behavior. As P
increases, the persistence of H () also increases, which
may be related to the MO trend (discussed below). The
influence of mgae over H(7) is not clear; however, the
number of events decreases when we take a larger cutoff
magnitude, and this fact could affect the re-scaled range
statistics.
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5.1.4 MO parameters in synthetic catalogs

The MO empirical law requires careful analysis in our FBM
implementation. First of all, we must take into account that
we are using dimensionless time (see Eq. 3). Our cumu-
lative time, T}, is computed using Eq. (4). For example,
considering the input values of P = 0.08, mac = 0.90, and
N, = 180, if we include all simulated events (minor events
and synthetic aftershocks) together (e.g., Fig. 10a), we get
a satisfactory MO fit, with p =1.1, c = 1.5, K = 11991.3,
and rms = 675.0. But if we use only the time occurrence
of the simulated aftershocks (S(Na)), the parameters depart
from the expected trend (e.g., Fig. 10b), obtaining p = 1.9,
c=4.9, K =1571.9, and rms = 10.8. From Fig. 10b, two
regions are distinguished by the density of events, since for
the first interval of time the density is larger (blue) than for
the subsequent region (green). As a consequence, the MO fit
is deviated adjusting for events in the blue region. Real after-
shocks do not always follow a single MO decay trend (Utsu
and Ogata, 1995). Moreno et al. (2001) developed an alterna-
tive model to understand this phenomenon called leading and
cascade (LA-CAS) events. This model proposes a separation
of earthquakes in two groups: one that strictly follows the
MO hypothesis (called leading aftershocks; LAs) and those
called cascades, which are the events that occur between two
consecutive LAs. Note that to obey the MO relation, the
inter-event times must increase monotonically. In our previ-
ous work (Monterrubio et al., 2015), we tested the LA-CAS
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algorithm to study the temporal behavior of three real after-
shock sequences. We applied the LA-CAS algorithm to the
synthetic earthquakes series, as illustrated in Fig. 10b. After
segregating the events in LA and CAS, we obtain a better fit
to the MO relation for the LA series (Fig. 11, LA: p =0.9,
¢=0.1, K =5.1, and rms = 1.2). The full parametric results
computed from the MO relations are shown in Fig. 12a and
b.

The MO parametric results provide information of the
temporal behavior in the simulated series. We observe that
P <0.08 implies p and ¢ values close to the expected
Northridge values (see Table 3). However, after segregat-
ing LA and CAS, the number of events decreases, so the
value of K is much lower than expected. These results in-
dicate that series with an initial load configuration organized
with a probability P > 0.08 depart from a typical MO be-
havior. This occurs because the aftershock series produced
with larger initial organization probabilities (P > 0.08) tend
to generate temporal series with very short elapsed times
(Eq. 3), and larger avalanche clusters, which does not fol-
low a typical MO distribution. The closest behavior to the
observed MO parameters of Northridge (Table 3) occurs for
P < 0.08 and e > 0.7.

5.2 Trigger and shadow regions

The load-transfer value 7 (x, y) is highly relevant to repro-
duce temporal, magnitude, and spatial patterns of real series
(Monterrubio et al., 2015). Considering this fact, we are also
interested in studying the implication of this value in the af-
tershock productivity, in particular for off-fault regions. To
test the productivity as a function of 7pkg, two extreme values
are considered for mprg = 0.25 and 7fryc = 0.65. In Fig. 13,
we observed that activity in background (non-faulting) cells
largely decreases for small mpke values. This occurs because
for low m values, the probability to produce an event with
larger ruptured area decreases (Fig. 14). The results suggests
that variations in 7y for different regions of the domain can
lead to producing shadow and triggered regions, giving a sce-
nario closer to a real case (King et al., 1994; Stein, 1999;
Hainzl et al., 2014). The lack of the depth (3-D) in our model
could produce bias in the shadow region interpretation and
is a limitation to a closer description of the phenomenon.
However, in this study, our first attempt is more focused on
the parametric implications of the fault regions included in
the model as “weak” areas. We expect that the integration
of triggered and shadow regions will be plausible in future
implementations to improve the results.

5.3 Results summary: synthetic catalogs
Lastly, we estimated the error between the real and synthetic
statistical values using a measure similar to the Euclidean

distance rg_pu,,;,- However, in our case, rg_pu,,, is referred
to a normalized parametric space because of the different
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units in the parameters, and it is defined as

9 . N2
_ (psi] = PSMyin i)
TE—Mpin = ; |: sli] ] ) @)

where ps =[Dy, (Mw), b value, Max, Mmin, H(A), H(T),
p, c] is the vector that contains the values of the series gen-
erated with a given set of input parameters P, gy, and
N. Similarly, the vector psy,, contains the values for the

Northridge series considering four different minimum mag-
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nitudes Mpi, = [1.5,2.0,2.5,3.0] (Table 3). We computed
FE—M,;, for the 162 combinations of P, g, and N, each
one with three realizations. In Table 4, we show the min-
imum of rg_py,.. for My, =[1.5,2.0,2.5,3.0]. The mini-
mum Euclidean distance occurs when we consider the NOR
series with M, = 2.0. It is worth mentioning that the min-
imum magnitude of the synthetic aftershocks considered in
this work is also ~ 2.0. The results show that the most ap-
propriate set of parameters to model this data series is P =0,
Trac = 0.90 using N = 300 cells. Figure 15 shows the Eu-
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Table 4. Minimum Euclidean distance rg_py,.. (Eq. 7) using four
different My,i, NOR series (Table 3).

Mumin  TE—Mpi, N P Tfeac
1.5 0.78 240 0.16 0.6
2.0 0.63 300 0 095
2.5 0.88 300 0.08 0.9
3.0 1.53 300 0.16 0.7

clidean distance between the sequence generated by NOR
using the set of parameters obtained with My, = 2.0 and
its real values. In Fig. 16, we show an example of a spatial
distribution of events and its related GR relation, using the
set P =0, e = 0.95, and N =300. As shown in Fig. 16,
the largest aftershocks have its epicenter on the fault’s cells
(M > 3.5). The epicenters are depicted with a blue star. This
scatter plot also shows that the smallest events usually occur
spread out. The relation of the magnitude and the cumulative
number of events, generated in this example, shows a GR fit
with a similar b value to that computed in Table 3.

6 Discussion

The main goal of this study is to integrate prior knowledge
of the spatial geometry of faults in the implementation of
the FBM algorithm, improving the model previously pro-
posed in Monterrubio-Velasco et al. (2017). As it was pointed
out, to introduce the fault system geometry we assume some
cells to be weaker than the rest representing faults in the
bi-dimensional array. This “weakness” is assigned by a sin-
gle parameter called mg,c. The lack of the depth dimension
may leave out information about the full phenomenon. How-
ever, it is a first attempt to test the FBM as an aftershock
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simulator including complex features. The main advantage
of the present model is the reduced number of equations
to be solved in comparison with deterministic models for
similar purposes and the low number of parameters used
to describe the model dynamics (7frac, Tokg, 0, P, and Nt).
To validate our model, we used as an example the geome-
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try of the Northridge fault system and the statistics of the
aftershocks. Note that this model version describes the re-
laxation process after a mainshock. Therefore, we do not
discuss or simulate the mainshock or foreshocks. In partic-
ular, we explored the power laws’ exponents (Dy, b, H, p
parameters) in relation to the model parameters (Sect. Al).
Other models have been proposed to describe, with a sim-
plified mechanism, the statistics of earthquakes, such as the
two-fractal overlap model (Bhattacharya et al., 2009) or the
Olami-Feder—Christensen (OFC) model (Olami et al., 1992).
In particular, the OFC model has a very similar algorithmic to
our proposed model (Kawamura et al., 2012), but our model
yields similar results with fewer input parameters and it is
simpler to implement. As a statistical modeling tool, we need
a parametric analysis to properly fit observational data. In
our study, we have searched the range of values that gen-
erate synthetic series capable of reproducing the statistical
relations of real aftershock series. In particular, we explored
three (7fac, P and N) of the five free parameters to quan-
tify their leading role in the model. We point out that kg
and p are assumed as constants following results in Monter-
rubio et al. (2015) and Monterrubio-Velasco et al. (2017). In
agreement with Monterrubio et al. (2015), we also confirm
that the transferred load value 7 is the most critical param-
eter in order to reproduce temporal, magnitude, and spatial
patterns of real series. Our results also suggest that varia-
tions in 7 for different regions of the domain might generate
shadow regions (King et al., 1994; Stein, 1999; Hainzl et al.,
2014). The initial load configuration, controlled by P, results
as a determinant to describe the final statistical features in the
model. In particular, the results indicate that P and 7, are
inversely proportional. As we increase 7f,¢, a small value of
P is required to reproduce aftershock statistics. If the fault
geometry is not considered in the model (7pkg = Tfrac), the
particular range of 0.60 < < 0.70 found in Monterrubio-
Velasco et al. (2017) is required to capture statistical patterns.

The results are sensitive to the size of the domain. An ex-
haustive parametric analysis using machine learning tech-
niques to classify the synthetic series as function of the
input parameters (the size N, P, and mgec) Was carried
out in Monterrubio-Velasco et al. (2018). In Fig. 17 from
Monterrubio-Velasco et al. (2018), we show the mean er-
ror of three different ML classification algorithms (random
forests, supported vector machine, and flexible discriminant
analysis) as a function of the domain (grid) size. The fig-
ure shows that as the grid size is increased, the classifica-
tion error decreases, meaning that large grid sizes allow us
to distinguish among the different properties. In other words,
for small grid size, the difference is indistinguishable, while
larger grid sizes are able to capture the differences. We ob-
serve the results using as classification two input parameters:
P (in red) and mfc (in blue). When we use the P parameter,
we observe that the size domain has to increase in order to
reduce the mean classification error, and it becomes the min-
imum for N > 300. On the other hand, if we want to classify
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Figure 12. Modified Omori parameters computed in the L A synthetic series: (a) p, (b) ¢, (¢) K, and (d) rms. Each marker is obtained by
different synthetic series considering three input parameters (N, P, mfac). From top to bottom, N = 180, N = 240, and N = 300 (cells per

lateral size in the domain).

the synthetic catalogs considering g, the figure shows that
the error classification reaches a minimum value for lower
grid sizes N > 200. So, if we consider the case of P =0,
and the classification is based on gy, then a proper grid
size used to model aftershocks, including faults, is N > 200.
We can confirm that an optimization of the parametric search
using classification machine learning techniques can be very
useful in this stochastic model.

Considering the example of Northridge, our results sug-
gest that the best combination of parameters to approximate
to real cases depends on the minimum magnitude of the
real catalogs, as shown in Table 4. Related to the complete-
ness magnitude, Davidsen and Baiesi (2016) define the short-
term aftershock incompleteness (STAI) as a phenomenon

www.solid-earth.net/10/1519/2019/

that arises from overlapping waveforms and/or detector satu-
ration, such as events that are missed in the coda of preceding
ones. One important consequence of STAI is an increase in
the local magnitude of completeness, since small events are
not well recorded. It is worth noting that in this work we
are not analyzing the STAI phenomena because we are not
explicitly modeling this process. We use the Northridge cat-
alog obtained by the Southern California Seismic Network
(SCSN), and we analyze it as a “final” catalog. In our statis-
tics and analysis applied to the real catalog, we consider dif-
ferent magnitude cutoffs, as shown in Table 3. The cutoff
magnitude is not related to the time. On the other hand, it is
noteworthy that our model is not affected by the STAI, be-
cause this phenomenon arises from overlapping waveforms,

Solid Earth, 10, 1519-1540, 2019
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Figure 17. Mean error of three different ML classification algo-
rithms (random forests, supported vector machine, and flexible dis-
criminant analysis) as a function of the domain size (figure from
Monterrubio-Velasco et al., 2018).

and in our approach we are not considering this physical pro-
cess. To modify the minimum magnitude in the synthetic cat-
alogs, we only filter the events with small rupture areas.

The usefulness of this stochastic model is its capability to
generate a large number of scenarios with statistical proper-
ties similar to real cases, with low computational cost and a
low number of free parameters.

7 Conclusions

We present a novel model simulation of aftershock sequences
that incorporates a 2-D spatial distribution of faults. The rep-
resentation of faults is carried out by assigning weak cells
embedded in a background of “normal” cells. However, this
model fulfills statistical properties of aftershock when it is
well tuned. We choose statistical relations which describe
the aftershocks’ behavior in space, magnitude, and time. By
means of a parametric study, we have found the range of
values that generates synthetic series capable of reproducing
the statistical relations of real aftershock events. In particu-
lar, we have used the Northridge fault system geometry pro-
jected on the surface and its aftershock sequence as a study
case. We conclude that the initial load configuration (quan-
tified by parameter P), which specifies the randomness in
the background load distribution and the ratio of transferred
load for a faulting cell 7y, are the key parameters that con-
trol the earthquake’s statistical patterns in FBM-simulated
events. Moreover, these parameters are complementary; i.e.,
in absence of fault geometry information (7frac = Thack), val-
ues in the range 0.08 < P < 0.32 ensure statistical compat-
ibility with real aftershocks. In particular, for g, = 7 and
N = 180, we recover the results obtained previously without
fault information (Monterrubio-Velasco et al., 2017). On the
other hand, when fault geometry is available, as in the case of
the Northridge fault system, the results obtained in this work
show that, in order to reproduce statistical characteristics of
the real sequence, larger mpy values (0.85 < 7 < 0.95)
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and very low values of P (0.0 < P <0.08) are needed. This
implies the important corollary that a very small departure
from an initial random load configuration is required to ini-
tiate a rupture sequence which conforms to observed statis-
tical properties such as the Gutenberg—Richter law, Omori
law, and fractal dimension. In summary, the proposed model
is a useful tool to model aftershock scenarios by means of
its inherent statistical patterns in time, space, and magni-
tude. Moreover, the model circumvents the high complex-
ity related to the derivation of deterministic models of earth-
quake rupture phenomena. We demonstrated the ability of the
model to simulate statistically consistent data with those of
real scenarios using only a few input parameters. Our model
can be an alternative to the study of the complex behavior
of earthquakes. Future work will focus on optimization of
the parametric search using machine learning techniques and
extensions towards a 3-D FBM version that incorporates the
depth dimension into the model.

Code availability. The data and the numerical code can be ob-
tained upon request to the author, Marisol Monterrubio-Velasco
(marisol.monterrubio @bsc.es, marisolmonterrub@ gmail.com).
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Appendix A
A1l Statistical and fractal relations
Al.1 Fractal dimension

Fractured systems, including lithospheric faults, are scale
invariant in a large scale range being characterized by the
power law (Turcotte, 1997; Mandelbrot, 1989). The frac-
tal dimension is an important parameter used to character-
ize fracture patterns in heterogeneous materials (Hirata and
Imoto, 1991). In seismicity, it provides a quantitative mea-
sure of the spatial clustering of epicenters and hypocenters
(Roy and Ram, 2006). There are many fractal dimension defi-
nitions and descriptions used to characterize a dynamical sys-
tem, for example, the capacity dimension, Doy (Nanjo et al.,
1998; Legrand et al., 2004), the information dimension, D1,
or the correlation dimension, D, (Grassberger and Procac-
cia, 1983). For the purpose of our study, we will use only the
capacity dimension, Dy, since it is one of the most studied
fractal dimensions for the spatial distribution in earthquakes
(epicenter and hypocenter); also, we are interested in eval-
uating the capacity of the spatial distribution to occupy the
space in which it is embedded. Future research could con-
sider a multifractal analysis for synthetic and real series.

The generalized fractal dimension, Dy, is used to compute
different fractal dimensions (Eneva, 1994; Marquez-Ramirez
et al., 2012).

1
D, = lim 225 ") (AD)
r—0 log(r)
where
IR ke
Cq(r) = N;[N_I;H(rnxixjn)} , (A2)

with ¢ is a positive or negative real number, N the number
of samples, || x; — x; || the inter-event distance for consec-
utive events, H the Heaviside step function, and r a thresh-
old distance value to evaluate H. With this method, we com-
pute the probability of a pair of points in the system being
closer than the threshold r. Equation (A2) has the property
that Dy—0) = Do, Dy=1) = D1, and Dy—3) = D;. Barriere
and Turcotte (1994) assume that if the spatial distribution of
earthquakes is fractal, then the faults must have a fractal dis-
tribution as well. Turcotte (1997) showed that the capacity di-
mension of epicentral and hypocentral distributions yields a
fractal distribution with an exponent Dy &~ 1.6 and Dy ~ 2.5,
respectively.

Al.2 Re-scaled range analysis and Hurst exponent

The re-scaled range (R/S) analysis, and more specifically the
Hurst exponent H (Hurst et al., 1965), offers a criterion for
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evaluating the predictability of a complex dynamic system
(Feder, 1988; Goltz, 1997). The R/S analysis can be inter-
preted as a method to measure the long-range correlation in
time series. Some applications of this fractal technique in dif-
ferent fields of geophysics and geology are given in Korvin
(1992) and Turcotte (1997). R/S analysis on earthquake se-
quences was first implemented by Lomnitz (1994) and ap-
plied to an analysis of the seismicity of the south Iberian
Peninsula (Lana et al., 2005), the Corinth rift and Mygdonia
graben in Greece (Gkarlaouni et al., 2017), or aftershocks in
southern California (Monterrubio-Velasco, 2013).

With X € (X1, X», ..., X;;,) a set of observations in a time
series, the mean, m, of the series is computed and a mean
adjusted series is created, following

Y[ZX[_m, (A3)

for t =1,...,n. Then, a cumulative deviate series Z can be
computed as

!
Zi=>Y. (A4)
i=1

Then, R/S is the ratio between the range R; and standard
deviation S;, where the range is computed as

R, =max(Zy,Zy,...,Z;) —min(Z,Z>,....Z;), (AS)

and S; is the standard deviation of Zi,..., Z;. Hurst used
the following power-law relationship to determine the pre-
dictability of time series (Hurst et al., 1965):

log(R:/S) = C+ H -log(1), (A6)

where H = 0.5 indicates randomness in the series; i.e., the
samples are not correlated with one another. H > 0.5 indi-
cates some degree of predictability or temporal persistence
in the system. Lastly, 0 < H < 0.5 indicates anti-persistence;
i.e., an increasing (decreasing) trend in the past implies a de-
creasing (increasing) trend in the future (Correig et al., 1997).

Al1.3 Gutenberg-Richter law

The GR (sometimes referred to as the Gutenberg—Richter
Ishimoto—-Ida) law is considered one of the major manifes-
tations of self-organized criticality in a natural system. It has
been observed that earthquake magnitude distributions fit a
GR power law (Gutenberg and Richter, 1942):

log;gN(> M) =a —bM , (A7)

where N (> M) is the cumulative number of events with
magnitude greater than or equal to M. The slope b describes
the ratio between small- and large-magnitude events and is
usually in the range 0.65 < b < 1.05 (Evernden, 1970; Oz-
turk, 2012; Svalova, 2018), whereas a is proportional to the
earthquake productivity (i.e., the seismicity rate).
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In particular, b is one of the most useful statistical param-
eters for describing the size scaling properties of seismicity.
For example, Ozturk (2012) concludes that this parameter
can be used to differentiate tectonic regions. Similarly, Zu-
niga and Wyss (2001) used the b value to identify most and
least likely locations of earthquakes in the Mexican subduc-
tion zone.

In the rest of the present work, we apply the maximum
likelihood method (MLE) to estimate b (Aki, 1965):

log10(e)

b= ,
| (M) — (Mmin — AM/2) |

(A8)

where Mpip is the minimum magnitude of events consid-
ered in the study, and AM is related to the precision of the
recorded magnitude; in our case, we consider AM =0.1.
The standard error of b, o (b), is computed as (Shi and Bolt,
1982):

o (b) =2.30b%0 ((M)), (A9)

where o ((M)) is the standard deviation of the magnitude se-
ries

o((M)) =" (M; — (M))*/n(n—1), (A10)
i=1

where 7 is the number of elements in the series.
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Al4 Modified Omori law
The temporal behavior of aftershocks is commonly described

by the MO law (Omori, 1894; Utsu and Ogata, 1995) defined
as

n(t) =

(t+oyp’ (Al
where n(t) is the generation rate of aftershocks at time ¢ af-
ter the mainshock, whereas K, ¢, and p are parameters to
be determined. The p parameter controls the aftershock ac-
tivity decay and is related to the physical conditions in the
fault zone (Kisslinger, 1996; Ogata, 1999). Its value is typ-
ically p =~ 1. The constant ¢ eliminates the uniqueness of
occurrence rate at t = 0 (Kisslinger, 1996), the productivity
K is a constant that depends on the total number of after-
shocks. Then the cumulative number of aftershocks, N (z), of
the earthquake count at time ¢ since the mainshock at r =0,
can be obtained by integrating Eq. (A11), resulting in

NG = / n(s)ds = (A12)

0

K[(c+t)“”’) _C(I*I’)]

! K{ln(t+c¢)—1In(c)} p=1
[ = p#l
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A2 Algorithm

The main algorithm (Algorithm 1; Sect. A2.1), for each dis-
crete step k, updates the rupture probability F of each cell,
finding the cell boasting the largest load and then finding
whether that load exceeds the given load threshold oy,. If
s0, rupture is initiated and an avalanche occurs due to recur-
rent load transfer and rupture of neighboring cells. Whenever
no cell has sufficient load to reach oy, a regular, i.e., mi-
nor, event is triggered, which ensures load transfer and hence
makes it more likely that an avalanche, i.e., major, event will
occur in the next time steps. The initialization step is shown
in Algorithm 2 (Sect. A2.2) and the rupture process is de-
picted in Algorithm 3 (Sect. A2.3). Notice that rupture relies
on a transfer-ratio weight oy for the horizontal and vertical
transfer and op for diagonal transfer, which are further global
parameters to prescribe.

A2.1 Main algorithm

Algorithm 1 Main FBM algorithm. The processes initialize and rupture are described in Algorithms 2 and 3, respectively.

k=0;n,=0;T1=0

initialize

-1
5y = g 050(0:9))
while k < k. do
k=k+1
for (i,5) € (1 do
F(i,5) = o(i,)"5,
end for
(I,m)={(i,j) € Q| o(i,j) = max(c)}
if o(l,m) > o, then
ng=mna+1
rupture(l,m)
if ng =1 then

S(na)=0

else
S(na)=S(na)+1

end if

tna) =Tk; S(na)=0; Ex(na)=1; Ey(na)=m

else

if n4 # 0 then
Ni=nqy
S(Na)=S5(na)
T(Ny) = (1)
na=0; 8(na)=0

end if

find (p,q) sample of F'(i,7)
rupture(p,q)
end if
end while

Solid Earth, 10, 1519-1540, 2019
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A2.2 Algorithm 2

Algorithm 2 FBM initial load, where I{ is the uniform density function and I/, its discrete (integer) counterpart

initialize
for all (z,7) € Q2 do
a=U1{(0,1)
if 0 < a < P then
o(i.j) = o1(i.3)
else
ri=Up(1,N;)
ri =Up(1,Ny)
o(ri,rj) =0or(i.5)
end if
end for

A2.3 Algorithm 3

Algorithm 3 Performs the rupture process of a single FBM cell of indexes (p, q)

rupture(p,q)
o(p.g)=7(p.q)o(p.q)
for (r,s) € {(1,0),(0,1),(—1,0),(0,—1)} do
alp+r.s+q)=o(p+r,.s+q)+[ova(p,q)]
end for
for (r,s) € {(1,1),(1,—1),(—=1,1),(=1,—1)} do
o(p+rs+q)=calp+rs+q)+[opo(p,q)
end for
a(p,g) =0
1
be= (i 00.9)  (Ea.3)
=31 .0
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