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Abstract. This paper proposes and demonstrates improve-
ments for the Monte Carlo simulation for uncertainty propa-
gation (MCUP) method. MCUP is a type of Bayesian Monte
Carlo method aimed at input data uncertainty propagation in
implicit 3-D geological modeling. In the Monte Carlo pro-
cess, a series of statistically plausible models is built from
the input dataset of which uncertainty is to be propagated
to a final probabilistic geological model or uncertainty index
model.

Significant differences in terms of topology are observed
in the plausible model suite that is generated as an intermedi-
ary step in MCUP. These differences are interpreted as anal-
ogous to population heterogeneity. The source of this hetero-
geneity is traced to be the non-linear relationship between
plausible datasets’ variability and plausible model’s variabil-
ity. Non-linearity is shown to mainly arise from the effect
of the geometrical rule set on model building which trans-
forms lithological continuous interfaces into discontinuous
piecewise ones. Plausible model heterogeneity induces topo-
logical heterogeneity and challenges the underlying assump-
tion of homogeneity which global uncertainty estimates rely
on. To address this issue, a method for topological analy-
sis applied to the plausible model suite in MCUP is intro-
duced. Boolean topological signatures recording lithological
unit adjacency are used as n-dimensional points to be consid-
ered individually or clustered using the density-based spatial
clustering of applications with noise (DBSCAN) algorithm.
The proposed method is tested on two challenging synthetic

examples with varying levels of confidence in the structural
input data.

Results indicate that topological signatures constitute a
powerful discriminant to address plausible model hetero-
geneity. Basic topological signatures appear to be a reliable
indicator of the structural behavior of the plausible models
and provide useful geological insights. Moreover, ignoring
heterogeneity was found to be detrimental to the accuracy
and relevance of the probabilistic geological models and
uncertainty index models.

Highlights.

– Monte Carlo uncertainty propagation (MCUP) methods
often produce topologically distinct plausible models.

– Plausible models can be differentiated using topological
signatures.

– Topologically similar probabilistic geological models
may be obtained through topological signature cluster-
ing.

1 Introduction

Input data uncertainty propagation is an essential part of
risk-aware 3-D geological modeling (Schweizer et al., 2017;
Wang et al., 2017; Nearing et al., 2016; Aguilar et al., 2018;
Mery et al., 2017; Dang et al., 2017; Lark et al., 2013;
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Carter et al., 2006). Accurate quantification of geometrical
uncertainty is indeed key to determine the degree of con-
fidence one can put into a model. How reliable a 3-D ge-
ological model is and how this reliability varies in space
are indispensable data to seek improvement of said model.
Monte Carlo uncertainty propagation (MCUP) algorithms
have recently been proposed to tackle this issue (de la Varga
and Wellmann, 2016; Pakyuz-Charrier et al., 2018a). MCUP
methods (Fig. 1) aim to propagate the measurement uncer-
tainty of structural input data (interface points, foliations,
fold axes) through implicit 3-D geological modeling engines
to produce probabilistic geological models and uncertainty
index models. To do so, each structural input datum is re-
placed by a probability distribution (thought to best repre-
sent its measurement uncertainty) called a disturbance dis-
tribution (Pakyuz-Charrier et al., 2018a). Disturbance distri-
butions are then sampled using Markov-chain Monte Carlo
(Cherpeau et al., 2010) or random methods to generate alter-
native statistically plausible datasets. Plausible datasets can
then be used to build a suite of plausible 3-D geological
models which may be merged into probabilistic geological
models or uncertainty index models. A probabilistic geolog-
ical model quantifies the observed lithological frequencies in
each cell in the form of a categorical distribution. An uncer-
tainty index model expresses the dispersion of these categor-
ical distributions. Recent works (Thiele et al., 2016a, b; Pel-
lerin et al., 2015) have demonstrated that the plausible 3-D
geological model suite may display great geometrical vari-
ability to the point of making some plausible models topo-
logically distinct from one another. Plausible model hetero-
geneity is damaging to the relevance of MCUP because the
probabilistic geological models and uncertainty index mod-
els implicitly assume plausible model homogeneity.

In this paper, the standard MCUP procedure is described,
the source of plausible model incompatibility is discussed,
and a topological analysis method is proposed to address the
issue and improve the relevance of probabilistic geological
models and uncertainty index models to real world problems.
The method relies on the extraction of adjacency matrices for
each plausible model. Adjacency matrices qualify which ge-
ological units are in contact using Boolean logic. These ma-
trices are then converted to binary signals called topological
signatures that are then clustered using DBSCAN. The goal
is to provide MCUP practitioners with a procedure to ensure
that probabilistic geological models and uncertainty index
models are made of topologically similar plausible models.
Lastly, the method is tried and tested on two synthetic case
studies to demonstrate its applicability.

2 MCUP method

MCUP is an uncertainty propagation method focusing on
input structural data (interface points, foliations, fold axes,
drill-hole data). It is usually applied to implicit 3-D geo-

logical modeling (Giraud et al., 2017; Lindsay et al., 2012)
MCUP. MCUP aims to provide probabilistic models and es-
timate model uncertainty by producing a range of alternate
plausible 3-D geological models and performing compara-
tive analysis on them (Pakyuz-Charrier et al., 2018c; Well-
mann, 2013; Lindsay et al., 2013; Julio et al., 2015; Abra-
hamsen et al., 1991). The 3-D geological model suites are
built from a series of plausible datasets that are generated
through input data perturbation (Fig. 1), which is a process
in which alternative input datasets are stochastically gener-
ated from the original data inputs by sampling from probabil-
ity distribution functions known as disturbance distributions
(Pakyuz-Charrier et al., 2018a).

2.1 Disturbance distribution parameterization

Disturbance distributions are probability distribution func-
tions that are used to generate plausible datasets in MCUP.
They are designed to simulate the effect of the inherent un-
certainty of each observation separately. In principle, an in-
dividual disturbance distribution is associated with each ob-
servation (Fig. 1, preprocessing). Disturbance distributions
are expected to be chosen and parameterized based on thor-
ough metrological analysis of the original dataset, since dis-
turbance distributions are expected to aggregate as many
sources of input data uncertainty as possible. These sources
of uncertainty relate to measurement error, rounding error,
user error, local variability, miscalibration or projection is-
sues (Bardossy and Fodor, 2001). Generally, Gaussian-like
distributions make for appropriate disturbance distributions
(Pakyuz-Charrier et al., 2018a). Disturbance distribution se-
lection and parameterization is a complex topic and is outside
the scope of this paper. It can be noted, however, that particu-
lar care must be taken that spherical distributions (see Appen-
dices) should be used when handling spherical data such as
orientation measurements. However, practitioners may seek
guidance from recent practical metrological work on folia-
tions (Novakova and Pavlis, 2017; Stigsson, 2016; Cawood
et al., 2017) and more theoretical work on disturbance dis-
tribution selection/parameterization for MCUP (de la Varga
and Wellmann, 2016; Pakyuz-Charrier et al., 2018a).

2.2 Plausible datasets’ generation

Plausible datasets are obtained by sampling from the numer-
ous disturbance distributions that have been defined for each
input observation. The sampling step is often referred to as
the “perturbation” of the input data (Cherpeau et al., 2010).
In this study, errors are assumed to not show any spatial de-
pendency and the sampling is therefore performed indepen-
dently. Such assumption is mostly valid when measurements
can be considered to be physically independent (Pakyuz-
Charrier et al., 2018a). However, spatial correlation of er-
rors can be observed even in this case. This is especially true
for cyclical datasets such as foliations in folding scenarios.
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Figure 1. MCUP simplified procedure, modified from Pakyuz-Charrier et al. (2018).

Evidently, structural data that are derived from sources that
naturally exhibit spatial dependency, such as seismic horizon
picks, should not be perturbed in this way. The sampling step
may be followed by a range of statistical checks to ensure
stationarity, reject outliers or perform variographic analysis.

2.3 Plausible model building

Plausible dataset generation is an important part of the
MCUP method because it heavily predetermines its out-
comes. However, plausible datasets are only as relevant as the
plausible model they correspond to. MCUP is then largely

dependent on the particulars of the chosen modeling engine
(Fig. 1, building). Any modeling engine relies on the concep-
tualization of the phenomenon it is supposed to model. Con-
ceptualization relies mainly on abstraction and simplification
to make the modeling problem accessible to our minds and
technology. Therefore, any workflow or method that relies
on a modeling engine subsequently relies on these abstrac-
tions and simplifications which, by definition, are incomplete
and uncertain. Consequently, MCUP is sensitive to this kind
of “conceptual uncertainty” and care should be taken when
selecting or parameterizing the modeling engine. Given that
the aim of MCUP is to propagate input uncertainty through
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the modeling engine to the final model, several indispensable
properties of the modeling engine may be identified: (i) the
ability to estimate and propagate its own uncertainty, (ii) the
ability to handle multiple plausible datasets without having
to be reconfigured manually and (iii) the ability to function
without extensive expert input. These properties are gener-
ally met by implicit modeling engines (Chilès et al., 2004;
Aug et al., 2005; Calcagno et al., 2008; Chilès and Delfiner,
2009) by the virtue of them being reliant on potential field
interpolation to estimate the geological surfaces from the in-
put structural data. The interpolator is normally parameter-
ized using variographic analysis and a geometrical rule set to
solve geometrical ambiguities (Jessell, 2001). The geomet-
rical rule set consists of a series of geometrical constraints
such as the intersection priority of faults and geological units
that are used to determine which interface stops on which.
Conceptually, the geometrical rule set enforces the age re-
lationships between the faults and/or geological units in the
model. In this paper, the modeling engine is the GeoModeller
software which uses a stochastic co-kriging interpolator and
constrains surfaces using a predefined stratigraphic pile and
fault relationship matrices as geometrical rule set (Guillen et
al., 2008; Calcagno et al., 2008).

2.4 Comparative analysis

In implicit 3-D geological modeling, a model is essentially a
set of spatial functions that describe the geometry of strati-
graphic and intrusive interfaces and fault planes. In this form,
it is difficult to apply common comparative analysis meth-
ods. Therefore, plausible models are either discretized to 3-D
grids (voxets) or converted to triangulated interfaces (Fig. 1,
Postprocessing). Note that in all three cases, these operations
are further simplifications of the models and add more un-
certainty to the final outcome. Each of these transformations
allow for different comparative analyses to be run: (i) vox-
ets are used to build probabilistic geological models and un-
certainty index models such as entropy or stratigraphic vari-
ability (Wellmann and Regenauer-Lieb, 2012; Lindsay et al.,
2012); (ii) the shape of triangulated surfaces may be used
to estimate the variability of curvature (Lindsay et al., 2013).
Furthermore, the results of these analyses can be fed to exter-
nal validation systems to reduce geological uncertainty and
improve understanding of the modeled volume. Examples
of external validation systems include geophysical inversion
(Giraud et al., 2019), concurrent geophysical forward model-
ing (Bijani et al., 2017; Lipari et al., 2017), 3-D restoration,
fluid flow simulations or ground truthing. Lastly, the results
obtained from the external validation systems may be reuti-
lized by MCUP to further refine the models.

3 Plausible model topological heterogeneity

As stated in the previous section, comparative analysis in
MCUP aims to study the variability of the plausible models
and extract meaning from them. To this end, plausible mod-
els are transformed to a more manageable form that fits our
analysis tools (Fig. 1). The most common comparative anal-
ysis tools used in MCUP are uncertainty index models such
as information entropy and stratigraphic variability. These in-
dices are computed from a relative frequency voxet that is ob-
tained by merging the voxets from all of the plausible models
together.

The uncertainty index models used in MCUP are scalar
proxies for categorical uncertainty, and one of the critical
conditions for a single scalar to be representative of the un-
certainty of a variable is that it has to be distributed uni-
modally. To assume unimodality is risky because it restrains
the relevance of the uncertainty index model to single popu-
lation cases only. In the case of a heterogeneous population
or a mixture of populations, this procedure will fail to rep-
resent accurately the behavior of the variable in the same
way a bimodal distribution cannot be fully described by its
mean and variance (Fig. 2). In the case of MCUP, perturba-
tion is usually performed using unimodal Gaussian distur-
bance distributions (Pakyuz-Charrier et al., 2018a, b) and at
first sight it may seem that model building should result in a
single population of plausible models. However, it has been
demonstrated on simple synthetic cases that plausible models
with strikingly different structural geological features may
arise from perturbing the same original dataset (Thiele et al.,
2016a, b) using unimodal disturbance distributions. These
differences indicate that standard perturbation may lead to
plausible model topological heterogeneity. This effect stems
from the fact that the relationship between the variability of
the plausible datasets and that of their corresponding plau-
sible models is non-linear (Fig. 3). The non-linearity of the
plausible model suites can be explained by the interactions
between the interpolator and the geometrical rule set. The in-
terpolators used in implicit 3-D geological modeling are usu-
ally linear and it is the geometrical rule set that introduces
non-linearity by adding a discrete component to model re-
alization. For example, a plausible model suite may display
the same fault in various scenarios (normal, reverse, décolle-
ment) or open/close potential traps for fluids (Fig. 3). In the
latter example (Fig. 4), non-linearity is observed because of
the geometrical rule set that gives intersection priority to the
top impermeable unit (green) over the lower units. If not for
this rule set, interfaces would vary linearly, and no unit would
stop on any other unit. Consequently, very small changes in
a plausible dataset may induce large changes in the subse-
quent plausible. Therefore, standard statistical filters applied
to plausible datasets are unlikely to prevent or warn of poten-
tial plausible model topological heterogeneity. Special sam-
pling methods such as Gibbs sampling may decrease model
variability by forcing internal spatial correlation in plausible
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datasets (Wang et al., 2017), although, as stated above, this
is not guaranteed. Moreover, these methods work best if er-
rors are spatially dependent. This is normally not the case
for sparse geological structural measurements taken individ-
ually. Actually, there is no logical reason to consider that the
measurement errors related to, for example, two foliations
measured with a compass in different areas are dependent on
one another.

4 Plausible model topological analysis

As ignoring plausible model suite topological heterogeneity
may lead to an unknown amount of knowledge degradation,
the need to distinguish and classify plausible models that
express distinct topologies becomes apparent. By doing so,
it becomes possible to design a scenario-based comparative
analysis step in MCUP. In principle, this approach has multi-
ple advantages, a geological scenario-based procedure can be
expected to (i) allow rejection of physically absurd models,
(ii) reduce uncertainty on a per-scenario basis and (iii) enable
targeted improvement of the model by comparing data lever-
age between scenarios. A common way to distinguish groups
or trends in complex datasets is via the use of clustering al-
gorithms or machine learning. In MCUP, clustering is prefer-
able because machine learning relies on training and vali-
dation datasets to function properly. Unfortunately, MCUP
does not provide a reliable way to determine the adequacy
of a plausible model-training dataset for machine learning
beforehand. In contrast, and given a certain number of as-
sumptions, clustering algorithms are expected to work with
the raw data. In this paper, the density-based spatial cluster-
ing of applications with noise (DBSCAN) method (Ester et
al., 1996) was selected for its simplicity, speed, robustness
and overall reliability (Chakraborty et al., 2014; Schubert et
al., 2017). However, all clustering algorithms require a rel-
evant discriminatory variable to build clusters efficiently. In
this instance, the discriminatory variable has to be logically
linked with plausible model topological heterogeneity. A po-
tential candidate that meets this criterion is lithological topol-
ogy, which expresses geological unit adjacency throughout
the model in a single categorical matrix. Lithological topol-
ogy was recently demonstrated to be an efficient tool to rec-
ognize highly discriminating features from plausible models
in MCUP (Wellmann et al., 2016; Thiele et al., 2016a; Pel-
lerin et al., 2015). As stated in the previous sections, the non-
linearity and non-uniqueness in 3-D geological modeling is
the main cause of plausible model topological heterogeneity.
In addition, non-linearity and non-uniqueness result from the
topological constraints imposed by the geometrical rule set.
Therefore, the geometrical rule set is at least partially respon-
sible for the heterogeneity. It is then reasonable to assume
that the topology of the plausible models can be used as a
discriminatory variable to combat topological heterogeneity.

4.1 Lithological topology

Topology describes the properties of special mathematical
spaces that are unaltered under continuous deformation. The
3-D geological modeling mostly concerns itself with the
topic of geospatial topology that focuses on spatial relation-
ships such as adjacency, overlap or separation of geometri-
cal objects such as points, lines, polygons and polyhedrons
(Thiele et al., 2016a). Essentially, the use of topological re-
lationships to characterize 3-D geological models allows a
compact expression of a subset of their geometry (Burns,
1988). Combined with the knowledge of the intrinsic phys-
ical properties of the rock types that compose geological
units, these relationships constrain the downstream predic-
tions resulting from 3-D geological models in terms of phys-
ical processes such as fluid, heat flow and electrical flow, as
well as mechanical stresses. The most common relationships
between 3-D objects encountered in 3-D geological models
are adjacency and separation of lithological units. In their
simplest form, these relationships can be expressed using an
adjacency matrix. Each element of the adjacency matrix is
a Boolean, where 0 encodes separation and 1 encodes adja-
cency (Fig. 4). However, an adjacency matrix contains both
redundant and irrelevant information. Indeed, the adjacency
matrix A of a model M comprised of n geological units is
symmetric and hollow. A is then of size n2, with its diagonal
comprised solely of 1, while both sides are transpose of one
another; it is then useful to half-vectorize A and remove unit
elements from the diagonal following the triangular number
sequence. For example, the 4× 4 adjacency matrix,

A=


1 1 0 1
1 1 1 1
0 1 1 0
1 1 0 1

 , (1)

is half-vectorized:

vech(A)T =
[
1 1 0 1 1 1 1 1 0 1

]
. (2)

Note that vech(A) is of size n2
+n
2 and contains all the nec-

essary information to fully describe the adjacency of litho-
logical units in a 3-D geological model with n distinct litho-
logical units. vech(A) can be also considered as a n2

+n
2 bit bi-

nary sequence called a basic topological signature. Although
the diagonal of unit entries may seem redundant, it actually
encodes the presence of a unit in the model. This is useful in
MCUP because a plausible model may miss a unit as a re-
sult of the perturbation process. The total number of possible

topological signatures is 2
n2
+n
2 . However, it is unlikely that

all possible signatures are present in the plausible model suite
given that the geometrical rule set constrains their topology.
Consequently, the issue of the representativity of the plausi-
ble model suite in terms of the variability of its topological
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Figure 2. Bimodal distribution with associated global and modal dispersion parameters.

Figure 3. The open or closed status of an ore deposit sedimentary
trap varies with the topology of surrounding impermeable (i) units.

signatures comes into question. At a minimum, the variabil-
ity of topological signatures should be qualitatively repre-
sentative of the plausible model space to allow the cluster-
ing algorithm to delineate the right number of clusters. Cu-
mulative observed topological signature graphs are a practi-
cal and efficient way to determine the topological represen-
tativity of the plausible model suite in real time (Thiele et
al., 2016b). As the modeling engine produces new plausible
models, these graphs plot the number of distinct topologi-
cal signatures observed versus the number of plausible mod-
els generated so far. When the number of distinct topologi-
cal signatures observed reaches a plateau, it is safe to con-
sider that most topologies have been observed and qualita-
tive topological stationarity may then be assumed reasonably
(Fig. 5).

4.2 Topological clustering using DBSCAN

DBSCAN is a point-density-reliant flat data clustering algo-
rithm (Schubert et al., 2017; Ester et al., 1996). DBSCAN
is based on the notion of the reachability of border points
from core points (Fig. 6). The algorithm only needs two pa-

rameters: (i) the minimum number of points Pmin that are
required to form a cluster and (ii) the maximum distance ε
allowed for two points to still be considered to be neigh-
bors. On this basis, the algorithm builds a distance matrix be-
tween all points and uses that matrix to determine the neigh-
bors of each point based on ε. Each point that has at least
Pmin neighbors is a core point that forms a cluster seed to
which all directly reachable points are attached. In order to
build the distance matrix, DBSCAN requires each point to
be characterized by a metric variable. Therefore, the variable
would allow distances to be computed using regular norms
such as the Euclidean distance. However, topological signa-
tures form a series of Boolean variables that cannot provide
appropriate measures for they are not additive. An alterna-
tive is to consider the whole topological signatures as a bi-
nary word and use the Hamming distance (Hamming, 1950)
as the metric. The Hamming distance counts the number of
individual bit switches required to match two binary words
of equal lengths, effectively quantifying their disagreement.
Implementation-wise, a simple XOR over two topological
signatures gives the Hamming distance that separates them.
As a special case, when ε = 0 and Pmin = 1, DBSCAN will
distinguish every distinct topological signature into a sepa-
rate cluster and the size of each cluster will count their oc-
currences.

4.3 Post-clustering analysis

Once the plausible model suite has been segregated into clus-
ters based on their topology, a range of statistical methods
may be applied to the results to (i) evaluate the quality and
relevance of the clusters, (ii) determine data leverage in re-
lation to the clusters, (iii) perform standard MCUP compar-
ative analysis on the clusters and (iv) feed the clusters to an
external rejection system. Cluster quality may be evaluated
by computing the internal binary information entropy matrix
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Figure 4. Procedure for topological signature extraction.

Figure 5. Topological stationarity graph with example cases.

E for each cluster:

E
j
i =−

∑c
k=1A(k)ji
c

log

(∑c
k=1A(k)

j
i

c

)

−

(
1−

∑c
k=1A(k)

j
i

c

)
log

(
1−

∑c
k=1A(k)

j
i

c

)
, (3)

where A(k) is the kth adjacency matrix of the cluster, c is the
cardinality of the cluster, and ij are standard matrix indices.
For a given cluster, E informs the user about the internal vari-
ability of the binary topological relationships between each
lithological couple. Note that writing

∑c
k=1A(k)ji implies,

for convenience, that each matrix entry is considered like a

real number instead of a bit. Most entries are expected to
be null, thus indicating no variations. Non-null entries in-
dicate topological “switches” inside the cluster itself. That
is, E highlights topological changes that the clustering algo-
rithm considered not to be significant enough to warrant a
split in the cluster. Importantly, this is directly translatable
into geological insights: “these two models are different be-
cause in only one of them is the sandstone unit found ad-
jacent to the shale unit”. Naturally, Eq. (3) may be applied
to the whole suite of adjacency matrices as a practical ref-
erence to compare the internal information entropy matrices
of each cluster to a global information entropy matrix. Stan-
dard MCUP comparative analysis tools may be applied to
the individual clusters concurrently to, for example, obtain
per-cluster/scenario uncertainty indices and sub-probabilistic
geological models. Given that common MCUP uncertainty
index models are sums of matching positive elements, per-
cluster uncertainty index model voxets are guaranteed to
yield equal or lower values compared to their global equiva-
lent. Moreover, per-cluster uncertainty index models are ex-
pected to be better structured as a common effect of all clus-
tering algorithms is to reduces intra-class variance. Clustered
plausible models may be traced back to their plausible input
datasets (structural measurements) to conduct cluster lever-
age analysis. The aim of cluster leverage analysis is to de-
termine which parts of the datasets are responsible for the
topological switches that induce the formation of new clus-
ters. A straightforward way to achieve this aim would be to
compute a central statistic such as the mean or the median
for every individual datum input in every cluster.

u=
[
d l=1. . .d t

]
, (4)
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Figure 6. DBSCAN workflow.

where u is the vector of central statistics, d l is the central
statistic for the plausible input observation l, and t is the car-
dinality of the input data. The next step is to compare every
matching individual input datum central statistic between all
cluster pairs:

1u(a,b)= (ua − ub) ◦ (ua − ub) , (5)

where a,b identifies a cluster pair and “◦” stands for the
Hadamard product. The results of this procedure should be
ranked to find the highest leverage plausible input data dif-
ferences between clusters.

5 Synthetic case study

To serve as proof of concept, the plausible model clustering
procedure that is proposed in the previous section is tested
on a synthetic case of medium complexity called CarloTopo.
The aim is to assess how plausible model clustering may im-
prove the accuracy, practicability and tractability of MCUP
in a comprehensible yet relevant environment. The procedure
follows standard MCUP (Fig. 1) with topological clustering
being added to the last step of comparative analysis. Results
are expressed in three complementary modes: (i) differences
between topological clusters are visualized using informa-
tion entropy as a proxy for uncertainty estimation; (ii) intra-
cluster variability is assessed using internal entropy matrices;

(iii) the initial and individual plausible models are charac-
terized by their topological signatures and lithological cross
sections.

5.1 Model description and MCUP parameters

The CarloTopo 3-D geological model features eight litholog-
ical units distributed into five series and two faults (Fig. 7).
All of the 25 foliations and 46 interface (Table 1) points
for all units and faults are placed onto a single N–S ver-
tical median cross section. This design decision was made
to ensure that the cross sections discussed in the subsequent
sections are representative of the models. CarloTopo simu-
lates a normally faulted basin (cyan and green) placed on top
of a mafic formation (blue) that sits on an erosional surface.
Below the erosional surface is a metamorphic folded series
(pink) comprised of three individual formations. The meta-
morphic series rests onto the basement and both are intruded
by a pluton (red). The mafic and metamorphic units were
both interpolated with an assumption of strong anisotropy
over the x axis while other units were left to be isotropic.
This design decision was made to prevent excessive varia-
tions within the plausible model suite and ease interpretation.
The geometries for each unit were designed to manifest as
many common geological features as possible without com-
promising its relevance for practical issues such as mining/oil
and gas exploration. More specifically, several potential traps
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Table 1. Original input structural data description for the CarloTopo
3-D geological model. N/a: not applicable.

No. of foliations No. of interface points

UpperBasin 1 4
LowerBasin 1 4

MaficUnit 1 7

Intrusion 8 11

UpperMetaFold 1 2
MiddleMetaFold 6 7
LowerMetaFold 5 6

Basement n/a n/a

Fault1 1 3
Fault2 1 2

Total 25 46

Table 2. Summary of all MCUP parameters used in this study.

CarloTopo model High- Low-
confidence confidence

scenario scenario

Foliation orientation vMF (ζ , 50c) SC (ζ , 20◦)
perturbation parameters

Foliation/interface location N (ε, 5 ma) U (ε, 25 mb)
perturbation parameters

a 0.5 % of model box extent. b 2.5 % of model box extent. c 16◦ 95 % confidence
interval. SC: spherical distribution. vMF: von Mises–Fisher distribution. U:
continuous uniform distribution. N: normal distribution. ζ : original foliation.
ε: original interface point.

for sedimentary-hosted deposits were included in the original
model along with a network of faults that serve as theoretical
channels or barriers (Fig. 8). The case study was split into
two separate MCUP experiments with different disturbance
distribution parameterization with over a thousand perturba-
tions each. The first run aims to simulate a high-input data
confidence scenario applicable to well-surveyed areas. Con-
versely, the second run simulates a low-confidence scenario
applicable to legacy data or early stages of exploration. Dis-
turbance distributions in the high-input data confidence sce-
nario were chosen to be of the Gaussian type with relatively
low dispersion, whereas uniform-type distribution parame-
terized with large ranges were used for the low-input data
confidence scenario (Table 2).

5.2 High-input data confidence run

For this run, a global information entropy uncertainty index
model voxet was produced to serve as a reference against
matching topology-based estimates. Three vertical N–S cross
sections were extracted from the voxet at 250, 500 and

750 m easting (Fig. 9). The 250 and 750 m information en-
tropy cross sections are almost identical because the original
model is symmetrical about the N–S median cross section
where all structural data are located. Both sections display
low-to-medium levels of entropy (0.20 to 0.40) distributed
around the original interfaces’ trace and forming entropy ha-
los of about 70 m apparent thickness for non-triple-point ar-
eas. Conversely, triple points and areas of potential geomet-
rical ambiguities display medium-to-high levels of entropy
(0.50 to 0.70) and thicker halos (∼ 100 m). The 500 m in-
formation entropy cross section exhibits lower levels of en-
tropy and much thinner halos (∼ 20 m) because of its extreme
proximity to the structural data inputs.

To verify topological stationarity, each plausible model
was exported to a voxet that was used to build its corre-
sponding adjacency matrix (Fig. 5). Every “new” topology
was placed into a standard topological stationarity graph
(Fig. 10). The number of distinct topologies observed over
the process of generating plausible models appears to fol-
low a logarithmic pattern. That is, the greater part of pos-
sible topologies is “discovered” quickly and further plausi-
ble model generation yields diminishing returns. In this in-
stance, a third of topologies are discovered in a mere 3 % of
the total number of perturbations and the next third is com-
pleted in under 25 % of said number. The total number of
observed distinct topologies represents about 5 % of the total
number of plausible models. Note that these finds are in ac-
cordance with previous work on topological stationarity in
3-D geological modeling (Thiele et al., 2016b). Based on
these observations, it is safe to assume topological station-
arity for this run. Several parameter sets for DBSCAN were
tested and it appeared that the only working set for this case
is ε = 0 and Pmin = 1. Otherwise, DBSCAN returns a sin-
gle cluster along with a small number of unclustered topo-
logical signature. That is, each distinct topological signature
has to be considered as a cluster in itself in order to obtain
more than one cluster. Such behavior is not entirely unex-
pected because of the low dispersion parameters set for the
disturbance distributions. Indeed, low dispersion of distur-
bance distributions is partially and non-linearly correlated
to low plausible model topological variability. This is con-
firmed by the low number (nine) of non-null elements in the
global internal information entropy matrix (Table 3), which
indicates that few topological relationships were affected by
the perturbation process. With the aforementioned settings,
DBSCAN returned 55 clusters that correspond to the 55 dis-
tinct topological signatures present in the plausible model
suite. For practical purposes, a significance threshold of 60
occurrences was applied (Fig. 11) to retain only the six most
significant topological signatures and make subsequent steps
more manageable, and such operation is only justified on the
basis that topological stationarity is adequately met.

A representative plausible model was selected from each
significant topological signature cluster and three vertical N–
S cross sections were taken (Fig. 12) to obtain a qualitative
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Figure 7. CarloTopo 3-D geological model with original input foliations (disks) and interfaces (points), geometrical rule sets for units and
faults, and adjacency matrix. The model box size is 1000× 1000× 1000 m, and all structural data are located on the x median vertical cross
section.

Figure 8. Original CarloTopo vertical cross sections at x = 250, 500 and 750 m, with potential ore deposit traps or channels circled.
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Figure 9. Global (top row) and top five most significant topological signatures vertical cross sections of information entropy uncertainty
index models for the low-input data confidence run.
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Figure 10. Topological stationarity graph for the CarloTopo high-input data confidence run. The 1 : 1 graph in the background is used as
reference.

Figure 11. Unique topologies occurrences for the high-input data confidence run with significance threshold of 60. Note that, in this instance,
the clustering algorithm returned every topological signature as a distinct cluster.

view of the topological and geometrical differences between
them. The 500 m easting median cross section is mostly in-
variant throughout the cluster as pointed out by the low value
observed on the global information entropy uncertainty in-
dex model voxet (Fig. 9). The 250 and 750 m easting cross
sections appear to be significantly more variable through-
out the clusters in terms of distinct topological features and
geometrical variations. Evident differences in section view
include (i) the basin lower unit (Fig. 12, green) gaining or

losing contact with the metamorphic folded series (Fig. 12,
pink shades) with the mafic cover separating the two series
(Fig. 12, blue), (ii) the basement (Fig. 12, brown) coming into
contact with the mafic cover and (iii) the upper metamorphic
folded unit (Fig. 12, light pink) being in direct contact with
the lower metamorphic unit (Fig. 12, dark pink). Addition-
ally, the potential traps highlighted in the original model are
seen to change size and shape, to close and open throughout
the clusters. These results indicate that topological signatures
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Table 3. Global internal information entropy matrix for the high-
input data confidence run. Matrix indices refer to geological forma-
tion ranking in the stratigraphic pile. Refer to text for detail.

High-confidence run global entropy

1 2 3 4 5 6 7 8

1 0.00
2 0.00 0.00
3 0.50 0.00 0.00
4 0.34 0.17 0.00 0.00
5 0.00 0.00 0.51 0.41 0.00
6 0.37 0.00 0.00 0.00 0.00 0.00
7 0.08 0.52 0.28 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

may help differentiate favorable scenarios in ore reservoir or
oil and gas modeling applications.

Information entropy cross sections were extracted from
the uncertainty index model voxets (Fig. 9) that were gen-
erated for each significant topological signature. Although
the information entropy values look similar throughout the
clusters, there are noticeable differences in terms of sharp-
ness and triple-point differentiation. Predictably, the 500 m
easting section shows very little extra-cluster variability and
is very similar to its global counterpart. This is most likely
because of its relative proximity to the original structural
data inputs. In contrast, the 250 and 750 m easting sections
display significant extra-cluster variability in terms of en-
tropy halos thickness (from 150 to 50 m), triple-point dif-
ferentiation (right ellipses) and sequence repetition in the
metamorphic folded series (middle and left ellipses). As ex-
pected, cluster-based information entropy cross sections are
all sharper than their non-clustered counterpart. This con-
stitutes a strong indication that topological clusters are ge-
ometrically consistent and supports the thesis that topology
is an efficient determinant for geological coherence. Addi-
tionally, sharper information entropy cross sections imply
sharper probabilistic geological models which allows for an
increased external applicability of MCUP results. In general,
these results underline the plausible model-discriminating ef-
ficiency of topological signatures even when they are consid-
ered individually.

5.3 Low-input data confidence run

As with the previous run, a global information entropy un-
certainty index model voxet was produced to serve as a refer-
ence against matching topology-based estimates. Equivalent
cross sections were taken (Fig. 13) and exhibit very simi-
lar features to the high-input data confidence run. However,
attention is brought to the increased fuzziness of the infor-
mation entropy halos. These patterns can be explained by
the disturbance distribution selection and parameter selection
for this run. The uniform distributions that were selected in

this instance always have a higher innate entropy compared
to Gaussian distributions. Furthermore, the ranges selected
largely exceed those of the previous run. Although at a lesser
degree, the topological stationarity graph (Fig. 14) expresses
the same diminishing return effect as the high-input data con-
fidence run. More specifically, a third of topologies were in
the first 13 % of plausible models, another third in the next
20 % of plausible models and the final third in the last 70 %
of plausible models. In this instance, DBSCAN was parame-
terized with ε = 2 and Pmin = 2 and returned two topological
signature clusters of size 953 and 39, respectively, along with
eight outliers. Lower or higher values for ε and Pmin returned
either a single cluster of size 1000 or a thousand clusters of
size 1.

Cross sections extracted from representative models of
both clusters (Fig. 15) display stark differences at the
geometrical and topological levels. Significant topological
changes between the two clusters include the disappearance
of the middle the metamorphic folded unit (purple) from
cluster 2, the emergence of the lower metamorphic folded
unit (dark pink) against the lower basin unit (green) and the
contact of the intrusion unit (red) with the upper metamor-
phic folded unit (light pink) in cluster 2. This is not surpris-
ing given the high number of non-null elements in the global
internal information entropy matrix (Table 4). Indeed, a to-
tal of 20 topological relationships were affected by the per-
turbation process to varying degrees. Moreover, per-cluster
internal information entropy matrices result in a significant
number of non-null elements (Table 4) which can be used
to determine the main “breaking” topological relationships
when compared against each other and against the global ma-
trix. Most topological shifts between the two clusters relate to
internal topological relationships of the metamorphic folded
unit and the basement. These shifts are consistent with the
representative cross sections and indicate that per-cluster in-
ternal information entropy matrices may be used to draw ge-
ological inferences from their topological differences. When
the internal entropy matrices of the clusters are compared
against the global one, small differences become visible be-
cause of the inclusion of the unclustered plausible models.
Notably, the intermediate metamorphic folded unit entries
are non-null against all other units and themselves, which
suggests that the unit may be absent from some of the un-
clustered plausible models.

The information entropy uncertainty index model cross
section for cluster 1 shows little variation to its global coun-
terpart (Fig. 13). This is mainly due to the large size of clus-
ter 1 compared to the number of plausible models. About
95 % of plausible models carry a topological signature that
links them to cluster 1. Given the convex nature of infor-
mation entropy, large clusters are likely to be near undis-
cernible with the global population. Overall, cluster 2 dis-
plays sharper entropy halos than cluster 1 or the global cross
sections. It also features strong aliasing because of its rela-
tively small size (39). Information entropy peaks about the
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Figure 12. Vertical cross sections of example plausible models for the top five most significant topological signatures in the high-input data
confidence run. Major topological changes are circled.
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Figure 13. Global (top row) and per-cluster vertical cross sections of information entropy uncertainty index models for the low-input data
confidence run.

metamorphic folded series appear to be shifted by a half of
a fold wavelength between the two clusters (ellipses), while
other features remain mostly constant. The relative similar-
ity between the information entropy cross sections for both
clusters (Fig. 13) despite their strong geological, structural
and topological disagreement suggests that topological clus-
tering holds potential as a differentiation tool in MCUP com-
parative analysis. Topological clustering would then be a way
to mitigate the weaknesses of global information entropy un-
certainty index models in regard to structural relevance.

6 Discussion

In this paper, a basic procedure for topological clustering in
MCUP was explored as possible improvement over currently
available comparative analysis methods. The theoretical and
practical aspects of the procedure were discussed and demon-
strated over two proof-of-concept case studies.
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Figure 14. Topological stationarity graph for the CarloTopo low-input data confidence run. The 1 : 1 graph is used in the background as
reference.

The case for topological clustering rests on the fact that
MCUP commonly generates topologically distinct models
because of the non-linear relationship between the plausible
datasets and the plausible model suite. This effect is intro-
duced by the geometrical rule set that implicit 3-D geological
modeling engines depend on to solve topological ambigu-
ities. Ultimately, this topology-induced non-linearity trans-
lates into plausible model topological heterogeneity which
is damaging to global comparative analysis methods that
MCUP normally relies on and justifies topological clus-
tering. Plausible model topological heterogeneity forms a
strong logical barrier to merging plausible models into a
single probabilistic geological model or uncertainty index
model. Plausible models obtained through the perturbation
of the same dataset may describe very different “realities”
which correspond to significantly different topologies. Com-
bining such model types that describe distinct topologies into
a single uncertainty estimate is detrimental to the understand-
ing of the quality of our knowledge in the area of interest.

Topological clustering provides more flexibility to external
validation systems such as geophysical inversion or physi-
cal simulations, as it does not lock them into a single proba-
bilistic geological model or uncertainty index model. In turn,
such an approach holds the potential to make targeted ground
truthing easier, as topological differences between clusters
and per-cluster leverage analysis would help indicate which
observations or topological relationships introduce topologi-
cal heterogeneity in the plausible model suites. Furthermore,

per-cluster uncertainty is always lower than its global coun-
terpart because of the convexity of uncertainty index mod-
els. Therefore, topological clustering produces sharper per-
cluster uncertainty index models that are more comprehensi-
ble than the global uncertainty index model which helps to
parameterize external validation systems. Topological clus-
tering preserves and improves geological knowledge since
the differences between the topological signatures of dis-
tinct clusters are visible in the internal information entropy
matrices and can be interpreted in terms of geological rela-
tionships. Lastly, the proposed method increases the value
of MCUP against analytical uncertainty propagation meth-
ods since the latter cannot consider the non-linearity that
plausible model topological heterogeneity indicates. Analyt-
ical uncertainty propagation would estimate uncertainty from
the interpolator directly without the need to build any more
than a single probabilistic geological model. However, it was
shown that a single probabilistic geological model cannot ad-
equately express the inherent non-linearity of the modeling
engine. Note that this non-linear behavior is not a defect of
the modeling engines themselves but rather a consequence
of natural geological rules such as intrusion, cross cutting or
superposition.

Although promising, in its current form, the procedure
may suffer from a number of limitations that concern DB-
SCAN and may indicate that other clustering algorithms such
as k means, c means or machine learning are more appro-
priate. The low number of parameters, simplicity of the al-
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Figure 15. Vertical cross sections of example plausible models for each cluster in the low-input data confidence run. Major topological
changes are circled.

gorithm and low computational cost make DBSCAN an ap-
pealing choice for data clustering of large datasets where the
number and shape of clusters are unknown. However, DB-
SCAN suffers from a number of disadvantages that may hin-
der its ability to function effectively. The most relevant ones
to this study are the “hidden” metric parameter, point den-
sity scale issues and conflicted points. The metric parame-
ter relates to the choice of the metric used to compute de
distance matrix such as Euclidean or Manhattan distances.
Datasets with high dimensionality may exhibit a degener-
acy of the concept of distance when the data are uncorre-
lated and noisy. The issue is mostly covered by the fact that
the topology of 3-D geological model is usually well struc-
tured because of the geometrical rule set’s influence. The
point density scale issue relates to the intra-cluster point den-
sity variance. That is, intra-cluster point density should be
as close as possible to a constant throughout the clusters. A
high point density variance prevents an effective ε parame-
terization because the concept of a reachable neighbor then
becomes ambiguous. In the case of basic topological signa-
tures extracted from plausible models, the variability of the
point density of clusters is usually low. That is because the
geometrical rule set massively decreases the chances of odd

topological signatures occurring. Note that this applies even
for very-low-confidence disturbance distribution parameteri-
zation, provided that all units are sufficiently informed. Con-
flicted points relate to the fact that the DBSCAN algorithm is
non-deterministic in some instances (Schubert et al., 2017).
As a consequence, some border points may be reachable by
several core points from different clusters at the same time.
However, DBSCAN only allows each point to belong to a
single cluster. It is then the order in which the data were pro-
cessed by the algorithm that will determine to which clus-
ter these conflicted points belong to. For the purpose of this
paper, this effect was avoided by parameterizing DBSCAN
with a low ε. Regardless of which clustering algorithm is
chosen and how it is parameterized, the issue of the relevance
of Boolean topological signature clustering arises. Boolean
topological signatures may be argued as being too simplistic
in their representation of the actual geometrical relationships
observed in the plausible model suites. Such oversimplifica-
tion may inhibit the differentiating efficiency of the cluster-
ing algorithm. To address this problem, more accurate topo-
logical signatures may be used. The most straightforward im-
provement is to distinguish normal and faulted contacts be-
tween geological units and express topological signatures as
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Table 4. Per-cluster (top), global (bottom left) and contrast (bottom right) internal information entropy matrices for the low-input data
confidence run. Matrix indices refer to geological formation ranking in the stratigraphic pile.

Low-confidence run cluster 1 entropy Low-confidence run cluster 2 entropy

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 0.00 1 0.00
2 0.00 0.00 2 0.00 0.00
3 0.53 0.00 0.00 3 0.00 0.00 0.00
4 0.45 0.18 0.00 0.00 4 0.20 0.00 0.00 0.00
5 0.00 0.00 0.49 0.52 0.00 5 0.00 0.00 0.00 0.29 0.00
6 0.22 0.00 0.00 0.00 0.25 0.00 6 0.00 0.00 0.00 0.00 0.22 0.00
7 0.30 0.31 0.13 0.00 0.10 0.00 0.00 7 0.45 0.34 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.01 0.03 0.00 0.20 0.00 0.00 8 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00

Low-confidence run global entropy Low-confidence run cluster entropy absolute difference

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 0.00 1 0.00
2 0.00 0.00 2 0.00 0.00
3 0.53 0.06 0.06 3 0.53 0.00 0.00
4 0.48 0.18 0.06 0.00 4 0.25 0.18 0.00 0.00
5 0.00 0.00 0.50 0.52 0.00 5 0.00 0.00 0.49 0.23 0.00
6 0.21 0.00 0.06 0.00 0.25 0.00 6 0.22 0.00 0.00 0.00 0.03 0.00
7 0.31 0.31 0.17 0.00 0.10 0.00 0.00 7 0.14 0.03 0.13 0.00 0.10 0.00 0.00
8 0.00 0.03 0.04 0.06 0.01 0.22 0.00 0.00 8 0.00 0.00 0.01 0.03 0.00 0.07 0.00 0.00

a ternary signal instead of a binary one. This solution is ap-
pealing because the rest of the procedure remains unchanged
given that the Hamming distance is defined for all degrees.

Replacing lithological, unit-based adjacency matrices with
super, series-based adjacency matrices is another possibility
of improvement for the procedure. In this case, the geological
units of a series would be considered as a single entry of the
matrix. The aim is to simplify the adjacency matrices, elim-
inate redundant information, decrease computational costs
and increase readability. However, this approach assumes
that series are topologically similar, which is not guaranteed
as illustrated by the metamorphic folded series behavior in
the low-input data confidence run. The clustering algorithm
would then be made blind to them and, in some cases, dis-
play higher differentiating ability. However, the question of
the relevance of a topological relationship is likely to be ad
hoc. At the practical level, in this paper, adjacency matrices
were extracted from 3-D grids obtained by discretizing the
plausible 3-D geological model. Therefore, adjacency matri-
ces are prone to discretization artifacts when resolution is too
low. Triangulated interfaces could be used to derive the topo-
logical signatures while avoiding these artifacts.

Overall, more in-depth case studies are required to assess
the capabilities of the method and determine the best route
for possible improvements. More specifically, 3-D real case
studies are needed to better demonstrate the usability and
practicability of the method as opposed to the synthetic 2-
D section-based model used in this paper.

7 Conclusions

In this paper, previous findings (Wellmann et al., 2014;
Thiele et al., 2016a; Wellmann and Caumon, 2018) about
plausible model variability in MCUP were verified and a
complete comparative analysis procedure was proposed to
address the issues raised by said findings. It was confirmed
through the experiment that MCUP outputs a significant pro-
portion of topologically distinct plausible models and that
topological analysis is a viable tool to differentiate them.
The reasons for this incompatibility were discussed and were
found to be due to the non-linear relationship between the
plausible input datasets and the plausible models. That is, the
model-building process is non-linear itself. It was proposed
that the model-building non-linearity emanates from the ge-
ometrical rule set that is used to constrain and partially de-
fine the topology of models in implicit 3-D geological mod-
eling engines. In view of this fact, topological clustering was
proposed as a solution to distinguish topologically distinct
models and increase the relevance and quality of the uncer-
tainty indices and probabilistic models in MCUP. Based off a
two-stage synthetic case study, it was found that topological
analysis is a viable tool to differentiate topologically distinct
models and that topological signatures are strong indicators
of geological features in 3-D geological models. Topolog-
ical analysis was shown to help reduce overall model un-
certainty by ensuring topological consistency in the uncer-
tainty indices. Moreover, topology-driven comparative anal-
ysis may allow for higher model improvement potential than
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what standard uncertainty indices or probabilistic geologi-
cal models allow for. The rationale is that improved knowl-
edge of uncertainty allows users to target areas of interest
where supplementary data collection is required to reduce
said uncertainty. In this case, uncertainty is thought of as
an improvement-enabling tool that initiates a positive feed-
back loop and allows users to refine their understanding of
the modeled area and increase the reliability of their model.
This work finds applications in mining and oil and gas indus-
tries at the strategic and tactical stages of exploration or for
mine development and planning. In particular, topologically
similar probabilistic geological models and their associated
topological signatures could be used as input for geophysical
inversion and physical simulation software.

Code and data availability. All datasets and mod-
els used in the present study are available online at
https://doi.org/10.5281/zenodo.1202314 (Pakyuz-Charrier, 2018).
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Appendix A: The spherical cap distribution

The spherical cap distribution is designed to describe vari-
ables that are uniformly distributed over any solid angle on
the unit sphere S2. The proposed parameterization is that of
the mean/median direction spherical unit vector µ and half-
aperture angle λ:

pSC = f (x|µ,λ) . (A1)

Start with the formula for the area of a spherical cap,

A= 2πr2 (1− cos(θ)) , (A2)

where θ is the polar angle and r is the radius of the sphere. It
ensues that, over S2, the maximum value for A is for θ = π :

Amax = 2π (1− cos(π))= 4π. (A3)

The relative area of a spherical cap to the total sphere area
is then given by

Amax

A
=

2
1− cos(θ)

, (A4)

given

(.)pSC = 1, (A5)

and knowing

f (x, . . .,λ= π)=
1

4π
. (A6)

It follows that if

µT x ≥ cosλ, (A7)

then

f (x|µ,λ)= 4π−1 2
1− cos(λ)

. (A8)

The authorized form is then

pSC (x|γ, λ)=

{
2π

1
(1− cosλ)

,µT x ≥ cosλ. (A9)

Appendix B: Spherical cap pseudo-random number
generation

To generate a spherical cap uniformly distributed pseudo-
random spherical 3-D unit vector Xsphe on S2 for a given
mean direction µ and range λ, define

Xsphe = [φ,θ, r] . (B1)

For µ= [0, (.),1], the pseudo-random vector is given by

Xsphe = [arcos(W), V , 1] . (B2)

W is given by

W = cos(λ)+ ξ, (B3)

where1

ξ ∼ U (0,1− cos(λ)) . (B4)

V is drawn as follows:

V ∼ U (0, 2π). (B5)

Xsphe should then be rotated to be consistent with the cho-
sen µ.

Appendix C: Spherical standardized Irwin–Hall
distribution

The standardized Irwin–Hall (IH) distribution is the distribu-
tion of the sum of a number of standardized uniformly dis-
tributed independent random variables:

X =
∑n

i=1
Un, (C1)

with all Un drawn from U (−a,a). This distribution is use-
ful in Bayesian inference as it models the sequenced hyper-
sampling of a standardized uniform distribution in a compact
form. For a = 1

2 , the IH distribution density is given by

fX (x|n)=
1

2(n− 1)

∑n

i=0
(−1)i

(
n

i

)
(
x+

n

2
− i
)n−1

sign
(
x+

n

2
− k

)
. (C2)

In this form, its mean is always 0 and variance is n
12 . The

standardized IH distribution can be redefined as the chain
convolution of its uniform components. For example,

fX (x|n= 2)≡ U (−a,a) ·U (−a,a) . (C3)

Using the convolution theorem, this can be generalized to

fX (x|n)∝ F
−1 (F(U (−a,a))n) , (C4)

where F is the Fourier transform and F−1 its inverse. Sub-
stituting Eq. (A4) into Eq. (B4), one finds that the standard-
ized spherical IH distribution of order n is proportional to
the inverse Fourier transform of the n-exponentiated Fourier
transform of the standardized spherical cap distribution:

SnIH ∝ F
−1 (F(pSC (x| [0, . . .,1] , λ))n

)
, (C5)

with

F (pSC (x|γ, λ))=
sin
(
πω
2

)
√

2π (πω−πωcos(λ))
. (C6)

1U (a,b) is the usual continuous uniform distribution.
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