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Abstract. The flow of fluids through porous media such as
groundwater flow or magma migration is a key process in
geological sciences. Flow is controlled by the permeability
of the rock; thus, an accurate determination and prediction
of its value is of crucial importance. For this reason, perme-
ability has been measured across different scales. As labora-
tory measurements exhibit a range of limitations, the numeri-
cal prediction of permeability at conditions where laboratory
experiments struggle has become an important method to
complement laboratory approaches. At high resolutions, this
prediction becomes computationally very expensive, which
makes it crucial to develop methods that maximize accuracy.
In recent years, the flow of non-Newtonian fluids through
porous media has gained additional importance due to, e.g.,
the use of nanofluids for enhanced oil recovery. Numerical
methods to predict fluid flow in these cases are therefore re-
quired.

Here, we employ the open-source finite difference solver
LaMEM (Lithosphere and Mantle Evolution Model) to nu-
merically predict the permeability of porous media at low
Reynolds numbers for both Newtonian and non-Newtonian
fluids. We employ a stencil rescaling method to better de-
scribe the solid–fluid interface. The accuracy of the code is
verified by comparing numerical solutions to analytical ones
for a set of simplified model setups. Results show that stencil
rescaling significantly increases the accuracy at no additional
computational cost. Finally, we use our modeling framework
to predict the permeability of a Fontainebleau sandstone and
demonstrate numerical convergence. Results show very good
agreement with experimental estimates as well as with pre-

vious studies. We also demonstrate the ability of the code to
simulate the flow of power-law fluids through porous media.
As in the Newtonian case, results show good agreement with
analytical solutions.

1 Introduction

Fluid flow within rocks is of interest for several Earth science
disciplines including petrology, hydrogeology and petroleum
geoscience, as fluid flow is relevant to the understanding
of magma flow, groundwater flow and oil flow, respectively
(Manwart et al., 2002). Permeability estimates can be in-
ferred on several scales ranging from macroscale (crust)
(Fehn and Cathles, 1979; Norton and Taylor Jr., 1979) over
mesoscale (e.g., bore hole) (Brace, 1984) to pore scale (e.g.,
laboratory) (Brace, 1980). Permeability at crustal scale is
of great importance, as crustal scale permeability is a func-
tion of its complex microstructure; therefore, an accurate
prediction of permeability on the pore scale is necessary
(Mostaghimi et al., 2013). Typical limitations for labora-
tory measurements on pore scale are (i) a change of the
sample’s microstructure and therefore its physical proper-
ties through cracking and self-filtration (Zeinijahromi et al.,
2016; Dikinya et al., 2008), (ii) pressure changes due to the
influence of wall effects (Ferland et al., 1996) and finally
(iii) difficulties to measure irregular grain shapes and small
grain sizes of the porous medium (Cui et al., 2009; Gerke
et al., 2015).
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At this point, numerical modeling can help to compute
permeabilities and understand the microstructures as well as
flow patterns in three-dimensional pore structures. To com-
pute fluid flow directly within 3-D pore structures, it is nec-
essary to determine the morphology of the investigated sam-
ple. This can be achieved by digital rock physics (DRP). It
is a powerful tool which allows to improve the understand-
ing of both pore-scale processes and rock properties. DRP
approaches use 2-D or 3-D microstructural images to com-
pute fluid flows (Fredrich et al., 1993; Ferreol and Rothman,
1995; Keehm, 2003; Bosl et al., 1998), which are obtained
using modern techniques including X-ray computed tomog-
raphy (CT) and nuclear magnetic resonance imaging (NMR)
(Dvorkin et al., 2011; Arns et al., 2001; Arns, 2004). In a
first step, the obtained microstructural images undergo sev-
eral stages of segmentation (binarization, smoothing, etc.)
necessary to create a three-dimensional pore space. The sub-
sequent computation of fluid flow through the reconstructed
three-dimensional pore space is tackled with either Lattice–
Boltzmann (Bosl et al., 1998; Pan et al., 2004; Guo and Zhao,
2002), finite difference (Manwart et al., 2002; Shabro et al.,
2014; Gerke et al., 2018) or finite element methods (Garcia
et al., 2009; Akanji and Matthai, 2010; Bird et al., 2014). The
computed velocity field is then used to estimate permeability
(Keehm, 2003; Saxena et al., 2017) and other physical prop-
erties (Saxena and Mavko, 2016; Knackstedt et al., 2009).

In recent years, the flow of non-Newtonian fluids has
gained significant interest due to their use in a wide range
of applications including geology, medicine and other in-
dustrial processes (e.g., Johnston et al., 2004; Choi, 2009;
Suleimanov et al., 2011; Mader et al., 2013). Nanofluids
contain nanometer-sized particles and have been shown to
significantly enhance the efficiency of oil recovery (Wasan
and Nikolov, 2003; Huang et al., 2013), whereas the bubbles
and/or crystal content of magmas control their rheology and
thus ultimately their eruption style (Mader et al., 2013; Cas-
sidy et al., 2018). If the suspended particles are much smaller
than the system to be modeled, the behavior of these suspen-
sions is commonly described using an effective rheology, ex-
hibiting non-Newtonian behavior in most cases. For magmas,
it is not quite clear which physical process is responsible for
the non-Newtonian behavior (Deubelbeiss et al., 2011) as the
non-Newtonian behavior usually originates from the inter-
action of suspended particles with each other and the sur-
rounding fluid. Therefore, it is necessary to develop numer-
ical models that can simulate non-Newtonian flow through
porous media.

In this paper, we enhance the open-source finite difference
solver LaMEM (Lithosphere and Mantle Evolution Model)
to model fluid flow on the pore scale with both Newtonian
and non-Newtonian rheologies. We show that rescaling the
staggered-grid stencil to better describe velocity components
parallel to the fluid–solid interface significantly improves the
accuracy. The code is verified using analytical solutions and

then used to perform the permeability computations for a dig-
ital Fontainebleau sandstone sample (Andrä et al., 2013b).

2 Fluid flow in porous media

Fluid flow in porous media can be characterized with the
Reynolds number which relates inertial to viscous forces:

Re=
ρvL

η
, (1)

where ρ is fluid density, v is velocity in direction of the flow,
L is the characteristic length, and η is the fluid viscosity. Due
to the small pore size, flows in porous media commonly ex-
hibit small Reynolds numbers and are thus considered to be
laminar (Bear, 1988). For geological applications, Reynolds
numbers typically are around 10−9 to 10−10 for magmas
(Glazner, 2014) and range from 10−8 to 10−5 for groundwa-
ter flow. This allows to simplify the incompressible Navier–
Stokes equations to the Stokes equations (ignoring gravity):

∂vi

∂xi
= 0 (2)

∂

∂xj

[
η

(
∂vi

∂xj
+
∂vj

∂xi

)]
−
∂P

∂xi
= 0, (3)

where P denotes pressure, v the velocity component and x
the spatial coordinate.

If the pore structure of a porous medium is known, Eqs. (2)
and (3) can be used to directly model laminar fluid flow
within this medium. However, at larger scales, direct numer-
ical simulation of porous flow is not feasible. In the case of
Newtonian fluids, it is common to define a permeability k
which relates the flow rateQ to the applied pressure gradient
1P/L as well as fluid viscosity η:

k =−
ηLQ

1PA
, (4)

where A is the cross-sectional area of the porous medium.
Equation (4) is also known as Darcy’s law and forms the
basis of an effective description of Newtonian fluid flow in
porous media (Andrä et al., 2013b; Saxena et al., 2017; Bosl
et al., 1998). As stated above, this permeability is commonly
determined by experimental methods on all scales. With the
advent of numerical models for subsurface fluid flow (e.g.,
FEFLOW; Diersch, 2013), it has become possible to predict
large-scale subsurface fluid flow using micro-permeabilities
as input parameters. Therefore, an accurate prediction of
micro-permeabilities is necessary.

One possibility to do this is to relate the porosity φ of the
medium to its permeability k. Deriving the exact nature of
this relationship is not trivial and has been subject to a sig-
nificant amount of research (Kozeny, 1927; Carman, 1937,
1956; Mavko and Nur, 1997). Due to the strong dependency
of the permeability not only on porosity but also on the 3-D
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structure of the pore space, these approaches still suffer from
inaccuracies. Due to the development of pore-scale numeri-
cal models, it has become possible to determine and refine
the porosity–permeability relationship using direct numeri-
cal simulation on the basis of computed tomography (CT).
These simulations typically provide solutions for fluid veloc-
ity v and pressure P for a given pressure gradient across the
sample. From the velocity field in the z direction, the volume-
averaged velocity component vm is calculated (e.g., Osorno
et al., 2015):

vm =
1
Vf

∫
Vf

|vz|dv, (5)

where Vf is the volume of the fluid phase. Making use of
Eq. (4) and Q= vm ·A, the intrinsic permeability ks of the
sample can then be computed as

ks =
ηvmL

1P
. (6)

As described above, the flow of non-Newtonian fluids
through porous media has gained considerable attention in
recent years. Here, we use a power-law rheology given by

η =


η1, if ε̇ < ε̇1

η0

(
ε̇
ε̇0

)n−1

η2, if ε̇ > ε̇2,

(7)

where η1 and η2 are the upper and lower cutoff viscosities at
the corresponding strain rates (ε̇1 and ε̇2). η0 is the fluid vis-

cosity at the reference strain rate ε̇0, and ε̇ =
√

1
2 ε̇ij ε̇ij is the

effective strain rate. n is the power-law exponent. With the
definition adopted here, fluids with n < 1 are called shear-
thinning, while fluids with n= 1 behave as Newtonian fluids
and n > 1 are considered shear-thickening fluids. Note that
this definition of n differs from the common definition used
in geodynamical modeling (called n′ here), where n′ = n−1.

In the case of non-Newtonian fluids, the definition of a per-
meability is not as straightforward as in the Newtonian case.
Several studies have attempted to describe porous media per-
meability for non-Newtonian fluid rheologies. Until now, a
general description could not be found, as used approaches
differ. To develop a non-linear variant of Darcy’s law, Bird
et al. (1960) assumed that porous media can be represented
by parallel pipes and scaled up these capillary models to gen-
eral porous media. By doing so, Bird et al. (1960) suggested
that the average velocity vm scales as a function of the driv-
ing force F or the pressure gradient1P/L (Bird et al., 1960;
Larson, 1981):

vm =

(
k

ηeff

1P

L

) 1
n

=KF (F )
1
n , (8)

where k is the permeability, ηeff an effective viscosity andKF
a related model parameter. If n= 1 and ηeff = η, Eq. (4) is

recovered. Both the fraction k/ηeff andKF depend on poros-
ity φ, stress exponent n, the reference viscosity η0 and the
pore-scale geometry of the medium. Consequently, a simple
expression for the permeability k has not been found yet. At-
tempts to generalize Darcy’s law based on Eq. (8) include
effective medium theories (Sahimi et al., 1990), pore net-
work models (Shah and Yortsos, 1995) and pore-scale nu-
merical simulations (Aharonov and Rothman, 1993; Vakilha
and Manzari, 2008). Irrespective of the chosen approach and
the exact form of either k/ηeff or KF , Eq. (8) implies that a
logarithmic plot of vm vs. either 1P/L or F should produce
a straight line with slope 1/n.

3 Method

We solve the system of governing Eqs. (2) and (3) on a cu-
bic lattice using the finite difference code LaMEM, which
has originally been developed to simulate large-scale defor-
mation of the Earth’s lithosphere and mantle (Kaus et al.,
2016). Here, we will focus on modeling the flow of a fluid
with both linear and non-linear viscosity η through a rigid,
porous matrix. LaMEM employs a staggered-grid finite dif-
ference scheme (Harlow and Welch, 1965) to discretize the
governing equations (Fig. 1).

Pressures are defined in the middle of the staggered grid
cell, whereas velocities are defined on cell faces. Based on
the data from CT scans, each cell is assigned either a fluid
or a solid phase. The discretized system is then solved us-
ing an iterative multigrid scheme to obtain values for ve-
locities v and pressure P . To this end, we employ multigrid
solvers which are part of the Portable, Extensible Toolkit for
Scientific Computation (PETSc) library (Balay et al., 2010).
As only cells belonging to the fluid phase exhibit non-zero
values for the velocity, the velocity components belonging
to solid cells are directly set to zero and only considered
as boundary conditions. This greatly reduces the degrees of
freedom of the system to be solved and hence also the com-
putational cost. Pressures are fixed on the top and bottom
boundaries and free-slip boundary conditions are employed
on the side boundaries. As described above, no-slip boundary
conditions apply at the solid–fluid interface. To solve the lin-
ear system of equations, a V-cycle geometric multiplicative
multigrid solver is used (Fedorenko, 1964; Wesseling, 1995).
The multigrid solver operates on up to five multigrid levels
depending on the given input model. Convergence criteria
are given by a relative convergence tolerance of 10−8 and an
absolute convergence tolerance of 10−10 (see Appendix A1).
The absolute convergence tolerance “atol” is defined as the
absolute size of the residual norm and “rtol” the decrease of
the residual norm relative to the norm of the right-hand side.
Therefore, convergence at iteration k is reached for

||rk||2 < max(rtol · ||b|2, atol) , (9)
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Figure 1. Staggered grid and location of variables.

where rk = b−Cxk , with b the right-hand-side vector, x the
solution vector of the current time step k and C the matrix
representation of a linear operator (Balay et al., 2010).

Assigning solid and fluid phases to different cells defines
the location of the fluid–solid interface. In the case of a stag-
gered grid, the location of the interface therefore does not
correspond to the location of the interface-parallel velocity
component. To illustrate this issue, the discretization stencil
of a shear stress component τxy is shown in Fig. 2. When no
interfaces are present (Fig. 2a), the finite different discretiza-
tion results in the following expression (k index is omitted
for brevity):

τxy(i,j) = η
vx(i,j)− vx(i,j−1)

1y
+ η

vy(i,j)− vy(i−1,j)

1x
. (10)

When stencils contain rock cells (e.g., Fig. 2b), we can
straightforwardly enforce the no-flow conditions at their
boundaries:

vx(i,j−1) = 0,

vy(i−1,j) = 0, (11)

to obtain

τxy(i,j) = η
vx(i,j)

1y
+ η

vy(i,j)

1x
. (12)

This form, however, does not enforce interface-parallel ve-
locities to be zero at the interface locations, which results in
sub-optimal convergence. Alternatively, the exact constraints
can be enforced:

vx(i,j)+ vx(i,j−1)

2
= 0,

vy(i,j)+ vy(i−1,j)

2
= 0, (13)

which will give

τxy(i,j) = 2η
vx(i,j)

1y
+ 2η

vy(i,j)

1x
. (14)

The specific expression will depend on the exact subset of
cells occupied by rock. The discretization of the other com-
ponents is performed in a similar manner. The above modifi-
cation of the shear stress discretization stencil is called here
“stencil rescaling”. Similar approaches have already been
presented in the literature (Vasilyev et al., 2016; Mostaghimi
et al., 2013; Manwart et al., 2002). Both Manwart et al.
(2002) and Mostaghimi et al. (2013) presented tests to val-
idate their method. The test performed in Manwart et al.
(2002) (permeability of a cubic array of spheres) exhibits
non-monotonous convergence of the numerical solution.
Mostaghimi et al. (2013) validated their method by compar-
ing the numerical solution to the analytical solution of flow
between two parallel plates. They found that they were able
to compute the velocity “to within machine accuracy” if they
used more than two grid cells but did not provide any infor-
mation about convergence of the effective permeability.

4 Comparison with analytical solutions

To verify the method presented above, we performed a series
of benchmark tests where we compared numerical solutions
of simplified model setups to their respective analytical solu-
tions. For simplicity, we non-dimensionalized the governing
Eqs. (2) and (3) as well as the rheology given in Eq. (7) with
characteristic values for viscosity ηc, length lc, stress τc and
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Figure 2. Staggered-grid stencil rescaling. (a) Stencil without interfaces and (b) with solid interfaces. The sketch is based on a cross section
of Fig. 1 in the x–y plane.

velocity vc:

η = ηc · η̃ (15)
xi = lc · x̃i (16)
τ = τc · τ̃ (17)

vi = vc · ṽi =
lcτc

ηc
· ṽi, (18)

where the characteristic value for vc can be derived from the
other characteristic values. Non-dimensional values are de-
noted with a ∼. For the remainder of this section, we will
only use non-dimensional values and drop the ∼ for sim-
plicity. Benchmark tests are organized as follows: first, we
will present three benchmark tests for the flow of a Newto-
nian fluid through (i) a single tube, (ii) multiple tubes and
(iii) through a simple cubic sphere pack, which is followed
by a benchmark test of power-law fluid flow through a single
tube. The difference between numerically and analytically
computed permeabilities is then expressed using theL2 norm
of their relative misfit:

||δk||2 =

√(
kcomp− kana

kana

)2

, (19)

where kcomp is the computed and kana the analytically ob-
tained permeability.

4.1 Newtonian flow through a single vertical tube

For a single vertical tube, the analytical solutions for both
velocity v and flow rateQ are given as (e.g., Poiseuille, 1846;

Landau and Lifshitz, 1987)

v =
1P

4ηL

(
R2
− r2

)
(20)

Q=
π1P

8ηL
R4, (21)

where 1P
L

is the pressure drop in the z direction, R the radius
of the pipe and r the integration variable. The characteristic
scales in this case are given by ηc = η0, τc =1P and lc =
R, so that the pipe radius R, fluid viscosity η and pressure
difference 1P all take values of 1. The cubic model domain
has an edge length of four units. Combining Eq. (21) with
Eq. (4), the non-dimensional permeability is then given by

k =
Lπ1P8ηL R

4

1PA
=

π

128
. (22)

To assess the effect of different spatial resolutions, we con-
duct a resolution test where we increase resolution from 83

to 2563 nodes with a constant grid spacing in each direc-
tion. Four sets of resolution tests were conducted. In the first
two sets, permeability was computed using the standard fi-
nite difference approach without stencil rescaling. The two
sets then differ due to the exact location of the pipe. In set
1, the location of the pipe was chosen in such a way that the
pipe surface aligned with the numerical grid (standard, ON
NODE) so that computational nodes were directly located
on the fluid–solid interface in the x and y directions. In set 2
(standard, OFF NODE), the location of the pipe was shifted
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Figure 3. Hagen–Poiseuille benchmark results. Shown is the error
norm ||δk ||2 vs. spatial resolution. The different curves show cases
where the tube surface coincides with a nodal point (ON NODE)
or not (OFF NODE). Blue lines represent simulations using sten-
cil rescaling, whereas red lines denote simulations without stencil
rescaling. To highlight convergence, black lines with given slopes
were added.

so that the fluid–solid interface was located between the re-
spective computational nodes. The same procedure was ap-
plied to sets 3 and 4 where stencil rescaling was employed.
The reason to do that was to determine the effect of well-
aligned computational nodes, as this is often not the case in
more complex geometries.

As expected, the numerical results generally show higher
accuracy when stencil rescaling is employed and when node
locations and interfaces of the tube are aligned (see Fig. 3).
The order of convergence is linear for cases without rescaling
or when the tube interface does not coincide with grid nodes
but superlinear if both rescaling is employed and interface
and node location coincide.

4.2 Newtonian flow through multiple vertical tubes

In natural rocks, larger channels tend to dominate the over-
all permeability. To assess this effect, we compute the flow
through several straight tubes with different radii (Fig. 4). We
use four pipes with non-dimensional radii given as R1 = 2,
R2 = 1, R3 = 8, R4 = 4. The viscosity of the fluid is 1 and
edge length of the cubic domain is 8. The simulations are
performed in a similar manner to the single-tube benchmark
by increasing the number of grid points from 83 to 2563. For
each tube, the analytical solution (Eqs. 20, 21) is computed
and the cumulative analytical permeability value is compared
against computed values. The non-dimensional permeability

Figure 4. Multiple tube Hagen–Poiseuille benchmark. Lines and
symbols correspond to the same cases as in Fig. 3. To highlight
convergence, black lines with given slopes were added.

in this case reads as

k =
LQ

(
R4

1 +R
4
2 +R

4
3 +R

4
4
)

1PA
. (23)

The individual tubes contribute to the absolute perme-
ability as follows: P 1= 0.3662 %, P 2= 0.0229 %, P3=
93.7514 %, P 4= 5.8595 %.

Similar to what was observed for the single-tube setup, the
results show a lower relative error for calculations employ-
ing the stencil rescaling compared to those without. Further-
more, as shown for the setups with a single tube, the results
are more accurate in cases where the numerical grid aligns
with the tube surface. As expected, the overall permeabil-
ity is dominated by the largest tube, as we do not see any
significant changes within the relative error of the computed
permeability.

4.3 Newtonian flow through simple cubic (SC) sphere
packs

In order to verify the code for more complex geometries
such as the vertical tube, we here consider simple cubic (SC)
sphere packs. Sphere packs provide a geometry for different
packings, as the porous medium is homogeneous. The setup
has dimensions of 2 in all directions.

The permeability of an SC sphere pack is given by Sangani
and Acrivos (1982) and Bear (1988):

k =
φ3
· d2

sp

180 · (1−φ)2
, (24)

where dsp is the sphere diameter and φ is the porosity for
simple cubic packing of 1− π

6 ≈ 0.476, respectively.
Figure 5 shows the increase in accuracy with increasing

number of grid points employed. The presented relative er-
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Figure 5. Computed ||δk ||2 norm of the misfit between analytically
and numerically computed permeabilities. The inset shows the dis-
cretization using four spheres in each direction (64 spheres in total).
Streamlines are computed around those spheres and colorized with
the computed velocity. Blue dots show results using stencil rescal-
ing and red dots results with the standard method. To highlight con-
vergence, black lines with given slopes were added.

rors of the permeability value are computed in the same man-
ner as shown in Eq. (19). The simulations employing sten-
cil rescaling show a better convergence and seem to saturate
against a relative error of 10−1, demonstrating the influence
of boundary effects through applied no-slip boundary condi-
tions (finite size effect).

4.4 Power-law fluid flow through a single vertical tube

In order to verify the computed value, we compare this setup
against an analytical solution of Hagen–Poiseuille flow with
power-law fluid behavior. For the single-tube configuration
described in Sect. 4.1 and a power-law rheology, the veloc-
ity within the tube is given by, e.g., Turcotte and Schubert
(2002):

vz(r)=
C1

1
n
+ 1
·

(
1P

L

) 1
n

·

([
R

2

] 1
n
+1

− r
1
n
+1

)
, (25)

where C1 = 2η
−

1
n

0 (see Appendix B), R is the tube radius
and r the width of the tube in Cartesian coordinates. Figure 6
shows a good agreement between the numerical and analyti-
cal velocities for non-Newtonian fluids when using 0.5 and 2
as values for the power-law exponents, covering most fluids
used for enhanced oil recovery (e.g., Najafi et al., 2017; Xie
et al., 2018).

Figure 6. Comparison of analytical and numerical velocities for
Hagen–Poiseuille flow with a power-law fluid. Analytical velocities
are represented as colored lines and numerical velocities as colored
symbols.

5 Application to Fontainebleau sandstone

To verify the ability of the code to handle more complex
flows through natural samples and to validate previously
computed permeability values, we used the CT data for a
Fontainebleau sandstone sample provided by Andrä et al.
(2013b) with dimensions 2.16 mm× 2.16 mm× 2.25 mm
(resolved with 288× 288× 300 grid points). In order to op-
timize the computation and reduce computational resources,
a subsample with dimensions of 2563 is used for further
computations. The sample mainly consists of monodisperse
quartz sand grains and is therefore a very popular sample
for numerical and experimental permeability measurements.
Furthermore, sandstone is known to be an ideal reservoir
rock and is of certain interest for several geological fields,
especially in exploration geology. Laboratory measurements
of the given sample with porosity ≈ 15.2 % result in a per-
meability value of ≈ 1100 mD (Keehm, 2003).

5.1 Newtonian flow

As in previous tests, we compute the permeability of the ex-
tracted subsample using Eqs. (4) and (5). Figure 7a shows
streamlines colored using computed fluid velocities and
Fig. 7b the local pressure.

For a resolution of 2563, we obtain permeabilities which
are comparable to previously computed permeabilities of the
same sample (Fig. 8; Andrä et al., 2013b), with the rescaled
stencil method yielding significantly lower values at higher
resolutions. As previous tests show, permeabilities may be
overestimated at lower resolutions. To test this effect, we
increased the resolution of the Fontainebleau subsample by

www.solid-earth.net/10/1717/2019/ Solid Earth, 10, 1717–1731, 2019
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Figure 7. Newtonian fluid flow through the Fontainebleau sandstone sample. Streamlines colored using computed fluid velocities are shown
in panel (a) and streamlines colored using fluid pressures are shown in panel (b).

a factor of 2, 3 and 4 (5123, 7683, 10243). The resolution
increase is achieved by subdividing a voxel into 2, 3 or
4 voxels. We do not apply any interpolation or stochastic re-
constructions to conserve spacial statistics, as discussed by
Karsanina and Gerke (2018). Determining the effects of these
more sophisticated methods on computed permeabilities will
require further work in the future. Figure 8 shows a com-
parison between the computed and measured values for the
given Fontainebleau dataset. With increasing resolution of
the subsample, the computed permeability value converges
to the laboratory value. In comparison to the initial resolu-
tion of 2563, the computed permeability values decreased by
≈ 24.6 % when using a grid resolution of 10243. Addition-
ally, the benefit of stencil rescaling can also be seen here,
as, e.g., the simulation with a resolution of 5123 and stencil
rescaling predicts nearly the same permeability as the case
with doubled resolution and no stencil rescaling. Clearly, the
models converge to a value that is close to the measured
value. The numerical convergence is computed for several
subsamples (see Appendix C). Figure 8 shows the conver-
gence of a single subsample. Previous studies have also ob-
served this convergence with increasing resolution, albeit not
always from above (e.g., Zakirov and Galeev, 2019). Sim-
ilar behavior has also been observed in Lattice–Boltzmann
method (LBM) simulations (e.g., Khirevich et al., 2015;
Khirevich and Patzek, 2018).

5.2 Power-law fluid flow

To demonstrate the capability of the code to compute the flow
of non-Newtonian fluids through porous media, we com-
puted the average flow velocity vm for a square subsample
of the Fontainebleau sandstone sample described above us-
ing the power-law rheology given in Eq. (7). The edge length
of the subsample was 1.92 mm, which corresponds to a CT
resolution of 2563 voxels. To increase accuracy, we increased
this resolution by a factor of 2 to a resolution 5123. As seen
in Sect. 5.1, results at this resolution may overestimate the
actual permeability value. The chosen resolution thus rep-

Figure 8. Computed permeability values against grid resolu-
tion. Orange symbols denote simulations using Lattice–Boltzmann
method (LBM) and explicit jump Stokes (EJ Stokes); both methods
are used in Andrä et al. (2013b). Blue data points represent simula-
tions using stencil rescaling, while simulations represented by red
dots use the standard method. The brown dotted line symbolizes the
experimental estimate from Keehm (2003).

resents a compromise between accuracy and computational
cost. The reference viscosity was set to η0 = 1 Pa and η1 and
η2 were set to 10−3 and 106, respectively. Two sets of sim-
ulations using a power-law exponent of 0.5 and 1 were per-
formed. In each set, the applied pressure at the top boundary
is changed from 1 to 16 Pa. In Fig. 9, we plot the applied
pressure at the top boundary against the computed average
velocity. For both sets of simulations, the computed slopes of
(19982± 9)× 10−4 and (1000009± 3)× 10−6 are in good
agreement with the imposed power-law coefficients of 0.5
and 1 (Eq. 8).
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Figure 9. Computed results on the Fontainebleau sample using non-Newtonian rheology. Panel (a) shows the mean velocity against the
applied pressure at the top boundary. Red and blue triangles symbolize each simulation, and the corresponding dotted black line represents
the fitted curve through the obtained data with slope 1

n . Panel (b) illustrates computed streamlines of the Fontainebleau subsample using a
power-law coefficient of 0.5. Solid material is displayed in grey and the streamlines are colored according to computed velocities.

6 Discussion and conclusion

In this paper, we presented the capability of the open-source
finite difference solver LaMEM to compute the permeability
of given porous media. The code was verified using a set of
benchmark problems with given analytical solutions ranging
from Hagen–Poiseuille flow through vertical tubes to more
complex flow through simple cubic sphere packs. Using CT
data of a Fontainebleau sandstone, we then demonstrated that
the code is able to predict the permeability of natural porous
media. In both benchmarks and application tests, the bene-
fits of the stencil rescaling method can be observed, as this
method provides significantly more accurate results at no ad-
ditional computational cost.

Benchmarking results for single and multiple tubes
demonstrate that the permeability calculation improves con-
siderably in the case that the fluid–solid interface and the nu-
merical grid are at least partially aligned. Cases using the
stencil rescaling solutions with a velocity change on a com-
putational node produce smaller relative errors.

Similar to studies using the LBM (Knackstedt and Zhang,
1994; Zhang et al., 2000; Keehm, 2003), our resolution
test for the Fontainebleau subsample shows that the com-
puted permeability value also decreases with increasing
grid resolution. For instance, computing the permeability of
the Fontainebleau sandstone sample with grid resolution of
10243, calculations employing stencil rescaling give approx-
imately the same permeability value as suggested by labo-
ratory measurements, while simulations without employing
stencil rescaling overestimate the computed permeability by
≈ 14.72 %. (Fig. 8). However, this behavior may also be the
opposite depending on the numerical implementation of the
respective numerical method (e.g., Khirevich et al., 2015;
Khirevich and Patzek, 2018; Zakirov and Galeev, 2019).

The computation of permeabilities in a three-dimensional
pore space using micro-CT data strongly depends on the rea-

sonable quality of the micro-CT images followed by sev-
eral steps of segmentation in order to resolve tiny fluid path-
ways. Although high-quality input data are required in most
cases, it is usually computationally expensive to use the en-
tire micro-CT scan with full resolution; thus, representative
subvolumes or a reduced numerical resolution have to be
used, as computational resources are limited.

Additionally, the segmentation of the CT data has a con-
siderable effect on the computed permeability, as discussed
in Andrä et al. (2013a), since segmentation of the acquired
micro-CT data has a major effect on the three-dimensional
pore space and therefore on the obtained value. In two-
phase systems (fluid–solid), segmentation is straightforward,
whereas it may become more difficult in multiphase systems.
All of the above points are a source of uncertainty and need
to be considered when comparing numerical calculations to
laboratory measurements for rock samples. Furthermore, we
showed that LaMEM is able to compute non-Newtonian fluid
flow in porous media, which is not only relevant for geo-
sciences but also of importance for industrial applications
(Saidur et al., 2011).

Furthermore, it should be kept in mind that solver options
like convergence criteria may influence the obtained perme-
ability result. Figure A1 (see Appendix A) highlights the ef-
fect of different relative tolerances on the computed perme-
ability value. In order to avoid spurious results, we recom-
mend to test the influence of the relative and absolute toler-
ance on the model outcome.

The simulations were performed on the clusters of Uni-
versity of Bayreuth and University of Mainz using differ-
ent numbers of CPUs depending on the size of the com-
puted domain. As an example, a simulation with 5123 voxels
uses 1024 CPUs, 185 GB RAM and requires 5790 s compu-
tation time. Apart from LaMEM, finite difference codes like
FDMSS (Gerke et al., 2018) compute permeability of porous
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media more efficient, but these codes mostly are not able to
compute fluid flow using non-linear viscosity.

In conclusion, the capability of the open-source finite dif-
ference solver LaMEM to accurately simulate Newtonian
and non-Newtonian fluid flow in porous media is success-
fully demonstrated for different setups with an increasing
geometric complexity including pipe flow, ordered sphere
packs and a micro-CT dataset of Fontainebleau sandstone.

Code availability. The code used to produce this results is available
at https://bitbucket.org/bkaus/lamem/src/master/ (Popov and Kaus,
2016); commit no: 676374f.
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Appendix A: Convergence criteria

To determine whether a numerical solution converges, two
convergence criteria, which are absolute and relative conver-
gence tolerance, are used. To test the effect on the numeri-
cal solution, we varied both while computing permeability of
three different setups. Our results show that the obtained per-
meability value saturates for relative convergence tolerances
< 10−7. Thus, for all further simulations, a relative conver-
gence tolerance of 10−8 is used (Fig. A1). A change in the
absolute convergence tolerance did not have any effect on
the computed solution; therefore, we use an absolute conver-
gence tolerance of 10−10.

Figure A1. Results of simulations for (a) Hagen–Poiseuille single
tube, (b) simple cubic sphere pack and (c, d) Fontainebleau sand-
stone using different relative/absolute convergence tolerances.
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Appendix B: Definition of C1

C1 is an constant arising during the derivation of Eq. (25),
which is related to the non-linear rheology used in Turcotte
and Schubert (2002). This rheology is written as

ε̇ = C1τ
n′ , (B1)

where n′ is the stress exponent as used for power-law mate-
rials in geodynamics. Replacing τ with τ = 2ηε̇ leads to

ε̇ = C1(2ηε̇)n
′

. (B2)

Solving Eq. (B2) for η results in

η =
1
2
C
−

1
n′

1 ε̇
1
n′
−1
. (B3)

We can now define a reference viscosity η0 at a reference
strain rate ε̇0. This reference viscosity then reads as

η0 =
1
2
C
−

1
n′

1 ε̇0
1
n′
−1
. (B4)

Assuming ε̇0 = 1 and solving for C1 then provides us with
the following expression:

C1 = 2η−n
′

0 = 2η
−

1
n

0 . (B5)

Appendix C: Permeabilities of different Fontainebleau
subsamples

In order to show numerical convergence of the given
Fontainebleau sample, several subsamples were extracted
and the resolution increased to 5123, 7683 and 10243 grid
points. Figure C1 displays the convergence with increasing
grid resolution. The different subsamples show a variance of
around 12 % for the computed permeability value.

Figure C1. Numerical convergence of different Fontainebleau sub-
samples with increasing grid resolution. All subsamples displayed
were computed using stencil rescaling. For comparison, the com-
puted permeabilities from Andrä et al. (2013b) are shown. The dot-
ted brown line symbolizes the experimental estimate taken from
Keehm (2003).
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