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Abstract. We introduce a workflow integrating geological
modelling uncertainty information to constrain gravity in-
versions. We test and apply this approach to the Yerrida
Basin (Western Australia), where we focus on prospec-
tive greenstone belts beneath sedimentary cover. Geologi-
cal uncertainty information is extracted from the results of a
probabilistic geological modelling process using geological
field data and their inferred accuracy as inputs. The uncer-
tainty information is utilized to locally adjust the weights of
a minimum-structure gradient-based regularization function
constraining geophysical inversion. Our results demonstrate
that this technique allows geophysical inversion to update the
model preferentially in geologically less certain areas. It also
indicates that inverted models are consistent with both the
probabilistic geological model and geophysical data of the
area, reducing interpretation uncertainty. The interpretation
of inverted models reveals that the recovered greenstone belts
may be shallower and thinner than previously thought.

1 Introduction

The integrated interpretation of multiple data types and dis-
ciplines in geophysical exploration is a powerful approach
to mitigating the limitations inherent to each of the datasets.
For instance, gravity data, which have poor horizontal resolu-
tion, can be integrated with seismic inversion to mitigate the
poor lateral resolution of seismic inversion (Lelièvre et al.,

2012). Likewise, geological modelling and geophysical in-
versions are routinely performed in the same area to obtain a
subsurface model consistent with geological and geophysical
measurements (Guillen et al., 2008; Lelièvre and Farquhar-
son, 2016; Pears et al., 2017; Williams, 2008). When suffi-
cient prior information is available, petrophysical constraints
can be used in inversion (Lelièvre et al., 2012; Paasche and
Tronicke, 2007) and integrated with geological modelling to
derive local constraints (Giraud et al., 2017). However, in ex-
ploration scenarios, this can be impractical as the available
petrophysical information may be insufficient to allow us to
derive such constraints (Dentith and Mudge, 2014). In such
cases, when more than one geophysical dataset is available,
practitioners have relied on joint inversion using structural
constraints (e.g. Gallardo and Meju, 2003; Haber and Olden-
burg, 1997; Zhdanov et al., 2012). Alternatively, when one
of the datasets has a spatial resolution that is superior to the
others, structural information can be transferred into the gra-
dient regularization constraint for the inversion of the lesser
resolving method(s), thus mitigating some of the challenges
faced by joint inversion in such cases, in what has been
called “guided inversion” (Brown et al., 2012). This strat-
egy has been applied in recent years using the interpretation
of predominantly propagative data (e.g. seismics, ground-
penetrating radar) to constrain the inversion of diffusive data
(e.g. diffusive electromagnetic methods), as reported by Yan
et al. (2017) and references reported therein. However, this
avenue remains relatively underexplored to date.
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In this article, we broaden the applications of guided in-
version and explore the integration of non-geophysical in-
formation in inversion, such as geological uncertainty, into
what we call uncertainty-guided inversion, where we focus
on the complementarity of information content between the
datasets. We introduce a new technique that integrates local
uncertainty information derived from probabilistic geologi-
cal modelling in the inversion of potential field data, follow-
ing recommendations of Jessell et al. (2010, 2014, 2018),
Lindsay et al. (2013a, 2014) and Wellmann et al. (2014,
2017). In contrast to Giraud et al. (2016, 2017), who derive
local petrophysical constraints from petrophysical measure-
ments and geological modelling results, constraints used in
uncertainty-guided inversion are based solely on the local
conditioning of a gradient regularization function, thereby
offering the possibility to integrate probabilistic geological
modelling into geophysical inversion in the absence of suffi-
cient petrophysical information. Such conditioning relies on
the calculation of local weights derived from prior geological
information. In this study, we utilize a probabilistic geolog-
ical model (PGM) (Pakyuz-Charrier et al., 2018b) consist-
ing of the observation probability of the different lithologies
of the area in every model cell. More specifically, we uti-
lize the information entropy (Shannon, 1948; Wellmann and
Regenauer-Lieb, 2012), which measures geological uncer-
tainty in probabilistic models. We calculate it in each model
cell of the PGM to derive spatially varying weights applied
to the gradient regularization function used during inversion.

The integration methodology we develop is similar in phi-
losophy to the work of Brown et al. (2012), Guo et al. (2017)
and Wiik et al. (2015), who extract continuous structural in-
formation from seismic data to adjust the strength of the reg-
ularization term locally in order to promote specific struc-
tural features during electromagnetic inversion. However,
our work differs from these authors in four main respects.
Firstly, the geophysical problem we tackle is different in na-
ture as we constrain potential field data in a hard-rock sce-
nario instead of electromagnetic data in soft-rock studies.
Secondly, we use a metric encapsulating geological uncer-
tainty derived from geological measurements, whereas, in
contrast, previous studies used other geophysical attributes.
Thirdly, we allow inversion to update the model preferably
in the most uncertain parts of the geological model, instead
of encouraging a certain degree of structural similarity be-
tween two geophysical inverse models. Finally, while some
of the previous work involves mostly 2-D models, every step
of our modelling is performed purely in 3-D.

In this paper, we introduce the methodology and field ap-
plication as follows. In the methodology section, we first in-
troduce the inversion and integration scheme, and provide es-
sential background information about probabilistic geolog-
ical modelling. We then provide the essential background
about information entropy before detailing its usage in in-
version. In the ensuing section, we investigate the applicabil-
ity of the proposed technique using a realistic synthetic case

study. Following this, we present a field application case fo-
cused on the Yerrida Basin (Western Australia), starting with
the introduction of the geological context and modelling pro-
cedure. We then analyse the influence of local regularization
conditioning on inverted models and demonstrate how it im-
proves the clarity and improves the reliability of the interpre-
tation of the buried greenstone belts.

2 Modelling procedure

2.1 Inversion methodology

The inversion procedure we propose integrates spatially
varying prior information to weight the regularization func-
tion locally (e.g. in each cell). It is implemented in an
expanded version of the least-square inversion platform
TOMOFAST-X (Martin et al., 2013, 2018), which offers the
possibility to condition the regularization function (Tikhonov
and Arsenin, 1977) of Li and Oldenburg (1996) locally us-
ing geological uncertainty. This is achieved by incorporat-
ing prior information into a structure-based regularization
function in a fashion similar to Brown et al. (2012), Wiik
et al. (2015) and Yan et al. (2017) by locally adjusting the
related weight.

Solving the inverse problem regularized in this fashion
consists of finding a model m that minimizes the objective
function θ given below:

θ(d,m)= ‖Wd(d − g(m))‖
2
2︸ ︷︷ ︸

Data term

+αm
∥∥Wm

(
m−mp

)∥∥2
2︸ ︷︷ ︸

Model term

+ αH‖WH∇m‖
2
2︸ ︷︷ ︸

Structural regularization term

, (1)

where d relates to the geophysical measurements to be in-
verted, g is the forward modelling operator, m relates to the
model being searched for, and mp is the prior model; Wd,
Wm and WH are diagonal weighting matrices corresponding
to data noise, model weighting and gradient regularization,
respectively. The model term is a ridge regression constraint
term (Hoerl and Kennard, 1970).

The structural regularization term in Eq. (1) enforces
structural constraints during inversion. It is weighted locally
by matrix WH, which can be derived from prior informa-
tion (see Sect. 2.3 for details). The positive free parame-
ters αm and αH control the overall weight of model and struc-
tural regularization terms; ∇ is the spatial gradient operator.
Note that |∇m|2 estimates the amount of structure in inverted
physical property modelm. Also note that parts of the model
where WH = 0 are excluded from the calculation of the struc-
tural regularization and can change freely to accommodate
geophysical data.

We utilize the integrated sensitivity technique of Portni-
aguine and Zhdanov (2002) to balance the decreasing sen-
sitivity of gravity data with depth. We chose this technique
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because it offers the advantage of providing “equal sensitiv-
ity of the observed data to the cells located at different depths
and at different horizontal positions” (Vatankhah and Renaut,
2017).

2.2 Probabilistic geological modelling

Probabilistic geological modelling is performed using the
Monte Carlo uncertainty estimator (MCUE) method of
(Pakyuz-Charrier et al., 2018a, b), which extends previous
works from Jessell et al. (2010), Lindsay et al. (2012) and
Wellmann et al. (2010). It is a 3-D uncertainty propagation
method for implicit geological modelling that uses geologi-
cal rules and geological orientation measurements (foliation
and interface of the geological units sampled at surface level
or in boreholes) as inputs. The sampling algorithm perturbs
orientation data used to derive a reference model by sam-
pling probability distributions describing the uncertainty of
orientation data to produce a series of unique altered geo-
logical models. Realizations that do not respect a series of
geological rules are considered implausible and are rejected.
Coupled to the 3-D geological modelling engine of Geomod-
eller© (Calcagno et al., 2008), it produces a set of plausi-
ble geological models honouring the geological input mea-
surements that represent the geological model space (Lind-
say et al., 2013b). The observation probabilities constitut-
ing the probabilistic geological model (PGM) are obtained,
in each model cell, by calculating the relative observation
frequencies of the different lithologies from the set of geo-
logical models. For the ith model cell of a PGM containing
L lithologies, vectorψ i = [ψ ik=1, . . . ,ψ ik=L] contains the ob-
servation probabilities of each lithology. As we show in the
next subsection, the resulting PGM can be used to estimate
uncertainty levels and as a source of prior information.

2.3 Utilization of information entropy for local
conditioning

Information entropy was introduced for geological modelling
by Wellmann and Regenauer-Lieb (2012) and is gaining pop-
ularity as a measure of uncertainty in probabilistic geological
modelling (de la Varga et al., 2018; de la Varga and Well-
mann, 2016; Lindsay et al., 2013, 2014; Pakyuz-Charrier
et al., 2018b; Schweizer et al., 2017; Thiele et al., 2016;
Wellmann et al., 2017; Yamamoto et al., 2014). Quoting
Schweizer et al. (2017), information entropy “quantifies the
amount of missing information and hence, the uncertainty at
a discrete location”. For the ith model-cell, it is given as fol-
lows (Shannon, 1948):

H i
=H

(
ψ i
)
=−

L∑
k=1

ψ ik log
(
ψ ik

)
. (2)

Fundamentally, geological uncertainty contained in H en-
capsulates information about possible locations of interfaces

between units and areas where the geological data are insuf-
ficiently informative. Instead of using H directly, we calcu-
late WH by utilizing its normalized complementary, which
reflects the degree of certainty across the model. Let us ex-
press WH as follows, for the ith model cell:

Wi
H =

maxH −H i

maxH −minH
. (3)

The consequence of Eqs. (2) and (3) is that WH is minimum
at interfaces and in areas poorly constrained by geological
information, and equal to unity in areas where the geology
is well resolved. Consequently, the conditioning process at-
taches small weights to the structural term of Eq. (1) in un-
certain cells, while consistently high values will be applied
to the most geologically certain cells. As a result, it enables
the inversion algorithm to favour nearly constant changes in
the inverted model in certain contiguous groups of cells (e.g.
where WH→ 1) while relaxing the regularization constraints
in the most uncertain parts (e.g. where WH→ 0).

3 Proof of concept: synthetic case study

This section introduces the proof of concept of the proposed
method through an idealized case study illustrating the po-
tential of the proposed inverse modelling scheme to ame-
liorate inversion results and to reduce interpretation uncer-
tainty. We use the same 3-D density contrast model as Giraud
et al. (2017), which is obtained by populating the structural
framework of Pakyuz-Charrier et al. (2018b). We simulate a
series of PGMs sought to represent expected values as well
as possible extreme scenarios. The short presentation of the
model below and the analysis of results provides essential in-
formation about the synthetic survey and shows the proof of
concept of the methodology used in the paper.

3.1 Survey set-up

The 3-D unperturbed reference geological model was gen-
erated from contact (interface points) and surface orienta-
tion (foliations) field measurements collected in the Mans-
field area (Victoria, Australia). It presents a Carbonifer-
ous mudstone–sandstone basin oriented 170◦ north, abut-
ting a faulted contact with a folded ultramafic basement to
the south-west. Model complexity was artificially increased
through the addition of a north–south fault and of a mafic
intrusion.

The true density contrast model (Fig. 1a) was obtained by
assigning density contrasts consistently with the structural
setting of the reference geological model, assuming a flat to-
pography. Density contrasts of 0 and 100 kg m−3 were as-
signed to the upper and lower basin lithotypes, respectively.
Mafic rocks were assigned a density contrast of 200 kg m−3

while the density contrast of the ultramafic basement was set
to 300 kg m−3.
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Figure 1. True density contrast model and WH values used for local regularization conditioning. (a) Unperturbed reference model populated
with density contrast values, (b) uncertainty values used for local regularization conditioning.

MCUE perturbations of the reference geological model
were first performed using standard measurement uncer-
tainty values recommended by metrological studies, as re-
ported by Allmendinger et al. (2017) and Novakova and
Pavlis (2017). We generated a series of 300 models that were
subsequently combined into a PGM. The resulting volume
representing the WH values calculated from this PGM in
each cell of the model as per Eq. (3) is shown in Fig. 1b.

3.2 Locally constrained inversion: validation

To assess the impact of local conditioning of the regulariza-
tion function onto inversion, we compare inversions using a
non-conditioned (Fig. 2a) and a locally conditioned (Fig. 2b)
regularization function, respectively. Please note that when
simulating the absence of prior petrophysical information, a
homogenous prior model set to 0 kg m−3 was used in both
cases.

Besides qualitative visual comparison of the models, we
interpret inversion results (Fig. 2) through the commonly
used model and data root-mean-square errors (RMSEs),
which correspond to the model and data terms calculated
with weights and covariances set to unity. We evaluate the ge-
ometrical similarity between inverted and true model through

the Bravais–Pearson correlation (also often called “linear
correlation coefficient”) between their gradients (Table 1).

Comparison of the true model (Fig. 1a) with inversion re-
sults in Fig. 2a and b shows that, while the structures in
the shallowest part of the model are well retrieved in both
cases, it appears that they are considerably better recovered
through usage of conditioned regularization overall (Fig. 2b).
The guiding effect of WH is visible in Fig. 2b where the
main structures at depth follow the general features of the
conditioning volume (Fig. 1b). Moreover, in order to min-
imize the conditioned regularization constraint simultane-
ously to data misfit, inversion was driven to accommodate
inverted model values (Fig. 2b) such that they are closer
to the causative model (Fig. 1a) than without conditioning
(Fig. 2a). This leads to reduced model RMSE on the one
hand, and increased data RMSE on the other (Table 1). This
reduction in data RMSE can also be explained by the relax-
ation of the constraints in several portions of the model, thus
increasing the degree of liberty to accommodate the model
towards lower data misfit. More importantly, the Bravais–
Pearson correlation between the inverted and true model gra-
dients is much higher when information from information
entropy is used. This indicates that local conditioning of the
regularization function also allows for significantly better re-
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Table 1. Indicators for comparison of inversion results in terms of model, data and structure.

Model Data Correlation
RMSE RMSE between

(kg m−3) (m s−2) gradients

Non-conditioned regularization 74.66 2.38× 10−9 0.18
Locally conditioned regularization 53.05 7.44× 10−10 0.53

Figure 2. Comparison of inversion results. (a) Inverted models with non-conditioned regularization weights, and (b) using local conditioning.

trieval of the causative bodies’ (e.g. the true model) structural
features.

Please also note that we do not show the recovered geo-
physical measurements because visual differences between
recovered and inverted measurements are minimal.

From these observations, we conclude that the application
of the local conditioning scheme can fulfil the objectives of
data integration in inversion as it allows inversion to recover
models that are closer to the causative bodies and easier to
interpret, while honouring geophysical data. Nevertheless, it
remains important to test the methodology in cases where
the uncertainty indicator WH is biased and/or shows high-
geological-uncertainty levels away from faults and contacts.
As a thorough analysis lies beyond the scope of this paper,
the remainder of this section presents an elementary sensitiv-
ity analysis using a series of two WH volumes representing
distinct extreme scenarios.

3.3 Inversion constrained by biased geological
uncertainty model

In this subsection, we investigate the effect of inaccurate geo-
logical models and the propagation of the related uncertainty
in inversion. For this purpose, we calculate a second PGM
from MCUE perturbations in which we split the ultramafic
basement into two independent units, without changing the
density contrast values (Fig. 3a). This results in the existence
of a fictitious geological unit that is invisible to gravity data
and presents no density contrast but which increases geologi-
cal complexity and uncertainty (Fig. 3b) (we further refer to it
as a “ghost” geological unit). Notably, it increases geological
uncertainty and smears interfaces that are well-constrained as
per Fig. 1. It also decreases WH in large parts of the model
where WH→ 1 previously, thereby favouring model changes
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Figure 3. (a) True density contrast model with outline of the “ghost” unit B (black dashed line), embedded in ultramafic unit A, and (b) local
weights calculated from the PGM calculated using MCUE for model (a).

in these areas during inversion and encouraging it to place
larger density contrast or interfaces in these areas.

Comparison of the inverted models obtained without
(Fig. 4a) and with the ghost unit (Fig. 4b) reveals that they ex-
hibit broadly similar features except in the most geologically
complex parts of the model as per Fig. 1b, where differences
are minor. This indicates that while geophysical inversion up-
dates the prior density contrast model preferably in geologi-
cally uncertain regions, low values of WH do not necessarily
lead to the modelling of an interpretable interface by inver-
sion. From the comparison of Figs. 3b and 4b, we can deduce
that local conditioning as applied in this work does not neces-
sarily enforce strict structural similarity between the inverted
model and the conditioning geological uncertainty volume.

3.4 Inversion constrained using exaggerated geological
uncertainty

To complete this series of tests, we generated a third PGM
showing exaggerated geological uncertainty. To this end, we
used a half-aperture 95 % confidence interval of ∼ 50◦ for
orientation data measurements in our MCUE simulations.
This is far higher than for the rest of the MCUE simulations
used in this paper. All other simulations (Sect. 3.2 and 3.3)
use a value of ∼ 11◦, which is representative of realistic
measurement uncertainty as proposed by recent metrologi-
cal studies (Allmendinger et al., 2017; Cawood et al., 2017;

Novakova and Pavlis, 2017). Figure 5 shows the resulting
WH volume (Fig. 5a) and the inverted model obtained by us-
ing it for local conditioning of the regularization constraint
(Fig. 5b).

The features visible in Fig. 5a reflect the high geological
input measurement uncertainty. Geologically uncertain areas
cover large portions of the volume and only the simplest geo-
logical structures (e.g. the basin) seem to be well constrained
by geology. Areas of the model previously well constrained
(Fig. 1b) present varying degrees of uncertainty. This illus-
trates that, as can be expected, increasing geological input
uncertainty translates in relaxing the guiding effect of local
conditioning using WH, which results in geophysical inver-
sion being less strongly guided by geological information.
As can be seen in Fig. 4b, the inverted model obtained in this
case shows structures that present weaker contrast around in-
terfaces than when geological uncertainty is lower (Fig. 2b).
Importantly, however, most structures are well preserved and
the overall model values for the different lithologies remain
closer to the true model than for the non-conditioned case
(Fig. 2a). This indicates that even in high geological uncer-
tainty scenarios, interpretation outcome may be largely more
reliable when local regularization is used.

The analysis and comparison of the results shown in this
section demonstrates the potential of the proposed inverse
modelling scheme to ameliorate inversion results and to re-
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Figure 4. Comparison of inverted model using WH derived from a PGM considering the ghost unit (b) and without it (a); (a) is the inverse
model obtained without bias in the PGM as per Fig. 2 and is shown here for comparison with (b).

duce interpretation uncertainty. It also illustrates the capabil-
ity of our methodology to deal with high or biased condition-
ing uncertainty estimates. In this synthetic case, local condi-
tioning allows geophysical inversion to significantly improve
the imaging of geologically uncertain areas and to exploit
complementarities between geological modelling and geo-
physical inversion. From the success of this proof-of-concept
study, we are confident that our integration method can be
tested here using real world data for field validation.

4 Field validation: Yerrida Basin case study

4.1 Geological context and geophysical survey set-up

The Yerrida Basin is located in the southern part of the
Capricorn Orogen, at the northern margin of the Yilgarn
Craton in Western Australia (Fig. 6a), and extends approx-
imately 150 km N–S and 180 km E–W (Fig. 6b). The stud-
ied area is bounded in the north-west by the Goodin Fault,
which represents a faulted contact between the Yerrida Basin
and the Bryah–Padbury Basin. The structures of interest in
this work are the Archean greenstone belts extending north-
northwest that are unconformably overlain by Paleoprotero-
zoic sedimentary rocks the form the Yerrida Basin. Fea-
tures A and B (Fig. 6a and b) indicate the interpreted po-

sition of buried Wiluna Greenstone Belt. Where the Wiluna
Greenstone Belt is exposed, it is host to base and precious
metal mineralization (Williams, 2009). With a relatively high
positive density contrast (expected to be between 190 and
270 kg m−3) to the Yilgarn Craton granite–gneiss host, mafic
greenstone belts A–C are suitable targets for gravity in-
version. Interpretations from multiple studies in the region,
e.g. Johnson et al. (2013), Pirajno et al. (1998), Pirajno
and Adamides (2000), and Pirajno and Occhipinti (2000)
were compiled, while additional geological measurements
acquired in 2015–2017 complemented legacy data (Occhip-
inti et al., 2017; Olierook et al., 2018). This allowed the re-
vision of existing models and improved our understanding
of the area. This, in turn, also highlights the challenges pre-
sented by the characterization of greenstone belts A–C, and
that further geophysical analysis through constrained inver-
sion is a useful pathway for reducing exploration risk.

Geophysical data consist of ground surveys obtained from
Geoscience Australia (http://www.ga.gov.au/data-pubs, last
access: November 2018). Post-processing includes spherical-
cap and terrain corrections and the removal of the re-
gional trend to obtain the complete Bouguer anomaly. As
most data points were acquired 1 to 4 km apart, the dataset
was resampled to match the geological model discretiza-
tion, making up a total of 4882 measurement points. The
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Figure 5. (a) Local weights WH calculated from a PGM, corresponding to exaggerated uncertainty in geological input measurements and
(b) corresponding inverted density contrast model.

model is discretized into 100× 100× 42 cells of dimen-
sions 2.335 km× 1.875 km× 1.0475 km, down to a depth of
44 km, making up a total of 420 000 cells.

4.2 Geological modelling

Geological information consists of in situ structural measure-
ments (interfaces and foliations) and interpretation of aero-
magnetic, airborne electromagnetic, Landsat 8 and ASTER
hyperspectral data. Legacy data from the Geological Sur-
vey of Western Australia (Pirajno and Adamides, 2000) and
CSIRO (Ley-Cooper et al., 2017) were used, to which about
600 surface geological and petrophysical measurements from
recent geological field campaigns were added. Although
the available petrophysical measurements were not used to
derive petrophysical constraints because of the insufficient
sampling of several of the modelled lithologies, they were a
useful source of information to populate geological models
and for interpretation. Remote-sensing data were used to test
interpretations.

These datasets were used jointly to build a reference ge-
ological model reconciling the available geological informa-
tion in Geomodeller.

Lithologies with similar density contrasts were merged
and subsequently treated as a single rock type in MCUE

simulations. Uncertainty related to structural measurements
was subsequently used as inputs to the MCUE perturbations
(Pakyuz-Charrier et al., 2018b) of the reference model to
generate a collection of 500 accepted models. Information
extracted from the PGM is displayed in Fig. 7. Figure 7a
shows the lithologies with the highest probability for each
cell of the PGM. The associated WH values used in inver-
sion are shown in Fig. 7b. The prior model for inversion mp
is equal to the mean model of the 500 plausible models gen-
erated by MCUE. It is shown in Fig. 7c.

4.3 Inversion results and analysis

The aim of our analysis is to assess the influence of the local
conditioning of structural constraints on inversion through
comparison with the non-conditioned case, all other things
remaining constant.

4.3.1 Comparative analysis strategy

Prior to examination of the inverted models, we analyse geo-
physical data misfit after inversion. This enables us to ensure
that the inversion results we compare produce, in our case,
similar gravity anomalies. Our study of inverted models fo-
cuses on results obtained through usage of non-conditioned
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Figure 6. Geological context and geophysical data. (a) Geological map of the area and (b) complete Bouguer anomaly. The dashed lines
delineate the possible sub-basin extent of the mafic greenstone belts A–C.

(Fig. 8a) and conditioned regularization functions (Fig. 8b)
using WH (Fig. 7b). In addition to departures from the prior
model, variations between the two cases are studied by visual
comparison of Figs. 8a and 7b, through qualitative (Fig. 7c)
and quantitative comparative analysis (Fig. 7d and e). Our in-
terpretation of inversion results is complemented by metrics
quantifying the differences between models. We give partic-
ular attention to model cells where the probability of mafic
greenstone is larger than zero. For these cells, we classify
lithologies by identifying cells with a density contrast corre-
sponding to mafic greenstone.

4.3.2 Results

Data root-mean-square (RMS) error decreases during in-
version from 12.46 mGal to reach 1.59 and 1.53 mGal for
the non-conditioned and conditioned cases, respectively. The
corresponding data misfit maps show a linear correlation co-
efficient of 0.999 (see details in Appendix A). This similar-
ity illustrates that, as in many other studies, most changes
related to holistic data integration in geophysical inversion
occur primarily in model space, hence reducing the effect of
non-uniqueness (Abtahi et al., 2016; Abubakar et al., 2012;
Brown et al., 2012; Demirel and Candansayar, 2017; Gal-
lardo et al., 2012; Gallardo and Meju, 2004, 2007, 2011; Gao
et al., 2012; Giraud et al., 2017; Guo et al., 2017; Heincke et
al., 2017; Jardani et al., 2013; Juhojuntti and Kamm, 2015;
Kalscheuer et al., 2015; Molodtsov et al., 2013; Moorkamp
et al., 2013; Rittgers et al., 2016; Sun and Li, 2016, 2017).

Qualitatively, comparison of Fig. 8a and b reveals that de-
partures from the prior model (Fig. 7c) are more significant
in the most geologically uncertain areas. Quantitatively, the
RMS model update for cells characterized by 0≤WH < 0.05
(most uncertain group) is equal to 40.1 and 51.5 kg m−3,
for the non-conditioned and conditioned cases, respec-
tively, whereas the same quantities are equal to 17.7 and
16.9 kg m−3 for the cells identified by 0.95<WH ≤ 1 (most
certain group). This suggests that local regularization condi-
tioning allows inversion to update the model preferentially
in geologically uncertain areas. In turn, differences with the
prior model in more geologically certain areas are reduced
compared to the non-conditioned case. This effect of con-
ditioning is corroborated by Fig. 8c, in which the longest
distances to the dashed line, which represents equal model
update for the two studied cases, occur in geologically un-
certain areas. This also translates into a higher difference be-
tween model updates of the two cases in Fig. 7d for lower
values of WH. In addition, we observe that local condition-
ing produces stronger density contrasts in Fig. 8b in some
of the areas where the conditioning values are higher in
Fig. 8b. Furthermore, structures in the inverted model are
easier to identify when local conditioning is used. It is con-
firmed by global roughness measures |∇m|2 equal to 3.4 and
4 ( (kg m−3 m−1) for the non-conditioned and conditioned
cases, respectively. More specifically, as shown by Fig. 7e,
this difference arises in parts of the model associated with
lower WH, which characterize uncertain areas, including in-
terfaces between lithologies.
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Figure 7. Geological modelling results. (a) Most probable (i.e. preferred) lithology in each model cell (same colour code as in Fig. 6),
(b) values used for local regularization conditioning, and (c) prior model derived from PGM and prior petrophysical information. In (a),
“background” refers to all the lithologies that have a density contrast equal to 0 kg m−3.
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Figure 8. Comparison of inversion results. (a) Inverted models with non-conditioned regularization weights, and (b) using local conditioning,
(c) cross-plot between the corresponding absolute value of the update of the prior model, (d) difference in model updates δ|1m| = |mcond−
mnocond|2 as a function of values of WH and (e) difference in model roughness δ|∇m| = |∇mcond|2− |∇mnocond|2 as a function of values
of WH. The model cells labelled A–C are interpreted as mafic greenstone belts. All voxels are coloured as a function of density contrast.
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The recovered greenstone belts are shown in Fig. 8a and b.
In Fig. 8b, the extension of recovered mafic greenstone belts
is significantly different than when geological uncertainty
is not accounted for (Fig. 8a). In particular, belt A is sig-
nificantly larger in Fig. 8b than in Fig. 8a (2.4× 102 km3

vs. 4.6×102 km3). Similarly, the extent of belt C is increased
overall (volume of 5.3×102 km3 vs. 14×102 km3), while its
different portions reconnect; the northern half is also signif-
icantly shallower and broader than in Figs. 7a and 8a. It ap-
pears that belt A remains thinner and shallower (Fig. 8b) than
suggested by the preferred lithology volume (Fig. 7a). While
similar geometries for belt B are recovered in Fig. 8a and b,
they both differ from Fig. 7a as only the eastern part is pre-
served. Note that it is larger in Fig. 8b, with a volume 40 %
higher than in Fig. 8a. As discussed in the next subsection,
these differences have a signification impact on the interpre-
tation of inversion results and are important to understand the
influence of local conditioning on inversion.

4.4 Interpretation

Note that, in contrast to the differences between inversion re-
sults highlighted above for belts A and C, there are only small
differences between the inverted models in the north-eastern
part of the model and the different interpretations of belt B
(Fig. 7a and b). This shows that locally conditioned regular-
ization does not enforce changes in the inverted model in all
places where geological uncertainty is high, as uncertainty is
only a reflection of potential errors. Rather, this indicates that
in such cases, the guiding effect of such regularization will
be exerted on the condition that it does not prevent the data
term in θ(d ,m) as per Eq. (1) from decreasing. This also con-
firms that geophysical data are the main driver of the model
updates in geologically uncertain areas. Instead of smooth
departures from the prior model to match geophysical data
regardless of geological considerations, local regularization
constraints allow inversion to account for the probabilistic
geological modelling of the area and for geological uncer-
tainty. It can therefore provide results that conform better to
known geology.

In consequence, by confronting a probabilistic geological
model encapsulating all MCUE realizations with geophysi-
cal measurements in an inversion scheme favouring model
updates in the most geologically uncertain areas, inversion
complements probabilistic geological modelling in that it
guides and refines the interpretation of other geoscientific
data in the area.

Geophysical inversion using geological uncertainty in-
formation (Fig. 7b) confirms the presence of high-density
anomalies that we interpret to be the mafic components of the
greenstone as suggested by MCUE in several portions of the
model. It also adjusts the outline and geometry of belts A–C
to obtain a model honouring geological uncertainty informa-
tion. In particular, mafic greenstone belts A and B may be
smaller than the extent suggested by the PGM, and mafic

greenstone C shallower than anticipated. The interpretation
of inversion results also reveals that greenstone B might ex-
tend further to the east than indicated by the preferred lithol-
ogy volume (Fig. 7a) and that greenstone C may be thinner
in its central part.

5 Concluding remarks

We have introduced a new integration scheme for the in-
version of gravity data that utilizes a measure of geologi-
cal uncertainty to calculate locally conditioned gradient reg-
ularization constraints. This approach enables the integration
of probabilistic geological modeling in geophysical inver-
sion in the absence of petrophysical information sufficient to
the calculation of petrophysical constraints. It uses geophys-
ical measurements to optimize the inverse problem by updat-
ing the physical property model preferably in geologically
uncertain parts of the studied area during what we called
uncertainty-guided inversion. This therefore partly mitigates
the non-uniqueness of the inversion through the addition of
constraints encouraging inversion to produce models that ac-
count for geological uncertainty across the entire inverted
volume. We have demonstrated that it can be used collab-
oratively with geological modelling efficiently through field
application in the Yerrida Basin. Inversion results show that
our integration methodology has the capability to refine the
recovered physical property model and interpretations in por-
tions of the model where geological uncertainty is high. An-
other advantage of the proposed technique is that it is time-
and cost-effective as our workflow utilizes the PGM result-
ing from standalone probabilistic geological modelling and
requires the same parameterization as non-conditioned inver-
sion.

In the Yerrida Basin study area, application of the pro-
posed methodology provided the effective delineation of
the greenstone belts by quantitatively integrating geological
measurements and geophysical data. Our findings suggest
that some of the greenstone belts covered by the basin might
be shallower than previously anticipated and occupy smaller
volumes. This is particularly pronounced in the north-east
(belt C), where the resulting model is in agreement with the
shallowest cases allowed by the PGM. Likewise, in the south
(belt A), only the shallowest part of the mafic greenstone
body can be resolved, while the south-eastern (belt B) green-
stone belt appears to be limited in extension to the eastern
part of the volume where it is the preferred lithology in the
PGM. In such cases, this can also indicate that these green-
stone bodies might be too thin to be imaged by gravity data.
These results have implications for our knowledge of the
southern Capricorn Orogen as they indicate reduced (com-
pared to the preferred lithology volume) mafic greenstone
volumes under the Yerrida Basin on the one hand, and de-
creased cover thickness on the other hand, thereby opening
the door to updates in the geological interpretation of geom-
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etry of the Yerrida Basin and potential new undercover ex-
ploration prospects.

The quantitative integration technique we presented re-
duces uncertainty and ambiguity compared to qualitative in-
terpretation techniques or single-discipline workflows. How-
ever, despite its robustness to misplaced interfaces (e.g. bias)
or to high geological uncertainty (e.g. sparse or very uncer-
tain geological input measurements) as shown in the syn-
thetic case, interpreters need to bear in mind the specificities
of the geophysical data inverted for (resolution of specific
geometries, depth of investigation) and the shortcomings of
geological modelling workflows. As for all geological mod-
elling, MCUE is oblivious to geological units or faults that
are not sampled by field geological measurements, which can
lead to biases in final models due to, for instance, inclusions
not be accounted for.

Current research comprises the development of sensitivity
and resolution analyses in an effort to mitigate the risk of the
model being affected by uncertainty sources not accounted
for. Future research will include the utilization of local petro-
physical constraints of Giraud et al. (2017) in the uncertainty-
guided inversion scheme we presented, as well as the utiliza-
tion of geological uncertainty to weight the cross-gradient
term of Gallardo and Meju (2003) locally. With this last
respect, uncertainty-guided inversion can be assisted in the
most uncertain parts of the model by guided inversion (in the
sense of Brown et al., 2012) or through cross-gradient joint
inversion.

Code and data availability. True property models, inver-
sion results and recovered models relating to the Yer-
rida Basin shown in this article are made available online
at https://doi.org/10.5281/zenodo.1238216 (Giraud et al.,
2018a). True property models, inversion results and recov-
ered models relating to the synthetic case from the Mans-
field area shown in this article are made available online at
https://doi.org/10.5281/zenodo.1238529 (Giraud et al., 2018a).
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Figure A1. Comparison of input and output geophysical data. Panels (a) and (e) show data calculated from the prior model, (b) and (f) input
measurements, (c) and (g) data calculated from the inverted model, and (d) and (f) the absolute value of the difference of the misfit between
the observed and calculated data. Panels (a–d) (i.e. first line) and (e–h) (i.e. second line) correspond to the non-conditioned and conditioned
cases, respectively.

Appendix A: Data misfit maps from inversion in the
Yerrida Basin

Figure A1 below relates to the analysis of data misfit in
Sect. 4 of the article through the plot of the data misfit maps
for the non-conditioned and conditioned cases (Fig. A1d
and h, respectively). It is complemented by the correspond-
ing plots of starting (Fig. A1a and e), observed (Fig. A1b
and f) and calculated data (Fig. A1c and h). Note that
Fig. A1c and g show few visual differences, and that Fig. A1d
and h exhibit similar features while showing limited coherent
signal.
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