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Abstract. Measurements of seismic velocity as a function of
depth are generally restricted to borehole locations and are
therefore sparse in the world’s oceans. Consequently, in the
absence of measurements or suitable seismic data, studies re-
quiring knowledge of seismic velocities often obtain these
from simple empirical relationships. However, empirically
derived velocities may be inaccurate, as they are typically
limited to certain geological settings, and other parameters
potentially influencing seismic velocities, such as depth to
basement, crustal age, or heat flow, are not taken into ac-
count. Here, we present a machine learning approach to pre-
dict the overall trend of seismic P-wave velocity (vp) as a
function of depth (z) for any marine location. Based on a
training dataset consisting of vp(z) data from 333 boreholes
and 38 geological and spatial predictors obtained from pub-
licly available global datasets, a prediction model was cre-
ated using the random forests method. In 60 % of the tested
locations, the predicted seismic velocities were superior to
those calculated empirically. The results indicate a promis-
ing potential for global prediction of vp(z) data, which will
allow the improvement of geophysical models in areas lack-
ing first-hand velocity data.

1 Introduction

Seismic P-wave velocities (vp) and velocity–depth profiles
are needed in many marine–geophysical applications, e.g. for
seismic data processing, for time–depth conversions, or to es-
timate hydrate concentrations in gas hydrate modelling. Di-
rect measurements of seismic velocities, however, are sparse
and limited to borehole locations such as those drilled by the
Deep Sea Drilling Project (DSDP), the Ocean Drilling Pro-
gram (ODP), and the International Ocean Discovery Program
(IODP).

Seismic velocities can also be obtained indirectly from
seismic data. Approaches include derivation of 1-D velocity
profiles via refraction seismology using ocean bottom seis-
mometers (OBSs) (Bünz et al., 2005; Mienert et al., 2005;
Westbrook et al., 2008; Plaza-Faverola et al., 2010a, b, 2014),
and velocity analysis of large-offset reflection seismic data
(Crutchley et al., 2010, 2014; Plaza-Faverola et al., 2012).
However, suitable seismic datasets are only available in cer-
tain areas, and OBS-derived velocity profiles are of relatively
low spatial and vertical resolution.

In the absence of measurements and refraction seismic
data, constant velocities are often used for time–depth con-
versions (e.g. Brune et al., 2010) or processing of reflection
seismic data (Crutchley et al., 2010, 2011, 2013; Netzeband
et al., 2010; Krabbenhoeft et al., 2013; Dumke et al., 2014),
even though a constant velocity–depth profile is generally un-
realistic and will thus lead to inaccurate results.

As an alternative, empirical velocity functions have been
derived, which are based on averaged measurements and pro-
vide seismic velocity–depth relationships for different ge-
ological and geographical settings. For example, Hamilton
(1979, 1980, 1985) used averaged vp measurements from
boreholes and sonobuoys to derive velocity–depth functions
for different marine settings and sediment types. Velocities
calculated from these empirical functions have been used,
e.g., for time–depth conversions (Lilley et al., 1993; Brune et
al., 2010), brute stack processing of reflection seismic data,
as well as local (Bünz et al., 2005) and regional (Scanlon et
al., 1996; Wang et al., 2014) velocity models.

Although velocity profiles calculated from empirical func-
tions may work well in some cases, empirical functions do
not always produce accurate vp(z) profiles, due to their use
of depth as the only input parameter and their limitation to
certain regions or geological settings. Mienert et al. (2005)
observed both agreements and disagreements between ve-

Published by Copernicus Publications on behalf of the European Geosciences Union.



1990 I. Dumke and C. Berndt: Prediction of seismic P-wave velocity using machine learning

locity profiles derived from OBS data and calculated from
Hamilton functions, whereas Westbrook et al. (2008) argue
that empirical functions are in general not representative of
other areas due to variations in lithology and compaction his-
tory. Moreover, the Hamilton functions fail to provide correct
velocities in areas containing gas hydrates or gas-saturated
sediments (Bünz et al., 2005; Westbrook et al., 2008). Con-
sequently, an alternative method is required to estimate vp(z)

profiles for a larger variety of geological settings.
Over the last years, parameters in many different applica-

tions have been successfully predicted using machine learn-
ing techniques (e.g. Lary et al., 2016). In geosciences and re-
mote sensing, machine learning methods have been used to
predict soil properties (Gasch et al., 2015; Ließ et al., 2016;
Meyer et al., 2018), air temperatures (Meyer et al., 2016a,
2018), biomass (Meyer et al., 2017), and the elasticity mod-
ulus of granitic rocks (Karakus, 2011). Applications also ex-
tended into marine settings, involving the prediction of sed-
iment mud content off southwest Australia (Li et al., 2011),
as well as parameters such as seafloor porosity (Martin et al.,
2015; Wood et al., 2018), seafloor biomass (Wei et al., 2010),
and seafloor total organic carbon (Wood et al., 2018; Lee et
al., 2019) on a global scale. These studies were in general
restricted to the prediction of one value per geographic loca-
tion; the prediction of multiple values, such as depth profiles,
has, to our knowledge, not been attempted before.

In machine learning, a prediction model is constructed
from a training dataset consisting of the target variable to
be predicted and a set of predictor variables. A random sub-
set of the data, the test set, is typically held back for test-
ing and validation of the prediction model. The most widely
used machine learning methods include artificial neural net-
works (ANNs; e.g. Priddy and Keller, 2005), support vector
machines (SVMs; Vapnik, 2000), and random forests (RFs;
Breiman, 2001).

RF is an ensemble classifier based on the concept of de-
cision trees, which are grown from the training set by ran-
domly drawing a subset of samples with replacement (bag-
ging or bootstrap approach) (Breiman, 2001). At each tree
node, the data are split based on a random subset of predictor
variables to partition the data into relatively homogeneous
subsets and maximize the differences between the offspring
branches. Each tree predicts on all samples in the test set and
the final prediction is obtained by averaging the predictions
from all trees.

RF has been repeatedly found to be superior to other ma-
chine learning methods. For example, Li et al. (2011) tested
23 machine learning algorithms – including RF, SVM, and
kriging methods – to predict mud content in marine sed-
iments and found that RF, along with RF combined with
ordinary kriging or inverse distance squared, provided the
best prediction results. Cracknell and Reading (2014) ap-
plied five machine learning methods to lithology classifica-
tion of multispectral satellite data and reported higher classi-
fication accuracy for RF than for naive Bayes, SVM, ANN,

Figure 1. Distribution of the 333 boreholes from which vp(z) pro-
files were extracted. DSDP: Deep Sea Drilling Project; ODP: Ocean
Drilling Program; IODP: International Ocean Discovery Program.
Bathymetry (30 s resolution) is from the GEBCO_2014 grid (http:
//www.gebco.net, last access: 11 November 2019).

and k-nearest neighbours. RF is robust to noise and out-
liers (Breiman, 2001), and it is also able to handle high-
dimensional and complex data. Moreover, RF does not re-
quire any preprocessing of the input variables and provides
variable importance measurements, making it the first-choice
method in many applications.

Here, we apply RF to predict seismic P-wave velocity–
depth profiles on a global scale, based on a set of 38 geologi-
cal and spatial predictors that are freely available from global
datasets. Prediction performance is evaluated and compared
to velocity–depth profiles calculated from empirical vp func-
tions. We also test additional methods for the improvement of
model performance and determine which predictors are most
important for the prediction of vp.

2 Methods

2.1 Dataset

2.1.1 vp(z) data

vp(z) profiles for training the RF model were obtained
from boreholes drilled by the DSDP, ODP, and IODP cam-
paigns between 1975 and 2016. All boreholes containing vp
measurements were used, excluding those with bad-quality
logs according to the logging description notes. In total,
333 boreholes were included in the dataset, the distribu-
tion of which is shown in Fig. 1. All vp(z) data from
these boreholes are available through http://www.iodp.org
(last access: 11 November 2019) and were downloaded from
the archive at http://mlp.ldeo.columbia.edu/logdb/scientific_
ocean_drilling/ (last access: 11 November 2019).

A multitude of measuring methods and tools had been
employed by the different drilling campaigns to obtain vp
measurements, including wireline logging tools (e.g. sonic
digital tool, long-spacing sonic tool, dipole sonic imager,
borehole compensated sonic tool) and logging-while-drilling
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tools (sonicVISION tool, ideal sonic-while-drilling tool).
The majority of these methods provided vp measurements at
0.15 m depth intervals. Lengths of the vp logs varied greatly,
ranging between 10 and 1800 m (average: 370 m), with top
depths of 0–1270 m (average: 138 m) and bottom depths of
16–2460 m (average: 508 m).

After exporting the vp(z) profiles for each borehole, the
data were smoothed using a moving average filter with a
window of 181 data points (corresponding to ca. 27 m for
a 0.15 m depth interval). Smoothing was applied to remove
outliers and to account for unknown and varying degrees of
uncertainty associated with the different measurement tools.
In addition, smoothing was expected to facilitate prediction,
as the aim was to predict the general vp(z) trend at a given
location, rather than predicting exact vp values at a certain
depth. Following smoothing, the profiles were sampled to
5 m depth intervals, using the same depth steps in all bore-
holes.

2.1.2 Predictors

A total of 38 geological and spatial variables were included
as predictors (Table 1). These predictors are parameters that
were assumed to influence P-wave velocity. However, only
predictors that could be obtained for each of the 333 bore-
hole locations were used. Predictors such as latitude (lat),
longitude (long), and water depth (wdepth) were taken from
the borehole’s metadata, whereas other predictors were ex-
tracted from freely available global datasets and grids (Ta-
ble 1). In addition, predictors describing the borehole’s ge-
ological setting were determined from the site descriptions
given in the proceedings of each drilling campaign. Some pa-
rameters known to influence seismic velocity – e.g. porosity,
density, or pressure – had to be left out as suitable datasets
were not available. Although some of these parameters had
been measured in DSDP, ODP, and IODP boreholes, they had
not necessarily been logged at the same locations and depths
at which vp data had been measured and therefore could not
be obtained at all of the 333 boreholes used.

For predictor variables based on global grids, such as age
of crust (crustage), sediment thickness (sedthick), and sur-
face heat flow (heatflow), values were extracted for each
borehole location in Generic Mapping Tools (GMT) (Wessel
et al., 2013), using the command grdtrack. As the crustal
age grid (Müller et al., 2008) contained only ages for oceanic
crust, the age for locations above continental crust was set to
1 billion years to represent a significantly older age than that
of oceanic crust. Depth to basement (depth2base) was cal-
culated by subtracting the depth values from the (constant)
sedthick value at each borehole location, so that depths below
the basement were indicated by a negative depth2base value.
The distance predictor variables, e.g. distance to the nearest
seamount (dist2smt), were calculated based on the borehole
location and the respective datasets (Table 1) via the GMT
command mapproject.

Of the 38 predictors, 15 were of the type continuous,
whereas 23 were categorical variables describing the type
of crust and the geological setting at each borehole loca-
tion (Table 1). The categorical predictors were encoded as ei-
ther 0 or 1, depending on whether the predictor corresponded
to the geological setting at a given borehole. Multiple cate-
gories were possible; for example, a borehole located in a
fore-arc basin above continental crust would be described
by 1 for the predictors “contcrust”, “active_margin”, “sub-
duction”, and “fore-arc” and by 0 for all other categorical
predictors. Across the categorical predictors, the number of
boreholes for which a predictor was set to 1 varied between 2
(0.6 %) and 191 (57.4 %); on average, the geological setting
described by a categorical predictor applied to 42 boreholes
(12.7 %).

2.2 Random forest implementation

RF was implemented using the RandomForestRegressor in
Python’s machine learning library scikit-learn (Pedregosa et
al., 2011). Two parameters needed to be set: the number of
trees (n_estimators) and the number of randomly selected
predictors to consider for splitting the data at each node
(max_features). Many studies used 500 trees (e.g. Micheletti
et al., 2014; Belgiu and Drăguţ, 2016; Meyer et al., 2017,
2018), but as performance still increased after 500 trees, we
chose 1000 trees instead. The max_features parameter was
initially set to all predictors (38), as recommended for regres-
sion cases (Pedregosa et al., 2011; Müller and Guido, 2017),
although some studies suggest tuning this parameter to opti-
mize model results (Micheletti et al., 2014; Ließ et al., 2016;
Meyer et al., 2016b).

2.3 Model validation

A 10-fold cross validation (CV), an approach frequently used
in model validation (e.g. Li et al., 2011; Gasch et al., 2015;
Ließ et al., 2016; Meyer et al., 2016b, 2018), was applied to
validate the RF model. CV involved partitioning the dataset
into 10 equally sized folds. Nine of these folds acted as the
training set used for model building, whereas the remaining
fold was used for testing the model and evaluating the pre-
dictions. This procedure was repeated so that each fold acted
once as the test fold, and hence each borehole was once part
of the test set.

Partitioning into folds was not done randomly from all
available data points but by applying a leave-location-out
(LLO) approach (Gasch et al., 2015; Meyer et al., 2016a,
2018) in which the data remained separated into boreholes,
i.e. locations, so that each fold contained 1/10 of the bore-
holes. With 33–34 boreholes per fold, the size of the training
dataset thus varied between 20 166 and 20 784 data points.
By using the LLO approach, whole locations were left out of
the training set, thereby allowing the RF model to be tested
on unknown locations through prediction of vp for each bore-
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Table 1. Overview of the 38 predictors and their sources.

Predictor Description Type Source description Reference

lat latitude continuous DSDP/ODP/IODP data processing notes
long longitude continuous DSDP/ODP/IODP data processing notes
wdepth water depth continuous DSDP/ODP/IODP data processing notes
depth depth below seafloor continuous vp logs

crustage age of crust continuous
ocean crust: global crustal age grid (2 min res.) Müller et al. (2008)
continental crust: 1 Gyr (const.)

sedthick sediment thickness continuous global sediment thickness grid (5 min res.) Whittaker et al. (2013)
spreadrate spreading rate continuous global spreading rate grid (2 min res.) Müller et al. (2008)
heatflow surface heat flow continuous global surface heat flow grid (2◦ res.) Davies (2013)
depth2base depth to acoustic basement continuous derived from sediment thickness and depth
dist2smt distance to nearest seamount continuous derived from global seamount dataset Kim and Wessel (2011)
dist2hole distance to nearest borehole continuous derived from borehole locations
dist2coast distance to nearest coast continuous derived from global shoreline dataset Wessel and Smith (1996)
dist2trench distance to nearest trench continuous derived from global trench dataset Coffin et al. (1998)
dist2ridge distance to nearest spreading ridge continuous derived from global spreading ridge dataset Coffin et al. (1998)
dist2transform distance to nearest transform boundary continuous derived from global transform boundary dataset Coffin et al. (1998)
oceancrust oceanic crust categorical derived from crustal age
contcrust continental crust categorical derived from crustal age
active_margin geological setting: active margin categorical DSDP/ODP/IODP proceedings (site descriptions)
passive_margin geological setting: passive margin categorical DSDP/ODP/IODP proceedings (site descriptions)
spreading_ridge geological setting: spreading ridge categorical DSDP/ODP/IODP proceedings (site descriptions)
subduction geological setting: subduction zone categorical DSDP/ODP/IODP proceedings (site descriptions)
volcanic_arc geological setting: volcanic arc categorical DSDP/ODP/IODP proceedings (site descriptions)
fore-arc geological setting: fore-arc basin categorical DSDP/ODP/IODP proceedings (site descriptions)
accretion_wedge geological setting: accretionary wedge categorical DSDP/ODP/IODP proceedings (site descriptions)
trench geological setting: trench categorical DSDP/ODP/IODP proceedings (site descriptions)
cont_slope geological setting: continental slope categorical DSDP/ODP/IODP proceedings (site descriptions)
shelf geological setting: continental shelf categorical DSDP/ODP/IODP proceedings (site descriptions)
reef geological setting: (former) reef categorical DSDP/ODP/IODP proceedings (site descriptions)
basin geological setting: basin categorical DSDP/ODP/IODP proceedings (site descriptions)
struct_high geological setting: structural high categorical DSDP/ODP/IODP proceedings (site descriptions)
cont_plateau geological setting: continental plateau categorical DSDP/ODP/IODP proceedings (site descriptions)
aseismic_ridge geological setting: aseismic ridge categorical DSDP/ODP/IODP proceedings (site descriptions)
seamount geological setting: seamount categorical DSDP/ODP/IODP proceedings (site descriptions)
guyot geological setting: guyot categorical DSDP/ODP/IODP proceedings (site descriptions)
mud_volcano geological setting: mud volcano categorical DSDP/ODP/IODP proceedings (site descriptions)
ds_fan geological setting: deep-sea fan categorical DSDP/ODP/IODP proceedings (site descriptions)
hydroth_vent geological setting: hydrothermal vent categorical DSDP/ODP/IODP proceedings (site descriptions)
cold_vent geological setting: cold vent categorical DSDP/ODP/IODP proceedings (site descriptions)

hole in the test fold. If the folds were chosen randomly from
all data points, each borehole location would be represented
in the training set by at least some data points, resulting in
overoptimistic model performance due to spatial overfitting
(Gasch et al., 2015; Meyer et al., 2016a, 2018).

Performance of the RF model was evaluated in two ways:
(1) by standard error metrics and (2) by the proportion of
boreholes with predicted vp(z) superior to that of empirical
functions. The standard error metrics root mean square error
(RMSE), mean absolute error (MAE), and the coefficient of
determination (R2) were calculated based on the comparison
of the predicted and true vp(z) curves for each borehole in
the test fold. RMSE, MAE, and R2 of all test folds were then
averaged to give final performance values.

To determine the proportion of boreholes with better vp(z)

trends than those from empirical functions, we tested how
well the predicted vp(z) curves performed compared to vp(z)

curves calculated from empirical functions. Using the depth

values of the respective test borehole, vp(z) profiles were
therefore calculated from the five empirical functions pre-
sented by Hamilton (1985) for deep-sea sediments, i.e. for
terrigenous silt and clays (termed H1 in the following), ter-
rigenous sediments (H2), siliceous sediments (H3), calcare-
ous sediments (H4), and pelagic clay (H5). These vp func-
tions were chosen because the deep-sea setting applied to
the majority of the boreholes or was the best choice in the
absence of empirical functions for other geological settings
such as mid-ocean ridges. The resulting Hamilton curves
were evaluated against the true vp(z) profile, and RMSE,
MAE, and R2 were averaged over the five curves. The av-
eraged error metrics were then compared to the error metrics
of the prediction, and each borehole was assigned a score
between 0 and 3 as shown in Table 2. Scores 2 and 3 were
interpreted as a good prediction, i.e. better than the Hamil-
ton curves, whereas scores 0 and 1 represented generally bad
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predictions. The proportion of boreholes with good predic-
tions was then averaged over the 10 folds.

2.4 Predictor selection

To determine the most important predictors for vp prediction,
a predictor selection approach was performed. Although RF
can deal with high data dimensionality, predictor selection is
still recommended, not only to remove predictors that could
cause overfitting but also to increase model performance
(e.g. Belgiu and Drăguţ, 2016, and references therein). We
applied recursive feature elimination (RFE), which is based
on the variable importance scores provided by the RF al-
gorithm. After calculating and evaluating a model with all
38 predictors, the least important predictor according to the
variable importance scores was removed and the model was
calculated again. This procedure was repeated until only one
predictor was left. By evaluating model performance for each
run via CV, using the same 10 folds as before, the optimum
number of predictors was determined.

2.5 Tests to improve prediction performance

Additional tests to improve prediction performance included
predictor scaling, variation of the max_features parameter,
and stronger smoothing of the vp(z) curves. All models were
evaluated via a 10-fold CV, using the same folds as in the
previous model runs.

Predictor scaling was applied to account for the different
data ranges of continuous and categorical features. Model
performance may be negatively affected if different types of
variables or data ranges are used (Otey et al., 2006; Strobl et
al., 2007), even though RF does not normally require scaled
input data. All continuous predictors were scaled to between
0 and 1 to match the range of the categorical predictors, and
RFE was repeated.

As tuning of the max_features parameter, i.e. the number
of predictors to consider at each split, is recommended by
some studies (Ließ et al., 2016; Meyer et al., 2018), an ad-
ditional model was run in which max_features was varied
between 2 and 38 (all features) with an interval of 2. Per-
formance was evaluated for each case to find the optimum
number of predictors to choose from at each split.

A third attempt to improve model performance involved
enhanced filtering of the vp(z) curves so that larger vp varia-
tions were smoothed out and the curves indicated only a gen-
eral trend, which would likely be sufficient for many appli-
cations requiring knowledge of vp with depth. The vp curves
therefore underwent spline smoothing using Python’s scipy
function UnivariateSpline. Three separate RF models were
calculated: (i) spline1, which involved spline smoothing of
the predicted curve of each test borehole; (ii) spline2, in
which the input vp(z) data were smoothed; and (iii) spline3,
where both the input vp(z) curves and the predictions were
smoothed. All three cases were run with the 16 most impor-

tant predictors as determined from the RFE results and com-
pared to the previous models.

3 Results

3.1 Prediction performance

Overall, many vp(z) profiles were predicted well by the RF
models. For the 38-predictor CV, about 59.5 % of the bore-
holes had prediction scores of 2 or 3, representing a predic-
tion performance superior to that of the Hamilton functions.

Predictions of prediction score 3, which were character-
ized by lower RMSE and MAE values and a higher R2 than
the five empirical functions, often exhibited a good fit to the
true vp(z) curve (Fig. 2a–d). Even for more complex ve-
locity profiles, e.g. involving a velocity reduction at depth
(Fig. 2d) or a strong increase such as that from 2.2 kms−1

to > 4 kms−1 at the basement contact in Fig. 2b, the pre-
dicted vp(z) curves generally matched the true curves well. In
some cases, score 3 predictions did not provide a good fit but
still performed better than the empirical functions (Fig. 2e).
Score 2 predictions generally indicated the correct trend of
the true vp(z) profile (Fig. 2f), whereas score 1 and score 0
predictions failed to do so, with velocities often considerably
higher or lower than the true velocities (Fig. 2g, h).

The RFE CV revealed best performance for 33 predictors,
as indicated by the lowest RMSE and MAE values (Fig. 3a).
The proportion of boreholes with prediction scores of 2 or 3
was 59.2 % and thus slightly lower than for the 38-predictor
CV (59.5 %; Fig. 3b). The highest proportion of 61.9 % was
achieved by the 16-predictor model (Fig. 3b), but this also
led to the highest errors (Fig. 3a).

By scaling all predictors to between 0 and 1 and repeat-
ing RFE, RMSE and MAE were reduced further, with the
best errors obtained for 35 predictors (Fig. 3a). These errors
were only slightly lower than those of the 30-predictor case,
which achieved a higher percentage of boreholes with good
prediction (60.4 %; Fig. 3b).

Varying the number of predictors to consider for splitting
the data at each tree node also improved the performance.
For max_features= 22, RMSE and MAE were lower than
in all previous RF cases (Fig. 3a), while the proportion of
boreholes with good prediction scores was 61.3 % and thus
only slightly lower than for the 16-predictor case in which all
38 predictors were considered (Fig. 3b).

The three attempts of stronger smoothing of the vp(z) pro-
files via splines resulted in overall worse performance than
the 16-predictor case, both in terms of errors and the pro-
portion of well-predicted boreholes (Fig. 4a). An exception
is the spline1 case (spline smoothing of the predicted vp(z)

profile), for which 62.4 % of the boreholes had scores of 2 or
3 (Fig. 4b), although RMSE and MAE were slightly worse
than for the other RF cases.
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Table 2. Scores for performance comparison between RF prediction and vp calculated from the empirical functions of Hamilton (1985).

Score Description Inferred prediction performance

3 all three error metrics of RF prediction indicate better fit than empirical functions good
2 two of three error metrics of RF prediction indicate better fit than empirical functions good
1 one of three error metrics of RF prediction indicate better fit than empirical functions bad
0 all three error metrics of empirical functions indicate better fit than RF prediction bad

Figure 2. Examples for true vp(z) curves, predicted vp(z) curves, and vp(z) calculated from the five Hamilton functions (Hamilton, 1985)
used in model evaluation. Panels (a)–(d) shows well-predicted vp(z) curves of score 3, (e) lower-quality prediction of score 3, (f) score 2,
and (g)–(h) bad predictions of scores 1 and 0. See Sect. 2.3 for a description of H1 to H5.

3.2 Score distribution

The global distribution of boreholes with different predic-
tion scores, shown in Fig. 5 for the 16-predictor case without
spline smoothing, did not indicate a clear separation into ar-
eas with relatively good (scores 2 and 3) or bad (scores 0
and 1) prediction scores. Some areas contain clusters of
> 10 boreholes, many of which had a prediction score of 3.
Examples included the Sea of Japan (area A in Fig. 5a), the
Nankai Trough (B), the Ontong Java Plateau (C), the Queens-

land Plateau (D), and the Great Australian Bight (E). How-
ever, nearly all of these cluster areas also contained bore-
holes with bad prediction scores (Fig. 5b). Similarly, single
boreholes in remote locations were often characterized by a
prediction score of 0 (Fig. 5b), but there were also several
remote boreholes with scores of 3, e.g. on the Mid-Atlantic
Ridge (area F in Fig. 5a).
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Figure 3. Comparison of (a) error metrics and (b) proportion of
well-predicted boreholes (scores 2 and 3) for different model runs.
RMSE: root mean square error; MAE: mean absolute error; CV:
cross validation; RFE: recursive feature elimination.

Figure 4. Comparison of (a) error metrics and (b) proportion of
well-predicted boreholes (scores 2 and 3) for model runs with dif-
ferent degrees of data smoothing. RMSE: root mean square error;
MAE: mean absolute error; CV: cross validation.

3.3 Predictor importance

For the 38-predictor CV, the 5 most important predictors
were “depth2base”, “crustage”, “depth”, “dist2smt”, and
“wdepth” (Fig. 6). Continuous predictors and categorical
predictors were clearly separated in the predictor importance
plot (Fig. 6), with continuous predictors being of high im-
portance in the RF model, whereas categorical predictors
appeared less important. The only exception was the cat-
egorical predictor variable “spreading_ridge”, which had a
slightly higher importance ranking than the continuous pre-
dictors “long” and “dist2transform”. Many of the categorical
predictors were of negligible (almost 0) importance (Fig. 6).

When the least important predictor was eliminated after
each model run using RFE, the same trend was observed:
in both the unscaled and scaled RFE cases, all categorical
predictors were eliminated before the continuous predictors
(Table 3). In the 16-predictor case, which had the highest pro-
portion of well-predicted boreholes (61.9 %), the only cate-
gorical predictor included was spreading_ridge.

In the unscaled RFE case, the five most important pre-
dictors were the same as in the feature importance plot
of the 38-predictor case (Fig. 6). However, the order dif-

Figure 5. Distribution of boreholes with (a) good (scores 2 and 3)
and (b) bad (scores 0 and 1) vp predictions. Areas A–E mark clus-
ters of boreholes in the Sea of Japan (A), the Nankai Trough (B),
the Ontong Java Plateau (C), the Queensland Plateau (D), and the
Great Australian Bight (E). Area F indicates an example for remote
boreholes of score 3 on the Mid-Atlantic Ridge. Bathymetry (30 s
resolution) is from the GEBCO_2014 grid (http://www.gebco.net).

fered slightly, with depth being eliminated before dist2smt,
wdepth, depth2base, and crustage (Table 3). When using
scaled predictors, the five top predictors included “heatflow”
(ranked sixth in both the 38-predictor CV and unscaled RFE
cases) instead of crustage. Crustage dropped to position 15
and was thus the least important of the continuous predic-
tors (Table 3). In general, however, the position ranking of
most predictors varied only by up to five positions between
the unscaled and the scaled RFE cases (Table 3).

4 Discussion

4.1 Prediction performance in comparison with
empirical functions

Our results show that the general trend of vp(z) profiles can
be predicted successfully using machine learning. Overall,
the applied RF approach is superior to the empirical vp func-
tions of Hamilton (1985), as indicated by the 60 % of tested
boreholes with prediction scores of 3 or 2. Although such
a quantitatively better performance (i.e. lower RMSE and
MAE and higher R2 than the Hamilton vp(z) profiles) does
not always mean a perfect fit to the true vp(z) curve of the
tested borehole, the RF approach has a promising potential
for the prediction of vp with depth.
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Figure 6. Predictor importance ranking for the 38-predictor model
run. For each predictor, the importance was averaged over the 10
runs of the 10-fold CV. Categorical predictors are marked with an
asterisk. Predictor names are explained in Table 1.

Slight improvements of the prediction performance were
achieved by applying RFE, resulting in a proportion of well-
predicted boreholes of 61.9 % for the 16-predictor model.
Smoothing the predicted vp(z) profiles via spline smoothing
(spline1 case) provided a further increase to 62.4 % of well-
predicted boreholes. In addition, reducing the max_features
parameter from 38 (all predictors) to 22 also resulted in a
slight improvement (61.3 %), thus supporting other studies
that recommended tuning the max_features parameter to im-
prove results (Ließ et al., 2016; Meyer et al., 2018). However,
to increase model performance even further, to a propor-

Table 3. Predictor ranking based on the RFE results for unscaled
and scaled predictors. Categorical predictors are marked with an
asterisk. See Table 1 for an explanation of predictor names.

Position Predictor

RFE unscaled RFE scaled

1 crustage wdepth
2 depth2base depth2base
3 wdepth dist2smt
4 dist2smt depth
5 depth heatflow
6 heatflow sedthick
7 dist2hole dist2trench
8 dist2coast dist2hole
9 dist2trench dist2coast
10 lat spreadrate
11 sedthick dist2ridge
12 spreadrate long
13 dist2ridge lat
14 long dist2transform
15 dist2transform crustage
16 spreading_ridge* contcrust*
17 cont_plateau* basin*
18 reef* active_margin*
19 aseismic_ridge* struct_high*
20 basin* oceancrust*
21 struct_high* passive_margin*
22 oceancrust* subduction*
23 volcanic_arc* reef*
24 active_margin* accretion_wedge*
25 contcrust* cont_plateau*
26 guyot* cont_slope*
27 passive_margin* spreading_ridge*
28 trench* fore-arc*
29 subduction* shelf*
30 seamount* ds_fan*
31 fore-arc* volcanic_arc*
32 hydroth_vent* trench*
33 cont_slope* seamount*
34 shelf* aseismic_ridge*
35 accretion_wedge* guyot*
36 ds_fan* cold_vent*
37 mud_volcano* hydroth_vent*
38 cold_vent* mud_volcano*

tion of well-predicted boreholes well exceeding 60 %, other
changes are required.

4.2 Most important predictors for the prediction of
vp(z)

Both the predictor importance ranking of RF and the RFE
results revealed depth as one of the most important predic-
tors. However, depth was not the most important predictor,
which is surprising as empirical vp functions, including those
of Hamilton (1985), all use depth as the only input parame-
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ter. Our results showed that depth2base was always ranked
higher than depth, and often the predictors wdepth, dist2smt,
and crustage also had higher importance scores than depth.
Although depth is obviously still an important parameter in
the prediction of vp, these observations imply that empirical
functions using only depth as input and neglecting all other
influences may not produce realistic vp values, which is sup-
ported by at least 60 % of test locations for which the RF
approach produced better vp(z) profiles than the Hamilton
functions.

The high importance of the predictors depth2base, wdepth,
dist2smt, crustage, as well as heatflow, seems reasonable.
The depth to the basement, which is related to the sediment
thickness, is relevant because of the rapid vp increase at the
basement contact and the associated transition from rela-
tively low (< 2.5 kms−1) to higher (> 4 kms−1) vp values.
Even though in the majority of boreholes, the basement was
not reached, the depth to the basement strongly influences
vp. The high ranking of the distance to the nearest seamount
is likely attributed to the associated change in heat flow at
seamount locations. Higher heat flow and hence higher tem-
peratures affect density, which in turn affects vp. The pre-
dictor crustage indicates young oceanic crust, which is char-
acterized by higher temperature and hence lower density, af-
fecting vp. Moreover, crustage differentiates between oceanic
(< 200 Myr) and continental (here: 1 Gyr) crust and appar-
ently more effectively than the categorical predictors “ocean-
crust” and contcrust, which are of considerably lower impor-
tance.

It has to be noted that the high-importance predictors dis-
cussed above only represent the most important of the 38 pre-
dictors used for prediction of vp; they are not necessarily the
parameters that most strongly influence vp in general. If other
parameters, such as porosity, density, pressure, or saturation,
had been included as predictors, they would likely have re-
sulted in a higher importance ranking than, e.g. dist2smt or
crustage. However, these parameters were not included in the
model as they were restricted to measurements at borehole
locations – not necessarily those from which vp(z) data were
obtained – and are therefore not available for every location
in the oceans. For the same reason, other geophysical param-
eters, e.g. electrical resistivity and magnetic susceptibility,
were also not included.

A surprising finding in terms of predictor importance is
the low importance of all categorical predictors. The clear
separation between continuous and categorical predictors in
the predictor importance plots may be due to biased predictor
selection, as observed by Strobl et al. (2007) when different
types of predictors were used. In such cases, categorical pre-
dictors may often be neglected and ignored by the machine
learning algorithm (Otey et al., 2006). Scaling the continuous
predictors to the same range as the categorical predictors did
not help to change the importance ranking, but bias cannot be
excluded. The poor representation of some predictors, such
as “cold_vent”, “mud_volcano”, and “hydroth_vent” in the

dataset, causing these predictors to be 0 for all boreholes in
some test folds, likely explains the low importance of these
predictors in the predictor ranking, although it is also pos-
sible that the geological setting described by the categori-
cal predictors was simply not relevant to the prediction of
vp. This possibility appears to be supported by the RFE re-
sults, which reveal the best prediction scores (61.9 % well-
predicted boreholes) when all but one categorical predictors
were excluded (16-predictor case).

4.3 Suggestions for further improvement of
performance

The fact that prediction performance could not be much im-
proved by predictor selection, tuning the max_features pa-
rameter, or additional smoothing suggests that other mea-
sures are needed to further improve the prediction perfor-
mance. The comparatively high proportion of boreholes with
badly predicted vp(z) profiles (about 40 %) is likely due to
the limited number of boreholes that were available in this
study but may also have been influenced by the choice of
machine learning algorithm.

It is possible to add more predictors that potentially influ-
ence vp, for example, seafloor gradient, bottom water tem-
perature, and distance to the shelf edge. In addition, some
of the predictors could be improved. For example, the age
of the continental crust, currently set to the constant value
of 1 Gyr, could be adapted based on the crustal age grid by
Poupinet and Shapiro (2009). Other studies also suggest in-
cluding the first and second derivatives of predictors or other
mathematical combinations of predictors (Obelcz and Wood,
2018; Wood et al., 2018; Lee et al., 2019).

Another way to extend the dataset is to include more vp(z)

data. Given the relatively inhomogeneous global distribu-
tion of borehole locations used in this study (Fig. 1), adding
more vp(z) data is highly recommended. On a much smaller
scale, Gasch et al. (2015) noted that high spatial heterogene-
ity of input locations limits the prediction performance and
increases prediction errors. Adding more vp(z) data, espe-
cially from regions such as the southern Pacific and Atlantic
oceans that are presently not covered, will likely help to in-
crease the prediction performance. For example, the vp(z)

records from recent IODP expeditions may be added to the
dataset as they become available. Additional vp data could
also be obtained from commercial boreholes and refraction
seismic data from ocean bottom seismometers, although the
latter would be of lower vertical resolution.

The choice of machine learning algorithm may also in-
fluence model performance. Studies comparing RF against
other machine learning algorithms reported different trends:
in some cases, RF was superior in terms of prediction per-
formance (e.g. Li et al., 2011; Cracknell and Reading, 2014),
whereas in other cases, no strong differences were observed
between the different methods (e.g. Goetz et al., 2015; Meyer
et al., 2016b). However, given the present dataset and its spa-
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tial inhomogeneity, we doubt that a different algorithm would
lead to a significantly improved prediction performance for
vp.

5 Conclusions

In this study, we presented an RF model for the prediction of
vp(z) anywhere in the oceans. In about 60 % of the tested lo-
cations, the RF approach produced better vp(z) profiles than
empirical vp functions. This indicates a promising potential
for the prediction of vp(z) using machine learning, although
some improvement is still required. In particular, the model
input data should be extended to increase spatial coverage,
which is expected to significantly improve prediction perfor-
mance. Our results showed that depth, which is the only input
in empirical vp functions, is not the most important parame-
ter for the prediction of vp. Distance to the basement, water
depth, age of crust, and distance to the nearest seamount are,
in general, equally or even more important than depth. By in-
cluding these parameters in the determination of vp, the RF
model is able to produce more accurate vp(z) profiles and
can therefore be used as an alternative to empirical vp func-
tions. This is of particular interest for geophysical modelling
applications, such as modelling gas hydrate concentrations,
in areas lacking alternative vp(z) information from boreholes
or seismic data.

Data availability. All vp(z) data used in this study are available
through the website of the International Ocean Discovery Program
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Table 1.
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