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S1 Reconstructions of palaeo-bathymetrical conditions
S1.1 Reconstruction of the water depth from ripple-marks morphometry and grain size

The palaco-bathymetrical conditions were derived from sedimentary structures such as symmetric- and asymmetric-ripple-
marks. These bedforms need bottom oscillatory waves to form (Komar and Miller, 1973). Accordingly, the morphometry and
grain side of these bedforms bear information about the velocity of the oscillatory currents, which can be used as basis to
calculate palaco-water depth conditions (Allen, 1981). In addition, the orientation of asymmetric ripple-marks and preserved
ripple-crests allow to interpret the flow direction and the orientation of the coastline during their formation (Clifton and

Dingler, 1984).

In the past years, several authors have used field-based data on the spacing 4, the height 4 and the median grain size D of
oscillatory ripple-marks in various environments to estimate of palaco-wave conditions (e.g. Tanner, 1971; Komar and Miller,
1973; Allen, 1981; Clifton and Dingler, 1984; Diem, 1985). This has also been the case for the Swiss Molasse basin, where
the theory of deepwater waves has served as basis to successfully calculate the palaco-water depths based on ripple-mark
morphometries (Allen, J., 1984; Allen, 1981, 1984, 1997; Allen et al. 1985; Diem, 1985). Here, the focus lies on vortex ripples,
which have a steepness of #/4 < 0.12-0.22 (Clifton and Dingler, 1984) or a VFI of //h < 7.5 << 10 (Allen, P., 1984) and which

were likely formed by waves.

The ripple spacing 4 depends on the near-bed orbital diameter d,, which decreases exponentially with water depth (Allen, P.
1984, Allen, J., 1984; Miller and Komar, 1980a and 1980b; Fig. S3):

d, = 1/0.65 ().

Measurements of the grain size D allow calculations of the critical velocity for sediment entrainment U,, where variations in

D need to be considered (Komar and Miller, 1973):

For D < 0.5mm; Ut2

0.21 (d,/D)"? “"pﬂ (2a),

For D = 0.5mm; Ut2

0.467 (d,/D)* (P‘pﬂ (2b).
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Here, the variables psand p, denote the sediment and water densities, respectively, and g refers to the gravitational acceleration.
The maximum wave period 7. can then be calculated using the estimates of the near-bed orbital diameter d, and the threshold
velocity U, for sediment entrainment (Allen, P., 1984):

Tmax = ndO/Ut (3)

The wave period allows to calculate the deep-water wavelength L, which is independent of the water depth and bases on the

wave period only (Allen, P., 1984):
L=T2. 2 ).

max 2T

Allen (1997) suggests that orbital diameters of oscillatory water particles decrease exponentially from the surface to greater

water depths, where:
2
d, = Hexp(y Tn) (4),

where d, is the orbital diameter at a specific water depth (-y, negative term), H is the wave height, and L is the wavelength (all
in m), respectively. Similar to the diameter, the maximum orbital velocity of water particles ¢, also decreases with water depth

(Allen, 1997):
2 2
¢, =4 Tﬂcy:(, exp(y Tn) (5),

where A4 is the amplitude equal to the half of the waveheight A and c,- is the celerity (wave propagation velocity in m/s) of
deep-water waves at the surface, respectively (Fig. S3). According to Allen, P. (1984) the celerity at the surface (c,=9) can be

calculated through:
L L
Cymp = ;’—n == (6).

Since A4 in Eq. (5) refers to the half of the waveheight H, we can substitute 4 with H/2. Note, that at the surface, the form of
deep-water waves is not expressed as perfect semicircles in height and diameter. This is particularly the case for shallow marine
environments where the waves show a flattened, elliptical shape, which reduces the height of 4 and eventually elongates the

diameter dy (Fig. S3, Clifton and Dingler, 1984). We further consider the relationships between waveheight H and wavelength
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L, which can be expressed through the height to length ratio H/L = 0.142 (Michell, 1893). By replacing H with 0./42*L and
substituting cy=p with L/T Eq. (5) changes to:

_ 01421 2m L

2 L 2
Cy =" Tx ok exp(yTn) =0142m ;eXP(YT”) @

The water depth y can then be calculated using U, as proxy for ¢,, and through the combinations of Eq. (3) and Eq. (7). This
results in an expression, where the water depth y for a wave with a length L can be estimated. Since our approach mainly
involves threshold conditions and maximum values, the water depth will be overestimated. Accordingly, Eq. (8) returns

maximum value for palaeo-water depth:

do
0.14-2*2*L) (8)

y = —xIn(

We thus measured the ripple-spacing (4, crest to crest), the ripple-height (%, trough to crest) and the median grain size (D) in
the field. We tested whether the ratio-values of the ripple-steepness 4/ 4 (Sleath, 1976; Miller and Komar, 1980a; Clifton and
Dingler, 1984) and inversely, the ripple-index or the vertical from index VFI (Allen, P., 1984; Allen, J. 1979), fulfilled the
criteria for vortex ripples. We then applied Eq. (9) to these 12 measurements of ripple-marks at the different sections. We
justify the selection of deep-water wave theories because we focussed on those oscillation-ripple-marks (Sos-facies), which
were formed in the lower shoreface where related conditions are likely to apply. The results revealed changes in bathymetrical

conditions through time which were used to reconstruct the ancient sea conditions in the Molasse basin.

S1.2 Estimations of palaeo-water depth from set-thickness

We use the set-thickness of preserved sedimentary bedforms to estimate the palaeco-water depth conditions during deposition
of the OMM. We mainly focus on cross-bedded- (Sc, Scts) and trough cross-bedded-sandstones (Sct;) since these facies
assemblages are commonly found in the OMM-deposits and they have intensely been investigated in the past by several authors
(e.g. Allen, J. 1982; 1984; Allen, P., 1984; Rust and Gibling, 1990; Nicholson, 1993; Bridge and Tye, 2000; Mohrig et al.,
2000; Leclair and Bridge, 2001; Tjerry and Fredsee, 2005; Hajek and Heller, 2012; Blondeaux and Vittori, 2016). We use the
fact, that according to these authors the bedform thickness /4, and the mean water depth y,, are positively correlated to each
other. Furthermore, in the case of tabular cross-beds (Sct,), which we interpret as sandwaves, the water depth during their
formation is directly proportional to their height (e.g. Blondeaux and Vittori, 2010). In this case, the properties of sandwaves
explored by Yalin (1964; 1992) returned a relationship between the mean water depth (v,,) and the mean height of the sandwave
(hs) of approximately y../hy = 6. Values proposed by Yalin (1964) and Allen, J. (1982; 1984), who both stated that set-thickness

is increasing with water depth, resulted in the relation of 4y/v,, = 0.1 to 0.167, however with a large scatter of the plotted data.
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We note, however, that other authors (e.g. Stride, 1970) contested the statement of a correlation between the height of
sandwaves and the mean water depth. In addition, Flemming (2000) also refuted the inference that the bedform height is only
depending on the water depth. Instead he showed that grain-size and flow-velocity also plays a primary role in the formation
of sandwaves with various heights. Nevertheless, it is possible to estimate minimum water depth levels by considering the
thickness of set-heights, because the minimum water depth must be at least as high as the preserved set-thickness. We thus
proceeded following the approach by Bridge and Tye (2000), who explored sandy river dunes where the sedimentary properties
are similar to those of marine sandwaves (e.g. Allen, J., 1984; Hulscher and Dohmen-Janssen, 2005) encountered in our
sections. These authors proposed that the relationship between the mean water depth and mean dune height ranges in average
between 6 and 10 (Bridge and Tye, 2000), which is confirmed by the study of Leclair and Bridge (2001). In addition, we need
to consider that these relationships do not include post-depositional erosion or compaction of the bedforms, which accordingly

results in an underestimation of the palaeo-water depth.

In summary, we used the aforementioned relationships in order to estimate the range of the paleo-water depth (v,,) from the
preserved set-height (/) of cross-beds (Sc) and dunes (Sct,, Sct;) by applying the relationship of Allen, J. (1982) and Bridge
and Tye (2000), which are summarized in Eq. (1) and Eq. (2), alternatively:

Ym1 = hp/ 0.1to 0.167 after Allen, J. (1982) (1),

Vmz = hp *6to 10 after Bridge and Tye (2000) (2).

The results of our palaco-bathymetric estimations are presented as plots in the sedimentological profile sections (Figs. 4, see

manuscript) and as numerical data in Table S2 (Entlen) and Table S3 (Sense), respectively. Calculations of cross-beds thickness

of inferred sand-waves are shown Table S1 together with already published data from the Swiss Molasse basin.
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Table S1: Estimates of water depths from preserved cross-bed thickness at various sites

Unit Site (this study) Water depth Water depth and location (other studies)
(see Fig. 2a) (this study)
c. OMM-Ib (?) Marly 12-20m 10 m, Marly (Allen and Homewood, 1984)
c. OMM-1b (?) St. Magdalena 3-5m
OMM-Ib Estavayer-le-Lac 30-50m
OMM-Ib Migenwil 36 — 60 m; up to | 25— 60 m, Mdgenwil (Allen and Homewood, 1984)
100 m in places
OMM-Ib (?) 10— 35 m, Bay near Napf (Keller, 1989)
OMM-II 20 m, Pfdnder-Delta (Schaad et al., 1992)

Table S2: Estimates of water depths from preserved cross-bed thickness at the Entlen section

Unit Stratigraphic level (approx.) Water depth (this study)
10m 1.3-22m
50m 1.7-29m
60 m 0.7-12m
80 m 1.2-21m

OMM-Ia 90 m 1.1-19m
190 m 1.4-24m
230m 1.0-1.8m
280 m 0.8—1.3m
290 m 1.5-25m
370 m 12-20m
390 m 44—-73m
420 m 0.15-0.35m
420 m 0.2-035m
430 m 0.10-02m

OMM-Ib 430 m 0.1-035m
650 m 33-55m
660 m 29-48m
680 m 1—-18m
700 m 5-85m
720 m 6—10m




Table S3: Estimates of water depths from preserved cross-bed thickness at the Sense section

Unit Stratigraphic level (approx.) Water depth (this study)
40m 3-5m
40m 24—4m
40 m 6.6—11m
45 m 24—4m
OMM-Ia 45m 3-5m
70 m 1.2-2m
75 m 1.5-25m
160 m 24—4m
170 m 3-5m
200 m 24—40m
205 m 15-25m
210m 24—40m
215m 0.07—0.10 m
220m 0.10-02m
OMM:-Ib 230m 1.8—3m
235m 15-25m
240 m 09-15m
250m 0.6-1m
260 m 0-1m




Wave propagation direction

‘:' H = wave height Cy=0 = celerity

- L =wave length A =ripple spacing
A =H2 h  =ripple height
~y =waterdepth D = grainsize
 dp = orbital diameter

Figure S1: Schematic sketch showing important parameters of waves and wave-formed ripple marks. Note, the orbital diameter (do) refers
to the wave height at the surface (H) for perfect sinusoidal shaped waves. All variables are measured in SI-units. Please see Fig. 4 for plots
5 ofthe calculated water depth from oscillation-ripple-marks. Figure modified after Clifton and Dingler (1984).
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showing the westward directed transgression of the basal OMM-deposits. Blue arrows indicate onlaps of OMM onto USM sediments. Please

Figure S2: Seismic section BEAGBE.N780025 (courtesy SEAG, Aktiengesellschaft fiir Schweizerisches Erddl, Langnau am Albis, 2019)
see Fig. 2a for trace of seismic line and see text for further discussion.

5



Figure S3: Photos showing the sedimentological architecture of the Gurten drillcore from top right to bottom left (courtesy Kellerhals and
Haefeli AG, Geologen Bern, 2019). Please find the photos at the end of this file.
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Figure S4: Photo table of sedimentary features encountered at a) the Entlen, and b) the Sense section, and from outcrops
situated c) at the distal west of the basin (Heitenried,St. Magdalena and Estavayer-le-lac), and d) at the distal east of the
Molasse (Madiswil, Magenwil and the Napf). Please see Fig. 2a for location of field sites.

al) Normal-graded sandstone with clearly visible parallel lamination (Sp).

a2) Parting lineation, equivalent to top view of al).

a3) Cross-bedded sandstone (Sc) within massive-bedded sandstone (Sm).

a4) Climbing-ripple marks (Mcl) between massive-bedded sandstones and parallel-laminations (Sp).
a5) Pebbly lags (Sg) overlying parallel-laminations (Sp) and cross-bedded sandstones at the base.

a6) Water escape structures (sand-volcanoes, Sv) within cross- and massive-bedded sandstone (Sc, Sm).

b1) Tabular- and trough-cross beds (Sct,, Sctr) overlying massive-bedded sandstones (Sm). See person for scale.

b2) Current-ripple marks (Scr) draped with mudstone (Md).

b3) Detail of b2): Cross-bedded laminae of the internal Scr-structure can be used to determine the transport direction.
b4) Lenticular bedding (Mle) where sandstones are forming isolated lenses within mudstone layers.

b5) Flaser-bedding (MIf) where sandstones are dominant and mudstones only preserved as a thin layer (Md).

cl) Estavayer-le-Lac : Meter-thick tabular-cross beds (Sct,) at the distal western basin border. Meter stick is 2m.
c2) Heitenried : Detail of c4) — Pebbly-lags (Sg) along foresets.

¢3) St. Magdalena : Trough-cross beds (Sct;) overlying massive-bedded sandstones (Sm).

c4) Heitenried : Zoom-out of c2) — Foresets with pebbly lags (Sg) overlain by cross-bedded troughs (Sct;, Sc).

d1) Napf : Massive conglomerates (Gm) overlying imbricated clasts at the base.
d2) Napf : Sandy foresets with pebbly-lags (Sg) among massive (Gm) and cross-bedded (Gc) conglomerates.
d3) Madiswil : Calcaerous sandstones (Scc) forming tabular cross-beds (Scta) of dm-height.

d4) Migenwil : Calcaerous sandstones forming m-thick tabular cross-beds (Sct,) at the distal basin border.
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