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Abstract. In source regions of magmatic systems the tem-
perature is above solidus, and melt ascent is assumed to oc-
cur predominantly by two-phase flow, which includes a fluid
phase (melt) and a porous deformable matrix. Since McKen-
zie (1984) introduced equations for two-phase flow, numer-
ous solutions have been studied, one of which predicts the
emergence of solitary porosity waves. By now most analyt-
ical and numerical solutions for these waves used strongly
simplified models for the shear- and bulk viscosity of the ma-
trix, significantly overestimating the viscosity or completely
neglecting the porosity dependence of the bulk viscosity.
Schmeling et al. (2012) suggested viscosity laws in which
the viscosity decreases very rapidly for small melt fractions.
They are incorporated into a 2-D finite difference mantle con-
vection code with two-phase flow (FDCON) to study the as-
cent of solitary porosity waves. The models show that, start-
ing with a Gaussian-shaped wave, they rapidly evolve into
a solitary wave with similar shape and a certain amplitude.
Despite the strongly weaker rheologies compared to previ-
ous viscosity laws, the effects on dispersion curves and wave
shape are only moderate as long as the background poros-
ity is fairly small. The models are still in good agreement
with semi-analytic solutions which neglect the shear stress
term in the melt segregation equation. However, for higher
background porosities and wave amplitudes associated with
a viscosity decrease of 50 % or more, the phase velocity and
the width of the waves are significantly decreased. Our mod-
els show that melt ascent by solitary waves is still a viable
mechanism even for more realistic matrix viscosities.

1 Introduction

Magmatic phenomena such as volcanic eruptions on the
earth’s surface show, among others, that melt is able to as-
cend from partially molten regions in the earth’s mantle. The
melt initially segregates through the partially molten source
region and then ascends through the unmolten lithosphere
until it eventually reaches the surface. Within supersolidus
source regions at low melt fractions, melt is assumed to
slowly percolate by two-phase porous flow within a deform-
ing matrix (McKenzie, 1984; Schmeling, 2000; Bercovici
et al., 2001), followed by melt accumulation within rising
high-porosity waves (Scott and Stevenson, 1984; Spiegel-
man, 1993; Wiggins and Spiegelman, 1995; Richard et al.,
2012) or focusing into channels which can possibly penetrate
into subsolidus regions. Stevenson (1989) carried out a linear
stability analysis and found conditions at which flow insta-
bilities may arise, which may result in different 3-D shapes
like elongated pockets, channels or porosity waves (Richard-
son, 1998; Wiggins and Spiegelman, 1995). Formation of 3-
D channels within a deforming matrix has been demonstrated
in Omlin et al. (2018) or Räss et al. (2014). Here we focus
on the supersolidus source region and in particular on the dy-
namics of porosity waves. An essential parameter controlling
the width and phase velocity of porosity waves is the effec-
tive shear and bulk matrix viscosity (Simpson and Spiegel-
man, 2011; Richard et al., 2012). Most of the porosity wave
model approaches used either equal bulk and shear viscosi-
ties or simple laws in the form of

ηs = ηs0 (1−ϕ), (1)

ηb = ηs0C
(1−ϕ)
ϕm

, (2)

where ηs is the effective shear viscosity of the matrix, ηb the
bulk viscosity, ηs0 the intrinsic shear viscosity of the matrix,
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C a constant of order 1, ϕ the porosity, and m= 0 for equal
shear and bulk viscosities orm= 1 otherwise. There are also
recent models that use more complex pressure-dependent
weakening viscosities, but they still use the simplified equa-
tions mentioned above for the porosity dependence of the vis-
cosity (Omlin et al., 2018; Yarushina et al., 2015). Schmeling
et al. (2012) developed an effective viscosity model depend-
ing on a simplified geometry of the fluid phase within a vis-
cous matrix. Possible melt geometries include flat, ellipsoid-
shaped melt inclusions with an aspect ratio α and melt tubes
with circular or triangular cross sections with tapered edges.
Comparison of the previous viscosity laws, Eqs. (1) and (2),
with the ones by Schmeling et al. (2012) clearly shows that
for aspect ratio 1, and particularly for smaller α, the effective
matrix viscosities are significantly weaker, and disaggrega-
tion of the solid occurs at melt fractions significantly smaller
than 100 % as predicted by laws Eqs. (1) and (2). Recent vis-
cosity models based on microscopic diffusion through grains,
grain faces and the melt phase confirm the significance of
weakening with respect to Eqs. (1) and (2) (Rudge, 2018).
The aim of this study is to model 2-D porosity waves with
the viscosity laws by Schmeling et al. (2012) and test the
influence of the weaker rheology on their shape and ascent
velocity in the absence of melting or freezing.

2 Theoretical approach

2.1 Governing equations

The mathematical formulation of differential movement be-
tween solid matrix and melt basically builds on that de-
scribed in Schmeling (2000) and Schmeling et al. (2019) and
is applied here to a porosity wave. We solve the equations
for mass and momentum conservation for melt and solid.
The formulation of the governing equations for the melt-in-
solid two-phase flow dynamics is based on McKenzie (1984),
Spiegelman and McKenzie (1987) and Schmeling (2000),
and it is valid for infinite Prandtl number (i.e., neglecting
inertia terms in the momentum equations), and small fluid-
to-matrix-viscosity ratios. In the following all variables asso-
ciated with the fluid (melt) have the subscript f and those as-
sociated with the solid have the subscript s. Without melting
and freezing, the equation for the conservation of the mass of
the melt is

∂ϕ

∂t
+∇ · (ϕvf)= 0, (3)

and the mass conservation of the solid is

∂ (1−ϕ)
∂t

+∇ · ((1−ϕ)vs)= 0. (4)

vf and vs are the fluid and solid velocities, respectively. The
velocities are derived from the momentum equations, which

is a generalized Darcy equation for the fluid separation flow,

vf− vs =−
kϕ

ηf ϕ
(∇P − ρfg) , (5)

and the Stokes equation for the solid–fluid mixture in the
limit of zero fluid viscosity is

ρg−∇P +
∂τij

∂xj
= 0. (6)

kϕ is the permeability that depends on the rock porosity (i.e.,
melt fraction) with the power n,

kϕ = k0ϕ
n, (7)

where ηf is the dynamic melt viscosity; g is the gravitational
acceleration; ρ is the density of the melt–solid mixture, ρf is
the density of the melt; P is the fluid pressure, whose gra-
dient is driving the motion; and τij is the effective viscous
stress tensor of the matrix.

τij = ηs

(
∂vsi

∂xj
+
∂vsj

∂xi

)
+

(
ηb−

2
3
ηs

)
δij∇ · vs (8)

with the effective shear viscosity ηs and the effective volu-
metric or bulk viscosity ηb of the porous matrix. The term(
ηb−

2
3ηs

)
∇ ·vs is often referred to as compaction pressure.

The linearized equation of state for the mixture density is
given as

ρ = ρfϕ+ ρs (1−ϕ) (9)

with the density of the matrix ρs.
The fluid pressure in Eqs. (5) and (6) is the same and can

be eliminated by merging the two equations. Inserting the
density of the mixture, and using Eq. (7), Eq. (5) is recast
into

vf− vs =−
k0ϕ

n−1

ηf

(
g (ρs− ρf)(1−ϕ)+

∂τij

∂xj

)
. (10)

This equation states that the velocity difference between fluid
and solid phases (i.e., fluid separation flow or the segregation
velocity) is driven by the buoyancy of the fluid with respect to
the solid and the viscous stress in the matrix which includes
the compaction pressure.

Following Šrámek et al. (2007) the matrix velocity, vs, can
be written as the sum of the incompressible flow velocity, v1,
and the irrotational (compaction) flow velocity, v2, as fol-
lows:

vs = v1+ v2 =


∂ψ
∂z

∂ψ

−∂x

+


∂χ
∂x

∂χ

∂z

 , (11)

with the incompressible velocity potential or stream function
ψ and the irrotational (compaction related) velocity poten-
tial, χ . From Eq. (11) it follows that the latter is given as the
solution of the Poisson equation

∇
2χ =∇ · vs. (12)
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The divergence term ∇ · vs can be derived from summing up
Eqs. (3) and (4) to give

∇ · vs =−∇ · [ϕ (vf− vs)] . (13)

Equation (12) represents a Poisson equation which can be
solved for χ once the melt porosity and segregation velocity
are known. As boundary condition the normal velocity of v2,
i.e., v2n, can be prescribed, which is equivalent to a normal
derivative of χ , i.e., a Neuman boundary condition. If the
normal velocity is constant along the boundary, it automati-
cally fulfills free slip. For the sake of simplicity, v2n = 0 was
chosen.

Taking the curl of the matrix momentum (Eq. 6) eliminates
the pressure. Inserting the viscous stress tensor (Eq. 8), the
density (Eq. 9) and the matrix velocity (Eq. 11) into the re-
sulting equation gives the momentum equation in terms of
the stream function ψ and the irrotational velocity poten-
tial χ(
∂2

∂x2 −
∂2

∂z2

)[
ηs

(
∂2ψ

∂x2 −
∂2ψ

∂z2

)]
+ 4

∂2

∂x∂z

[
ηs
∂2ψ

∂x∂z

]
= (ρs− ρf)g

∂ϕ

∂x
+A(χ) (14)

with

A(χ)=−2
∂2

∂x∂z

[
ηs

(
∂2χ

∂x2 −
∂2χ

∂z2

)]
+ 2

(
∂2

∂x2 −
∂2

∂z2

)[
ηs
∂2χ

∂x∂z

]
.

The governing equations are non-dimensionalized by the
compaction length, δc0 (McKenzie, 1984), and a scaling sep-
aration velocity, vsc0, both of which are taken at a reference
state which assumes a constant background porosity ϕ0. The
corresponding scaling viscosities and the scaling permeabil-
ity are denoted by ηb0, ηs0 and kϕ0. The compaction length is
given by

δc0 =

(
ηb0+

4
3ηs0

ηf
kϕ0

) 1
2

(15)

and is the length scale over which a variation in fluid flux
gives a response to the compaction. The scaling separation
velocity is given as

vsc0 =
kϕ0

ηfϕ0
(ρs− ρf)g. (16)

This defines the scaling law, where the primes denote non-
dimensional values and the subscript 0 refers to the back-

ground porosity:

x = δc0x
′, v = vsc0v

′,

t =
δc0

vsc0
t ′, τij = ηs0

vsc0

δc0
τij
′,

η = ηs0η
′, ρ = ρsρ

′, ϕ = ϕ0ϕ
′. (17)

The resulting governing equations for the mass are

∂
(
1−ϕ′

)
∂t ′

+∇
′
·
((

1−ϕ′
)
vs
′
)
= 0, (18)

∂ϕ′

∂t ′
+∇

′
·
(
ϕ′vf

′
)
= 0 (19)

and for the momentum equations we get(
∂2

∂x′2
−

∂2

∂z′2

)[
ηs
′

(
∂2ψ ′

∂x′2
−
∂2ψ ′

∂z′2

)]
+ 4

∂2

∂x′∂z′

[
ηs
′
∂2ψ ′

∂x′∂z′

]
= ϕ2

0
ηb0+

4
3ηs0

ηs0

∂ϕ′

∂x′
+A

(
χ ′
)

A
(
χ ′
)
=−2

∂2

∂x′∂z′

[
ηs
′

(
∂2χ ′

∂x′2
−
∂2χ ′

∂z′2

)]
+ 2

(
∂2

∂x′2
−

∂2

∂x′2

)[
ηs
′
∂2χ ′

∂x′∂z′

]
, (20)

vf
′
− vs

′
= ϕ′

n−1

(1−ϕ0ϕ
′
)
ez−

ηs0(
ηb0+

4
3ηs0

) 1
ϕ0

∂τ ′ij

∂x′j

. (21)

with ez as unit vector in the z direction (positive upward).

2.2 The effective viscosity of a porous matrix

The effective viscosity laws proposed by Schmeling et
al. (2012) assume ellipsoidal melt inclusions, or melt films
if the inclusions are flat, or melt tubules embedded within an
effective viscous medium. This self-consistent assumption is
able to predict viscous weakening of a solid matrix with a
disaggregation melt porosity on the order of 50 % or less de-
pending on the assumed melt geometry. From their numerical
models, Schmeling et al. (2012) derive approximate formulas
for the porosity dependence of the dimensional effective ma-
trix shear and bulk viscosities for a melt network geometry
consisting of 100 % films,

ηs = ηs0

(
1−

ϕ

c1

)k1

for ϕ < c1, (22)

ηb = ηs0c2
(c1−ϕ)

k2

ϕ
for ϕ < c1, (23)

with k1 = a1 (a2+α (1− a2)), c1 =
b1α

1+b2α
k3

and

c2 =
4
3αc
−k2
1 · (c3 (1−α)+α), where a1 = 0.97, a2 = 0.8,
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Table 1. Parameters to calculate the viscosities for a melt network
consisting of 50 % tubes and 50 % films using Eqs. (24) and (25).

α a1 a2 b1 b2 ϕmax

0.2 0.8074 2.595 0.7009 1.276 0.2428
0.3 0.7435 2.622 0.7082 1.278 0.2629
0.4 0.6958 2.645 0.7145 1.281 0.2730
0.5 0.6692 2.664 0.7182 1.284 0.2785

b1 = 2.2455, b2 = 3.45, k2 = 1.25, k3 = 1.29, c3 = 2 and
α is the aspect ratio of the ellipsoidal inclusions. At the
disaggregation threshold found as ϕ = c1, the partially
molten material loses its cohesiveness and both viscosities
approach zero.

For a melt network consisting of 50 % tubes and 50 %
films, the following approximate equations have been de-
rived from the model of Schmeling et al. (2012):

ηs = ηs0 ·

(
1−

ϕ

ϕmax

)k
, (24)

ηb = ηs0a2

(
ϕmax−ϕ

ϕ

)b2

. (25)

The parameters needed to calculate these viscosities for dif-
ferent aspect ratios between 0.2 and 0.5 are given in Table 1.
k is given by k = a1ϕ+ b1.

Figure 1 shows the effective shear and bulk viscosities for
different aspect ratios together with the simplified previous
laws (1) and (2).

Takei and Holtzman (2009) and Rudge (2018) suggest that
in the presence of an infinitesimal amount of connected melt
the effective viscosity undergoes a finite drop on the order
of a few tens of percents of the intrinsic matrix viscosity.
In our approach we always have a finite melt porosity, and
thus we may identify the zero porosity viscosity ηs0 in our
formulation with the initially weakened value of Takei and
Holtzman (2009) or Rudge (2018).

2.3 Methods and model setup

For the model we use a square box (1× 1), which is initially
partially molten to a certain degree, the background porosity.
We place an initial porosity anomaly with a higher poros-
ity centered at x0 = 0.5 and z0 = 0.2 from which a porosity
wave will develop. As the shape and width of a solitary wave
with a certain rheology law and amplitude is not known a
priori, we use a Gaussian wave of the form

ϕ = A · exp

((
x− x0

w

)2

−

(
z− z0

w

)2
)

(26)

for the perturbation and vary the initial width w of the wave.
At the sides of the symmetric box boundaries and at the

top and the bottom, free slip boundaries are used. The in-

and outflow velocities of matrix and melt at the top and bot-
tom are prescribed in terms of the analytical solution for the
background porosity.

The influence of the boundaries on the ascending wave
was investigated and found to be fairly small. In Fig. 3 one
can see the effect of the upper boundary on the phase veloc-
ity. At the end, as the waves approach the upper boundary,
the dispersion curves slightly deviate from the supposed line.
This error is smaller than 0.5 % as long as the distance from
the center of the wave to the upper boundary is greater than
1.5 times its 10 % radius. This radius is defined as the radius
at which the porosity has decreased to 10 % of the amplitude
of the wave. For the side boundaries this distance has to be
larger. For distances greater than 3 times the 10 % radius, this
error is smaller than 1 %. In our models the waves have dis-
tances of 7–10 times the 10 % radius, which correspond to
errors between 0.2 % and 0.05 %.

The equations are solved on a 201× 201 grid by finite
differences (FDs) using the code FDCON (e.g., Schmeling
et al., 2019). Resolution tests have been made with grids
varying from 101× 101 to 401× 401. They show that after
a short transient time the phase velocity and amplitude of
the evolved porosity wave approach constant values for very
high resolutions for all viscosity laws used. The subsequently
observed slow variations in the phase velocity and ampli-
tude of the wave along a quasi-steady-state dispersion curve
can be attributed to numerical diffusion at finite grid resolu-
tion. The resolution test shows that (1) the quasi-steady-state
phase velocity and amplitude of the wave are of error or-
der 1, and (2) the dispersion curves obtained on a 201× 201
grid overestimate the extrapolated phase velocity values by
about 10 %. Time step resolution tests show that the long-
term temporal behavior of the porosity waves is significantly
improved if the time steps are chosen smaller than approxi-
mately 0.2 times the Courant criterion.

The amplitude and phase velocity of the evolving porosity
wave are obtained at every time step by quadratic interpola-
tion of the porosity values on the FD grid and determining
the value and velocity of the position of the maximum of the
quadratic function. The resulting phase velocity shows small
oscillations in time, which are probably due to the interaction
of the 1st-order error in time when solving Eqs. (3) and (4)
and the 2nd-order error of the interpolation. These oscilla-
tions are smoothed by applying a moving average including
50 neighboring points. The resulting time series of porosity
amplitude and phase velocity can be plotted as a curve with
time as curve parameter in an amplitude–phase velocity plot.
This curve can be understood as a dispersion curve because
the phase velocity depends on amplitude and thus implicitly
on the width or wavelength of the porosity wave.

For the model series presented below the width and the
amplitude of the initial wave, the background porosity, and
the rheology law have been varied. All models were carried
out using n= 2 and n= 3 in the permeability–porosity law.
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Figure 1. Shear (solid) and bulk (dashed) viscosity for several aspect ratios as a function of the melt fraction. (a) The viscosities are
calculated for a melt network consisting of 50 % tubes and 50 % films. (b) The network consists of 100 % films. The red lines show the
simplified analytical viscosities (Eqs. 1 and 2).

3 Results

3.1 Dispersion curves for varied widths and amplitudes

As the shape of a two-dimensional porosity wave for a cer-
tain wave amplitude is not known, the initial width is varied.
In Fig. 2a we show a porosity wave of amplitude 8 initially
positioned at x = 0.5 and z= 0.2 (left) as it rises through the
model box. In Fig. 2b a horizontal cross section through the
maximum of an initial wave and the resulting solitary wave
at a late stage are shown. During the early stage the wave
gains some amplitude as the volume of an equivalent soli-
tary wave with the same amplitude would be smaller for this
example. Then the amplitude of the ascending wave slowly
decreases again due to numerical diffusion and the evolving
phase-velocity–amplitude curve describes the quasi-steady-
state dispersion relation. At this point the wave is expected to
be a solitary wave. The shape of this wave resembles a Gaus-
sian bell-shaped curve quite well but does not fit exactly. The
upper part of the wave in this example fits very well, while
the lower part is slightly wider.

To analyze the evolution of the ascending solitary wave
the phase velocity and the amplitude are tracked over the full
rising time and plotted into a dispersion diagram. In Fig. 3
the dispersion curves of a model with a starting wave width
which is initially larger than the resulting solitary wave, a
model with a similar width and a model with a smaller ini-
tial width are shown. The curves start with high velocities for
the Gaussian bell-shaped wave and then rapidly slow down
until they approach a specific point visible as a sharp kink
from which they slowly follow a line. For the bigger and op-
timal width models, after this kink, the wave is expected to
have reached the solitary wave stage. For the bigger initial

width this stage is reached at a higher amplitude than ini-
tially assumed. It is important to note that, independent of
the initial wave width, after reaching a solitary wave stage
the velocities and shapes of waves of a certain amplitude are
always equal, i.e., the three curves merge on one dispersion
curve. For comparison with semi-analytic 2-D solitary poros-
ity wave solutions, the dashed curves in Fig. 3 and later fig-
ures show dispersion curves with different power law n of
the permeability–porosity relation and different bulk viscos-
ity laws, with m= 0 assuming a constant bulk viscosity and
m= 1 for a 1/ϕ proportionality (see Eq. 2) (Simpson and
Spiegelman, 2011). In contrast to our models, these solutions
(a) use a stiff rheology (“Analytic viscosity” in Fig. 1); (b)
neglect solid shear (first term of the right-hand side of Eq. 8),
which is responsible for v1 (see Eq. 12) in the matrix mo-
mentum equation and for an important contribution in the
separation flow (Eq. 11); and (c) apply the small porosity
limit.

Based on this result one can carry out many models with
different initial wave widths and different initial amplitudes
and get one empirical steady-state solitary wave dispersion
curve for one viscosity law for a wide range of amplitudes.

Figure 4 shows the time-dependent dispersion curves of
models with four different initial amplitudes (4 to 10) and 11
different initial widths each. Depending on the initial widths,
they either gain amplitudes as they approach the solitary
wave stage or they monotonously loose amplitude. Depend-
ing on the initial amplitude and width, each case is charac-
terized by a certain total melt volume, corresponding to a
specific steady-state solitary wave with a specific amplitude.
Therefore the 44 models finally reach one steady-state soli-
tary wave dispersion curve at different amplitudes. As dis-
cussed in Sect. 2, the amplitudes of the waves slowly con-
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Figure 2. (a) Non-dimensional melt fraction at four different time steps during the ascent of a solitary wave with an initial amplitude of 8.
The model was carried out for a melt network geometry consisting of 100 % films and an aspect ratio of 0.1. The background porosity is
0.005 and n= 3. (b) Horizontal cross section through the center of the initial wave and the solitary wave at a later time.

Figure 3. Dispersion curves for three models with an initial width
bigger, smaller and approximately equal to the resulting solitary
wave. Each model was carried out for a melt network geometry con-
sisting of 100 % films and an aspect ratio of 0.1. The background
porosity is 0.005 and n= 3.

tinue to decrease due to some small amount of numerical dif-
fusion. Yet, they continue following the steady-state solitary
wave dispersion curve.

Although we use a different rheology law and do not apply
the simplifications mentioned above, the steady-state disper-
sion curve of our model is in general agreement with the n=
3 and m= 1 dispersion curve determined semi-analytically
by Simpson and Spiegelman (2011) (Fig. 4, dashed curve).
However, given the 10 % numerical overestimation of phase
velocities of our models (see Sect. 2.2), for high amplitudes
our dispersion curve shows a significantly smaller slope
and correspondingly smaller phase velocities than the semi-

Figure 4. Dispersion curves for 44 models with four different initial
amplitudes (4 to 10) and 11 different initial widths each. All models
were carried out for a melt network geometry consisting of 100 %
films with an aspect ratio of 0.1.

analytical curve by Simpson and Spiegelman (2011). Com-
parison of the simplified semi-analytical 1-D solution by
Simpson and Spiegelman (2011) with the full analytical 1-D
solution by Yarushina et al. (2015) shows that for low porosi-
ties these solutions fit very well together. For higher porosi-
ties the full solution becomes slower than the simplified one.
Tentatively transferring this result to 2-D, our decrease in the
slope can probably be explained by the low-porosity limita-
tion of the Simpson and Spiegelman (2011) solution, which
overestimates the velocity at high porosities.

Solid Earth, 10, 2103–2113, 2019 www.solid-earth.net/10/2103/2019/
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3.2 Effect of different viscosity laws for n = 2 and
n = 3 on dispersion curves

To investigate the effect of different viscosity laws, two melt
network geometries are chosen. The first one consists of 50 %
films, or ellipsoidal melt pockets, and 50 % tubes; the second
of 100 % films or ellipsoidal melt pockets. Furthermore, the
aspect ratio α is varied, whereby a higher aspect ratio cor-
responds to compact melt pockets and leads to stronger vis-
cosities and to a higher disaggregation threshold (see Fig. 1).

Waves with these different viscosity laws give only minor
differences in the dispersion curves (Fig. 5a, b). Especially
with the films and tubes case, the curves for different aspect
ratios (Fig. 5a) are not distinguishable, both during the tran-
sient and final stages. In contrast, the analytic viscosity case
(Eqs. 1 and 2) propagates along a different path and con-
verges to a 4 %–6 % higher final phase velocity curve. With
100 % films the differences among curves with the different
viscosity laws in the final velocity are higher and lie on the
order of 6 %. These differences are surprisingly small if com-
pared to the actual differences in effective shear viscosities of
about 13 % and bulk viscosity of about a factor of 4 (at 4 %
melt corresponding to a porosity amplitude of 8). It is also
to be noted that the steady-state part of our dispersion curve
calculated with the analytical viscosity (Eqs. 1 and 2) excel-
lently agrees with the semi-analytical solution (dashed) by
Simpson and Spiegelman (2011) for the same viscosity law,
if we account for the 10 % numerical overestimation of our
model phase velocity (see Sect. 2.2). Thus, their neglect of
shear stresses and other simplifications have only a very mi-
nor effect compared to the effect of different viscosity laws.
The overall effect of weakening of matrix viscosity due to
decreasing aspect ratio is to slow down the phase velocity
slightly.

Changing n of the permeability–porosity relation to 2 de-
creases the wave velocities significantly (Fig. 5c, d). This
drop is consistent with the simplified semi-analytical solitary
wave solutions (n= 2, m= 1, dashed curves). In contrast to
the n= 3 cases, the n=2 velocities are above the Simpson
and Spiegelman (2011) solutions even if the numerical 10 %
overestimation is considered. As for the n= 3 case, porosity
waves with the stronger analytical viscosity case (Eqs. 1 and
2) are slightly faster than the new weaker viscosity cases.

While the ascending phase velocity of the wave is only
slightly affected by the different viscosity laws, the width of
the wave changes more strongly. In Fig. 6 the half widths
of the solitary waves of amplitude of 8 are plotted against
the corresponding wave velocities for the different viscos-
ity laws. For n= 2 (Fig. 6a) and 100 % films the wave gets
wider for higher aspect ratios, while for the mixed geometry
the widths stay more or less constant. The velocity increases
only slightly with the aspect ratio. For n= 3 (Fig. 6b) and
100 % films the width increases with aspect ratio, but in con-
trast to n= 2 the phase velocity decreases with increasing
aspect ratio. For the mixed geometry the velocity and half

width variations are minor again. These results show that as
long as melt tubes represent a significant portion of the to-
tal melt volume (here 50 %), they control the porosity wave
dynamics and keep the porosity wave properties rather fixed.
Only in the absence of tubes do compact melt pockets with
large aspect ratios significantly broaden the waves. For the
stiff case of analytical viscosity (Eqs. 1 and 2), the half width
of the wave is comparable to the weaker films with aspect
0.2, but the velocities are larger (Fig. 6a, b, light-brown sym-
bols).

Another interesting phenomenon to observe is the matrix
velocity in the center of the wave, which increases for all
geometries with aspect ratio (Fig. 7). While for 100 % films
this increase is stronger, for both geometries the velocities
are approximately equal at aspect ratios between 0.2 and 0.3.
For n= 2 (Fig. 7a), the matrix velocities are always positive,
meaning that despite a slow negative background velocity of
the matrix it rises in the center of the wave (together with
the melt). Interestingly, for n= 3 (Fig. 7b) and small aspect
ratios (0.1 and 0.2, i.e., weaker effective matrix viscosities),
the direction of flow of the matrix is changed and the matrix
in the center flows downwards, i.e., against the direction of
melt flow. Assuming constant matrix shear and bulk viscosi-
ties, Scott (1988) observed a similar switch from negative to
positive matrix velocities in the center of a 2-D solitary wave
when the ratio of the bulk-to-shear viscosity was increased
from 1 to 9 for n= 3. We see this switch around α = 0.25,
corresponding to a bulk-to-shear viscosity at the center of
the porosity wave of about 16, and higher elsewhere. Such
a switch can be explained by an increasing role of diapiric
flow, which is v1 related, incompressible and moving upward
in the center of the wave, with respect to the compaction flow,
which is v2 related, irrotational and moving downward in the
center of the wave (see Eq. 12). Weakening of the bulk vis-
cosity within the porosity wave relative to the shear viscos-
ity allows for stronger decompaction and compaction rates,
which amplify the downward compaction flow with respect
to the upward diapiric flow.

In the previous models the scaling background porosity
of 0.005 and maximum wave amplitudes of 10 to 12 im-
ply maximum melt fractions of 5 % to 6 %. Thus, the ma-
trix shear viscosity decrease was only small, on the order of
10 % for the aspect ratio 0.1 models and on the order of 5 %
for the stiffer analytical viscosity laws (1) and (2). This ex-
plains the rather mild rheology effect when comparing the
effect of the different viscosity laws. With the aim to reach
higher maximum melt fractions associated with stronger rhe-
ological effects, we carried out a model series with increased
background porosities, both applying the analytical viscosity
law (m= 1) and our weaker matrix viscosities with 100 %
films with an aspect ratio 0.1 (Fig. 8). The increase in the
background porosity from 0.5 % to 1.5 % has only a minor in-
fluence on the behavior of the solitary wave for models which
use the analytical viscosity law (m= 1): the half width of the
wave is almost completely unaffected (by ∼ 1 %), while the
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Figure 5. Dispersion curves of solitary waves with (a) n= 3, films and tubes; (b) n= 3, films; (c) n= 2, films and tubes; and (d) n= 2,
films for different aspect ratios.

phase velocity is increased by only approximately 2.5 %. Us-
ing a viscosity law based on a melt geometry consisting of
100 % films and an aspect ratio of 0.1, the differences be-
come significant. The half width decreases to ∼ 70 % of its
initial value, and the phase velocity decreases by up to 20 %
with increasing background porosity, i.e., with an increased
maximum porosity within the wave. Thus, the half widths
and phase velocities show a significant difference to the an-
alytical viscosity law (Fig. 8). In fact, the phase velocities
show the opposite behavior to the analytical viscosity law
(see Fig. 8b). These models suggest that the high melt frac-
tions within the waves, which are associated with a signifi-
cant local matrix weakening, both for shear and bulk viscos-
ity, lead to effectively shortened compaction lengths within
the wave, i.e., to a narrowing and focusing of the wave. Such
narrower waves contain less melt than broader waves of the
same amplitude, i.e., less buoyancy, which slows down the
rising phase velocity.

4 Discussion

It is interesting to note that although the semi-analytic solu-
tions of Simpson and Spiegelman (2011) neglect the shear
term in the matrix momentum equation and in the separation
flow equation, they are in good agreement with the low ϕ0
models which include this term. To understand this we made
a test with a model with 100 % films and aspect ratio 0.1
and found that in the separation flow Eq. (11) the shear term
has a significant amplitude of about 50 % compared to the
compaction term. We then switched off this term in the sep-
aration flow Eq. (11), which is equivalent to assuming zero
shear viscosity. Surprisingly, it turned out that separation ve-
locity changed only insignificantly while the amplitudes of
matrix divergence and convergence increased by about 25 %,
and the compaction-related term driving the separation ve-
locity in Eq. (11) increased by about 50 %, i.e., by the same
amount the shear term had before. Obviously, the buoyancy
forces of the solitary wave are partitioned between the de-
compaction pressure controlled by the bulk viscosity and the
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Figure 6. Non-dimensional half width plotted against non-dimensional phase velocity for a porosity wave of amplitude 8 for different
viscosity laws. The numbers give the aspect ratios of the films or melt pockets. The background porosity is 0.5 %. (a) Permeability–porosity
exponent n= 2 and (b) n= 3.

Figure 7. Matrix velocity in the center of a wave with an amplitude of 8 as a function of the aspect ratio of the films for (a) n= 2 and
(b) n= 3. The background porosity for all models was 0.005.

shear stresses, namely the vertical normal shear stresses. If
these stresses are neglected by assuming a zero shear vis-
cosity, the buoyancy forces are balanced by the compaction
pressure alone, and the shear contribution of the downward
segregation flow is taken over by the increased compaction
contribution.

Recently, Rudge (2018) developed a diffusion creep model
based on microscopic diffusion calculations in the presence
of melt in textural equilibrium with truncated octahedrons.
Assuming infinite diffusivity in the melt phase, Rudge (2018)
obtains a somewhat stronger weakening of the shear viscos-
ity at smaller melt fractions than in our model but compara-
ble disaggregation porosities as in Fig 1. However, due to the

infinite diffusivity assumption, the bulk viscosity remains fi-
nite (equal to 5/3 of the effective shear viscosity) even at
very small melt porosities, while in our model it increases
infinitely in the limit of zero porosity. We expect that our re-
sults with increased weakening effect (ϕ0 increased to 1.5 %)
might be applicable also to the rheology based on the analy-
ses of Rudge (2018).

It should be noted that in our study the viscosity law has
been varied by assuming various melt geometries of melt
films and films or melt pockets superimposed with tubes,
while the permeability–porosity relation has been varied in-
dependently between n= 2 corresponding to the ideal case
of only interconnected tubes and n= 3 corresponding to the
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Figure 8. (a) Horizontal profiles through ascending waves and (b) dispersion curves with different background porosities but the same non-
dimensional amplitude of 7. The dot-dashed curves were calculated with the simplified analytical viscosity law (m= 1). The solid lines were
calculated with a viscosity law based on 100 % films and an aspect ratio of 0.1.

ideal case of interconnected thin films. Three-dimensional
melt distributions of partially molten mantle rocks have been
studied by serial sectioning (Garapić et al., 2013), identifying
a network of melt tubes and films, and by microtomography
(Zhu et al., 2011), suggesting the predominance of melt tubes
along grain edges. Yet, at higher melt fractions the latter
distributions are characterized by tapered edges of the melt
tubes partly or completely wetting grain faces between adja-
cent grains. From the latter experiments Miller et al. (2014)
determined the permeability by 3-D fluid flow modeling and
found an exponent of 2.6. Thus, our simplified melt viscosi-
ties and permeabilities cover quite well observed partially
molten olivine-basalt systems in textural equilibrium.

In Richard et al. (2012) it was observed that with in-
creasing background porosities the waves will widen and the
phase velocities will slow down. In our models we observe
faster velocities with increasing background porosity if the
analytical viscosity is used. This can be explained by the
different scaling which was used by Richard et al. (2012).
They used just the shear viscosity to calculate the compaction
length and not the sum of shear and bulk viscosity. If the
same scaling is used, we get the same behavior for the phase
velocity (Fig. S1b, the Supplement). In contrast to Richard
et al. (2012), we observe a narrowing effect of the waves for
larger background porosities, which cannot be explained by
scaling (Fig. S1a). As Richard et al. (2012) used a 1-D model,
we suspect that 2-D effects such as including the incompress-
ible flow velocity, v1, are responsible for the different shapes
of the wave at different background porosities.

5 Conclusions

As the shape of a solitary wave in our models cannot be de-
scribed analytically, we start with a Gaussian wave which de-
velops quite rapidly into a solitary wave with a similar shape
and a certain amplitude, depending on the initial width of the
wave.

Even though the rheologies used are much weaker than the
simplified analytical ones, the effect on dispersion curves and
wave shape are only moderate as long as the shear viscosity
does not drop below about 80 % of the intrinsic shear viscos-
ity. This value corresponds to a melt fraction of 5 %, equiva-
lent to 20 % of the disaggregation value. At this porosity the
bulk viscosity is approximately 5–7 times the intrinsic shear
viscosity. In this case the phase velocity changes just slightly
for all cases, while the waves broaden in the absence of tubes
with increasing aspect ratio.

In contrast, for higher melt fractions of about 12 %, equiv-
alent to 50 % of the disaggregation values, the shear viscos-
ity decreases to 50 % of the intrinsic viscosity, and the bulk
viscosities are on the order of the intrinsic shear viscosity.
Then, our models predict significant narrowing of the poros-
ity waves and slowing down of the phase velocities. For such
conditions a strong discrepancy in solitary wave behavior be-
tween our viscosity law and the analytical ones is found.

For low melt fractions our models are in good agreement
with semi-analytic solutions which neglect the shear stress
term, because the matrix shear contribution of the downward
segregation flow is taken over by the increase in the com-
paction contribution.
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