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Abstract. Not all continental rifts mature to form a young
ocean. The mechanism and duration of their cessation de-
pend on the crustal structure, modifications in plate kinemat-
ics, lithospheric thermal response, or the intensity of sub-
crustal flow (e.g., plume activity). The cessation is recorded
in the structure and stratigraphy of the basins that de-
velop during the rifting process. This architecture is lost
due to younger tectonic inversion, severe erosion, or even
burial into greater depths that forces their detection by low-
resolution geophysical imaging. The current study focuses
on a uniquely preserved Oligo-Miocene rift that was sub-
sequently taken over by a crossing transform fault system
and, mostly due to that, died out. We integrate all geologi-
cal, geophysical, and previous study results from across the
southern Galilee to unravel the structural development of the
Irbid failing rift in northwest Arabia. Despite tectonic, mag-
matic, and geomorphologic activity postdating the rifting, its
subsurface structure northwest of the Dead Sea fault is pre-
served at depths of up to 1 km. Our results show that a series
of basins subsided at the rift front, i.e., rift termination, across
the southern Galilee. We constrain the timing and extent of
their subsidence into two main stages based on facies anal-
ysis and chronology of magmatism. Between 20 and 9 Ma
grabens and half-grabens subsided within a larger releasing
jog, following a NW direction of a deeper presumed princi-
pal displacement zone. The basins continued to subside until
a transition from the transtensional Red Sea to the transpres-
sional Dead Sea stress regime occurred. With the transition,
the basins ceased to subside as a rift, while the Dead Sea fault
split the jog structure. Between 9 and 5 Ma basin subsidence

accentuated and an uplift of their margins accompanied their
overall elongation to the NNE. Our study provides for the
first time a structural as well as tectonic context for the south-
ern Galilee basins. Based on this case study we suggest that
the rift did not fail but rather faded and was taken over by
a more dominant stress regime. Otherwise, these basins of a
failing rift could have simply died out peacefully.

1 Introduction

Failed continental rifts mark regions where crustal extension
began in the past but did not mature into continental breakup.
Their extension first forms an elongated valley that hosts a
series of subsiding basins. Seismicity and volcanism accom-
pany the subsidence, as observed along the Rhine Graben,
the East African Rift, the Baikal Rift, and the Shanxi Rift
of China (Ziegler and Cloetingh, 2004). However, some rifts
fail to mature beyond this stage. Their seismicity, volcanism,
and overall extension gradually cease. They become aulaco-
gens, also called failed rifts, paleo-rifts, and aborted rifts
(Hoffman et al., 1974; Şengör, 1995; Brueseke et al., 2016).

Rifting cessation may result from modifications in plate
kinematics or in lithospheric thermal re-equilibration (e.g.,
along the Ordovician–Silurian Transbrasiliano Lineament;
Oliveira and Mohriak, 2003). It could also reflect a decay
in plume intensity (e.g., Delhi basin; Sharma, 2009) or vari-
ations in rheological properties (Lyakhovsky et al., 2012). In
this case, the extensional strain is accommodated by local-
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ized deformations over a wider region than the original rift
axis (Van Wijk and Blackman, 2005; Segev et al., 2014).

The mechanism and duration of the cessation vary from
one case to another. A rapid stop might be a result of exten-
sional stress decay, acquaintance with a more rigid crust, or
a newly established stress regime different enough to mute
the rifting process. Fading, i.e., gradual decrease in the dom-
inant rifting stress, leads to attenuation and eventually rift
abortion. In the Potiguar rift (Brazil) case, Precambrian base-
ment faulting patterns dictated the Neocomian–Barremian
syn-rift graben formation style. Magnetic, gravity, and resis-
tivity data delineated intraplate transform boundaries, which
generated fault-controlled depressions. Both the NE-trending
(parallel to rift axis) oblique-slip faults and the N–S-trending
en-echelon normal faults die out in the post-rift sedimentary
units (de Castro and Bezerra, 2015). In southeastern Aus-
tralia, a transform fracture zone cuts across preexisting base-
ment structures. Folds and foliations of previous structural
stages present unfavorable orientations for reactivation under
the present stress field (Lesti et al., 2008).

Preservation of failed rift structures in the geological
record depends on the intensity and efficiency of later tec-
tonic and erosion processes. In some cases, the internal ar-
chitecture and thus the imaging resolution of the basins com-
prising a failed rift may be lost due to tectonic inversion, se-
vere erosion, or even burial into greater depths (Beauchamp
et al., 1996, 1999; Guiraud and Bosworth, 1997; Dézes et
al., 2004). The reconstruction of the architecture depends on
the geophysical imaging resolution (d’Acremont et al., 2005;
Enachescu, 2006; de Vicente and Muñoz-Martin, 2013; Melo
et al., 2016). The current study focuses on the structural
development of a rift front, its failure, and later preserva-
tion. We concentrate on the Irbid rift (also referred to as the
Azraq–Sirhan or Qishon–Sirhan rift) that developed across
the Arabian Plate and into the Sinai subplate during the
Oligocene–Miocene (Schattner et al., 2006a; Segev et al.,
2014; Fig. 1). Despite tectonic, magmatic, and geomorpho-
logic activity postdating the rifting, the original subsurface
structure of the failed rift is preserved at depths of up to 1 km.

2 Regional geological setting

The Precambrian basement underlying the Galilee assem-
bled during the pan-African orogeny until ∼ 620 Ma (Ben-
tor, 1985; Stern, 1994; Stein and Goldstein, 1996; Stern and
Johnson, 2010). Subsequent truncation eroded a 6–10 km
thick section from the Galilee area (Garfunkel, 2002). The
Paleozoic opening of the Palmyride rift (overlapping the
current location of the Palmyride Belt; Fig. 1) crossed the
Galilee in a NNE orientation (Walley, 1998; Segev and Es-
het, 2003). Opening of the Levant basin (Garfunkel and De-
rin, 1984; Robertson, 1998; Garfunkel, 1998, 2004; Gardosh
et al., 2008) during the Early Cretaceous (Segev et al., 2018)
redefined the formerly inland Galilee region as a new conti-

nental margin. The passive margin accumulated marine sed-
iments until the Late Cretaceous.

Progressive closure of the Neotethys Ocean at the northern
Arabian Plate (Stampfli and Hochard, 2009; Frizon de Lam-
otte et al., 2011) induced compressional stresses across the
Levant margin. The stresses inverted the extensional grabens
formed 100–200 Myr earlier and folded the Levant margin
(Sagy et al., 2017). A ∼ 50 km wide S-shaped fold belt de-
veloped from northern Sinai, through Israel, and along the
Palmyride region (the “Syrian Arc”; Krenkel, 1924; Hensen,
1951; Guiraud and Bosworth, 1997; Walley, 1998; Hardy et
al., 2010). Compressional stresses kept the margin at shal-
low depths, while the syn-tectonic chalks of the Santonian–
Paleocene Mount Scopus Gr. covered the Late Cretaceous re-
lief. During the Paleogene–Eocene tectonic and thermal qui-
escence led to gravitational vertical subsidence of NW Ara-
bia. The resulting transgression submerged the entire Galilee
under more than 1000 m of ocean water. Lower to middle
Eocene sediments comprise mainly chalks and limy chalks
with sporadic chert nodules and chert layers (Sneh et al.,
2000a; Segev et al., 2011).

Mantle upwelling of the Afar plume began at the late
Eocene, uplifting the overlying crust (Hofmann and Cur-
tillot, 1997; Pik et al., 2003; Avni et al., 2012, and references
therein). Part of the mantle plume volume propagated north-
wards away from the plume head during the Oligocene–early
Miocene (∼ 25–17 Ma). Its imprint on surface topography
was recorded as a gradual and continuous uplift migration
across northeastern Africa, gradually exposing the region
above sea level. The exposure led to a regional truncation that
leveled the area into a low-relief peneplain over merely 7 Myr
(e.g., Egypt, Jordan, southern and central Israel; Picard,
1943, 1951; Quennell, 1958; Garfunkel and Horowitz, 1966;
Garfunkel, 1970; Horowitz, 1979, 1992, 2001; Ben David
and Mazor, 1988; Zilberman, 1989, 1992; Avni, 1991, 1993,
1998; Ben David, 1993; Bar et al., 2013, 2016; Avni et al.,
2012). In the Galilee, the regional truncation surface (RTS)
serves as a marker, dividing between marine carbonates be-
low and lacustrine, fluvial, and volcanic rocks above (Picard,
1943; Wald et al., 2014, 2019; Wald, 2016). Meanwhile,
Eocene chalks and Paleocene–early Miocene greenish-gray
shales and marls accumulated on the Levant margin (Fig. 2;
Gvirtzman et al., 2011; Steinberg et al., 2011).

The Afar uplift was accompanied by a regional crustal ex-
tension and the formation of two NE–SW-trending coeval
rifts (Schattner et al., 2006a). The NW-trending Red Sea–
Suez rift divided Arabia from Africa (Steckler and ten Brink,
1986; Bosworth et al., 2005), while the NW-trending Irbid
rift developed across the Arabian Plate. The northwestern
front of the Irbid rift crosses the southern Galilee (Fig. 1;
Shaliv, 1991; Schattner et al., 2006a). The Irbid rift divides
two crustal terranes that differ in thickness and seismicity
(Ginzburg et al., 1994; Hofstetter et al., 1996; Ben-Avraham
et al., 2002; Segev et al., 2006) and possibly form two dif-
ferent subplates (Palano et al., 2013; Schattner and Lazar,
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Figure 1. (a) Major tectonic, magmatic, and sedimentary elements along the eastern Mediterranean basin and surrounding plates (after
Garfunkel, 1989; Ilani et al., 2001; Schattner et al., 2006a, b; Segev et al., 2014, 2017). Schematic extent of the Irbid rift is outlined in dashed
blue lines. Inset – main tectonic elements in the vicinity of the Arabian Plate – the Dead Sea fault (DSF), Afar dome, and the Owen fracture
zone (FZ). The Cretaceous Syrian Arc fold belt extends from Egypt to Syria across the Galilee. LM – Levant margin; G – Galilee; RF –
Roum fault; SL – southern Lebanon; SG – Sea of Galilee (Fig. 3 for zoom-in); DS – Dead Sea; LRB – Lebanese restraining bend. Bordeaux
outline – study area, presented in Fig. 3. (b) Reconstructing the pre-DSF plate configuration using the structural map of the top Judea Group
interface (modified from Segev et al., 2014). The Beteha basin on the Arabian Plate is attached to the Bet She’an basin on the Sinai subplate,
which showed a ∼ 55 km motion along the DST. Basins referred to herein are marked by the B series (B1 to B11). Abbreviations: F., fault; V.,
valley; B., basin; L., low; Mt., Mount; Hasb., Hasbaya; Rach., Rachaya; Serg., Serghaya; SAF, Sheikh Ali fault; BSKB, Bet She’an Kinarot
basin; DST, Dead Sea transform.

2013). A series of basins subsided along the NW-propagating
Irbid rift. They developed across the present-day Galilee up
to the Levant continental margin (Lyakhovsky et al., 2012;
Segev et al., 2014). However, unlike the Red Sea, spread-
ing across the Irbid rift failed to mature into a young ocean
(Shaliv, 1991; Schattner et al., 2006a). The Galilee basins
subsided during the late Oligocene–Miocene terminal stages
of the Irbid rift. They maintained their low topographic relief
despite intense tectonic activity along the nearby Dead Sea
fault plate boundary (Shaliv, 1991; Matmon et al., 2003).

Lateral motion along the N–S-trending Dead Sea fault
(DSF) plate boundary initiated between 18 Ma (Freund,
1970; Garfunkel, 1981, 1998; Joffe and Garfunkel, 1987) and
14 Ma (Bayer et al., 1988; Bosworth et al., 2005). In a recent
study, Nuriel et al. (2017) dated the onset of motion along
the DSF. Their calcite age–strain analyses yielded ages of
20.8–18.5 Ma for the southern DSF and 17.1–12.7 Ma for the

DSF in northern Israel (next to our study area). The motion
decapitated the Irbid rift and isolated the Galilee basins on
the newly formed Sinai subplate (Schattner et al., 2006a).
Transtension along the DSF resulted in further subsidence
of basins along it during the late Miocene to early Pliocene
(Garfunkel, 1981; Joffe and Garfunkel, 1987; Smit et al.,
2010). Around 5 Ma the lateral displacement along the DSF
reached ∼ 40 km, while extension across the valley was ∼
4 km (Joffe and Garfunkel, 1987). However, since 5 Ma sub-
sidence of the basins along the DSF accentuated (e.g., Gulf of
Aqaba, Dead Sea, and Hula basins; Figs. 1 and 3; Garfunkel
and Ben-Avraham, 2001). This trend was also recorded in
the basins situated at the junction between the DSF and Irbid
rift trends (Figs. 1 and 3): Bet She’an (B7), Kinarot (B10),
and Sea of Galilee basins (Hurwitz et al., 2002; Segev et
al., 2014; B7, B10 in Fig. 3). Further north, increased trans-
pressional motion along the DSF (Freund, 1970; Schattner
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Figure 2. Stratigraphic correlation across the Galilee. Pink numbers (1, 2) represent unconformity surfaces. Radiometric ages (in million
years, i.e., Myr) from Shaliv (1991), Heimann et al. (1996), and Segev (2000). Dating of Fejas tuff, Gesher, and Cover Basalt formations
(shown in red) from Rozenbaum et al. (2016). Base of Cover Basalt age is from site 3 of Dembo et al. (2015). CvB – Cover Basalt Formation.;
Bi – Bira Formation; US – Umm Sabune Formation; CS – Clay Series; S – Susita Formation; Av – Avedat Group; MSc – Mt. Scopus Group;
J – Judea Group.

and Weinberger, 2008; Weinberger et al., 2010) uplifted the
Lebanese restraining bend (Fig. 1; e.g., Walley, 1998; Gomez
et al., 2006, 2007). Contraction of the bend induced a N–S
extension of the Galilee basins. As a result, the formerly Ir-
bid rift basins remained low in both structure and topography
(Schattner et al., 2006a, b).

3 Morpho-tectonics of the southern Galilee basins

The southern Galilee Neogene basins extend across ∼ 50 km
between the DSF and the Levant continental margin (Fig. 3).
The Carmel–Gilboa (C, GL in Fig. 3b) and Zurim fault (Z in
Fig. 3b) systems in the south and north (respectively) bound
the southern Galilee basins (Schattner et al., 2006a, b). Their
N–S extent narrows westwards from ∼ 35 to ∼ 10 km in a
low relief that exhibits sporadic highs dividing local valleys.
The surface of the westernmost basin, Yizre’el (B2), is at
30–70 m a.s.l. To the east Kesulot (B3) and Taanach (B5)

basins are at 60–100 m, Harod basin (B6) is between 30 and
−210 m, and Bet She’an (B7) is at −250 m. The low relief
of the southern Galilee basins (i.e., valleys and intervening
small hills) divides two segments of the Mesozoic Syrian Arc
fold belt (Krenkel, 1924; Fig. 3b). The remnant Mesozoic
Syrian Arc fold belt, which currently builds the Israeli hilly
backbone, has risen by∼ 500 m since the Pliocene (Fig. 3b –
GL, C, UEF, N, SF). Lower Cretaceous (Kurnub Group) and
Jurassic (Arad Group) exposures appear in limited areas. The
upper Cretaceous Judea and Mount Scopus groups are ex-
posed mainly along the fold belt truncated crests, for example
along the Gilboa, Carmel, and Nazareth ridges. The fold belt
synclines are also uplifted to ∼ 250 m, exposing the Eocene
Avedat Group (across Tiv’on and Menashe hills; Fig. 3).

Sedimentary infill of the southern Galilee basins com-
prises intercalations of siliciclastic, volcanic, and carbonate
lithologies of the Dead Sea and the Upper Saqiye (previously
Tiberias) groups (Fig. 2). They accumulated mainly un-
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Figure 3. Location map of the study area, Sinai subplate. (a) Location of the multichannel seismic reflection profiles used in this study on
a shaded relief digital elevation model (DEM; Sneh et al., 2000b). Local names of the basins and the structural highs are abbreviated to
simplify the description as follows: B1 – Zevulun basin, B2 – Yizre’el basin, B3 – Kesulot basin, B4 – Afula basin, B5 – Taanach basin, B6
– Harod basin, B7 – Bet She’an basin, B8 – Moledet basin, B9 – Sirin basin, B10 – Kinarot basin, B11 – southern Golan basin. H1 – Tiv’on
hills, H2 – Hayogev-Mizra horst, H3 – Navot high, H4 – Sede Nahum high. (b) A 1 : 200000 geologic map (Sneh et al., 1998). Note major
faulted boundaries: the Carmel–Gilboa (C–GL) southern fault boundary and the Zurim escarpment northern fault boundary. For color code
see Fig. 2, with two exceptions – Lower Basalt Fm. (purple in map) and the Neogene formations: Hordos, Clay Series, Bira, and Gesher –
all of which appear in cream. Abbreviations: F – Faria anticline, Z – Zurim escarpment, dividing between upper and lower Galilee, BN – Bet
Netofa, BK – Bet Hakerem, P – Poriyya, T – Tur’an, SF – Shefar’am, TVN – Tiv’on, N – Nazareth, C – Mt. Carmel, M – Menashe syncline,
S – Shekhem syncline, YQ – Yoqne’am, MG – Megiddo, UEF – Umm El Fahm anticline, JN – Jenin, GL – Mt. Gilboa, DSFV – Dead Sea
fault valley, HB – Hula basin.

der continental (lacustrine–fluvial) conditions with phases of
shallow marine intercalations. Since the early Miocene and
until the present, the relatively high rims of the basins have
contributed clastics that accumulated in the basins (Shaliv,
1991; Sandler et al., 2004; Rozenbaum et al., 2016). This
mixture resulted in a discontinuous and irregular distribution
of sedimentary units and facies across the southern Galilee
basins. Some of the units wedge laterally (e.g., Umm Sabune
Conglomerate Fm., Bira Fm. in Fig. 2), while others appear
only locally.

A series of studies conducted over the last half-century
provide invaluable insights into the stratigraphy, hydrology,
geophysics, and outcrop mapping of the study area and its
surroundings. They include master’s and PhD theses as well
as reports and peer-reviewed papers (e.g., Schulman, 1962;
Sass, 1966; Yair, 1968; Weiler, 1968; Dicker, 1969; Klang
and Sherman, 1972; Dekel, 1988; Shaliv, 1991; Hatzor, 1988;
Gev, 1989; Sneh et al., 1998; Gardosh and Bruner, 1998; Bar-
tov et al., 2002; Rotstein et al., 2004; Sagy and Gvirtzman,

2009; Segev et al., 2006; Abelson et al., 2009; Zilberman et
al., 2009). Some of the studies focused on volcanism, paleo-
drainage, and paleohydrology of the Yizre’el basin (Yair,
1968; Schulman, 1962; Wishkin, 1973; Shaliv, 1991; Gev,
1989; Baer et al., 2006). Geophysical studies showed the ar-
chitecture of basins along the southern Galilee: Bet She’an
basin (Meiler et al., 2008; Gardosh and Bruner, 1998; B7
in Fig. 3); Zevulun basin (Sagy and Gvirtzman, 2009; B1
in Fig. 3); and Taanach and Yizre’el basins (Politi, 1983;
Rotstein et al., 2004; B5 and B2 in Fig. 3). These studies
focused on localized structures across the southern Galilee
basins and left the larger regional context unresolved. The
current study integrates all the previous results with unpub-
lished data to address fundamental questions regarding the
origin and development of the lower Galilee. It surveys the
geometry of the basins to clarify regional structural relation-
ships: is it a single continental basin that accumulated sed-
iments from its surrounding rims (Picard, 1943; Schulman,
1962; Shaliv, 1991)? Alternatively, maybe it is a full graben
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bounded by longitudinal faults, Zurim and Carmel–Gilboa
from the north and south, respectively (as suggested by Kafri
and Ecker, 1964; Mero, 1983), or possibly a couple of half-
grabens bounded by these faults (as proposed by May, 1987;
Matmon et al., 2003)? What is the structural and tectonic as-
sociation between the southern Galilee basin development
and the nearby DSF and Levant continental margin? More
specifically, what is the relationship between the southern
Galilee basins and the Irbid rift? In what manner does the
structural development of the southern Galilee basins relate
to the regional volcanic events?

4 Dataset and methodology

Geological reconstruction of the structure and development
of the southern Galilee basins relies on an integrated inter-
pretation of all available geophysical and geological datasets
from the study area. The new database was constructed on
the Kingdom Suite (IHS) platform. It includes 70 multichan-
nel seismic reflection profiles, 506 boreholes, outcrop data,
and previous seismic interpretations. The seismic reflection
data were acquired from the 1970s through the 2000s. The
profiles cover a total length of 800 km. The average depth
imaging is 500–1000 m below the seismic datum (sea level).
The borehole depth ranges between 35 and 2390 m below the
surface. Seismic resolution enables the interpretation of geo-
logical units starting from the upper Cretaceous (Fig. 2).

Stratigraphic, hydrological, geophysical, and outcrop
datasets collected in the past across the study area are
integrated here into a single database in a WGS 1984-
UTM 36N datum projection, bridging over gaps in ver-
tical and horizontal resolution, reflector amplitudes, pro-
cessing methods, and data. These sources include Schul-
man (1962), Sass (1966), Aizenberg (1967), Yair (1968),
Weiler (1968), Dicker (1964, 1969), Klang and Sher-
man (1972), Dekel (1988), Shaliv (1991), Hatzor (1988),
Gev (1989), Sneh et al. (1998), Gardosh and Bruner (1998),
Bartov et al. (2002), Rotstein et al. (2004), Sagy and Gvirtz-
man (2009), Segev et al. (2006), Abelson et al. (2009), and
Zilberman et al. (2009). Data were further used for construct-
ing structural maps of key surfaces. The surfaces and faults
were exported from the Kingdom Suite to Petrel (Schlum-
berger) to build a structural model. Results of previous ge-
ological mapping were used to extend the structural model
from sea level datum (elevation of 0 m) up to the present-
day topography (30–550 m a.s.l.). Two velocity surveys were
done in the area (Sarid 1 and Revaya 7 wells; SM3, 7, 9). The
synthetic seismogram of Revaya 7 well (Frieslander, 1997;
Meiler et al., 2008) enabled a reliable stratigraphic correla-
tion with the seismic data. In addition, using a 2000 m s−1

velocity for the shallow, near-surface beds (weathered beds)
enabled correlation between depth and time domains. Com-
pletion of the structural model relied upon digitization of
truncation surfaces from previous studies in ArcMap (ESRI)

(Weiler, 1968; Dicker, 1969; Dekel, 1988; Shaliv, 1991,
2003; Sneh, 2008). Outcropping truncated surfaces are con-
sidered as layers within a specific unit rather than its top (due
to erosion). Control points were added from boreholes. In-
tegration of all datasets yielded a coherent database and a
three-dimensional geological grid model of the Galilee sub-
surface extending from a depth of 2500 m to the present-day
surface topography.

5 Results

This section describes the sedimentary fill of the basins in
chronological order. It is followed by a description of the
structural elements. Local names of the basins and the struc-
tural highs (i.e., uplifted blocks) are abbreviated to simplify
the description (Fig. 3). All geographical locations men-
tioned in text appear in the Google Earth™ Supplement,
herein referred to as GE. The sedimentary fill is bounded be-
tween two temporal and structural markers. The basin floor
is marked by the Oligo-Miocene regional truncation surface
(RTS; ∼ 23–17 Ma; Figs. 2 and 4), a peneplain predating the
subsidence of the basins. The RTS truncates the folded and
displaced structures of the Judea, Mt. Scopus, and Avedat
groups (Fig. 2). The latter is thinning towards H2 and pinches
out approximately 400 m west of it (Fig. 5). An important
surface culminating the Neogene sedimentary fill is the top of
the Bira Fm., depicting a very mild relief. The Cover Basalt
Fm. locally covers it and provides a temporal marker. Anal-
ysis of the entire database indicates that the type section is
located along the axis of the southern Galilee basins (B2, B4,
B6, and B7). Basin depocenters align along a northwest axis
(Figs. 1b and 7). Further details from B3, B5, and B8–B9
basins complete the section. Additional information from B1,
B10, and B11 is provided in the discussion (location: Fig. 3).

5.1 Basin fill

The oldest formations deposited above the RTS are the con-
temporaneous Lower Basalt and Hordos fms. (Fig. 2). Today,
these formations appear in the subsurface and also outcrop
across marginal areas and local highs (Fig. 6). The Hordos
Fm. predates the Lower Basalt Fm., yet their seismic appear-
ance is similar. They resemble each other in reflection fre-
quency, amplitude, and continuity. Some differences between
these formations appear in parts of B7. Seismic and borehole
data (Figs. 9, S5, S8, S14) show that the Hordos Fm. cov-
ers the floor of the B6–7 and 10 basins and thickens south-
wards along the DSF. Further up the section, it inter-fingers
with the Lower Basalt Fm. that thins southwards along the
DSF. The Lower Basalt Fm. directly overlies the basin floor
in B2–5, excluding local highs (Figs. 5 and 7). The concor-
dant seismic appearance of the formation hints to the con-
secutive succession of basalt flows and the hiatuses between
them (Figs. 5, 7, and 8). The lateral continuation of reflec-
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Figure 4. (a) Subcrop map of the Oligocene regional truncation surface (RTS) in the UTM GWS1984 Zone 36N projection. The map
shows the youngest units truncated by the RTS based on the integrated interpretation of geological and geophysical data from the surface
and subsurface. Colors correspond to the seismic profiles. Red polygon marks the extent of data gathered in the current study. (b) Spatial
variation in truncation across the Galilee is a product of kriging interpolation, further represented by contours of equal time gap in million
years. Black dots mark locations where the youngest unit below RTS and older unit from above are available for quantifying the time gap
(the time gap is discussed in Wald et al., 2019). Some of the data points are today exposed above the datum of the map. Note that some of
the points may include pre-Oligocene truncations.

tors degrades towards fault and fold zones, representing dis-
placement events postdating the accumulation of the Lower
Basalt Fm. (Figs. 9–11; Figs. S1–S4, S8, S10 in the Supple-
ment). The Lower Basalt Fm. is missing from B1, where the
oldest basin fill unit comprises marls associated with the Bet
Guvrin Fm. (Lower Saqiye Group; Figs. 3 and 4).

Numerous seismic, borehole, and outcrop datasets indi-
cate that the Lower Basalt Fm. generally thickens towards
the center of each of the basins (Fig. S6). The thickening is
also indicated by the arrangement of main faults, dikes, and
volcanic feeders (Figs. 5, 10, 11, and S1–S5). In B3–7 and
H2 the thickness exceeds 100 m. In B2, the Lower Basalt
Fm. fills a Cretaceous syncline while onlapping its flanks.
It thickens from a few meters over H1 to a constant ∼ 125 m
at the center of B2. The thickness of the Lower Basalt Fm.
reaches 400–600 m adjacent to H2 (Fig. 10). At the western
part of B4, a borehole crossed 630 m of the Lower Basalt Fm.
(Table 1). However, this is a minimal value since the base of
the formation has not been reached. B3 is divided into two
sub-basins by H2. The eastern part of B3 accumulated 50–
100 m of Lower Basalt Fm., while the western part accumu-
lated at least 350 m (base of the formation was not reached).

In the eastern border of B4 and B5, the Lower Basalt Fm.
reflectors onlap an elevated Eocene block (H3) at∼ 10◦. The
Lower Basalt Fm. thickness does not exceed 200 m in B5. Its
reflectors appear parallel–subparallel to the basin floor (RTS,
Figs. S3 and S16). Further east, near the B6–7 Lower Basalt
Fm., thickness varies considerably between 395 and 750 m
(Table 1). In B10 the Lower Basalt Fm. reaches 3500 m (Ta-
ble 1). The southern subsurface limit of the Lower Basalt Fm.
is the Nahal Bezek fault, whereas a localized outcrop several
tens of meters thick appears further south in Marma Fayad
(location: Fig. 6, Google Earth Archive – GE; Figs. 6, 7, and
10a).

The top of the Lower Basalt Fm. is an erosional uncon-
formity that accentuates eastwards, according to the age of
the units overlying it (Figs. 2, 3, 6, and S5). In the west,
the Umm Sabune conglomerate and Clay Series fms. over-
lay the Lower Basalt in B2–5 basins (Figs. 5, 8, and 11).
The Bira Fm. covers this unconformity over the H2 and H3
structural highs and across B6 (Fig. 9). In the eastern Galilee
(B8–9) and B7, the top Lower Basalt unconformity is either
directly overlain by the Cover Basalt Fm. at elevated terrains
(e.g., Yisachar-Gazit and Hashita-Geva blocks of B8; loca-
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tion: Fig. 10a) or covered by the Bira Fm. (Figs. 3, 10, and
S8).

The clastic formations of the Dead Sea Gr. overlie the trun-
cated top of the Lower Basalt Fm. (Figs. 8, 9, 11, S1–S6, S8,
S10, and S14). Data indicate that the group accumulated dur-
ing the upper Miocene–Pliocene in a lacustrine–fluvial en-
vironment. Appearances of lumachelle ostracods at the Bira
Fm. indicate an episodic connection to the marine environ-
ment. Interchanging paleosol horizons and volcanic remains
crossed in boreholes point to exposed continental environ-
ments. The Umm Sabune Conglomerate Fm. overlies the
Lower Basalt Fm. at H1, the margin of B2 (Kishon 1 bore-
hole; Fig. 8, GE), and in the eastern Galilee. The conglomer-
ates appear near the margins of the basins and volcanic cen-
ters. They are bounded by the intersection between Gevat and
Nazareth faults (Fig. S7). The Umm Sabune Conglomerate
Fm. contains basaltic pebbles derived from the Lower Basalt
Fm., as well as alluvial carbonate and basaltic pebbles that
experienced extensive mechanical reworking.

The Clay Series Fm. is contemporaneous to the Umm
Sabune Conglomerate Fm. (Figs. 2 and S7). The grain size
of both formations decreases upwards as well as towards the
depocenters of each basin. The geographic coverage of these
formations defines the present spatial extent of basins B2–6
(Fig. 3). The Clay Series Fm. appears at the center of B2–
B7. In places, it directly overlays the Lower Basalt Fm. (e.g.,
Taanach 4 borehole; Fig. S3, GE). Its thickness is relatively
constant along the axis of the central basins B2 (400 m) and
B4 (200 m), and it reduces towards B6. In more peripheral
areas it ranges around tens of meters (Figs. 8, 9, 11, S1–S6;
Table 1). The thickness differences may point to differential
subsidence during deposition.

The Lower Basalt Fm. is covered by three younger forma-
tions: Bira Fm., Gesher Fm., and locally by the Cover Basalt
Fm. (Fig. 2). Seismic resolution does not allow to us differ-
entiate between the Bira Fm. and the Gesher Fm., so these
two units are generally termed the Bira Fm. in seismic pro-
files shown here. The Bira Fm. consists mostly of marls, but
also of marine and lacustrine limestones, gypsum, and salt.
Its thickness ranges between 0 and 200 m (Figs. 9 and S5).
The Bira Fm. also overlies the Umm Sabune Conglomerate
and Clay Series fms. in places (Figs. 2, 5, 8–9, 11, S1, and
S4–S6). In seismic data the Bira Fm. appears as a continu-
ous set of reflectors detectable across the basins (Figs. 5 and
S4), even in folded and faulted regions (Figs. 8 and 11). Re-
flectors at the base of the formation onlap an unconformity
(Figs. 5, 8, S2, and S4). The top of the Bira Fm. is an uncon-
formity surface (Fig. S4). In places, it is overlain with para-
conformity by the Cover Basalt Fm. (Fig. 9). The Bira Fm.
is missing over topographic and structural highs (Figs. 5, 9,
and S5).

5.2 Faults

Three types of faults appear in the database: (1) major
marginal faults that bound the southern Galilee basins from
north and south; (2) faults dividing between basins, subver-
tical to the basin axis (their orientation ranges from NE to
NNE); and (3) throughgoing faults that cross the basins. The
current study focuses on the first two types, while the third is
at the center of Wald et al. (2019).

5.2.1 Major faults

Three major marginal faults define the southern rim of the
southern Galilee basins. In the NW, the Carmel fault down-
throws B1 by ∼ 1500 m. Further ESE, a series of normal
faults includes the Yoqne’am fault, whose downthrown side
is B2. The throw decreases southeastwards from ∼ 200 m
to ∼ 50 m (Figs. 7 and 10c, GE). The trace of Yoqne’am
fault diminishes to the SE until it intersects with Gideon and
Hayogev faults in the Megiddo region (western margin of
B4–5; Fig. 8). The Umm El Fahm fold plunges NE towards
B5, where it appears at a depth of 150–200 m below the sur-
face (Fig. S9). Given the poor seismic imaging, a southern
bounding fault is marked as suspected (Figs. 10b, c, S10,
and S11). However, this discontinuity of reflectors may be
ascribed to an apparent structural throw, termed Dotan flex-
ure herein (Figs. 10c, 13, and S10), between the Umm El
Fahm anticline (Figs. 3, S10, and S11) and Shekhem syn-
cline (Figs. 3 and S9) of the upper Cretaceous Syrian Arc
fold belt (Fig. 3).

The amount of displacement increases again along the
Gilboa fault in the southeast. The Gilboa fault extends from
the middle of H2 southeastwards (Figs. 10, S9, and S11). In
the NW the Gilboa fault appears in the subsurface of north-
ern B5, where the entire package of reflectors of the basin
fill is dipping northwards towards B4. It downthrows B4 by
400 m relative to B5. The fault downthrows B6 about the
Gilboa block footwall (Figs. 7 and S11, GE). The fault is
detectable across the shallow subsurface up to the seismic
datum (mean sea level) and exposed in places. This suggests
it was active at least through the Plio-Pleistocene. In the east,
the Gilboa fault also appears in the subsurface of B7, where
it forms a flower structure, attesting to a lateral component of
displacement. Vertical displacement along the fault is in the
range of 100 m (Figs. 10 and S11). In the southeast, Tayassir,
Bardala, and Bezeq faults bound B7 from the south (Figs. 10,
S9, S11, and S14). These faults divide between the basin and
the NNE-trending Faria anticline that plunges from the south.
At the eastern boundary of the study area, DSF truncates the
eastern part of B7 (Fig. S14).

The northern border of the Galilee basins is the E–W-
trending Bet Hakerem fault system (including Zurim escarp-
ment) and Ahihud fault (e.g., Matmon et al., 2003; Schat-
tner et al., 2006b; Figs. 3 and 10c). The Neogene basins
mapped here pinch out northwards and do not reach these

Solid Earth, 10, 225–250, 2019 www.solid-earth.net/10/225/2019/



R. Wald et al.: Structural expression of a fading rift front 233

Figure 5. (a) Multichannel seismic reflection profile line MI-2187 crossing the basin axis (location: Fig. 3). (b) The RTS horizon (celeste)
divides pre-truncation from post-truncation sediments. The Hayogev-Mizra horst (HMH) intervenes between Kefar Baruch and Afula Neo-
gene basins. Cretaceous units at the syncline were interpreted using intersecting and overlapping deeper seismic profiles from the DS series
(see Fig. S3). Boreholes KY15 – Kefar Yehoshua 15, G1 – Gideon 1, and G5 – Gideon 5, projected by 1 km from the south (location: Fig. 3b,
GE). Uppermost unit (gray): alluvium. (c) Same profile; flattening of the celeste horizon (RTS) to image the truncation. The flattening tool
enables a comparison between predating and postdating sedimentary stacks. Flattening the RTS in the seismic software hints at RTS predat-
ing and postdating main processes. For example, in Kefar Baruch basin, Cretaceous folding shown by a syncline predates the RTS, while
Neogene subsidence, shown by an accumulation of Neogene sediments, postdates the RTS. Bi – Bira Formation; CS – Clay Series; LwB –
Lower Basalt Formation. Groups: Avedat Group; Mt. Scopus Group; Judea Group. Vertical exaggeration: ×5.
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Table 1. Marked thicknesses of the Lower Basalt Fm.

Data source Associated Thickness Base Basin Figure
(well name, seismic data, reference) basin (m) reached? floor

Poriyya type section; Shaliv (1991); B10 750 No Senonian Figs. 8 and 9 in Shaliv (1991);
Schulman (1962) location: Figs. 3, 10b, GE

Gideon 5 B4 630 No Senonian Fig. 5, GE
Bira 3 B8 450 No Eocene GE
Shadmot Devora B9 385 Yes Eocene GE, Fig. 6
Belvoir 1 B6-7 660 Yes Senonian GE, Fig. 6

Seismic data B7 1000 (inter-fingers with Yes Senonian Figs. 9 and 11
Hordos Formation)

Inbar (2012) B8 2000–3500 No Senonian

Figure 6. Location of the Lower Basalt Formation and Hordos For-
mation outcrops. The westernmost outcrop is along the eastern mar-
gins of H1 (location: Fig. 3; DEM – Sneh et al., 2000b).

faults. Therefore, the E–W-trending Tur’an, Bet Netofa, and
Bet Hakerem valleys are excluded from the current analy-
sis (locations: Fig. 3). A series of NW- to W-trending faults
divides between the latter E–W valleys and the Neogene
basins. The western segment of Bet Qeshet fault borders H1
from the north. Further east, three step faults downthrow
B2 (Zarzir, Timrat, Nahalal faults; Figs. 10c, 11, and S2).
The NE-trending Nazareth fault downthrows B3 southwards,
while B3 fill is dipping to the north (Fig. S4). East of B3, the
Tavor horst (T in Fig. 6) is uplifted along the eastern segment
of Bet Qeshet fault (Figs. 3, 10c, 12; GE). The fault divides
the horst from the Sirin-Qama block (B9 – Fig. 3, location
of fault: Fig. 10c, GE). Neogene exposures extend up to the
northeastern corner of the southern Galilee basins (Figs. 6

Figure 7. Structural map of the top of the Lower Basalt Formation
surface. Note that the lowest areas strike NW. GH – Givat Hamore,
MGD – Megiddo, YQN – Yoqne’am, NZR – Nazareth.

and 10). However, in this area, the delimitation of the south-
ern Galilee basins is less clear due to later displacements.

5.2.2 Secondary faults

A series of NNE- to NE-trending normal faults divide be-
tween the basins and structural highs of the southern Galilee.
The faults are nearly perpendicular to the axis of the basin
complex. Seismic data show that displacements across these
faults are mainly vertical with a horizontal component. Re-
gional numerical modeling of Lyakhovsky et al. (2012), fol-
lowed by a review of rift–transform interaction adjacent to
continental margins (Segev et al., 2014), has predicted rift-
perpendicular features. Locally, these faults, structural highs,
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Figure 8. Multichannel seismic reflection profile line MI-2180. Kefar Baruch basin (B2) and Hayogev-Mizra horst (HMH) are sheared
by faulting and folding. Vertical offset alongside folding on fault branches deforms the Clay Series, Umm Sabune, and Bira formations.
Gevat fault suggests a horizontal offset due to its near-vertical fault plane and 1 km wide flexures (see also Fig. 11). The thick Lower Basalt
Formation on the south suggests a volcanic source in the HMH area (see also Fig. 10). This profile cuts the primary deformation zone and
its uplifted southern shoulders – HMH. Celeste horizon – RTS. Orange dashed rectangle – projected location of the Kishon 1 well. Arrows
depict onlap of the Bira Fm. on the Clay Series. Vertical exaggeration: ×2.5.

and basins between them are evident from the structural map
of the top of the Avedat Gr. that makes up the floor of most
of the basins (Fig. 12). The following paragraphs describe
the division along the major axis from NW to SE.

The structural and topographic transition between H1 and
B2 occurs along a lineament associated with Sede Ya’akov
and Aloney Abba faults. These faults are derived from the
geological map (Sneh et al., 1998; Segev et al., 2006) since a
seismic profile does not intersect them. These faults expose
fragmented outcrops of the Lower Basalt Fm., as well as a
chain of localized springs (Figs. 3, 10c; GE). The intersection
between Sede Ya’akov and Gilboa west faults in the WSW
of B2 is a fracture zone (Tel Kashish; location: GE; Figs. 7,
10, 11, 12, and S12). Hayogev fault bounds B2 in the east,
defining the transition to the NE-trending H2. The Lower
Basalt Fm. forms a westward-dipping monocline above the
fault (Fig. 5).

The H2 horst is topographically elevated by several tens
of meters above B2 and B4. H2 plunges to the NE into the
subsurface of B3, partially dividing B3 into two sub-basins
(Figs. 5, 6, S1; GE). Plio-Pleistocene sediments are absent
from the top of H2. The Lower Basalt Fm. overlies an ero-
sional unconformity of the top of the Judea Fm. (Gideon 1
and 4 wells; location: GE; Figs. 5 and 9) and Mt. Scopus Gr.

(Gideon 3 well; Figs. 5, S3, S4, S10; location: GE). Gideon
fault bounds H2 from the east, downthrowing B4. Normal
displacement along this fault is ∼ 100 m in its northern and
southern margins. It reaches ∼ 500 m in the middle (main
axis of the basins). Correlations between seismic data and
Gideon 1, 2, and 5 wells (Figs. 5, 9, and S5; GE) show un-
even thickness between the fault flanks, suggesting that it was
active several times during the middle and late Miocene, at
least until the end of deposition of the Bira Fm. (Figs. 5, 7, 9,
and S5).

Three structural elements separate B3 from B4. Afula fault
vertically throws Lower Basalt Fm. reflectors northward by
approximately 200 m (Figs. 7 and 10). East of the fault the
volcanic Givat Hamore and Ein Dor blocks separate B3 from
B4. (Fig. 10, location: Fig. 7, GE). Gideon 5 well, located
along the margin of B4, crossed 980 m of Neogene basin fill
and did not encounter the base of the Lower Basalt Fm. This
suggests that vertical displacement across Gideon fault oc-
curred during the mid-Miocene. The displacement took place
concurrently with dike intrusions and uplift of Givat Hamore
and Ein Dor blocks (Figs. 7 and 10).

Gilboa fault defines the boundary between B4 and B5 to
the south, off the axis of the southern Galilee basins. Data
indicate that the B5 fill thickens northwards towards Gilboa
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fault (Figs. 12 and S16). B5 is bounded by H2 in the west
and H3 in the east. Avital fault crosses the NW corner of
B5 (Figs. 10c and S10). Displacements along this subvertical
fault are mainly horizontal. They are associated with branch-
ing into secondary faults and local folding (Figs. S10 and
S16).

The elongated B6 basin extends along the main axis of the
southern Galilee basins, north of the Gilboa fault. The Lower
Basalt Fm. covers the WNW margin of H3. An intermediate
graben hangs as a step between B6 and H3, faulted along
Gilboa fault (Shaliv, 2003, 2005). Seismic data show that
the northern limit of B6 is downthrown along Hashita and
En Harod faults relative to the Hashita-Geva–Zevayim block
(Figs. 7, 10, 12, and 13). Subvertical normal faults down-
throw B7 relative to the eastern flank of H4 and the Hashita-
Geva block (Figs. 9, 13, S11, and S13). Bet She’an fault is the
easternmost of this series. It downthrows the Lower Basalt
Fm. 200 m on its eastern side (Fig. S14). However, the basin
fill thickens and tilts to the east, where its original structural
boundary is unclear. Similarly, the structural transition from
B7 northwards into B8 is vague.

6 Discussion

Integrated analysis of the geological–geophysical dataset
shows the structural development of the original flat
Oligocene to early Miocene RTS (Fig. 2; Avni et al., 2012)
into a series of extensional basins (grabens and half-grabens).
The discussion addresses the development of the basins
based on their structure and stratigraphy. It then suggests
a classification of the southern Galilee basins at each stage
given the regional tectono-stratigraphic events and compari-
son to similar structures worldwide. These insights are used
for understanding the structural development of a failing rift
during its final stages.

6.1 Subsidence of basins

6.1.1 First stage (20–9 Ma)

The first stage of subsidence initiated during the early to mid-
dle Miocene. The subsidence occurred mainly near the east-
ern part of the southern Galilee basins, across B6–11 (Fig. 3).
Subsidence and faulting developed while the conglomerate
member of the Hordos Fm. accumulated in topographic lows
(Schulman and Rosenthal, 1968; Garfunkel, 1989). A com-
posite section crossing the basins along a WNW trajectory
shows that Hordos Fm. accumulation in B6–8 was accom-
panied with normal faulting and folding (Fig. 9). However,
remains of the Hordos Fm. are not restricted to the subsid-
ing basins. Their extent is larger than the current northwest
array of basins. They appear in sporadic outcrops, such as
Marma Fayad and Ein Gev (thickness exceeds 200 m; loca-
tion: Fig. 6, GE), in various elevations on the northern flank
of the Faria anticline, across the tilted blocks of the eastern

Galilee, and across southern B9. The abovementioned evi-
dence suggests that the current shape of the southern Galilee
basins was formed by younger deformations, while preced-
ing Miocene basins extended further south of their present-
day structure. It also indicates that these remains were dis-
placed by younger faults (Figs. 10 and 12; Shaliv et al., 1991)
that were active during the initiation of motion along the DSF
(Freund, 1978; Garfunkel, 1981, 1989).

The spatial and temporal provenance of the lower to mid-
Miocene conglomerate of the Hordos Fm. is still debated.
Conglomerate accumulation of the Hordos Fm. suggests that
basin subsidence predates the Lower Basalt Fm., although
in several localities it inter-fingers with it (Figs. 9, S8, and
S14). Temporal emplacement is therefore tricky. Outcrop
and seismic data from B2 show that normal faults displace
a conglomerate unit before the Lower Basalt Fm. accumu-
lated (Fig. 11). Sandler et al. (2004) associate the conglom-
erate unit to the Bet Nir Fm., suggesting it is concurrent with
the Lower Basalt Fm. (17–9 Ma). Our integrative morpho-
structural analysis bridges the spatial gap between the iso-
lated patches of the conglomerates (e.g., Kafri, 2002; prove-
nance study), suggesting that the Bet Nir and Hordos fms.
accumulated at the same time frame. Together they are prod-
ucts of the same paleo-drainage system that extended from
the east to the west across the low relief of the Galilee imme-
diately before the subsidence of the basins.

The southern Galilee basins accumulated an up to 650 m
thick section of volcano-clasts and flows of Lower Basalt Fm.
during their subsidence (Fig. 10). In general, the thickness
of a basaltic unit is expected to increase close to its source.
This assumption guided the identification of volcanic sources
across the study area. The seismic and borehole database
provided evidence for thickness variations and information
about lithology. Previous studies provided basalt dating from
outcrops and wells, along with mapping of tilted blocks and
faults (Fig. 10; GE; Segev et al., 2006; Dicker, 1964; Schul-
man, 1962; Shaliv, 1991). Integration of the data sources in-
dicate that the basalts arrived through dikes (e.g., Gilboa,
Mishmar Haemek), stocks (Givat Hamore), volcanic erup-
tion centers (Kippod, Kochav Hayarden, Tel Agol), and fault
planes (Sede Ya’akov, Moledet, Yoqne’am, Sandale, Aloney
Abba; Figs. 7, 10, 11, and 12). Baer et al. (2006) dated the
eruption at Givat Hamore to 13.5 Ma. Geochemical anal-
ysis of volcanic products suggests that the lithosphere of
the Galilee has been rich with veins that fed the Miocene
magmatism (Weinstein, 2000). Some of the volcanic sources
(e.g., dikes; Hatzor, 1988; Shaliv, 1991) follow the southern
boundary faults of the basins, suggesting a possible connec-
tion (Figs. 7 and 10).

During the mid-Miocene, normal displacements along
faults facilitated deepening of the basins (Figs. 7, 10c, and
12). The structural signature of the left-lateral displacement
along the DSF is enhanced between 12 and 14 Ma. Bosworth
et al. (2005) suggest that the movement started at ∼ 14 Ma
in association with the transition of Red Sea opening. In re-
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Figure 9. Multichannel seismic reflection profile across basins B2, B4, B6, and B7 (lines MI-2187, DS-2009, DS-2015, DS-3596). The
RTS horizon (celeste) divides pre-truncation from post-truncation sediments. The Hayogev-Mizra high (HMH) intervenes between the Kefar
Baruch and Afula Neogene basins. Cretaceous units at the syncline (Kefar Baruch, B2) and in the eastern B7 area were interpreted using
intersecting and overlapping deeper seismic profiles from the DS series. Location: Fig. 3; unit color code – Fig. 2. No vertical exaggeration.

sponse, the slip along the DSF shifted from a N60◦ E open-
ing motion, perpendicular to the Red Sea axis, to a N15◦ E
motion, diagonal to that axis but parallel to the axis of the
DSF. Others estimate the initiation of DSF displacement in
the study area to 13 Ma (Shaliv, 1991). Northward channel-
ing of the Afar plume (Ritesma et al., 1999; Chang et al.,
2011; Hansen and Nyblade, 2013) along with geodetic and
structural research (Bellahsen et al., 2003; Bosworth et al.,
2005; ArRajehi et al., 2010) suggest a transition in stress
regime. Three-dimensional analogue models of the Red Sea–
Gulf of Aden rift system point at an increase of 70 % in the
rotational relative motion between Africa and Arabia since
13 Ma (Molnar et al., 2017). This pronounced shift at 13 Ma
has left footprints in the Galilee branch.

The association between volcanism and tectonics specif-
ically around 13 Ma appears in several studies across the
Arabian Plate (e.g., Bayer et al., 1989; Camp and Roobol,
1992; Ebinger and Casey, 2001). Until 13 Ma volcanic activ-
ity closely follows the faulting event. A marked shift in vol-
canism is noted at ∼ 13 Ma. In the western Arabian Plate,
volcanic fields renewed their activity after a cessation of
9 Myr (Bohannon et al., 1989; Camp and Robool, 1992; Ilani
et al., 2001; Krienitz et al., 2009). In contrast, magmatic ac-
tivity in the Galilee was relatively continuous. K–Ar dating
bound the volcanic activity across B2 between 16 and 9 Ma
(i.e., the Lower Basalt Fm.; Shaliv, 1991). Further to the east
across B6–B11, H3, and Mt. Gilboa, older K–Ar ages of 17–
15 Ma were retrieved (Shaliv, 1991; 3, 5, 14, 19 in Fig. 10a).
Updated 40Ar / 39Ar dates yield a lower limit of 17 Ma for
the Lower Basalt Fm. (Rozenbaum et al., 2016; Sandler et
al., 2015). Since 13 Ma, volcanism was active across Harrat
Ash Shaam, western Arabia, and the Galilee. It was active
during the subsidence of the southern Galilee basins and the
accumulation of conglomerates.

Integration of all the above evidence indicates that during
the first stage an E–W-trending paleo-drainage system de-
veloped across the southern Galilee, accumulating conglom-
erates. Shortly after, this drainage pattern ceased during the
relief accentuation due to subsidence of a series of < 10 km
wide grabens and half-grabens. The basins collected con-
glomerates separately along with the Lower Basalt Fm. The
basins subsided along a NW-trending axis (Fig. 12). Within
this general trend, some individual basins trend to the WNW
and W. These basins continued to sink, extend, and even
merge during the transition to the second stage of subsidence.

6.1.2 Second stage (9–5 Ma)

Tectonic displacements that acted during the first stage of
subsidence continued during the second, along with erosion.
A series of blocks and depressions depicted from the struc-
tural map of the Lower Basalt Fm. points at the continuance
of vertical motions. Basins continued to subside, forming lo-
cal topographic lows that accumulated the erosion products.
Conglomerates of the Umm Sabune Fm. settled close to the
edges of the basins (Figs. 8, S2, and S7). Their composition
includes pebbles of Lower Basalt Fm. as well as older car-
bonates (Sandler et al., 2004). Grain size of the conglomer-
ates decreases upwards (Schulman, 1962), indicating a mod-
eration of tectonic activity along the rims of the basins with
time. Umm Sabune Fm. outcrops tilt southwards along the
northern rim of B2 (Kafri, 2002). They consist of 200 m of
the Shokek 1 well drilled in a western marginal graben of
B7 unconformably covering Avedat Fm. (location – GE),
occur at the northern plunge of the Faria fold at the south-
ern B7 border (Shaliv et al., 1991), and compose the upper
part of B8–9 inter-fingering with the Bira Fm. (see below).
The Umm Sabune Fm. appears to thicken within the incised
channels that drain B6. The thickening could result from two
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Figure 10. (a) Inferred volcanic sources for the Lower Basalt Formation. Miocene edifices interpreted by Yair (1968), Dicker (1969), and
Shaliv (1991) are ascribed to normal faulting synchronous with Lower Basalt Formation flows. Part of the sources was interpreted using
potential methods (Segev and Rybakov, 2011). (b) Isopach map of the inter-fingering Lower Basalt Formation and the Hordos Formation.
Locally, the latter predates the former. Contour spacing: 100 m. G.H. – Givat Hamore (c) Faults within the study area. Red lines: post-Avedat
Group (lower to middle Eocene) faults. Black fault lines: offset all surfaces within the scope of this study from top of Judea Group to top of
Lower Basalt Formation (upper Cretaceous to Miocene).

factors. Syn-tectonic magmatism allowed the Lower Basalt
Fm. to accumulate within subsiding basins, on the one hand,
whereas other parts of the formation were uplifted across
their rims. The basins deepened while their margins were
gradually elevated (Dicker, 1964). Therefore, elevated ter-
ranes and basinal margins were the provenance of the Umm
Sabune Fm. Ongoing subsidence of B7–8 during the mid-
dle to late Miocene facilitated the accumulation of a thick
section of Umm Sabune Fm. near the margins of the basins

(e.g., Bet Yosef, Neve Ur, and Zemach wells; Fig. 8, Fig. S7;
locations: GE). The Clay Series Fm. was deposited within
their depocenters (B2–6; Figs. 8, 9, 11, S1, S2, and S4–S6).
The Clay Series Fm. has been preserved since most of the
tectonic activity focused on the edges of the basins. As evi-
denced by the presence of tens of water wells, this formation
is verified as a local aquiclude (Wishkin, 1973).

Deposition of the Bira Fm. occurred during the volcanism
that produced the Intermediate Basalt Fm. This volcanic for-
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Figure 11. Multichannel seismic reflection profile line MI-2178. Strike-slip faults with a normal component in the frame of Plio-Pleistocene
lateral shear adjacent to Mt. Carmel and Tiv’on blocks. Normal faulting vertically offsets basin fill units. Post-Bira Formation folding
(postdating uppermost Miocene–Pliocene) is assigned to the strike-slip shear on the originally normal faults. A paleo alluvial fan, predating
the vertical offset, is depicted by the Clay Series. Celeste horizon – RTS; dashed lines – projected wells. NHL – Nahalal; KY – Kefar
Yehoshua. Location: Fig. 3; unit color code – Fig. 2. Vertical exaggeration: ×3.

mation mainly follows faults (Shaliv, 1991), and due to its
minor occurrences (thin sections of a few to tens of meters)
seismic resolution does not permit its interpretation. It oc-
curs cross H3 (Shaliv et al., 1991), along Rewaya and Gefet
faults (Figs. 9, S5, S8, and S14) in B7–10, and the central Jor-
dan Valley (Schulman, 1962; Rozenbaum et al., 2016). With
time, accumulation of the Bira Fm. moderated the rugged re-
lief of the Galilee until it became almost flat at the end of
the Miocene (Fig. S5). The outcrops of the Bira Fm. appear
today close to faults that were active during the second stage
of subsidence and in places cover these faults. This evidence
suggests that the Bira Fm. recorded the cessation of subsi-
dence of the southern Galilee basins. The cessation might be
associated with a short-term tectonic quiescence across the
Sinai subplate and its nearby Levant margin, allowing marine
transgressions to cover the low relief of the southern Galilee.

Previous studies suggest that part of the Bira Fm. ac-
cumulated across the southern Galilee basins during one
or more marine transgressions during the upper Miocene
(Blake, 1935; Schulman, 1962). Shaliv (1991) suggests the
transgression occurred between 7 and 6 Ma (Tortonian),
whereas the global eustatic record does not contradict addi-
tional marine intercalations between 5.4 and 5.25 Ma (e.g.,

Haq et al., 1987; Müller and Hsu, 1987). This deduction
is also supported by marine megafauna (Shaliv, 1991), Os-
trea lumachelle unusual facies in outcrops of southern B9
(Schulman, 1962), and lithological resemblance of the lat-
ter and those of the southern Galilee basin marine succes-
sion (Michelson and Lipson-Benitah, 1986). The transgres-
sions probably arrived from the west (Mediterranean) since
at that time the topographic valley along the N–S-trending
DSF already existed (Fig. S14; Segev et al., 2017). In ad-
dition, lithology of the Bira Fm. shows a distinct marine to
estuarine (saline to brackish) facies shift from west to east
(Dicker, 1964). The change occurs north of B6 (B7–8, along
Moledet–Bira in the Bira (2) and Shadmot Devora (4) wells;
see GE). Gvirtzman et al. (2011) describe a lateral facial shift
during the late Miocene (Fig. 13 in Gvirtzman et al., 2011):
the Pattish Fm. represents the first facies of a continental
shelf (i.e., marine) environment. The transition to the second
lacustrine floodplain facies of the Bira Fm. is located on the
eastern flank of H1, next to the intersection between Sede
Ya’akov and western Gilboa faults in Tel Kashish (Figs. 3,
10c, and S12; Zilberman and Sandler, 2013). Further east,
the third facies of the Bira Fm. is represented by the land-
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Figure 12. Structure of the study area during the Cenozoic. (a) Structural map of the top Avedat Group. Dashed lines portray the structural
highs (H1–4 in Fig. 3a). The current structure of the Galilee is a product of two main subsidence phases shown in (b). (b) Aerial extent of
the first subsidence stage (20–9 Ma) is outlined in light yellow. Dark orange – pronounced subsidence during the first stage, overlapping the
current Dead Sea fault valley. The second subsidence stage (9–5 Ma) is outlined by a series of NNE-trending basins perpendicular to the
major axis of basins from the first stage. Darker brown – pronounced subsidence. The second-stage stress field is depicted by black arrows
(compression) and blue arrows (extension). Bounding normal faults also exhibit a lateral component. HMH – Hayogev-Mizra high, TVN –
Tiv’on, SN – Sede Nahum, BSN – Bet She’an.

locked lake environments of the Sedom Fm. (i.e., along the
Dead Sea fault).

During the late Miocene, Tortonian episodic marine trans-
gressions filled the southern Galilee basins. Saline conditions
developed in separated water bodies as evident from the ac-
cumulation of laminar marls and evaporates (Bira and Sedom
fms.; Shaliv, 1991; Fig. 17d in Segev et al., 2017). Clean gyp-
sum crystals found at the outlet of the Tavor stream are asso-
ciated with a proximal lagoon depositional environment (lo-
cation: Fig. 6; GE). Rozenbaum et al. (2016) suggest that the
gypsum crystals formed before the onset of the Messinian
salinity crisis, i.e., prior to 5.96± 2 Ma (Krijgsman et al.,
1999; Manzi et al., 2013). Our data show that chalks and
limestones were deposited in shallow basins at the Yisachar
and Poriyya area, while conglomerates accumulated along
the rims of the basins (Fig. S15). This flooding is contempo-
raneous with the onlap of the Pattish Fm. reefal limestones
along the Israeli coastal plain.

At the end of the second stage, shallow brackish-water
lakes occupied the topographic lows above the basins. Lime-
stones and chalks of the Gesher Fm. accumulated in lakes
(Shaliv et al., 1991; Rozenbaum et al., 2016). The thickness
of the Gesher Fm. merely reach tens of meters, slightly above
the seismic resolution limit. The Bira and Gesher fms. sealed
the southern Galilee basins and formed a relatively flat re-
lief. Similar to the RTS at the base of the basins, the rela-
tively flat top of the Bira and Gesher Fm. serve as a marker

for tectonic activity that deformed the study area during the
Plio-Pleistocene.

Data presented in this study suggest that the uplift of
Mount Carmel, Tiv’on, and Shefar’am occurred close to the
end of the second stage, between 5 and 6 Ma (Figs. 3 and 12).
The uplifts placed topographic barriers between the Mediter-
ranean Sea and the inland lakes, diverting possible marine
transgressions to regions south of the Galilee. These observa-
tions stand in line with Shaliv (1991). Gvirtzman et al. (2011)
suggest that the Carmel area was submerged under marine
conditions before the upper Miocene. They base this deduc-
tion on a single outcrop located in Bet Rosh that contains
a continuous marine succession from the Eocene to mid-
Miocene. These authors accept the possibility that the Galilee
was exposed and claim that it resembled the Carmel in the
timing of the initiation of vertical displacements during the
upper Miocene. The integrative geological–geophysical data
presented here show the situation differently. Our results at-
test to lacustrine–fluvial infill hundreds of meters thick that
accumulated during the early and mid-Miocene displace-
ments, while tectonics were active (Figs. 7–12).

In summary, the pattern of subsidence of separated and lo-
calized basins continues from stage one to stage two. How-
ever, during the second stage, the basins also elongated along
a NNE trend, while keeping the elevated structural highs in
between (Fig. 12). Numerical modeling of deeper sections
of the lithosphere predicted such a relief pattern of rift axis
perpendicular faulting (Lyahovsky et al., 2012; Segev et al.,
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2014). The subsidence extended beyond the area studied here
into the regions that were uplifted and eroded during the Plio-
Pleistocene, for example over H3 and the tilted blocks of the
eastern Galilee (Figs. 3, 6, and 7).

6.2 Tectonic classification of the basins during the two
stages

The Galilee basins developed during the Neogene due to
two major structural processes. An extensional regime dur-
ing the first stage (20–9 Ma) formed the Galilee basins. The
thinning of the Lower Basalt Fm. to the northwest (Figs. 6
and 10) supports the diminishing of volcanic sources as
well as shallowing of the basin floor in that direction. The
Lower Basalt does not cross H1 (Fig. 3) to the west. This
trend suggests a reduction in regional extension towards the
continental margin in the west, previously assessed by Fre-
und (1970). At this stage, the structure of the basins and
their dimensions are equivalent to intraplate grabens and
half-graben basins that form during intracontinental rifting
(Evison, 1959; Bosworth, 1994; Busby and Ingersoll, 1995;
Allen and Allen, 2005; Morley et al., 2004). Previous stud-
ies showed the development of the Irbid (also referred to as
Qishon–Sirhan or Azraq–Sirhan) rift during the Oligocene–
Miocene in a northwesterly direction (Shaliv, 1991; Schat-
tner et al., 2006a; Segev et al., 2014).

The second stage of subsidence (9–5 Ma) marks a transi-
tion of the extensional stress regime into transtension along
a primary NNE direction and a secondary WNW direction.
Basins subsided vertically and extended perpendicularly to
the principal axis of the first-stage basins, while uplifted
blocks (i.e., structural highs) separate them in a NNE direc-
tion (Fig. 12). The highs are accommodation zones, struc-
turally equivalent to the intervening block separators be-
tween basins along the East African Rift (Bosworth, 1985;
Bosworth et al., 1986; Rosendahl, 1987; Ebinger et al., 1987,
1989; Burgess et al., 1988; Morley et al., 1990). These cited
studies also show that basins along a forming rift accumu-
late sediments while tectonic subsidence is in action. As a
system, some of these rifts may succeed and continue to
open, while others fail. The two stages recorded here oc-
curred alongside the initiation of motion along the nearby
DSF plate boundary.

Interaction between the Dead Sea fault and the Irbid rift is
depicted by the deep depocenter of the Bet She’an basin (B7)
at the then junction area (Fig. 7; pre-lateral displacement on
the Dead Sea fault). Volcanism initiation is also suggested
as 17 Ma for the Galilee (Rozenbaum et al., 2016; Shaliv et
al., 1991). Transform–rift interaction adjacent to the conti-
nental margin is manifested by NW-striking faults within the
Galilee and NE-striking faults within the Golan Heights (lo-
cation: Fig. 3). This process signifies the crossing of the Ir-
bid rift into the other side of the DSF (Fig. 1b; Segev et al.,
2014). Our study supports the numerical modeling of Segev
et al. (2014) by showing that the active rifting of the Irbid rift

on the western side of the DSF succeeded in opening basins
by cutting across the Levant continental margin (Fig. 1b).

6.3 Structural stress field transitions along the plate
boundary

The ongoing Afro-Arabian and Eurasian convergence
(Letouzey and Tremolieres, 1980) induced three major stress
regimes across the Galilee. (1) The Syrian Arc compres-
sional stress regime (Krenkel, 1924) produced a WNW short-
ening during the Turonian (Eyal, 1996; Eyal et al., 2001).
Compression-related folds plunge north towards the Carmel–
Gilboa trajectory, are buried in the subsurface of the south-
ern Galilee basins, and are exposed again across the north-
ern Galilee (Fig. 3). (2) The Red Sea extensional regime
(N60◦ E extension) prevailed during the Oligocene to the
early Miocene (Steckler and ten Brink, 1986; Khalil and
McClay, 2002, 2016; Younes and McClay, 2002; Bosworth
et al., 2005). It resulted in the coeval opening of the par-
allel Red Sea and Irbid rifts (Shaliv et al., 1991; Schattner
et al., 2006a). The N60◦ E extension (McClay and Khalil,
1998; Younes and McClay, 2002; Bosworth et al., 2005) later
shifted during the Neogene (Garfunkel and Bartov, 1977) to
the NNE (N15◦ E; Bosworth et al., 2005). The NW-trending
faults that developed across the study area are part of larger
fault systems extending across the western Arabian Plate
(Fig. 1). Fault systems of the Suez–Red Sea (Steckler and
ten Brink, 1986), Irbid (Schattner et al., 2006a), and Karak
(Bender, 1974) reactivated traces of the Precambrian Najd
fault system (Stern, 1985, 1994; Agar, 1987; Fig. 1). Our data
show that the Red Sea regime provided sufficient conditions
for the first stage of subsidence of the southern Galilee basins
at the northwestern tip of the Irbid rift. The failure of this rift
during the early to middle Miocene is closely associated with
the emergence of the third, Dead Sea, stress regime (Schat-
tner et al., 2006b; Segev et al., 2014).

Convergence between the Arabian and Eurasian plates
transformed into collision and slowed down during the mid-
Miocene (14–12 Ma). This short recess resulted in tectonic
quiescence in the Suez portion of the Red Sea rift (Bayer
et al., 1989), the southern equivalent of the Galilee basins.
Between the two rift systems (i.e., Suez and Galilee), the
Negev (southern Israel) ceased to subside (Zilberman and
Calvo, 2013; location: Fig. 1), while the Judea region was
elevated by 400 m above the Miocene coastline (Sneh and
Buchbinder, 1984; Bar, 2013; location: Fig. 1). During the
same time window, a numerical simulation shows a depres-
sion that subsided along the Irbid rift NW-trending axis, still
not entirely affected by the displacement along the inter-
secting DSF (Lyakhovsky et al., 2012; Segev et al., 2014).
This depression extended from the Irbid structural low in the
east (NW Jordan) to the Beteha, Sea of Galilee, and Kinarot
basins in the west (location: Fig. 1b; Segev et al., 2014).
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The tectonic transition between the Red Sea and Dead Sea
stress regimes was accompanied by an up to 50 % decrease
in the relative velocity of the African plate around 11 Ma
(Reilinger and McClusky, 2011) and a geometric rearrange-
ment of the plates around 9 Ma (McQuarrie et al., 2003; Fac-
cenna et al., 2013). This transition corresponds to the first to
second subsidence stage shift of the southern Galilee basins
(Fig. 12). The DSF cuts through all previous structures along
its∼ 1000 km trajectory. These include the Irbid rift. As a re-
sult, the southern Galilee basins, isolated from their original
system, continued to extend along an orientation tangential to
the new stresses. This extension appears as the second stage
of subsidence of the southern Galilee basins (Fig. 12).

Previous studies widely agree on a N–S extension of the
Galilee during the upper Miocene. Schulman (1962) and
Horowitz (1979) suggest that the Galilee basins continued
to extend during the late Miocene. Freund (1970) calcu-
lated the finite N–S extension based on exposed faults in
the Galilee. His results indicate an increase from 0 % along
the Mediterranean coast, to 5 % across the central Galilee,
and 7 % in B7 (Bet She’an basin) near the DSF. This dis-
tribution pattern of displacement also corresponds to the ex-
posure of the Lower Basalt Fm. that decreases westwards.
Freund (1970) related the differential N–S extension to the
displacement along the nearby DSF. Ron and Eyal (1985)
suggest that during the Miocene to early Pliocene a N–S ex-
tension with E–W compression prevailed across the Galilee.
These stresses resulted in lateral shear along conjugate faults,
accompanied by block rotation. The NNE-trending exten-
sional basins defined in our results are in line with these
deductions. The separation between the first (17–9 Ma) and
second (9–5 Ma) stages suggested here for the first time ex-
plains the structural relations between the declining Irbid
rift and the emergence of DSF dominance. The NE exten-
sion of the Galilee during the declining rifting decreases
in the second stage and shifts to the NNE. However, NNE
extension, including an E–W compression component, pre-
vails into the Pliocene (Figs. 12 and 13). Plio-Pleistocene
geodynamic analysis poses the study area as a seismogenic
branch off the DSF plate boundary. The primary deforma-
tion zone (PDZ) is expressed by a northwest-oriented cross-
cutting shear that overcomes basin subsidence. Earthquake
epicenter distribution and mechanisms, GPS measurements,
and regional studies point to a seismogenic zone located at
9–17 km beneath the surface (Eyal and Reches, 1983; Ron
and Eyal, 1985; Ben-Avraham and Ginzburg, 1990; Eyal,
1996; Hofstetter et al., 1996; Hardy et al., 2010; Salamon
et al., 1996; Gomez et al., 2007; Shamir, 2007; Marco, 2007;
Sadeh et al., 2012; Palano et al., 2013). Our tectonic analy-
sis of the Galilean sheared margins in the frame of the Dead
Sea fault localization process will be published in a separate
paper (Wald, 2016).

6.4 Failed rifts and magmatism

The low extension rate (< 7 %) in the Galilee corresponds to
similar values in other failed rifts, such as Lake Tanganyika
(Morley et al., 1990; Rosendahl, 1987). The extension is
also associated with dike emplacement. Dikes may focus the
strain to detachment faults (Rosenbaum et al., 2008). In Afar
and Ethiopia (eastern Africa) normal faults developed during
the initial stages of rifting and were abandoned 10 Myr later.
Extensional stresses there have focused on a narrow region
that contains faults and magmatic intrusions (Ebinger and
Casey, 2001). In the Gulf of Aden, magmatic activity was
smaller. D’Acremont et al. (2005) show an abandonment of
older detachment faults within the rift environment replaced
by the formation of a newer, shorter segmentation along the
central axis of the rift. Rift-associated magmatism therefore
commences in regions distant from the rift axis and is de-
pendent on fault distribution. In systems where extension is
localized to narrow zones, dikes may follow extension lin-
eaments. Examples of such cases are the Gulf of California
(Lizarralde et al., 2007) and along the magmatic boundary
of the North Atlantic (White et al., 2008). In both areas, the
basaltic intrusions appear within the narrow 50–100 km out-
line of the rift. Hence, evidence for magmatic intrusions and
their spatial arrangement may hint at rifting orientation and
associated extensional stresses.

During the first stage of subsidence in the Galilee volcan-
ism arrived mainly through extensional lineaments associ-
ated with normal faulting, along with the subsidence of the
basins (Fig. 12). Syn-tectonic volcanism supplied the thick
sections of the Lower Basalt and Hordos Fm. in B4, B6, and
B7 (Figs. 6, 9, and 10b). A volcano in the southern margin
of B6 and possible sources along H2 supplied additional vol-
canics that accumulated in B2, B4, and B5. The magmatic
intrusions in H3 (Givat Hamore: location: Figs. 3, 10, and
7) were dated to 15 Ma and associated with a NW to WNW
faulting system (Fig. 7; Dicker, 1964; Shaliv, 1991).

Volcanism continued during the second stage of subsi-
dence, along with the vertical and horizontal displacement of
the study area. The Intermediate Basalt Fm. dated to ∼ 6 Ma
arrives through normal faults bounding H3 from the NE
and perhaps through a volcano located in the Rewaya block
(Shaliv, 1991; Fig. S8). The directional correlation between
faulting and volcanic centers and lineaments (Figs. 7, 10, and
12) obeys a similar regional tendency. Equivalent correla-
tion appears in Karak graben (Bender, 1974), Miocene dikes
across Sinai (Bartov et al., 1980; Baldridge et al., 1991), and
across the Harrat Ash Shaam volcanic field (Feraud et al.,
1985; Mor, 1986; Giannérini et al., 1988; Brew et al., 2001;
Al Kwatli et al., 2012). The strips of alkaline volcanism
across the Arabian Plate represent the beginning of Miocene
volcanism (Camp and Roobol, 1992; Weinstein, 2000; Ilani
et al., 2001). We therefore suggest that the faulting and vol-
canism of the southern Galilee also follow weak lineaments
in the lithosphere.
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Figure 13. (a) Current plan view of the northwest-trending Irbid rift dissected by the Dead Sea fault plate boundary. (b) Neogene basin
subsidence across the Galilee during the Irbid rifting (marked as first stage). NNE elongation provoked extension across the interpreted
normal faults (marked by celeste lines). The second stage reflects the Dead Sea fault (DSF) stress regime, during which subsidence, normal
faulting, and graben formation decrease, while complex strike-slip faulting characterizes the strain style. An establishment of a left-lateral
strike-slip primary deformation zone – PDZ; modified after McClay and Bonora (2001). (c) East–west geological cross section through
basins B5, B6, B8, and B7 (location: Figs. 3 and 13b). The profile is extracted from a structural model constructed for the entire study area
based on seismic data, wells, and outcrops. Blue and pink shading represent the first and second subsidence stages, respectively. An inverted
relief of tilted blocks is a result of a Pliocene–Pleistocene ESE compressional stress component of the Dead Sea fault stress regime. Dotted
lines: less verified fault planes.

The timing of regional volcanism is noteworthy. Between
18 and 12 Ma volcanic activity ceased across the Arabian
Plate and was dominant across the southern Galilee basins
(Lower Basalt Fm.). This shift may represent a NW propa-
gation of extension and volcanism across the Arabian Plate
(Weinstein, 2000). The northwestern Arabia volcanism was
renewed at 14–12 Ma (Bohannon et al., 1989; Camp and Ro-
bool, 1992; Ilani et al., 2001; Krienitz et al., 2009). Several
studies link the renewal and activity with structural aspects
(Bayer et al., 1988; Camp and Roobol, 1992; Ebinger and
Casey, 2001). However, other studies suggest that the lat-
eral slip along the DSF decreased during the upper Miocene
(Hempton, 1987; Bayer et al., 1989; Reilinger and Mc-
Clusky, 2011; Faccenna et al., 2013), while drift across the
NW-trending Irbid rift was active (Segev et al., 2014, 2017).
Our results suggest that this decrease also enabled the sub-
sidence of the southern Galilee basins during the second
stage as part of the hybrid Red Sea–Dead Sea stress regime.
With enhancement of motion along the DSF during the early
Pliocene around 5 Ma, the Dead Sea stress regime became

dominant, laterally shifting the southern Galilee basins and
structurally isolating them from their first association with
the Irbid rift.

7 Conclusions

The Galilee basins subsided along the northwestern front of
the Irbid rift. Integration of geological and geophysical data
bounds the subsidence of the basins between two major sur-
faces: the Oligocene regional truncation surface (RTS) and
the top of the Bira Fm. unconformity. The subsidence is di-
vided into two stages.

During the first stage (20–9 Ma) the Galilee basins sub-
side along the main trend of the Oligo-Miocene Irbid rift
system. They subside as grabens and half-grabens bounded
by normal faults and structural saddles. Larger subsidence
was recorded along the main NW-trending rift axis. Smaller
basins subsided off the main axis. The subsidence occurred
along with extensive volcanism that arrived through fault
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planes that bound the basins. The spatial arrangement of the
rift basins suggests that they follow a larger principal dis-
placement zone (PDZ). The major boundary faults mapped
here are the surface expression of the PDZ strands that bound
the basin complex of the rift from north and south. The com-
plex originally formed as a releasing jog along a rift system.
The structural change around 9 Ma is associated here with
the gradual transition between the Red Sea and the Dead Sea
stress regimes. With the initiation of shearing along the DSF,
the jog and its basins were truncated. The transition elon-
gated the basins, accentuated their subsidence, and uplifted
their surrounding margins.

During the second stage (9–5 Ma) left-lateral shearing of
the entire study area results in the subsidence of a series
of NNE-trending basins perpendicular to the major axis of
basins from the first stage. Structural highs (i.e., blocks) that
divide the first-stage basins remained high during the sec-
ond stage. However, during the second stage, their bound-
ing normal faults also exhibit a lateral component. The shear
distorts the original structure of the first-stage basins north
and south of the major NW-trending axis in such a way that
today these periphery early Neogene basins have been up-
lifted and weathered. The length of the basins decreases from
∼ 60 km in the east to ∼ 15 km in the west of the study area.
The volcanism of the second stage arrives from weak zones
and focuses on structural boundaries between the basins and
volcanic activity along their margins.

The structural architecture of the southern Galilee indi-
cates that the rift basins continued to subside while the Ir-
bid rift was active. Their shape and arrangement were con-
strained by two main rheological features – the bounds of a
releasing jog along the PDZ (i.e., Carmel–Gilboa fault line)
and the acquaintance with a more cohesive crust at the pe-
ripheral area, perhaps a “locked zone” (see Lyakhovsky et al.,
2012; Segev et al., 2014). Locked zones involve preexisting
discontinuities such as transitions between oceanic and conti-
nental crust types or perpendicular faulting arrays (Courtillot
et al., 1987; Dunbar and Sawyer, 1996). However, follow-
ing the numerical modeling results, neither of these seems to
have caused the cessation of rifting. In fact, the basins at the
rift tip subsided until the jog was decapitated by the motion
along the DSF. Following the two-staged subsidence model
of the Oligo-Miocene, the main cause of the structural transi-
tion (and preservation) of the southern Galilee basins was the
transition from one dominant stress regime to another. Our
study provides a unique and detailed architecture of a rift ter-
mination basin complex. Based on this case study we suggest
that the rift front did not fail but rather faded and was taken
over by a more dominant stress regime. Otherwise, basins of
this failing rift front could have simply died out.
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