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Abstract. Recent seismological observations focusing on the
collapse of an impulsive wavelet revealed the existence of
small-scale random heterogeneities in the earth medium. The
radiative transfer theory (RTT) is often used for the study
of the propagation and scattering of wavelet intensities, the
mean square amplitude envelopes through random media.
For the statistical characterization of the power spectral den-
sity function (PSDF) of the random fractional fluctuation of
velocity inhomogeneities in a 3-D space, we use an isotropic
von Kármán-type function characterized by three parame-
ters: the root mean square (RMS) fractional velocity fluctu-
ation, the characteristic length, and the order of the modi-
fied Bessel function of the second kind, which leads to the
power-law decay of the PSDF at wavenumbers higher than
the corner. We compile reported statistical parameters of the
lithosphere and the mantle based on various types of mea-
surements for a wide range of wavenumbers: photo-scan data
of rock samples; acoustic well-log data; and envelope analy-
ses of cross-hole experiment seismograms, regional seismo-
grams, and teleseismic waves based on the RTT. Reported ex-
ponents of wavenumber are distributed between −3 and −4,
where many of them are close to −3. Reported RMS frac-
tional fluctuations are on the order of 0.01–0.1 in the crust
and the upper mantle. Reported characteristic lengths dis-
tribute very widely; however, each one seems to be restricted
by the dimension of the measurement system or the sample
length. In order to grasp the spectral characteristics, elimi-
nating strong heterogeneity data and the lower mantle data,
we have plotted all the reported PSDFs of the crust and the
upper mantle against wavenumber for a wide range (10−3–
108 km−1). We find that the spectral envelope of those PSDFs
is well approximated by the inverse cube of wavenumber. It
suggests that the earth-medium randomness has a broad spec-
trum. In theory, we need to re-examine the applicable range

of the Born approximation in the RTT when the wavenumber
of a wavelet is much higher than the corner. In observation,
we will have to carefully measure the PSDF on both sides of
the corner. We may consider the obtained power-law decay
spectral envelope as a reference for studying the regional dif-
ferences. It is interesting to study what kinds of geophysical
processes created the observed power-law spectral envelope
at different scales and in different geological environments
in the solid earth medium.

1 Introduction

The first image of the solid earth is composed of spheri-
cal shells, for example, PREM (preliminary reference Earth
model) (Dziewonski and Anderson, 1981). As seismic net-
works were deployed on the regional scale and worldwide,
the velocity tomography based on the ray tracing method re-
vealed 3-D heterogeneous structures at various scales; how-
ever, spatial variations in the resultant velocity structure are
essentially smooth compared with seismic wavelengths. Aki
and Chouet (1975) first put a focus on long-lasting coda
waves of small earthquakes and interpreted them as scat-
tered waves by small-scale random heterogeneities. They
proposed to measure the scattering coefficient g, the scat-
tering power per unit volume as a measure of medium het-
erogeneity. They analyzed the mean square (MS) amplitude
time trace of coda waves as an incoherent sum of scattered
wave power by using the Born approximation (e.g., Chernov,
1960), which is a simplified version of the radiative transfer
theory (RTT). There have been many measurements of the
total scattering coefficient giso supposing isotropic scattering
(e.g., Sato, 1977a) in various seismotectonic environments.
The total scattering coefficient of S waves is reported to be
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on the order of 10−2 km−1 for 1–20 Hz in the lithosphere,
and it marks a higher value beneath active volcanoes (e.g.,
Sato et al., 2012; Yoshimoto and Jin, 2008). There were pre-
cise measurements of regional variations in giso as Carcolé
and Sato (2010) in Japan and Eulenfeld and Wegler (2017)
in the US. Hock et al. (2004) analyzed medium heterogeneity
in Europe from the analyses of teleseismic waves using the
modified energy flux model (Korn, 1993). There were also
measurements of the anisotropic scattering coefficient from
the analysis of S coda envelopes (e.g., Jing et al., 2014; Zeng,
2017).

Aki and Chouet (1975) derived the angular dependence
of the scattering coefficient of scalar waves from the power
spectral density function (PSDF) of the fractional velocity
fluctuation using the Born approximation. Sato (1984) ex-
tended the envelope synthesis of scalar waves to the whole
envelope synthesis of three-component seismograms from
the P onset to S coda on the bases of the single scattering ap-
proximation of the RTT. His syntheses explain how seismo-
gram envelopes in different back azimuths vary depending on
the source fault mechanism. Extension to the multiple scat-
tering case was developed by using Stokes parameters (e.g.,
Margerin et al., 2000; Margerin, 2005; Przybilla et al., 2009;
Sanborn et al., 2017). We also note that Monte Carlo sim-
ulation was developed to stochastically solve the RTT (e.g.,
Hoshiba et al., 1991; Gusev and Abubakirov, 1987; Yoshi-
moto, 2000). For the data processing, it is more appropriate
to stack MS envelopes of observed seismograms for com-
parison with the averaged intensity time traces stochastically
synthesized by the RTT (e.g., Shearer and Earle, 2004; Rost
et al., 2006; da Silva et al., 2018).

When the central wavenumber of a wavelet increases
much larger than the corner wavenumber of the PSDF,
the wavelet around the peak value is mostly composed of
narrow-angle scattering around the forward direction. In such
a case, the Born approximation becomes inappropriate; how-
ever, the phase shift modulation based on the parabolic ap-
proximation is useful, which is called the phase screen ap-
proximation. As an extension of the RTT with the phase
screen approximation, the Markov approximation was also
used for the analysis of envelope broadening and peak de-
lay with increasing travel distance (e.g., Sato, 1989; Saito
et al., 2002; Takahashi et al., 2009). Kubanza et al. (2007)
measured regional differences in the lithospheric heterogene-
ity from the partitioning of seismic energy of teleseismic P
waves into the vertical and transverse components based on
the Markov approximation.

There have been various kinds of measurements of the
PSDF of the random velocity fluctuation, where the PSDF
is often supposed to be a von Kármán type. In the following
section, the main objective is to compile reported PSDF mea-
surements in various scales in different geological environ-
ments of the solid earth: photo scanning of small rock sam-
ples, acoustic well logs, array analyses of teleseismic waves,
waveform analyses using finite difference (FD) simulations,

and analyses of seismogram envelopes on the basis of the
RTT. We enumerate their statistical parameters and plot their
PSDFs against wavenumber. We will show that the envelope
of all the PSDFs is well approximated by a power-law decay
curve. Then, we will discuss the results obtained and a few
problems in the envelope synthesis theory for such random
media and the geophysical origin of such power spectra.

2 Statistical characterization of random media

We consider the propagation of scalar waves as a sim-
ple model, where the inhomogeneous velocity is given by
V (x)= V0(1+ ξ(x)). The fractional fluctuation ξ(x) is sup-
posed to be a random function of space. We imagine an en-
semble of random media {ξ(x)}, where 〈ξ(x)〉 = 0. Angular
brackets mean the ensemble average. We suppose that ran-
dom media are homogeneous and isotropic, then we statisti-
cally characterize them by using the autocorrelation function
(ACF):

R(x)= R(r)= 〈ξ(y)ξ(y+ x)〉 , (1a)

where r = |x|. The MS fractional fluctuation as a measure of
the strength of randomness is supposed to be small, and ε2

≡

R(0)� 1. The Fourier transform of ACF gives the PSDF:

P(m)= P(m)=

∞∫ ∫ ∫
−∞

R(x)e−imxdx, (1b)

where wavenumber m= |m|. In some literature, (2π)−3 is
used as a prefactor in the right-hand side of Eq. (1b).

2.1 Several types of random media

There are several types of PSDF and ACF characterized by a
few parameters.

2.1.1 von Kármán type

The ACF is written by using a modified Bessel function of
the second kind of order κ and characteristic length a:

R(r)=
21−κ

0(κ)
ε2
( r
a

)κ
Kκ

( r
a

)
for κ > 0, (2a)

which is an exponential type R(r)= ε2e−r/a when κ = 1/2.
In the case of space dimension d , the PSDF is

P (m)=
2dπ

d
20(κ + d

2 )ε
2 ad

0(κ)
(
1+ a2m2

)κ+ d2 for κ > 0

∝m−2κ−d for m� a−1. (2b)

The PSDF obeys a power-law decay at large wavenumbers:
P(m)∝m−2κ−3 for the 3-D case and P(m)∝m−2κ−1 for
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Figure 1. (a) Log–log plot of PSDF vs. wavenumber m in 3-D space (von Kármán type, κ = 0.1, 0.5, and 1; Henyey–Greenstein type, HG,
κ = 0; Gaussian type, G). (b) Linear plot of ACF vs. lag distance r .

the 1-D case, where κ corresponds to the Hurst number. In
the following, we will basically use a von Kármán-type func-
tion for characterizing the earth-medium heterogeneity.

Especially for an anisotropic case, we define the von
Kármán-type PSDF in 3-D (e.g., Wu et al., 1994; Nakata and
Beroza, 2015):

P (m)=
23π

3
20(κ + 3

2 )ε
2 axayaz

0(κ)
(

1+ a2
xm

2
x + a

2
ym

2
y + a

2
zm

2
z

)κ+ 3
2

for κ > 0. (3)

2.1.2 Henyey–Greenstein type

For a case formally corresponding to κ = 0 of the von
Kármán-type PSDF, we define the Henyey–Greenstein type
ACF and PSDF in 3-D (Henyey and Greenstein, 1941):

R(r)= ε2K0

( r
a

)
, (4a)

P(m)=
2π2ε2a3

(1+ a2m2)3/2
≈ 2π2ε2m−3 for m� a−1. (4b)

Note that parameter ε2 characterizes P but ε2
6= R(0) since

R(r) diverges as r→ 0.

2.1.3 Gaussian type

Gaussian-type ACF and PSDF are also used because they are
mathematically tractable.

R(r)= ε2e
−
r2

a2 , (5a)

P(m)=
√
π3ε2a3e−

m2a2
4 . (5b)

We plot those PSDFs against wavenumber and ACFs
against lag distance in Fig. 1.

3 Measurements of random heterogeneities

There are several kinds of measurements for estimating sta-
tistical parameters characterizing random media. Here we
principally collect measurements supposing a von Kármán-
type function for isotropic randomness; however, we include
a few measurements supposing anisotropic randomness and
a Gaussian-type function. On a small scale, the photo-scan
method is applied to small rock samples. Acoustic well logs
are available in deep wells drilled in the shallow crust. When
the precise velocity tomography result is available, we can
directly calculate the PSDF. In seismology, the most conven-
tional method is to analyze seismograms of natural earth-
quakes or artificial explosions after traveling through the
earth heterogeneity. It is better to focus on MS amplitude
envelopes (intensity time traces) since phases are complex
and caused by random heterogeneities. Comparing observed
seismogram envelopes with envelopes synthesized in random
media, we can evaluate von Kármán parameters. For the syn-
thesis, we can use the FD simulations, the RTT with the Born
approximation, and the RTT with the phase screen approxi-
mation that is equivalent to the Markov approximation. For
each reported measurement, we enumerate the target region,
data and the method, the measured PSDF as a function of
wavenumber m, von Kármán parameters (κ , ε, a), the fre-
quency range, the wavenumber range, and the reference in
Tables 1–3. Note that measurements of heterogeneity listed
in the Tables are by no means the only ones. Especially in
seismological measurements, we estimate the wave number
range from the frequency range by using the typical velocity
of the target medium. In the Tables, the parameter values in
parentheses (. . .) are a priori fixed in the measurement. Then,
we plot obtained PSDFs against wavenumber in Figs. 2–5.
When the estimated parameter value is given by a range, a
value in square brackets [. . .] is used to represent for plot-
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ting PSDFs in the figures. Measurement with a label with an
asterisk ∗ is insufficient for plotting the PSDF in the figures.

3.1 Photo scan of the rock surface

The photo-scan method uses a scanner to take a picture of
the polished flat surface of a small rock sample (e.g., Sivaji
et al., 2002; Spetzler et al., 2002; Fukushima et al., 2003).
For the case of a granite sample, those papers classified color
images on a straight line into three types of mineral grains:
quartz, plagioclase, and biotite. Assigning a typical velocity
VP or VS to each mineral grain, they constructed a velocity
profile along the line. Then, they estimated the 1-D PSDF of
the velocity fractional fluctuation. They measured 1-D PS-
DFs of granite and gabbro samples fixing κ = 0.5 as R1–R5.
Figure 2a shows estimated 1-D PSDFs, where the wavenum-
ber range is on the order of 1 mm−1. We note that raw 1-D
PSDFs in Figs. 4 and 5 of Fukushima et al. (2003) decay a
little slower than those of R4 and R5 in Fig. 2a, especially at
large wavenumbers.

3.1.1 Conversion from 1-D PSDF into 3-D PSDF

In the case of isotropic randomness, we evaluate the 1-D
PSDF from the 3-D ACF along the z axis at x = y = 0 as
follows:

P1−D (mz)≡

∞∫
−∞

R3-D (0,0,z)e−imzzdz

=

∞∫
−∞

 1

(2π)3

∞∫ ∫ ∫
−∞

P3-D

(
m′x ,m

′
y ,m
′
z

)
eim
′
zzdm′

e−imzzdz
=

1

(2π)2

∞∫∫
−∞

P3-D

(
m′x,m

′
y,mz

)
dm′xdm′y . (6a)

Substituting Eq. (2b) into the above equation, we have

P1−D (mz)

=
1

(2π)2

∞∫∫
−∞

8π3/2ε2a30(κ + 3/2)

0 (κ)
[
1+ a2

(
m′x

2
+m′y

2
+m2

z

)]κ+3/2 dm′xdm′y

=
2π1/20(κ + 1/2)ε2a

0 (κ)
(
1+ a2m2

z

)κ+1/2 . (6b)

Thus, we can evaluate the 3-D PSDF from the 1-D PSDF
using parameters ε, κ , and a of 1-D PSDF.

Supposing the randomness is isotropic, we evaluate corre-
sponding 3-D PSDFs of R1–R5 and plot them in Fig. 2b.

3.2 Acoustic well logs in boreholes

An acoustic well log is obtained from the measurement of
the travel time of an ultrasonic pulse along the wall of a
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Figure 2. (a) 1-D PSDF vs. wavenumber for rock samples and acoustic well logs. (b) Converted 3-D PSDF vs. wavenumber, where the
randomness is supposed to be isotropic. See labels in Table 1.

borehole. Measurements W1 (volcanic tuff) and W2 (tertiary
to pre-tertiary) in Japan clearly show power-law decay with
κ = 0.225 and 0.045, respectively; however, a corner is not
clearly seen in each PSDF. Measurement W4 at the deep
well KTB in Germany shows κ = 0.10. Measurement W3
in the same well shows that the exponent of wavenumber is
−0.97, which formally corresponds to a negative κ . Mea-
surement W5 at Cajon Pass in California shows κ = 0.11.
All these measurements show very small κ values close to
0. Shiomi et al. (1997) made a list of reported exponents of
wavenumber, which shows that most κ values are smaller
than 0.25. Measurement of a seems to be restricted by the
sample length. We enumerate those measurements in Table 1
and plot their 1-D PSDFs against wavenumber in Fig. 2a.
Figure 2b plots the corresponding 3-D PSDFs of W4 and W5.

We note that Wu et al. (1994) measured anisotropy of ran-
domness from the analysis of well logs obtained from two
parallel wells at KTB: the ratio of characteristic scales in
horizontal to vertical directions ah/az = 1.8 (see Eq. 3) as
shown in W3.

3.3 Velocity tomography

There have been measurements of velocity tomography at
various scales, from which we can calculate the PSDF and
then estimate von Kármán-type parameters. This method de-
pends on the spatial resolution of the tomography result.
Measurement L1 in Table 2 is calculated from the precise VP
tomography result of the shallow crust, Los Angeles, Cal-
ifornia: the exponent of wavenumber is −3.08 (κ = 0.04).
Anisotropic randomness is also reported: az = 0.1 and ah =
0.5 km (see Eq. 3), we show those in Fig. 3a. Measurement
M2 in Table 3 is evaluated from the 2-D PSDF of the VS to-
mography result of the upper mantle in a low wavenumber
range. Although there is a resolution limit of the tomography
method, the exponent of wavenumber is between−2 and−3,

which means 0< κ < 0.5. We note that Fig. 8 of Mancinelli
et al. (2016a) shows that the 1-D PSDF estimated from the
VP tomography result in the upper mantle (Meschede and
Romanowicz, 2015) covers that of MU2 (κ = 0.05, ε = 0.1,
a = 2000 km) for the wavenumber range from 2× 10−4 to
10−2 km−1.

3.4 Array analysis of teleseismic P waves

Teleseismic P waves registered by a large aperture array
were used for the evaluation of the 3-D PSDF of the litho-
sphere beneath the array: LA1 and LA2 of Table 2 in Mon-
tana and LA3 in southern California used amplitude and
phase coherence analyses, where a Gaussian-type PSDF
(Eq. 5b) was assumed because of mathematical simplicity.
As shown in Fig. 3b, they drop very fast as wavenumber in-
creases. Later Flatté and Wu (1988) developed the angular
coherence analysis in addition to the above methods. Ana-
lyzing teleseismic P waves registered at NORSAR, they pro-
posed an overlapping two-layer model LA4, which is com-
posed of a band-limited flat spectrum from the surface to
200 km of depth andm−4 spectrum (κ = 0.5, ε = 0.01–0.04)
for depths from 15 to 250 km. It means κ < 0.5 and the decay
of their PSDF is much smaller than that of Gaussian types
(not shown in Fig. 3b).

3.5 Finite difference (FD) simulations

FD simulation is often used for the numerical simulation of
waves in an inhomogeneous velocity structure. For the eval-
uation of average MS amplitude envelopes, we have to repeat
simulations of the wave propagation through random media
having the same PSDFs that are generated by using differ-
ent random seeds. There are several measurements of statis-
tical parameters using FD such as L9–L11 and ML4 in Ta-
bles 2 and 3. Measurement LS5 focused on the fact that the
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Figure 3. 3-D PSDF vs. wavenumber for (a) the lithosphere (the crust and uppermost mantle), (b) strong heterogeneities and array data
analyses in the lithosphere. See labels in Table 2.

Figure 4. 3-D PSDF vs. wavenumber for the upper and lower mantle. See labels in Table 3.

subducting oceanic plate is an efficient waveguide for high-
frequency seismic waves: estimated anisotropic parameters
are κ = 0.5 and ε = 0.02 with ap = 10 km and at = 0.5 km
in the parallel and transverse directions, respectively. Note
that ML2 supposes a Gaussian-type function.

3.6 Analyses of seismogram intensities (MS amplitude
envelopes)

The RTT is essentially stochastic to directly synthesize the
intensity (the average MS amplitude envelope) of a wavelet
propagating through random media. There are two conven-
tional methods on the basis of the RTT: one uses the Born

approximation and the other uses the phase screen approx-
imation based on the parabolic approximation when the
wavenumber is larger than the corner. The former neglects
the phase shift, but the latter correctly considers the phase
shift.

3.6.1 Scalar wave scattering by a single obstacle

We here study the deterministic scattering of scalar waves
by a single spherical obstacle (radius a = 5 km and velocity
anomaly ε =+0.05) embedded in a homogeneous medium
(V0 = 4 km s−1) as a mathematical model. The Born ap-
proximation calculates spherically outgoing scattered waves
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Figure 5. 3-D PSDF vs. wavenumber for all the data.

putting the incident plane wave of wavenumber kc in the in-
teraction term of the first-order perturbation equation. From
the scattering amplitude we evaluate the total scattering cross
section σ0 as a measure of scattering power of the obsta-
cle. The resultant σ0 monotonously increases with frequency
as shown by a blue line in Fig. 6. As the wavenumber
increases (akc� 1), the phase shift increases as the inci-
dence plane wave penetrates into the obstacle. Putting the
phase modulated wave according to the parabolic approxi-
mation (the phase screen approximation) into the interaction
term of the first-order perturbation equation, we calculate the
scattering amplitude and then the total scattering cross sec-
tion. This is the distorted-wave Born approximation with the
phase screen approximation, which is also referred to as the
eikonal approximation. This approximation predicts that σ0
(a red line in Fig. 6) saturates at high frequencies and con-
verges to 2πa2, which is twice the geometrical section area
of the obstacle as predicted by shadow scattering (e.g., Lan-
dau and Lifshitz, 2003, p. 519 and 543). We recognize that
the conventional Born approximation is still accurate even
for akc > 1; however, it works well only for ε2a2k2

c .O(0.1).
We should use the distorted-wave Born approximation with
the phase screen approximation for ε2a2k2

c &O(1). The two
approximations predict nearly the same σ0 value in the in-
termediate range. We note that 2εakc is the phase shift on
the center line after passing the obstacle. Note that the phase
screen approximation is not applicable for akc < 1 since it is
based on the parabolic approximation.

Interpreting ε and a as the RMS fractional fluctuation
and the characteristic length of uniformly distributed ran-
dom media, we may use the inequality ε2a2k2

c �O(1) or

ε2a2k2
c .O(0.1) as a criterion of the Born approximation

used in the RTT.

3.6.2 RTT with the Born approximation

For uniformly distributed random media characterized by
P(m), the Born approximation leads to the scattering coeffi-
cient at wavenumber kc into scattering angle ψ :

g(kc,ψ)=
k4

c
π
P (2kc sin

ψ

2
), (7a)

which is axially symmetric. The total scattering coefficient is

g0(kc)≡
1

4π

∮
g(kc,ψ)d�=

1
2

π∫
0

g(kc,ψ)sinψdψ

=

2kc∫
0

gker(kc,m)dm, (7b)

where m= 2kc sin ψ2 . The integral kernel in the wavenumber
space is given by

gker(kc,m)=
k2

c
2π
mP(m). (7c)

The upper bound of the integral is twice the wavenumber.
As an example, Fig. 7 shows plots of P(m) (blue) vs. m,
and gker(m) vs. m at 0.1 Hz (red) and 1 Hz (green) for the
case of κ = 0.5, ε = 0.05, a = 1 km, and V0 = 4 km s−1. As
shown at the upper-right corner, the scattering pattern at 1 Hz

Solid Earth, 10, 275–292, 2019 www.solid-earth.net/10/275/2019/



H. Sato: Power spectra of random heterogeneities in the solid earth 283

Figure 6. Deterministic scattering of scalar waves by a high-velocity sphere. (a) Log–log plot of the total scattering cross section against
frequency. (b) Semi-log plot for zoomed in graph. The Born approximation and the distorted-wave Born approximation with the phase screen
approximation are drawn by blue and red lines, respectively.

(green) has a large lobe into the forward direction; however,
it becomes isotropic as the frequency decreases. Dots on each
gker curve show corresponding scattering angles.

In the framework of the RTT, the Monte Carlo simulation
is a simple method to stochastically synthesize the wavelet
intensity time trace. A particle carrying unit intensity is shot
randomly from a point source, and its trajectory is traced
with the increment of time steps. The occurrence of scatter-
ing is stochastically tested by the inequality g0V01t > Ran-
dom[0,1] at every time step of 1t , and g(kc,ψ)/(4πg0(kc))

is used as the probability of scattering into angle ψ . Note
that Random[0,1] is a uniform random variable between 0
and 1. Since g0V01t is chosen to be small enough, scattering
does not occur every time step but intermittently. As a sim-
ple example, Fig. 8a schematically illustrates the flowchart of
the Monte Carlo simulation for the isotropic radiation from a
point source in uniform random media. At lapse time t , divid-
ing the number of particles n registered in a spherical shell of
radius r and a thickness 1r by the total number of particles
N and the shell volume 4πr21r , we calculate the intensity
Green functionG(r, t). The intensity time trace I (r, t) is cal-
culated by the convolution ofG(r, t) and the source intensity
time function S(t) in the time domain. It is easy to introduce
a layered structure of background velocity and intrinsic ab-
sorption into the simulation code.

The RTT for the scalar wave case can be extended to the
elastic vector wave case by using Stokes parameters. There
are four scattering modes: PP, PS, SS, and SP scatterings, and
the S-wave scattering coefficients are not axially symmetric
(see Sato et al., 2012, Fig. 4.7). Many papers (e.g., Shearer
and Earle, 2004; Przybilla et al., 2009) suppose proportional
relations δVp/VP0 = δVS/VS0 = ξ and δρ/ρ0 = ν ξ based on

the empirical Birch’s law, which reduce three fractional fluc-
tuations into one (e.g., Sato et al., 2012, Eqs. 4.58 and 4.59).

The RTT with the Born approximation has been often
used not only for the analyses of S coda envelopes but also
for the whole seismogram envelope from the P onset via
P coda through S wave until S coda (see Tables 2 and 3).
This method has been often used not only for the analyses
of regional seismograms propagating through the lithosphere
but also for the analyses of teleseismic waves propagating
through the mantle. This method is not only applied to direct
P phase waves but also PcP and PKPprec phase waves and
so on. In this review, we neglect intrinsic attenuation param-
eters a priori assumed or measured in each paper. For a given
wavenumber range (kl,ku) (gray) in Fig. 7, each PSDF curve
using this method in Figs. 3–5 and 9 is drawn by a dotted line
for (0,kl) and a solid line for (kl,2ku) as the line next to the
bottom of Fig. 7. As indicated by dots on the gker curves,
the wavenumber interval of the solid line reflects wide-angle
scattering and that of dotted line reflects narrow-angle scat-
tering around the forward direction.

Most measurements of S waves in the lithosphere cover
the wavenumber range up to 100 km−1. Measurement L2 an-
alyzed cross-hole seismograms on the order of kHz by using
2-D RTT, of which the wavenumber range is as high as on the
order of 1 m−1. Measurement MU2 for teleseismic P -wave
envelopes at long periods in the upper mantle shows that the
characteristic scale a = 2000 km is much larger than those
of MU3 and ML1 at short periods. Several measurements a
priori suppose κ = 0.5; however, most measurements show
κ < 0.5 except L6. Measurements ML3 and MW1 propose
the HG type (see Eq. 4b) corresponding to κ = 0 for the
lower or whole mantle. We note that Mancinelli et al. (2016b)
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Figure 7. Plot of P(m) (blue, right scale) and the spectral kernel of the scattering coefficient gker(kc(fc),m) at fc = 0.1 Hz (red, left scale)
and 1 Hz (green, left scale) according to the Born approximation. Scattering angles are marked by dots on each trace. For the case of the
frequency band between 0.1 and 1 Hz, the phase screen approximation based on the parabolic approximation covers the wavenumber range
from 0 to the upper bound (line at the bottom); however, the Born approximation covers the range from 0 to twice the upper bound (line next
to the bottom). We also use these line styles in Figs. 3–5 and 9.

proposed an alternative model of 3-D PSDF ∝m−2.6 in ad-
dition to ML3 (not shown in Fig. 4).

3.6.3 RTT with the phase screen approximation

When akc� 1, scattering mostly occurs within a narrow an-
gle around the forward direction. At a large travel distance,
the wavelet just after the onset is mostly composed of those
waves. The phase screen approximation correctly calculates
the phase shift modulation. For the incidence of a plane wave
into the z direction, the mutual coherence function (MCF) of
the phase shift modulated waves for an increment1z is given
by

8(kc, r⊥,1z)= e
−k2

c (A(0)−A(r⊥))1z. (8a)

The longitudinal integral of the ACF is

A(r⊥)=

∞∫
−∞

R(x⊥,z)dz

=
1

(2π)2

∞∫∫
−∞

P(m⊥,mz = 0)eim⊥x⊥dm⊥, (8b)

where x⊥ is the transverse coordinate vector and r⊥ = |x⊥|
(Sato et al., 2012, Eq. 9.60). Taking the Fourier transform of

MCF 8 with respect to transverse coordinates, we have

8̆(kc,k⊥,1z)=
1

(2π)2

∞∫∫
−∞

8(kc, r⊥,1z)e
ik⊥x⊥dx⊥

−→
1z→0

δ(k⊥). (8c)

Since
∫∫
∞

−∞
8̆(kc,k⊥,1z)dk⊥ = 1, interpreting

8̆(kc,k⊥,1z) as the probability of ray-bending angle
ψ = tan−1 k⊥

kc
per increment 1z= V01t , we can stochas-

tically synthesize the intensity by using the Monte Carlo
simulation (e.g., Williamson, 1972; Takahashi et al., 2008;
Saito et al., 2008). As a simple example, Fig. 8b schemat-
ically illustrates the flowchart of the RTT with the phase
screen approximation for the isotropic radiation from a point
source in uniform random media. Different from the Born
approximation, narrow-angle ray bending occurs at every
time step. The intensity Green function can be obtained in
the same manner as the RTT with the Born approximation.
This approximation synthesizes the intensity time trace
having a delayed peak from the onset and a decaying tail
of early coda at large travel distances. This approximation
can not synthesize the late coda intensity since wide-angle
scattering is neglected. The Markov approximation is known
as a stochastic extension of the phase screen method for the
two-frequency mutual coherence function (e.g., Saito et al.,
2002). If we focus on the intensity time trace around the
peak arrival, the Markov approximation and the RTT with
the phase screen approximation show good coincidence (see
Sato and Emoto, 2018, Fig. 8).
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Figure 8. Flowchart of the Monte Carlo simulation code according to the RTT for the scalar wavelet intensity in uniform random media.
(a) RTT with the Born approximation. (b) RTT with the phase screen approximation.

When this approximation is used, kc� a−1 is a priori sup-
posed. Most of this type of measurement reads the peak de-
lay and the envelope width of each seismogram envelope.
There is some merit to the fact that the peak delay mea-
surement is rather insensitive to intrinsic absorption. In NE
Japan, a κ value beneath a volcano LS2 is smaller than those
in the fore-arc side L12 and L13. Note that narrow-angle
scattering around the forward direction dominates in teleseis-
mic wavelets even if the Born approximation is used for the
analysis. Narrow-angle scattering is mostly produced by the
PSDF in low wavenumbers compared with kc. For a given
wavenumber range (kl,ku) (gray) in Fig. 7, each PSDF curve
using this method in Fig. 3 is drawn by a dotted line for (0,kl)
and a solid line for (kl,ku) as the bottom line of Fig. 7.

3.7 Characteristics of reported PSDFs

3.7.1 All the data

Some measurements a priori assumed κ = 0.5; however,
most of measurements report κ < 0.5. In the mantle, κ is very
small and close to zero, and a HG-type function is also pro-

posed. The RMS fractional fluctuation ε is on the order of
0.1 for rock samples and well-log data, and in the range from
0.01 to 0.1 in the lithosphere and the upper mantle. Large val-
ues are reported for the shallow crust L16 and beneath a vol-
cano LS3; however, smaller values are reported for the lower
mantle. The characteristic scale a varies a lot depending on
measurements. The corner wavenumber a−1 is not clearly
seen in PSDFs of acoustic well logs. Some measurements re-
port anisotropy: W3 of well-logs, L1 of velocity tomography
in the shallow crust, and LS5 in the subducting oceanic slab.
The characteristic length in the vertical direction is smaller
than the horizontal direction in the shallow crust, and that in
the transverse direction is smaller than that in the direction
parallel to the subducting slab.

Plotting PSDFs against wavenumber is more informative
for understanding the random heterogeneity compared with
enumerating statistical parameter values. Figure 5 shows the
plot of 3-D PSDF vs. wavenumber for all the data covering
a wide wavenumber range (10−4–108 km−1). We recognize
that the Gaussian type PSDFs show a very different behavior
from others, which suggests the Gaussian-type assumption is
inappropriate. PSDFs in the lower mantle take smaller val-
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Figure 9. 3-D PSDF vs. wavenumber for the crust and the upper mantle. Data of Gaussian-type, anisotropy type, strong heterogeneity, the
lower mantle, and the whole mantle are excluded. The light-gray straight line visually fits to most spectral envelopes.

ues, and those for volcanoes and for the shallow crust take
larger values than others.

3.7.2 Lithosphere and the upper mantle except strong
heterogeneity, Gaussian, and anisotropy types

Eliminating data supposing a Gaussian-type data LA1–LA3,
strong heterogeneity data LS1–LS4, anisotropy-type data L1
and LS5, and the lower mantle and the whole mantle data
ML1–ML4 and MW1–MW2 from Fig. 5, we plot the rest of
the data for the crust and the upper mantle in Fig. 9. Most
ε values are in the range of 0.01–0.1, most κ values are less
than or equal to 0.5 and many of them are close to 0, and the
high wavenumber end of the power-law decay branch of each
PSDF is not far from each corner wavenumber.

We draw a power-law decay line PSDF(m)=
0.01m−3 km3 (gray) visually fitting to most PSDF envelopes
for a very wide range of wavenumbers (10−3–108 km−1).
This line is not the average of PSDFs. This line looks
like an extension of MU2 in the upper mantle into higher
wavenumbers of the shallow crust.

4 Discussions

4.1 Measurements

It will be necessary for us to measure the small-scale ran-
domness of sedimentary rock samples. More measurements

are necessary in the wavenumber range 103–105 km−1 since
there are few measurements.

In most PSDF measurements, each power-law decay
branch is short since the Born approximation senses the
spectrum up to twice the wavenumber. It will be necessary
to measure how each power-law decay branch varies with
wavenumber increasing. It will be necessary to estimate the
corner a−1 in each measurement with a wide wavenumber
range covering, sufficiently large enough, both sides of the
corner. The flat part, the low-wavenumber side of each PSDF
drawn by a dotted line in figures is also important as the cause
of narrow-angle scattering.

Although most measurements used in this review analyzed
intrinsic attenuation, we did not enumerate them in this re-
view since different assumptions were used in different mea-
surements. It will be necessary for us to systematically mea-
sure the PSDF of random heterogeneity in conjunction with
intrinsic attenuation.

We should note that there are large variations in
δ lnVS/δ lnVP and ν ≡ δ lnρ/δ lnVS in the earth. Koper et al.
(1999) estimated δ lnVS/δ lnVP to be in the range 1.1–1.5 in
the Tonga Slab. Romanowicz (2001) estimated δ lnVS/δ lnVP
to be larger than 2.5 in the lower mantle at larger length
scales. Many measurements reported use ν = 0.8 for the syn-
thesis, which is appropriate for the shallow lithosphere. Pa-
rameter ν takes smaller values of 0.17 for volcanic-tuff (Sh-
iomi et al., 1997) and 0.31–0.33 for sandstone and shale
(Kenter et al., 2007). In the mantle, Karato (2008) estimated
ν = 0.23–0.42 for the S-wave velocity predicted from the
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temperature derivatives of seismic wave velocities and ther-
mal expansion, and ν = 0.15–0.23 including the influence
of anelasticity. It will be necessary to introduce realistic
δ lnVS/δ lnVP and δ lnρ/δ lnVS in the synthesis.

Figure 9 summarizes reported PSDF measurements sup-
posing isotropic randomness; however, there are measure-
ments clearly showing anisotropic randomness such as W3
and L1 for the shallow crust and LS5 for the oceanic slab.
Those may reflect the effect of gravity for the creation of
anisotropy. It will be necessary for us to study how a wavelet
propagates through anisotropic random heterogeneity of the
earth medium (e.g., Margerin, 2006).

4.2 Mathematical theory

In Sect. 3.6.1, we mentioned that the conventional Born ap-
proximation is inapplicable and the phase screen approxi-
mation is useful when the phase shift becomes large as the
wavenumber increases. In order to avoid the difficulty, taking
the center wavenumber of a wavelet as a reference, Sato and
Emoto (2018) proposed to divided the PSDF into two com-
ponents (see also Sato, 2016; Sato and Emoto, 2017). They
use the Born and phase-screen approximations to the short-
scale (high wavenumber) and long-scale (low wavenumber)
components, PS and PL, respectively, in the RTT in order
to simultaneously explain the envelope broadening just after
the onset and the excitation of late coda waves. Figure 10
illustrates the flowchart of their Monte Carlo simulation.
Their spectrum division method looks like an implementa-
tion of the distorted-wave Born approximation in the RTT
since it describes wide-angle scattering for the incidence of
the phase-shift modulated wave. They successfully synthe-
sized intensity time traces that explain FD simulation results
for the case of akc = 23.6 and ε2a2k2

c = 1.39. It would be
interesting to see how this method may be extended to polar-
ized elastic waves.

We note that some papers numerically show that the RTT
with the Born approximation works well in some cases
over the above limitation. Przybilla et al. (2006) synthesizes
vector-wave intensity that fits to that of the FD simulation
in 2-D, even for S waves of akc = 58 and ε2a2k2

c = 8.4 (see
their Table 1) if the wandering effect is convolved as a re-
sult of the travel time fluctuation. Emoto and Sato (2018)
show that the synthesized scalar intensity by the RTT with
the Born approximation fits to that of the FD simulation in 3-
D, even for the case of akc = 23.6 and ε2a2k2

c = 1.39 when
the wandering effect is convolved. If the earth heterogene-
ity is represented by a power-law decay power spectrum for
such a wide wavenumber range, which means that the corner
wavenumber is very low, we should carefully examine the
applicability of the Born approximation in the RTT.

Acoustic well-log and photo-scan methods faithfully mea-
sure the inhomogeneous elastic coefficients. The RTT used
here supposes the scattering contribution of random inhomo-
geneity of elastic coefficients only; however, observed seis-
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Figure 10. Spectrum division method. (a) Division of P into two components, PS and PL, with respect to the center wavenumber of a wavelet
kc as a reference, where ζ is a tuning parameter. (b) Flowchart of the Monte Carlo simulation according to the RTT with the spectrum division
method. Modified from Sato and Emoto (2018).

mograms do not only reflect those but also the scattering
contribution of pores and cracks distributed over the earth
medium. It will be necessary for us to study their contribu-
tion in the intensity synthesis.

4.3 Power-law decay spectral envelope

In observation, we may take the power-law spectral envelope
as a reference curve for studying the regional differences,
especially in the power-law decay part of the PSDF. The
characteristic length a seems to increase as the wavenum-
ber of a wavelet decreases or as the dimension of measure-
ment system becomes large. It reminds us that the character-
istic scale of the slip distribution increases with increasing
source dimension as Mai and Beroza (2002) analyzed finite-
fault source inversion results (see their Fig. 12).

The power-law decay spectral envelope reminds us of the
observed fractal nature of various kinds of surface topogra-
phies: Sayles and Thomas (1978a, b) show a 1-D PSDF
∝m−2 for wavelengths 10−6–103 km although the power
exponent varies from −1.07 to −3.03 for small segments;
Brown and Scholz (1985) show a 1-D PSDF∝m−1.64 to−3.36

for the wavenumber range 10−6 to 0.1 µm−1, especially for
the topography of natural rock surfaces and faults. We also

note that the PSDF of the refractive index fluctuation of
air obeys the Kolmogorov spectrum: 3-D PSDF ∝m−11/3,
where κ = 1/3. This spectrum is physically produced by the
cascade in the turbulent flow of low viscosity air: the large
eddies breaks up originating smaller eddies dissipating en-
ergy by viscosity. However, it may be difficult to apply this
cascade model to the mantle since the viscosity of mantle
fluid is thought to be high.

For igneous rocks such as granite, there are variations in
composition of minerals and grain sizes, which depend on
a variety of slow crystallization differentiations of basaltic
magma. Random variations in acoustic well-log profiles re-
flect the complex sedimentation process during the geolog-
ical history. Volcanism produces more heterogeneous struc-
tures composed of pyroclastic material and lava. For random
heterogeneities in the mantle, we imagine complex mantle
flow. Mancinelli et al. (2016a) referred to a marble cake man-
tle model (Allègre and Turcotte, 1986) containing hetero-
geneity mostly composed of basalt and harzburgite at many
scales in the upper mantle in order to explain the power-
law spectrum. Stixrude and Lithgow-Bertelloni (2007) pro-
posed the velocity variation due to chemical and phase sta-
bility at different depths, which is a possible candidate es-
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pecially for heterogeneity in the vertical direction. If we ac-
cept the power-law decay spectrum, we will have to study
what kinds of geophysical mechanisms created such random
medium spectra at different scales and in different geological
environments in the solid earth.

4.4 Isotropic scattering coefficient

In advance of the measurements based on the RTT for
anisotropic scattering presented here, there have been many
measurements of the isotropic scattering coefficient giso in
the world on the basis of the RTT with the isotropic scattering
assumption (e.g., Sato et al., 2012; Yoshimoto and Jin, 2008).
The isotropic scattering model is mathematically tractable,
and the multiple lapse-time window analysis (Fehler et al.,
1992; Hoshiba, 1993) has often been used for practical anal-
yses. This method essentially estimates giso from the ratio of
late coda excitation to the radiated energy irrespective of the
envelope broadening. Recent measurements show that giso
decreases with depth (e.g., Rachman and Chung, 2016; Badi
et al., 2009). It will be interesting to plot the frequency de-
pendence of reported giso for a wide range of frequencies and
to study the relation with the obtained power spectral enve-
lope shown in Fig. 9.

5 Conclusions

Recent seismological observations focusing on the collapse
of an impulsive wavelet revealed the existence of small-scale
random heterogeneities in the earth medium. The RTT has
often been used for the study of the propagation of wavelet
intensities, the MS amplitude envelopes. For the statistical
characterization of the PSDF of random velocity inhomo-
geneities in a 3-D space, we have used von Kármán type
functions with three parameters: the RMS fractional veloc-
ity fluctuation ε, the characteristic length a, and the order
κ of the modified Bessel function of the second kind. This
model leads to the power-law decay of PSDF ∝m−2κ−3 at
wavenumber m higher than the corner at a−1. We have com-
piled reported statistical parameters of the lithosphere and the
mantle based on various types of measurements for a wide
range of wavenumbers: photo-scan data of rock samples,
acoustic well-log data, and envelope analyses of cross-hole
experiment seismograms, regional seismograms, and tele-
seismic waves based on the RTT. Reported κ values are dis-
tributed between 0 and 0.5 (PSDF ∝m−3 to−4), where many
of them are close to 0 (PSDF ∝m−3). Reported ε values are
on the order of 0.01–0.1 in the crust and the upper mantle,
where smaller values in the lower mantle and higher values
beneath volcanoes. Reported a values distribute very widely;
however, each one seems to be restricted by the dimension
of the measurement system or the sample length. In order to
grasp the spectral characteristics, eliminating strong hetero-
geneity data and the lower mantle data, we have plotted all

the reported PSDFs in the crust and the upper mantle against
wavenumber m for a wide range (10−3–108 km−1). We find
that the envelope of those PSDFs is well approximated by a
power-law decay curve 0.01m−3 km3. Multiple plots of PS-
DFs and the power-law decay spectral envelope obtained re-
quire us to do the following. In theory, it will be necessary
to examine whether the Born approximation is reliable or not
if the wavenumber increases much larger than the corner; in
observation, we will have to more carefully examine the be-
havior of each PSDF on both sides of the corner. If we ac-
cept the power-law decay spectral envelope, it suggests that
the earth-medium randomness has a broad spectrum. We may
consider the obtained power-law decay spectral envelope as
a reference for studying the regional differences. It is inter-
esting to study what kinds of geophysical processes created
the power-law spectral envelope at different scales and in dif-
ferent geological environments of the solid earth medium.
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