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Abstract. We use statistical analyses of synthetic position
time series to estimate the potential precision of GPS (Global
Positioning System) velocities. The synthetic series repre-
sent the standard range of noise, seasonal, and position offset
characteristics, leaving aside extreme values. This analysis
is combined with a new simple method for automatic offset
detection that allows an automatic treatment of the massive
dataset. Colored noise and the presence of offsets are the pri-
mary contributor to velocity variability. However, regression
tree analyses show that the main factors controlling the ve-
locity precision are first the duration of the series, second the
presence of offsets, and third the noise level (dispersion and
spectral index). Our analysis allows us to propose guidelines,
which can be applied to actual GPS data, that constrain ve-
locity precisions, characterized as a 95 % confidence limit of
the velocity biases, based on simple parameters: (1) series
durations over 8.0 years result in low-velocity biases in the
horizontal (0.2 mm yr−1) and vertical (0.5 mm yr−1) compo-
nents; (2) series durations of less than 4.5 years are not suit-
able for studies that require precisions lower than mm yr−1;
(3) series of intermediate durations (4.5–8.0 years) are as-
sociated with an intermediate horizontal bias (0.6 mm yr−1)
and a high vertical one (1.3 mm yr−1), unless they comprise
no offset. Our results suggest that very long series durations
(over 15–20 years) do not ensure a significantly lower bias
compared to series of 8–10 years, due to the noise ampli-
tude following a power-law dependency on the frequency.
Thus, better characterizations of long-period GPS noise and
pluri-annual environmental loads are critical to further im-
prove GPS velocity precisions.

1 Introduction

GPS (Global Positioning System) and more recently GNSS
(Global Navigation Satellite System) have become classi-
cal datasets to study present-day tectonics, from active plate
boundary regions (e.g., Serpelloni et al., 2013; McClusky et
al., 2000) to intraplate domains (e.g., Frankel et al., 2011;
Tarayoun et al., 2018). GPS data processing, and thus the
associated precision of GPS velocities, has significantly im-
proved in the last 20 years owing, for example, to the con-
tribution of studies on noise characteristics (Williams et al.,
2003a, b), ionospheric effects (Petrie et al., 2010), or multi-
path and geometry effects (King and Watson, 2010). How-
ever, several state-of-the-art applications of GPS velocities
require that the velocities be defined with increasingly better
precisions, potentially as low as 0.1 mm yr−1 or better. Typ-
ical examples of such requirements are associated with de-
bates regarding intraplate strain buildup (Calais et al., 2006;
Frankel et al., 2011), regional tectonic models (Vernant et al.,
2006), or fault interseismic coupling variations (Vigny et al.,
2005; Métois et al., 2012).

To first order, three types of factors and processes limit
the precision of GPS velocities. The first two categories are
associated with raw data processing, such as antenna phase
center, satellite orbit, or atmospheric delay corrections (e.g.,
Tregoning and Watson, 2009), and with the GPS station en-
vironment (e.g., monument stability or multipath; King and
Watson, 2010). Most of these effects are difficult to assess
and integrate individually in a detailed uncertainty analysis
and are commonly treated as correlated noise in velocity un-
certainty calculations (Williams et al., 2003a, b). The third
category relates to post-processing analysis of the position
time series, in particular reference frame definition (Argus
et al., 1999), periodic signals (Blewitt and Lavallée, 2002),
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and position offsets due to equipment modifications, earth-
quakes, or undefined sources (Williams, 2003a; Gazeaux et
al., 2013).

The detection and correction of offsets in time series is
investigated in numerous scientific domains, for example
in biostatistics (Olshen et al., 2004), quantitative marketing
(DeSarbo et al., 2007), image processing (Pham et al., 2000),
or climate and meteorology (Beaulieu et al., 2008). In geo-
dynamic GPS applications, failure to take offsets into ac-
count can have major consequences. For example, Thomas
et al. (2011) estimated velocities of about 2.1 mm yr−1 lower
than those of Argus et al. (2011), leading to very different
interpretations of the data for estimating uplift rates in East
Antarctica. Multiple automatic methods exist for offset de-
tection in GPS position time series, but their reliability is
limited. Gazeaux et al. (2013) created a detailed synthetic
dataset, DOGEX, to test the capabilities of several com-
monly used detection methods. They argue that the manual
detection method is more reliable and allows the detection
of smaller offsets than automatic methods, albeit with a de-
tection rate of ca. 50 %. Consequently, Gazeaux et al. (2013)
consider that geophysical interpretations of velocities smaller
than ca. 1.0 mm yr−1 must be subject to particular caution,
depending on the offset detection method employed.

In this study, we estimate the potential precision of GPS
velocities through a statistical analysis of synthetic position
time series that are representative of standard GPS data. We
focus on continuous time series with a daily sampling fre-
quency (i.e., permanent rather than campaign mode) to test
the effect of colored noise, periodic signals, and position off-
sets (with a new method for automatic offset detection). The
use of synthetic data allows a detailed analysis of the velocity
estimations compared to the target (“true”) velocities and of
the specific contribution of each parameter that can be treated
independently. By contrast, such an analysis would not be
possible with real GPS data in which the true value and role
of each parameter cannot be fully de-convolved. The param-
eter range used in the synthetic data is representative of typi-
cal average data and excludes the potential effect of transient
phenomena, such as slow slip or postseismic events, or that of
pluri-annual hydrological processes. The impact of such phe-
nomena is addressed in several recent studies (e.g., Altamimi
et al., 2016; Chanard et al., 2018) and could be included in
more detailed synthetic analyses beyond our present study.
Our main objective is to quantify the importance of specific
factors and to obtain an estimate of the possible bias accord-
ing to the characteristics of the series. We chose to generate
our own synthetic dataset rather than using DOGEX from
Gazeaux et al. (2013). The DOGEX dataset is more detailed
(presence of gaps, presence of offsets a few days apart, vari-
ation in the target velocity); its use would be more complex
to treat statistically but could be done in future studies. We
illustrate our results with an application to a typical regional
geodetic network in the context of a low rate of deformation

(the REseau NAtional GNSS Permanent, RENAG, France;
RESIF, 2017).

Hereafter, the following terminology is used to discuss the
results of our analysis:

– velocity bias – for each time series, the calculated ve-
locity is compared with the true (imposed) velocity.
The absolute value of the difference between the two
is termed “velocity bias” and represents the deviation of
the calculated velocity compared to the truth. We choose
the term “bias” rather than “accuracy” in order to avoid
confusion (e.g., a high accuracy associated with a small
number) and different definitions of accuracy. For each
analysis, the velocity bias distribution is characterized
by statistical estimators given in the next two points.

– 95 % confidence limit (denoted v95) – this estimator is
the 95 % quantile of the bias distribution and represents
95 % confidence in the estimated velocities.

– probability of 0.1 mm yr−1 (denoted p01) – this estima-
tor is the percentile associate with a velocity bias of
0.1 mm yr−1; e.g., p01 = 75 % indicates a 75 % proba-
bility that the velocity bias be smaller than or equal to
0.1 mm yr−1.

– precision – we limit the usage of the term “precision”
to the general concept of “quality” of a velocity estima-
tion, regardless of its origin and whether it corresponds
to a systematic error (bias) or a measurement repeata-
bility (dispersion).

– standard error and uncertainty – for each time series, the
calculated velocity and other parameters are associated
with standard errors estimated as part of the linear in-
version (cf. Sect. 3). These standard errors are used as
estimators of the uncertainty in each calculated velocity.

2 Synthetic time series

In order to test the factors that control the precision of veloc-
ity estimations, we simulate sets of 3600 daily position time
series defined by a constant velocity, annual and semiannual
periodic motions, instantaneous offsets, and random colored
noise:

x (t)= vt +A1 sin(ω1t +φ1)+A2 sin(ω2t +φ2)

+CiH (t, ti)+Drand(k, t) , (1)

where the time t is incremental date (with an arbitrary start
at t = 2000); v is the constant velocity throughout the whole
series (set at 0.0 mm yr−1); A1/2, ω1/2, and ϕ1/2 are the am-
plitude, period, and phase of the annual and semiannual mo-
tions; Ci and ti are the amplitude and time of the ith offset
(with H the Heaviside function); k is the spectral index of
the colored noise; and D a measure of the noise amplitude,
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expressed as the rms (root mean square) dispersion of the
position time series. Figure 1 shows an example of the de-
composition of an average synthetic series.

The ranges of values of the parameters are chosen to rep-
resent the standard characteristics of horizontal and verti-
cal components in three recent state-of-the-art GPS analyses
using Precise Point Positioning and Double-Difference pro-
cessing (Santamaria-Gomez et al., 2011; Nguyen et al., 2016;
Masson et al., 2018):

– v = 0.0 mm yr−1

– φ1,2 = 0 day

– ω1 = 365.25 day

– ω2 = 182.63 day

– A1 = 1.5 or 3.0 mm

– A2 = 0.6 or 1.2 mm

– Ci = (−6.0)–(6.0) mm

– H = 0 if t < ti or 1 if t > ti

– D = (0.6)–(4.4) mm

– k = (−0.9)–(−0.1).

This choice of time series description and parameter values
ensures a good representation of the majority of real GPS
time series but excludes both extreme parameter values (e.g.,
extremely noisy series) and pluri-annual or transient tectonic
events such as slow slip events or postseismic deformation.

The annual and semiannual seasonal signals have a low
impact on the determination of the long-term velocity (cf.
Sect. 3 and Blewitt and Lavallée, 2002). Because of its minor
role, we only integrate the effect of seasonal signal through
three combinations of annual (A1) and semiannual (A2) am-
plitudes (1.5 and 0.6, 3.0 and 0.6, 3.0 and 1.2 mm) to illus-
trate first-order small, medium, and large seasonal effects on
the position time series. The random noise added to the syn-
thetic time series corresponds to the standard formula of the
colored noise model (Agnew, 1992):

P (f )= P0

(
f

f0

)k
, (2)

where f is the frequency, P0 and f0 are normalizing con-
stants, and k is the spectral index (Mandelbrot and Van Ness,
1968). We use the Kasdin (1995) formulation to generate col-
ored noise sequences characterized by their spectral indices
k, and the noise dispersion D of the series expressed as an
rms:

D =

√√√√ 1
N

N∑
i=1

x2
i , (3)

where N is the number of daily positions x (prior to periodic
and offset integration). The chosen range of noise dispersion
(0.6–4.4 mm) corresponds to the 90th percentiles of position
time series in our reference studies (Santamaria-Gomez et al.,
2011; Nguyen et al., 2016). Figure 2 shows the distribution
of position dispersion in Nguyen et al. (2016), illustrating the
bimodal aspect of the horizontal (0.7–3.2 mm) and vertical
(2.7–4.5 mm) positions.

Recent studies based on large datasets propose a range of
variation in the noise spectral index k between −0.8 and
−0.4 (cf. Santamaria-Gomez et al., 2011; Nguyen et al.,
2016). For our study, we use a slightly extended range of k
from −0.9 to −0.1 in order to include the effects of older
noisy data (lower k) and hypothetical nearly white series
(k close to 0). For the former, k =−0.9 corresponds to the
average spectral index of studies on older and noisier data
(Williams et al., 2004), keeping in mind that such data can
present lower k =−1.2 for very few series. For the latter, we
consider the ongoing effort to identify, model, and correct
for a pluri-annual climatic signal (e.g., Chanard et al., 2018),
with the potential effect of “whitening” the time series by
reducing the long-period amplitudes (i.e., k =−0.1).

Offsets in time series are defined as an instantaneous
change in the position. The position and the number of off-
sets are chosen randomly in each series, with respectively
2, 3, 4, 5, 6, or 7 maximum offsets for time series duration
3–6, 6–9, 9–12, 12–15, 15–18, or 18–21 years, and a mini-
mum time of 200 days between two consecutive offsets. We
use a minimum time lapse of 200 days between two con-
secutive offsets. Although not realistic, this lapse of time
avoids distorting the overall statistics with consecutive off-
sets that are treated to a single offset in our detection method
(cf. Sect. 4). The offset amplitude varies randomly between
−6.0 and 6.0 mm with uniform distribution, excluding off-
sets of absolute amplitude smaller than 1.0 mm. This ampli-
tude range corresponds to more than 80 % of the values from
the SOPAC archives used by Gazeaux et al. (2013) and those
from Nguyen et al. (2016). In the western Europe network
(Nguyen et al., 2016), the average amplitude is about 3.0 mm
with a standard deviation of 3.0 mm. Although extreme val-
ues can reach ca. 10.0 and 25.0 mm for the horizontal ver-
tical components, we limit our synthetic range to ±6.0 mm
in order to stay within the time series dispersion (i.e., ex-
tremely large offsets are as easily detected and corrected as
large ones).

Figure 3 shows a variety of synthetic position time series
illustrating the quality of the data used in our study. In these
different examples we can already identify for which param-
eters or combinations of parameters it will be most difficult
to determine the long-term velocity (fixed at 0.0 mm yr−1).
For series with the same duration, a high noise (k, D) and
the presence of offsets seem to hinder the determination of
the long-term velocity. In the rest of the study, we will quan-
tify these different effects.
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Figure 1. Decomposition of an example synthetic time series: (a) seasonal (annual and semiannual) signals; (b) seasonal signals combined
with random colored noise; (c) seasonal signal, colored noise, and a simulated offset (vertical black line).

Figure 2. Distribution of position dispersion (measured as rms) in Masson et al. (2018) solution for western Europe with bimodal structure
of the horizontal (0.7–3.2 mm) and vertical (2.7–4.5 mm) positions.

3 Effect of parameters on the velocity bias

In this section, we analyze the effect of each model param-
eter (independently and combined) on the velocity calcula-
tion. For each time series, all parameters are jointly esti-
mated by a linear least-square inversion of the position model
(Eq. 1), except for the noise parameters that are estimated
independently using a spectral analysis of the residual posi-
tions. The results are analyzed using statistics of the velocity
biases (absolute values of the differences between the esti-
mated and true velocities; cf. Sect. 1). The various analyses
are presented using whisker plots and two main indicators
(cf. Sect. 1): the 95 % confidence limit of the bias distribu-
tion (v95) and the probability of a bias equal to or smaller than
0.1 mm yr−1 (p01). We use regression tree analyses (Breiman
et al., 1984) to hierarchize the role, defined as the importance
(Ishwaran et al., 2007), of the parameters controlling the ve-
locity biases.

The impact on velocity estimations of seasonal signals and
offsets alone (without added noise) is extremely limited. A
simple linear model including only a long-term velocity and
either annual and semiannual sinusoids or Heaviside func-
tions can be inverted to retrieve the exact parameter values,
provided that the time series is long enough (at least ca.
3 years) and that it is not affected by several offsets at very

near positions (a few days apart). Simple tests performed by
inverting such series confirm this hypothesis by yielding ve-
locity biases ca. 0.01 mm yr−1 for the shortest series (< 4 yr)
and smaller than 0.01 mm yr−1 in all other cases, including
any of the three combinations of annual and semiannual sea-
sonal terms. Thus, in the following, we focus on the effect of
colored noise alone and colored noise with offsets, which are
the main contributors to the velocity uncertainties.

3.1 Effect of colored noise

In order to estimate the impact of colored noise alone, we
construct synthetic series using a subset of Eq. (1):

x (t)= vt +Drand(k, t) . (4)

We first analyze the effect of the three parameters – the du-
ration of the series (T ), the spectral index (k) and the noise
dispersion (D) – independently of the others. Figure 4 shows
the velocity biases as a function of these three parameters.
The worst values of velocity bias due to noise alone can
reach v95 = 0.7 mm yr−1 for the shortest series (T < 5 yr).
For series longer than 15 years, all v95 are smaller than
0.1 mm yr−1. A near-exponential decrease in v95 is observed
as a function of the duration of the series with a sharp slow-
down from 15 years of data. The dependence of the veloc-
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Figure 3. Examples of synthetic time series. Black dots represent
daily positions. Green, red, and pink lines show modeled seasonal
signal, velocity and offsets. The three examples illustrate the qual-
ity of the data used in our study: (a) a slightly noisy series (k =
−0.3, D = 1.2 mm) without offset; (b) a moderately noisy series
(k =−0.4,D = 2.3 mm) with 1 offset; (c) a noisy series (k =−0.7,
D = 3.5 mm) with multiple offsets.

ity biases on noise parameters (k and D) shows an expected
bias increase with smaller spectral indices (closer to−1) and
higher noise amplitudes, with a near-exponential increase
with D. Overall, the probability of velocity biases equal to
or smaller than 0.1 mm yr−1 is p01 = 86 %. The 14 % of se-
ries with biases larger than 0.1 mm yr−1 is associated with
the shortest and noisiest series.

A joint analysis of the parameters using a regression tree
indicates their relative importance, with the most important
being the series duration T (56 %) followed by the spectral
index k (35 %) and the noise dispersion D (9 %). Figure 5
shows the tree classification (Fig. 5a) and the whisker plots
of the associated leaves (Fig. 5b). The branches and the as-
sociated leaves are ordered in order of importance and leaf
size from left to right. The comparison signs (> <) or (< >)
are relative to each tree separation, with the sign on the left
corresponding to the left branch and the sign on the right cor-
responding to the right branch. Hereafter, we limit the tree
classification to three node levels in order to only highlight
the primary controlling elements.

The tree classification shows that v95 = 0.1 mm yr−1 is
achieved for over two-thirds of the series (leaves 1 and 2),
corresponding to all the long series (T > 11.0 yr, leaves 1
and 2) and those with average durations and large spectral
indices (6.1 < T < 11.0 yr, k >−0.6, Leaf 1). The overall ve-
locity bias increases for the other leaves. v95 = 0.2 mm yr−1

is still reached for combinations of average durations and

small spectral indices (6.1 < T < 11.0 yr, k <−0.6, Leaf 3) or
short durations, large spectral indices, and low-noise ampli-
tude (T < 6.1 yr, k >−0.7, D < 2.6 mm, Leaf 4). The remain-
ing cases (short duration, small spectral index, high noise)
represent less than 10 % of the samples and result in large bi-
ases with v95 = 0.4 mm yr−1 (Leaf 5) and v95 = 0.7 mm yr−1

(Leaf 6).
Additionally, a significant piece of information emerging

from the regression tree analysis is the relatively low coef-
ficient of determination R2

∼ 0.5, which indicates that the
combinations of the three model parameters (T , k, D) only
explain about 50 % of the dispersion in velocity biases. This
points out the strong effect of the stochastic noise generation,
which alone accounts for about half of the velocity variabil-
ity. In other words, for a given set of parameters, the gen-
erated time series will show variable characteristics (noise
structures) that randomly impact the velocity estimations. We
illustrate this point by estimating the dispersion of velocity
biases for a sample of 300 series with constant parameters
T = 10 yr, k =−0.7, D = 3.0 mm (belonging to Leaf 3 of
the tree). The estimated velocities show an rms dispersion
of 0.2 mm yr−1, of the same order as dispersion observed in
Leaf 3 (Fig. 5b). This effect is more important if the series is
short.

As noted in the introduction to Sect. 3, seasonal signals
have very little effect on the velocity estimations. This is also
true for seasonal signals added to series with random noise,
which yield similar results to those presented above for noise
alone (e.g., p01 = 86 %), with the seasonal parameters (A1/2
combinations) ranking with negligible importance in the tree
classification (less than 1 %).

3.2 Effect of offsets

In order to test and estimate the effect of position offsets on
velocity estimations, we analyze synthetic time series that
include offsets added to seasonal signal and random noise
(Eq. 1). This choice is justified by the very low effect of
offsets alone (cf. introduction of Sect. 3) and the fact that
this combination is representative of real data, thus provid-
ing useful estimations of the expected precision of actual ve-
locities. In the case of real data, dealing with offsets requires
either fixing their dates (from equipment logs or earthquake
catalogs) or detecting their potential occurrences. In Sect. 4,
we will come back to how to consider the latter. In this sec-
tion, we quantify the two end-member cases in which we ei-
ther do not know and therefore do not solve any offset or we
know and solve all of them.

3.2.1 Effect of unresolved offsets

In this first simple case, we test time series with a single off-
set that is not solved and quantify the importance of the offset
parameters (amplitude C1 and position in the series t1) in ad-
dition to the parameters T , k, andD considered previously. A
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Figure 4. Whisker plots of velocity bias as a function of the duration (T ), spectral index (k), and dispersion (D) for series including only
colored noise. Whiskers diagrams show the data quartiles (25 %, 50 %, 75 %) in blue, the extremes (0 %, 100 %) with the vertical black line,
and the 95 percentile (v95) with the horizontal black line.

Figure 5. The regression tree classification (a) and the whisker plots of the associated leaves (b) for series including only colored noise. The
horizontal top bar represents v95.

regression tree analysis indicates that the velocity variability
is primarily controlled by the time series duration T (impor-
tance 49 %), as in the case of noise alone, followed closely
by the amplitude of the offset (40 %). The position of the off-
set (5 %), the noise amplitude (3 %), and spectral index (3 %)
rank in third, fourth, and fifth positions far beyond the two

main parameters. The coefficient of determination is larger
than for the noise alone (R2

= 0.8), indicating that the inclu-
sion of a single offset contributes significantly to the overall
velocity variability.

This is illustrated in Fig. 6, which shows a distribution
of velocity biases much larger than for the noise alone
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Figure 6. Whisker plots of velocity bias as a function of the duration (T ), spectral index (k), dispersion (D), offset amplitude (ampoff), and
offset position in percentage for series with only 1 offset unresolved. The horizontal top bar represents v95.

(cf. Fig. 4), with v95 systematically above ca. 0.3 mm yr−1.
The presence of a single unresolved offset increases v95
to 0.5 mm yr−1 for long series (T > 13 yr) and up to
2.5 mm yr−1 for short series. Only about one-fifth of the se-
ries are associated with velocity biases below 0.1 mm yr−1

(p01 = 18 %, compared to p01 = 84 % for noise-alone se-
ries). As expected, the position of the offset in the series has a
significant impact, with an offset placed at one end of the se-
ries causing a velocity bias much lower than an offset placed
in the central part.

In a second series of tests, we include, but do not solve,
several offsets (between 0 and 7 offsets depending on the se-
ries length; cf. Sect. 2). In this case, we cannot quantify the
impact of the amplitudes and positions of the offsets as sin-
gle parameters; instead we use the ratio of the number of
offsets to the series duration T , which illustrates the propor-
tion of offsets in the series. A regression tree analysis indi-
cates the following parameter importance: T (53 %), ratio of
number of offsets to T (44 %), D (2 %), and k (1 %), similar
to the case of a single offset discussed above. About two-
thirds of the series are associated with velocity biases be-
low 0.1 mm yr−1 (p01 = 67 %). The largest velocity biases
occur on the shortest series. Uncorrected offsets are there-
fore a dominant element in the determination of the velocity.
These conclusions on the role of the position and magnitude
of the offsets in the time series are consistent with the ana-
lytical analysis in Williams (2003b).

3.2.2 Effect of resolved offsets

As in the previous section, we first analyze the simple case
of a series with one offset, but for which we fix the date and
solve for the amplitude during the inversion. Thus, the ve-
locity biases are affected by the possible imperfection of the
estimated amplitude of the offsets, primarily due to the se-
ries colored noise. The regression tree analysis indicates that,
when the offset amplitude is solved, the offset parameters be-
come of very low importance (amplitude and position at 2 %
each), while the series duration and noise parameters recover
the same importance and order as in the case of noise alone:

T 52 %, k 31 %, and D 13 % (cf. Sect. 3.1). The regression
tree and associated velocity bias statistics are similar to that
of the noise-alone analysis (cf. Fig. S1 in the Supplement).
v95 of all tree leaves is approximately 3 times lower than in
the case of an unresolved offset but slightly larger than in the
case of noise alone, in particular for short series.

Considering series with a variable number of offsets, for
which we fix the date and solve for the amplitude, the impor-
tance of the parameters becomes intermediate between the
noise-alone and single-offset cases: T 42 %, ratio of number
of offsets to T 21 %, k 20 %, and D 17 %. Resolving the off-
set amplitudes reduces their importance (21 % vs. 44 %) but
their presence remains a significant source of velocity vari-
ability, contrary to the case of a single solved offset by series.
This is readily explained by the fact that the offset ampli-
tudes are not perfectly resolved due to complex interaction
between the offset positions, their amplitudes, and the noise
structure that result in potentially very short linear segments
in the series. This is illustrated by the probabilities of biases
lower than 0.1 mm yr−1 (p01 = 71 %), slightly lower than in
the case of noise-only series (p01 = 86 %).

This latest result represents the lower bounds of velocity
biases for series with several offsets, assuming that all off-
set dates are know. In reality, we do not know the exact na-
ture and dates of all potential offsets (e.g., Gazeaux et al.,
2013), so it is necessary to detect them before solving for
their amplitude. In the next section, we propose a new detec-
tion method and test its impact on velocity biases.

4 A new approach for offset detection and impact on
velocity bias

4.1 Methodology of offset detection

Real GPS time series are associated with an indeterminate
number of offsets, which are classically included as instanta-
neous changes in position in the series inversion (cf. Eq. 1).
Offset dates ti can be based on equipment logs, catalogs of
earthquakes, or routines that detect them in the position se-
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ries (Gazeaux et al., 2013). Here we propose a slightly dif-
ferent approach that does not consist of seeking where there
are offsets but rather of seeking where there are none.

This simple principle is implemented by defining artifi-
cial offset dates that are regularly spaced in the series ev-
ery 1d days. The series is then inverted to estimate all off-
set amplitudes (Ci) and their associated standard errors (σci)
jointly with the other model parameters (velocity, seasonal
signal, etc.). The offset with the smallest amplitude (CS) is
then identified and a simple significance test is performed:

|CS| ≥ b · σcs. (5)

If the amplitude (CS) is larger than its scaled standard error
(b · σcs), the offset is considered significant. Because the test
is performed on the smallest offset and the offset standard
errors are similar in the majority of cases, we then consider
that all offsets are significant and we keep them in the model.
In the opposite case, the smallest offset is rejected and the
inversion is redone with the remaining offsets in order to test
the new smallest offset, until a significant offset is found or
none remains.

This very simple approach can be implemented in most
time series analysis and only requires an empirical calibra-
tion of the two parameters 1d and b. After several tests, we
set the former to 1d = 20 days, which corresponds to the
lower limit before the method breaks down (i.e., too many
undifferentiated offsets). The latter is set to b = 20, which
allows a good compromise between the detection of real off-
sets defined in the synthetic series and the detection of false
positives (cf. Sect. 4.2).

This empirical calibration is not possible on real data, but
considering that our synthetic data are representative of real
data with the previous cautions, we can use this parameter-
ization. In using 1d = 20 days, all possible epochs are not
tested. The assumption is that a real offset at any given epoch
will be caught by the forced artificial offset located less than
10 days directly before or after. As such, we do not find the
exact date of the real offset but its approximate date (within
10 days). This method cannot resolve real offsets situated
within a few (10–20) days of each other. They will be lumped
into a single artificial offset, but we assume that its effect on
the estimated velocity will be a good proxy of the combined
effect of the real offsets. This method is developed as a sim-
ple and efficient way to test the impact of offsets and their
resolution on the velocity estimations. Several things could
be done in future studies to improve it, including a finer cal-
ibration of the parameters, taking into account consecutive
offsets, and an exhaustive scan of all epochs. Details on the
parameter calibration and the detection levels are available in
Supplement Sect. S2.

4.2 Detection ability

By applying our method to series with only one offset, it
is possible to determine the conditions of offset detections.

Overall, 67 % of the offsets are detected. The detection ca-
pacity depends primarily on the duration of the time series
T , combined with the series noise amplitude D and the off-
set amplitude C. For the shortest time series (T < 6 yr), we
detect 21 % of offsets. They correspond to the series with
the largest offsets (C > 3.0 mm) and the smallest noise am-
plitudes (D < 2.1 mm). There is no offset detection in the se-
ries with large noise amplitude (D > 2.1 mm). For the time
series of 6 to 18 years, we can detect offsets of small am-
plitudes (C = 1.0–3.0 mm) in series with low noise levels
(D < 2.1 mm) and large offsets (C > 4.0 mm) in all series. For
the longest time series of more than 18 years, one widens the
range of detection still further. Offsets larger than 3.0 mm are
systematically detected and those between 2.0 and 3.0 mm
are detected at 49 %. The very small offsets (C < 2.0 mm) are
detected only in the low-noise series (D < 2.1 mm).

By applying our method to series with several offsets, the
detection ability is decreased due to offset and noise interac-
tions. Overall, the performance level is characterized by ca.
52 % of true detections (and so 48 % of missed detections)
of the theoretical total number of offsets and about 20 % of
false positives (cf. Supplement Sect. S2 for detection calibra-
tions). These statistics are similar or slightly better than those
of the most efficient automatic and manual detection meth-
ods analyzed in Gazeaux et al. (2013). Although not perfect,
our method allows us to obtain robust and quantitative results
and is suitable for processing of very large datasets such as
our synthetic series or regional and global massive process-
ing efforts that become increasingly common (e.g., Kreemer
et al., 2014) and that could not be analyzed “by hand”.

4.3 Impact on the determination of the velocities

The application of the offset detection method to a full
dataset with multiple offsets, variable noise, and seasonal
signals provides a sample that can be considered as close as
possible to actual GPS data. We use this analysis to provide
constraints on the potential velocity precision in real data.
Overall, nearly two-thirds of series are associated with ve-
locity bias smaller than 0.1 mm yr−1 (p01 = 61 %). This is
lower than in the cases of noise alone (p01 = 86 %) or fully
resolved offsets (p01 = 71 %) but significantly better than in
the case of unresolved offsets (p01 = 33 %). The difference
between the results of the offset detection method and those
of the fully resolved offsets (ca. 10 %) is mainly associated
with undetected offsets in the former.

For the regression tree analysis, the integration of a pa-
rameter associated with offsets is complex. Although these
parameters (numbers total of offsets, of true and false detec-
tions, positions in the series, amplitudes) are known in our
synthetic data, this is not the case in real datasets. Tests on
several offset parameters indicate that the total number of
offsets in the series (Noff) is both the simplest and the one
with the highest prediction capacity. This new regression tree
(Fig. 7) confirms the major role of the series duration (T
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55 %) and noise dispersion (D 16 %) in explaining the vari-
ability in the velocities, but the total number of offsets now
take the second position (Noff 25 %), above the noise disper-
sion. It is particularly worth noting that the number of offsets
is in fact a binary predicator (splitting value Noff = 0.5) cor-
responding to either the absence (Noff = 0) or the presence
(Noff ≥ 1) of offsets in the series.

To first order, the regression tree results can be divided into
three categories:

– The lowest velocity biases (v95 ∼ 0.2–0.3 mm yr−1) are
associated with either long (T > 8.0 yr) and low-noise
dispersion (D < 2.3 mm) series or with series of inter-
mediate duration (4.5 < T < 8.0 yr) with no offset (leaves
1 and 3). These represent over 42 % of the dataset.

– Intermediate biases (v95 ∼ 0.5–0.6 mm yr−1) are as-
sociated with series characterized by long duration
and high-dispersion series (Leaf 2), intermediate du-
ration and low dispersion (Leaf 4), or short duration
(T < 4.5 yr) but no offset (Leaf 6). Altogether, these rep-
resent another 43 % of the dataset.

– The remaining ca. 15 % correspond to high biases
(v95 > 1.0 mm yr−1) and is mostly associated with short
durations (leaves 7, 8, 9) or intermediate duration and
high dispersion (Leaf 5).

Tree nodes associated with the series dispersion D indi-
cate that a systematic separation can be made at D = 2.2–
2.3 mm (Fig. 7a). As shown in Fig. 2, the separation be-
tween horizontal and vertical component dispersion occurs
ca. D = 2.5 mm, close to the node splitting value. Thus, we
can consider that the node split based on the series dispersion
represent a first-order distinction between (mostly) horizon-
tal and vertical GPS components, although noisy horizontal
and very clean vertical data can obviously be positioned in
different categories.

On these bases, a fairly simple set of rules can be derived
from the regression tree analysis that may be applicable to ac-
tual GPS data used for high-precision (sub mm yr−1) studies,
considering the fact that series duration is the key parameter:

– Duration of 8.0 years or more ensures a low-velocity
bias in both horizontal (v95 = 0.2 mm yr−1) and vertical
(v95 = 0.5 mm yr−1) components.

– Short series with less than 4.5 years duration cannot be
used for high-precision studies (v95 > 1.0 mm yr−1), ex-
cept in the rare cases when one can be certain that they
contain no significant offset.

– For intermediate durations (4.5 < T < 8.0 yr), only series
with no offset can provide a low-velocity bias (v95 =

0.3 mm yr−1). All others are associated with an interme-
diate horizontal biases (v95 = 0.6 mm yr−1) and a high
vertical one (v95 = 1.3 mm yr−1).

The strong dependency on the absence or presence of one or
more offsets in intermediate and short series corresponds to
the effect described in Sect. 3.2 and confirms that the resolu-
tion of the offset amplitude is limited by the complex interac-
tions between offsets and noise structures. This effect is very
strongly reduced (or possibly suppressed) when offsets affect
long (T > 8.0 yr) series. For those, the velocity variability is
independent of offset presence (Fig. 7a) because such series
maintain relatively long “offset-free” segments that ensure a
good resolution of the velocity.

Finally, it is significant that no tree node exists that dis-
tinguishes very long series. In other words, the effect of the
series duration is limited to ca. 4.5 and 8.0 yr. This is con-
sistent with the observation made in the noise-alone analysis
that the decay of the noise effect as a function of time stag-
nates ca. 15 to 21 years (cf. Fig. 4 and Sect. 3.1). Our results
may indicate an overall lower limit on the velocity bias of
ca. 0.1 mm yr−1 due to the colored nature of the time series
noise. In other words, longer series may not be able to sig-
nificantly reduce the velocity bias without additional efforts
to whiten the noise through better data processing or taking
into account pluri-annual signals. However, this hypothesis
is only valid under the simple noise model (linear spectra,
Eq. 2) used in our synthetic data. Alternative noise models
exist that suggest a flattening of the spectra at long periods
(e.g., Gauss–Markov model, Langbein et al., 2004), which
would strongly limit the pluri-annual effect and allow a much
stronger impact of long series duration. The actual nature of
GPS noise at periods longer than 5–10 years is poorly defined
(Santamaria-Gomez et al., 2011; Hackl et al., 2011) and is
thus a major unknown in analyses of velocity precision.

4.4 Validation of velocity standard errors

For each series, the velocity standard error is calculated us-
ing the Williams (2003) generic expression for colored noise
with a non-integer spectral index. In order to estimate the
spectral index and amplitude of the colored noise, we use
a simplified least-square inversion in which we fit a linear
model to the series power spectrum limited to periods be-
tween 1/12 and T/2 years (with T the length of the time
series). In contrast with a more complex nonlinear method,
such as maximum likelihood, this simple approach does not
solve for the noise crossover frequency and thus only pro-
vides a first-order estimate of the noise parameters and ve-
locity standard errors.

We can test the robustness of these standard errors in com-
parison with their associated velocity biases by computing
the ratio of the velocity bias to its standard error for each in-
dividual time series. A ratio of 1 corresponds to a standard
error equal to its velocity bias; a ratio smaller (greater) than
1 corresponds to a standard error greater (smaller) than its
velocity bias. Owing to our stochastic approach and assum-
ing Gaussian distributions of the velocities and standard er-
rors, appropriate standard error calculations should result in
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Figure 7. The regression tree classification (a) and the whisker plots of the associated leaves (b) for the full dataset with multiple offsets,
variable noise, and seasonal signals with the application of the offset detection method. The horizontal top bar represents v95.

ca. 68 % of the ratio population smaller than 1 (i.e., 68 % of
the velocity biases are included in their standard errors) and
ca. 95 % of the population smaller than 2 (i.e., 95 % of the
velocity biases are included in twice their standard errors).
In our dataset, only 54 % of the ratio are smaller than 1 and
75 % are smaller than 2 (Fig. 8). These percentages are low
and suggest that, on average, our velocity standard errors are
too small by a factor of ca. 1.6.

This result is primarily controlled by the series spectral
index, while the series duration and dispersion have lit-
tle effect (Fig. 8). Series with indices ca. −0.6 > k >−0.9
are associated with ratio percentages close to the 68 and
95 % marks. In contrast, series with high indices (k >−0.6)
present ratios that are too low especially for very high indices
(k >−0.4). These results suggest that the simplified (linear
spectra) approach yields reasonable results for series with
near-flicker (k <−0.6) noise characteristics but significantly
underestimates the standard errors for series with near-white
(k >−0.4) noise.

5 Application to the RENAG data

The statistical analyses of synthetic data presented in the pre-
vious sections provide guidelines to estimate the precision of
velocities from actual GPS data. Using the regression tree
classification of the full synthetic dataset with automatic off-
set detection (Sect. 4.3), actual time series can be classified

according to the primary controlling parameters (duration,
presence of offsets, noise amplitude and spectral index) and
associated with a velocity bias distribution (Fig. 7). In the
following application to the French RENAG network (RE-
SIF, 2017), we use the 95 % confidence limit (v95) estimator
to provide a measure of the velocity precision of these real
data. This estimator can be viewed as the classical velocity
“uncertainty at 95 % confidence” (twice the standard error).

5.1 Offsets due to equipment changes

The RENAG network comprises 74 stations whose equip-
ment modifications are fully documented (cf. http://
webrenag.unice.fr, last access: 29 March 2018), thus provid-
ing a good test case for our offset detection method. On the
222 time series with durations between 2.0 and 18.4 years,
the comparison of detected offsets with the station logs show
that a change in receiver is very rarely associated with an off-
set (only 6 % of the 137 cases), whereas a change in antenna
causes an offset almost systematically (75 % of the 8 cases)
with average amplitudes of 2.0–3.0 mm in the horizontal and
ca. 13.0 mm in the vertical components. However, these per-
centages are not robust due to the small sample sizes (espe-
cially the antenna changes). A more robust analysis would
require a larger dataset, as well as the distinction between
equipment changes within large data gaps or near the ends
of the time series. Additionally, the offset detection method
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Figure 8. Distribution of the ratio of the velocity bias to its standard error for each individual time series. A ratio of 1 corresponds to a
standard error equal to its velocity. A ratio smaller (greater) than 1 corresponds to a standard error greater (smaller) than its velocity. Ratio:
less than 1 in green, less than 2 in orange, and greater than 2 in red. The black lines correspond to the 68 % and 95 % marks for normal
distributions of the velocities and standard errors.

could be improved to integrate the probability that an offsets
occurs on all three components of the same station rather than
individually as it is currently done.

5.2 Potential velocity precision of the RENAG stations

The time series data of the 74 RENAG stations come from a
Precise Point Positioning solution, combined with noise re-
duction using a regional common-mode technique (Masson
et al., 2018; Nguyen et al., 2016). The time series of each
station position component (north, east, up) are treated inde-
pendently. We consider that the number of detected offsets is
similar to the total number of offsets (Noff parameter in the
regression tree), assuming that undetected offsets have small
amplitudes and a small impact on the velocity estimations.
This hypothesis is problematic for short series where the de-
tection capacity is low (cf. Sect. 4.2) and for which it is likely
that offsets were not detected, leading to a misclassification
of series in Leaf 6.

Figure 9 shows a map of the RENAG stations with the
v95 value associated with each component according to the
tree leaves. Roughly half (53 %) of the 74 stations are asso-
ciated with the highest precisions in the horizontal (north and
east, v95 = 0.2 mm yr−1) and vertical (v95 = 0.5 mm yr−1)
components. In a few cases (12 %), the east component is
degraded to a slightly larger precision v95 = 0.5 mm yr−1.
About one-third (30 %) of the stations correspond to cases
with no detected offsets and identical precision in all three
components, either v95 = 0.3 mm yr−1 or v95 = 0.6 mm yr−1

depending on the duration of the time series.
Recent studies of GPS data in western Europe have shown

tectonic signals at the limit of GPS resolution. The most
significant signal corresponds to a systematic uplift of 1.0–
2.0 mm yr−1 in the central and northern regions of the West-
ern Alps (Nguyen et al., 2016; Nocquet et al., 2016). The
pattern of uplift and its lateral variations can provide im-
portant information on the associated dynamic (e.g., post-
glacial rebound versus slab tear; Chéry et al., 2016; Nocquet
et al., 2016). Our analysis suggests that the 95 % confidence
level of the RENAG velocities in the Alps is ca. 0.5 mm yr−1,
which may still be too large to provide strong constraints on

Figure 9. Map of the RENAG stations with the v95 velocity bias of
each component according to the tree classification.

the dynamic processes. In parallel with the vertical signal,
horizontal deformation is starting to emerge in the GPS data
analysis that show radial extension rates ca. 0.2–0.5 mm yr−1

in the Western Alps and Pyrenees (Nguyen et al., 2016; Rigo
et al., 2015; Walpersdorf et al., 2018). Such rates are at the
limit of the 95 % confidence level estimated for individual
RENAG stations (Fig. 9). This is especially true of stations
in the French Jura, which show a relatively low precision
v95 ≈ 0.6 mm yr−1 due to their recent installation and short
time series (T < 3.5 yr). These examples highlight the im-
portance of network redundancy and high station density in
order to strengthen the deformation analysis by relying on
several nearby stations to reduce aleatory noise in individual
GPS time series.
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6 Conclusions

We used statistical analyses of synthetic position time series
to determine the potential precision on continuous GPS ve-
locities. Our results are representative of standard GPS time
series, leaving aside cases with extreme noise levels (e.g.,
random walk) or transient tectonic signals (e.g., slow slip
events). The statistical analyses are discussed in terms of dis-
tributions of the velocity biases (absolute deviation from the
true velocity for each series) and the associated 95 % confi-
dence limit estimator (noted v95). The latter can be viewed as
a measure of the potential velocity precision of actual GPS
data.

In the synthetic datasets, random noise combined with the
presence of position offsets is the primary contributor to the
variability in the estimated velocities, whereas seasonal sig-
nals have a negligible effect. Using regression tree analy-
ses, we show that the duration of the time series is the main
parameter controlling the data classification and the veloc-
ity biases. It is followed by the absence/presence of at least
one offset and by the series dispersion due to random noise.
Within the range of tested values, the nature of the random
noise (near-white to near-flicker) does not contribute to the
velocity variability at a significant level.

We derive a set of guidelines, which can be applied to ac-
tual GPS data, that provide constraints on the velocity bias
using first-order time series parameters (duration, presence
of offsets, and noise dispersion; cf. Fig. 7). The velocity bi-
ases are given by the v95 estimator (95 % confidence limit of
the class distribution):

– Series with a duration of 8.0 years or more are associ-
ated with a low-velocity bias in the horizontal (v95 =

0.2 mm yr−1) and vertical (v95 = 0.5 mm yr−1) compo-
nents, regardless of their other characteristics (offset
presence, nature the noise).

– Series with a duration of less than 4.5 years cannot be
used for applications that require a precision better than
1.0 mm yr−1, except when they are not affected by any
offset (v95 = 1.0 mm yr−1 horizontal and vertical).

– Series of intermediate duration (4.5–8.0 years) and
no offset are associated with a low bias (v95 =

0.3 mm yr−1). Those, more common, with at least one
offset are associated with an intermediate horizontal
bias (v95 = 0.6 mm yr−1) and a high vertical one (v95 =

1.3 mm yr−1).

A significant outcome of our analysis is that, beyond 8 years
of data, it is the presence of offsets and the noise level that
have the greatest impact on the velocity bias and not the
lengthening of the series (within the limit of the 21 years
tested here). This suggests that the lengthening of the se-
ries is not a sufficient condition to significantly reduce the
bias in estimated velocities (below the 0.1 mm yr−1 level).

This effect derives directly from our noise model defini-
tion, in which the noise amplitude follows a linear power-
law dependency on the frequency (Eq. 2). As a result, the
noise amplitude constantly increases with long periods, ex-
plaining the very small effect of the time series duration
past ca. 10 years (cf. Fig. 4). Alternative noise models, such
as Gauss–Markov, which predicts a flattening of the power
spectrum at long periods, would likely change our results and
reinstate a strong duration dependency for very long series.
This shows the importance of a better characterization of the
GPS noise nature at very long periods and of current efforts
to model and correct for long-period signals such as pluri-
annual environmental loads.
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