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S1 Classical homogeneous Green’s function representation

S1.1 Definition of the homogeneous Green’s function

Consider an inhomogeneous lossless acoustic medium with mass density ρ(x) and compressibility κ(x). In this medium
a space- and time-dependent source distribution q(x, t) is present, with q defined as the volume-injection rate density. The
acoustic wave field, caused by this source distribution, is described in terms of the acoustic pressure p(x, t) and the particle
velocity vi(x, t). These field quantities obey the equation of motion and the stress-strain relation, according to

ρ∂tvi+ ∂ip= 0, (S1)

κ∂tp+ ∂ivi = q. (S2)

When q is an impulsive source at x= xA and t= 0, according to

q(x, t) = δ(x−xA)δ(t), (S3)

then the causal solution of Eqs. (S1) and (S2) defines the Green’s function, hence

p(x, t) =G(x,xA, t). (S4)

By eliminating vi from Eqs. (S1) and (S2) and substituting Eqs. (S3) and (S4), we find that the Green’s function G(x,xA, t)
obeys the following wave equation

∂i(ρ
−1∂iG)−κ∂2tG=−δ(x−xA)∂tδ(t). (S5)

Wave equation (S5) is symmetric in time, except for the source on the right-hand side, which is anti-symmetric. Hence, the
time-reversed Green’s function G(x,xA,−t) obeys the same wave equation, but with opposite sign for the source. By sum-
ming the wave equations for G(x,xA, t) and G(x,xA,−t), the sources on the right-hand sides cancel each other, hence, the
homogeneous Green’s function

Gh(x,xA, t) =G(x,xA, t)+G(x,xA,−t) (S6)

obeys the homogeneous equation

∂i(ρ
−1∂iGh)−κ∂2tGh = 0. (S7)

S1.2 Reciprocity theorems

We define the temporal Fourier transform of a time-dependent quantity u(t) as

u(ω) =

∞∫
−∞

u(t)exp(iωt)dt. (S8)

In the frequency domain, Eqs. (S1) and (S2) transform to

−iωρvi+ ∂ip= 0, (S9)

−iωκp+ ∂ivi = q. (S10)

We introduce two independent acoustic states, which will be distinguished by subscripts A and B. Rayleigh’s reciprocity
theorem is obtained by considering the quantity ∂i{pAvi,B−vi,ApB}, applying the product rule for differentiation, substituting
Eqs. (S9) and (S10) for both states, integrating the result over a spatial domain V enclosed by surface S with outward pointing
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normal ni, and applying the theorem of Gauss (de Hoop, 1988; Fokkema and van den Berg, 1993). Assuming that in V the
medium parameters ρ(x) and κ(x) in the two states are identical, this yields Rayleigh’s reciprocity theorem of the convolution
type ∫

V

{pAqB− qApB}dx=

∮
S

1

iωρ
{pA(∂ipB)− (∂ipA)pB}nidx. (S11)

We derive a second form of Rayleigh’s reciprocity theorem for time-reversed wave fields. In the frequency domain, time-
reversal is replaced by complex conjugation. When p is a solution of Eqs. (S9) and (S10) with source distribution q (and
real-valued medium parameters), then p∗ obeys the same equations with source distribution −q∗. Making these substitutions
for state A in Eq. (S11) we obtain Rayleigh’s reciprocity theorem of the correlation type (Bojarski, 1983)∫

V

{p∗AqB + q∗ApB}dx=

∮
S

1

iωρ
{p∗A(∂ipB)− (∂ip

∗
A)pB}nidx. (S12)

S1.3 Representation of the homogeneous Green’s function

We choose point sources in both states, according to qA(x,ω) = δ(x−xA) and qB(x,ω) = δ(x−xB), with xA and xB

both in V. The fields in states A and B are thus expressed in terms of Green’s functions, according to

pA(x,ω) =G(x,xA,ω), (S13)

pB(x,ω) =G(x,xB,ω), (S14)

with G(x,xA,ω) and G(x,xB,ω) being the Fourier transforms of G(x,xA, t) and G(x,xB, t), respectively. Making these
substitutions in Eq. (S12) and using source-receiver reciprocity of the Green’s functions gives (Porter, 1970; Oristaglio, 1989;
Wapenaar, 2004; Van Manen et al., 2005)

Gh(xB,xA,ω) =

∮
S

1

iωρ(x)

(
{∂iG(x,xB,ω)}G∗(x,xA,ω)−G(x,xB,ω)∂iG

∗(x,xA,ω)
)
nidx, (S15)

where Gh(xB,xA,ω) is the homogeneous Green’s function in the frequency domain. It is defined as

Gh(x,xA,ω) =G(x,xA,ω)+G∗(x,xA,ω) = 2<{G(x,xA,ω)}, (S16)

where < denotes the real part. Equation (S15) is an exact representation for the homogeneous Green’s functionGh(xB,xA,ω).
When S is sufficiently smooth and the medium outside S is homogeneous (with mass density ρ0, compressibility κ0 and

propagation velocity c0 = (κ0ρ0)
−1/2), the two terms under the integral in Eq. (S15) are nearly identical (but opposite in sign),

hence

Gh(xB,xA,ω) =−2
∮
S

1

iωρ0
G(x,xB,ω)∂iG

∗(x,xA,ω)nidx. (S17)

The main approximation is that evanescent waves are neglected at S (Zheng et al., 2011; Wapenaar et al., 2011).

S2 Single-sided homogeneous Green’s function representations

S2.1 Modification of the configuration

We replace the arbitrary closed surface S by a combination of two surfaces S0 and SA, as indicated in Fig. S1. Here S0
may be curved, but SA is a horizontal surface, with n= (0,0,1). The depth level of SA is defined as x3,A (which is equal to
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n3 = +1
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Figure S1. Modified configuration. The surface S consists of the combination of surfaces S0 and SA.

the x3-coordinate of the point xA). The domain between surfaces S0 and SA is called VA. For this configuration, reciprocity
theorems (S11) and (S12) are replaced by∫

VA

{pAqB− qApB}dx=

∫
S0

1

iωρ
{pA(∂ipB)− (∂ipA)pB}nidx+

∫
SA

1

iωρ
{pA(∂3pB)− (∂3pA)pB}dx (S18)

and ∫
VA

{p∗AqB + q∗ApB}dx=

∫
S0

1

iωρ
{p∗A(∂ipB)− (∂ip

∗
A)pB}nidx+

∫
SA

1

iωρ
{p∗A(∂3pB)− (∂3p

∗
A)pB}dx, (S19)

respectively. In the following we use these reciprocity theorems as the basis for deriving several versions of single-sided ho-
mogeneous Green’s function representations, each time by applying decomposition to one or more of the integrals in these
theorems. The theory of the decomposition of these integrals is discussed in Appendix A.

S2.2 Single-sided homogeneous Green’s function representation: general formulation

Substituting Eqs. (A37) and (A38) for the surface integrals at SA into Eqs. (S18) and (S19), we obtain∫
VA

(
pAqB− qApB

)
dx=

∫
S0

1

iωρ

(
pA(∂ipB)− (∂ipA)pB

)
nidx−

∫
SA

2

iωρ

(
(∂3p

+
A)p
−
B +(∂3p

−
A)p

+
B

)
dx (S20)

and, ignoring evanescent waves,∫
VA

(
p∗AqB + q∗ApB

)
dx=

∫
S0

1

iωρ

(
p∗A(∂ipB)− (∂ip

∗
A)pB

)
nidx−

∫
SA

2

iωρ

(
(∂3p

+
A)
∗p+B +(∂3p

−
A)
∗p−B

)
dx. (S21)

For state A we consider the focusing function f1(x,xA,ω) = f+1 (x,xA,ω)+ f−1 (x,xA,ω), introduced in section 3.1 in
“Green’s theorem in seismic imaging across the scales”. This focusing function is defined in a truncated version of the medium,
which is identical to the actual medium in VA, but reflection free above S0 and below SA. Hence, the condition for the validity
of Eqs. (A36), (A37) and (A38) is fulfilled at SA. The focusing conditions at the focal plane SA are (Wapenaar et al., 2014)

[∂3f
+
1 (x,xA,ω)]x3=x3,A

= 1
2 iωρ(xA)δ(xH−xH,A), (S22)

[∂3f
−
1 (x,xA,ω)]x3=x3,A

= 0. (S23)

For state B we consider the Green’s function G(x,xB,ω) =G+(x,xB,ω)+G−(x,xB,ω), with its source at xB anywhere
in the half-space below S0. Note that the superscripts + and − in f±1 (x,xA,ω) and G±(x,xB,ω) refer to the propagation
direction (downward or upward) at the observation point x. The source of the Green’s function at xB is omnidirectional.
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Substituting qA(x,ω) = 0, p±A(x,ω) = f±1 (x,xA,ω), qB(x,ω) = δ(x−xB) and p±B(x,ω) =G±(x,xB,ω) into Eqs. (S20)
and (S21), using Eqs. (S22) and (S23), gives

G−(xA,xB,ω)+χ(xB)f1(xB,xA,ω)

=

∫
S0

1

iωρ(x)

(
{∂iG(x,xB,ω)}f1(x,xA,ω)−G(x,xB,ω)∂if1(x,xA,ω)

)
nidx (S24)

and

G+(xA,xB,ω)−χ(xB)f
∗
1 (xB,xA,ω)

=−
∫
S0

1

iωρ(x)

(
{∂iG(x,xB,ω)}f∗1 (x,xA,ω)−G(x,xB,ω)∂if

∗
1 (x,xA,ω)

)
nidx, (S25)

respectively, where χ is the characteristic function of the domain VA. It is defined as

χ(xB) =


1, for xB between S0 and SA,
1
2
, for xB on S= S0 ∪ SA,

0, for xB outside S.
(S26)

Summing Eqs. (S24) and (S25) and using source-receiver reciprocity for the Green’s function on the left-hand side yields

G(xB,xA,ω)+χ(xB)2i={f1(xB,xA,ω)}

=

∫
S0

2

ωρ(x)

(
{∂iG(x,xB,ω)}={f1(x,xA,ω)}−G(x,xB,ω)={∂if1(x,xA,ω)}

)
nidx, (S27)

where = denotes the imaginary part. Taking the real part of both sides of this equation, using Eq. (S16), gives the single-sided
representation of the homogeneous Green’s function

Gh(xB,xA,ω) =

∫
S0

2

ωρ(x)

(
{∂iGh(x,xB,ω)}={f1(x,xA,ω)}−Gh(x,xB,ω)={∂if1(x,xA,ω)}

)
nidx. (S28)

S2.3 Single-sided homogeneous Green’s function representation: assuming a homogeneous upper half-space

From here onward we assume that also S0 is a horizontal surface, with n= (0,0,−1). Substituting Eqs. (A39) and (A40)
for the surface integrals at S0 and Eqs. (A47) and (A48) for the volume integrals into Eqs. (S20) and (S21), we obtain∫

VA

(
p+Aq

−
B + p−Aq

+
B − q

+
Ap
−
B − q

−
Ap

+
B

)
dx=

∫
S0

2

iωρ

(
(∂3p

+
A)p
−
B +(∂3p

−
A)p

+
B

)
dx−

∫
SA

2

iωρ

(
(∂3p

+
A)p
−
B +(∂3p

−
A)p

+
B

)
dx (S29)

and, ignoring evanescent waves,∫
VA

(
p+∗A q+B + p−∗A q−B + q+∗A p+B + q−∗A p−B

)
dx=

∫
S0

2

iωρ

(
(∂3p

+
A)
∗p+B +(∂3p

−
A)
∗p−B

)
dx−

∫
SA

2

iωρ

(
(∂3p

+
A)
∗p+B +(∂3p

−
A)
∗p−B

)
dx. (S30)
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We apply these theorems to the situation in which the upper half-space above S0 is homogeneous (for the Green’s function
as well as for the focusing function). For state A we consider again the focusing function f1(x,xA,ω) = f+1 (x,xA,ω)+
f−1 (x,xA,ω), defined in a truncated version of the medium. For state B we consider the Green’s function G(x,xB,ω) =
G+,+(x,xB,ω)+G

−,+(x,xB,ω)+G
+,−(x,xB,ω)+G

−,−(x,xB,ω), with its source at xB anywhere in the half-space below
S0. Note that we introduced two superscripts. The first superscript refers again to the propagation direction at the observation
point x. The second superscript refers to the radiation direction of the source at xB. Substituting q+A(x,ω) = q−A (x,ω) = 0,
p±A(x,ω) = f±1 (x,xA,ω), q+B (x,ω) = δ(x−xB), q−B (x,ω) = 0 and p±B(x,ω) =G±,+(x,xB,ω) into Eqs. (S29) and (S30),
using Eqs. (S22) and (S23) and G+,+(x,xB,ω) = 0 for x at S0 (since the upper half-space is homogeneous), gives

G−,+(xA,xB,ω)+χ(xB)f
−
1 (xB,xA,ω) =

∫
S0

2

iωρ0
G−,+(x,xB,ω)∂3f

+
1 (x,xA,ω)dx (S31)

and

G+,+(xA,xB,ω)−χ(xB){f+1 (xB,xA,ω)}∗ =−
∫
S0

2

iωρ0
G−,+(x,xB,ω){∂3f−1 (x,xA,ω)}∗dx. (S32)

Next, substituting q+A(x,ω) = q−A (x,ω) = 0, p±A(x,ω) = f±1 (x,xA,ω), q+B (x,ω) = 0, q−B (x,ω) = δ(x−xB) and p±B(x,ω) =
G±,−(x,xB,ω) into Eqs. (S29) and (S30), using Eqs. (S22) and (S23) and G+,−(x,xB,ω) = 0 for x at S0, gives

G−,−(xA,xB,ω)+χ(xB)f
+
1 (xB,xA,ω) =

∫
S0

2

iωρ0
G−,−(x,xB,ω)∂3f

+
1 (x,xA,ω)dx (S33)

and

G+,−(xA,xB,ω)−χ(xB){f−1 (xB,xA,ω)}∗ =−
∫
S0

2

iωρ0
G−,−(x,xB,ω){∂3f−1 (x,xA,ω)}∗dx. (S34)

Summing Eqs. (S31) − (S34), using source-receiver reciprocity for the Green’s function on the left-hand side and
G+,+(x,xB,ω) =G+,−(x,xB,ω) = 0 for x at S0, we obtain

G(xB,xA,ω)+χ(xB)2i={f1(xB,xA,ω)}

=

∫
S0

2

iωρ0
G(x,xB,ω)∂3

(
f+1 (x,xA,ω)−{f−1 (x,xA,ω)}∗

)
dx. (S35)

Taking the real part of both sides gives the single-sided representation of the homogeneous Green’s function for the situation
that the upper half-space is homogeneous

Gh(xB,xA,ω) = 4<
∫
S0

1

iωρ0
G(x,xB,ω)∂3

(
f+1 (x,xA,ω)−{f−1 (x,xA,ω)}∗

)
dx. (S36)

We conclude by deriving source-receiver reciprocity relations for the decomposed Green’s functions G±,±(x,xB,ω). We
consider Eq. (S29), but replace VA by the entire space R3. In this situation there are only outgoing waves at S. Hence, Eq.
(S29) simplifies to∫

R3

(
p+Aq

−
B + p−Aq

+
B − q

+
Ap
−
B − q

−
Ap

+
B

)
dx= 0. (S37)

First we substitute q+A = δ(x−xA), q−A = 0, p±A =G±,+(x,xA,ω), q+B = δ(x−xB), q−B = 0 and p±B =G±,+(x,xB,ω). This
gives

G−,+(xB,xA,ω) =G−,+(xA,xB,ω). (S38)
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Next, we substitute q+A = δ(x−xA), q−A = 0, p±A =G±,+(x,xA,ω), q+B = 0, q−B = δ(x−xB) and p±B =G±,−(x,xB,ω). This
gives

G+,+(xB,xA,ω) =G−,−(xA,xB,ω). (S39)

Finally, we substitute q+A = 0, q−A = δ(x−xA), p±A =G±,−(x,xA,ω), q+B = 0, q−B = δ(x−xB) and p±B =G±,−(x,xB,ω).
This gives

G+,−(xB,xA,ω) =G+,−(xA,xB,ω). (S40)

Note that Eq. (S39) does not include a minus sign, unlike the corresponding relation for the flux-normalised decomposed
Green’s functions (Wapenaar, 1996a). This is due to the definition of q± in Eq. (A46). As a result of this definition, we have
the following simple expression for the full Green’s function

G(x,xA,ω) =G+,+(x,xA,ω)+G−,+(x,xA,ω)+G+,−(x,xA,ω)+G−,−(x,xA,ω). (S41)

Appendix A: Decomposition of the integrals in the reciprocity theorems

A1 Matrix-vector wave equation

By eliminating v1 and v2 from Eqs. (S9) and (S10), we obtain the following matrix-vector wave equation in the space-frequency
domain

∂3q =Aq+d, (A1)

where

q =

(
p
v3

)
, d=

(
0
q

)
, A=

(
0 A12

A21 0

)
, (A2)

with

A12 = iωρ, (A3)

A21 = iωκ− 1

iω
∂α

1
ρ∂α (A4)

(Corones, 1975; Ursin, 1983; Fishman and McCoy, 1984; Wapenaar and Berkhout, 1989; de Hoop, 1996). Here ∂α stands
for the spatial differential operator ∂/∂xα. Greek subscripts take on the values 1 and 2 and Einstein’s summation convention
applies to repeated subscripts. The notation in the right-hand side of Eq. (A4) should be understood in the sense that differential
operators act on all factors to the right of it. Hence, operator ∂α 1

ρ∂α, applied via Eq. (A1) to p, stands for ∂α( 1ρ∂αp).

A2 Decomposition of the matrix-vector wave equation

For the decomposition of the matrix-vector wave equation, we first recast the operator matrix A into a more symmetric form.
To this end we define an operatorH2, according to

H2 =−iω
√
ρA21

√
ρ= k2 +

√
ρ∂α

1
ρ∂α
√
ρ, (A5)

with

k2 =
ω2

c2
, c=

1
√
ρκ
. (A6)

After some bookkeeping it follows thatH2 can be written as a 2D Helmholtz operator

H2 = k2S + ∂α∂α (A7)
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(Wapenaar and Berkhout, 1989; de Hoop, 1992), with the scaled wavenumber kS obeying

k2S =
ω2

c2
− 3(∂αρ)(∂αρ)

4ρ2
+

(∂α∂αρ)

2ρ
(A8)

(Brekhovskikh, 1960). We now rewrite operator matrix A as

A=

(
0 iωρ

− 1
iω
√
ρH2

1√
ρ 0

)
. (A9)

The decomposition of this matrix is not unique. Flux-normalized decomposition is discussed by de Hoop (1996) and Wapenaar
(1996b). Here we discuss a symmetric form of pressure-normalized decomposition, modified after Wapenaar and Berkhout
(1989). We decompose the matrix as follows

A= LHL−1, (A10)

with

L=

(
1 1

1
ωρH

s
1 − 1

ωρH
s
1

)
, H=

(
iHs1 0
0 −iHs1

)
, L−1 =

1

2

(
1

(
1
ωρH

s
1

)−1
1 −

(
1
ωρH

s
1

)−1
)
. (A11)

Here

Hs1 =
√
ρH1

1√
ρ , (A12)

whereH1 is the square-root of the Helmholtz operator, according to

H1H1 =H2. (A13)

We decompose the wave vector q and the source vector d as follows

q = Lp, p= L−1q, (A14)
d= Ls, s= L−1d, (A15)

with

p=

(
p+

p−

)
, s=

(
s+

s−

)
. (A16)

Substitution of Eqs. (A14) and (A15) into the matrix-vector wave equation (A1), using Eq. (A10), yields

∂3p=Bp+ s, (A17)

with

B=H−L−1∂3L, (A18)

or

∂3

(
p+

p−

)
=

(
iHs1 0
0 −iHs1

)(
p+

p−

)
− 1

2

( (
1
ρH

s
1

)−1
∂3
(
1
ρH

s
1

)
−
(
1
ρH

s
1

)−1
∂3
(
1
ρH

s
1

)
−
(
1
ρH

s
1

)−1
∂3
(
1
ρH

s
1

) (
1
ρH

s
1

)−1
∂3
(
1
ρH

s
1

) )(p+
p−

)
+

(
s+

s−

)
. (A19)

This is a system of coupled one-way wave equations for downgoing and upgoing waves, p+ and p−, respectively. With the
definitions of q and p in Eqs. (A2) and (A16), respectively, and L in Eq. (A11), it follows from Eq. (A14) that

p= p+ + p−. (A20)

Hence, the decomposed fields p+ and p− are indeed pressure-normalised downgoing and upgoing waves.
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A3 Symmetry properties of the operators

For an operator U , containing space-dependent medium parameters and differential operators ∂1 and ∂2, we introduce its
transpose U t and its adjoint (i.e., complex conjugate transpose) U† via∫
A

(Uf)tgdx=

∫
A

f(U tg)dx (A21)

and∫
A

(Uf)∗gdx=

∫
A

f∗(U†g)dx, (A22)

where A is an infinite horizontal integration surface at arbitrary depth x3, and f(x) and g(x) are space-dependent functions
with sufficient decay along A towards infinity. For the Helmholtz operatorH2, defined in Eq. (A7), we have

Ht2 =H2, (A23)

meaningH2 is a symmetric operator. Since we consider a lossless medium, we also have

H†2 =H∗2 =H2, (A24)

meaningH2 is also a self-adjoint operator.
The square-root operatorH1, defined in Eq. (A13), is a pseudo-differential operator. It obeys the following symmetry prop-

erty

Ht1 =H1, (A25)

meaningH1 is a symmetric operator (Wapenaar and Grimbergen, 1996). Ignoring evanescent waves, we have

H†1 =H∗1 ≈H1. (A26)

Hence, this operator is not self-adjoint. In the following we replace approximation signs by equal signs whenever the only
approximation is the negligence of evanescent waves. Operator Hs1, defined in Eq. (A12), obeys the following symmetry
properties( 1

ρH
s
1

)t
= 1

ρH
s
1, (A27)( 1

ρH
s
1

)†
= 1

ρH
s
1. (A28)

From these symmetry relations, we find that L, defined in Eq. (A11), obeys the following properties

LtNL=

(
0 − 2

ω

(
1
ρH

s
1

)
2
ω

(
1
ρH

s
1

)
0

)
=

(
0 − 2

ω

(
1
ρH

s
1

)t
2
ω

(
1
ρH

s
1

)t
0

)
(A29)

and, ignoring evanescent waves,

L†KL=

( 2
ω

(
1
ρH

s
1

)
0

0 − 2
ω

(
1
ρH

s
1

))=

(
2
ω

(
1
ρH

s
1

)†
0

0 − 2
ω

(
1
ρH

s
1

)†
)
, (A30)

with

N=

(
0 1
−1 0

)
, K=

(
0 1
1 0

)
. (A31)
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A4 Decomposition of the surface integrals

For the surface integrals along SA appearing in Eqs. (S18) and (S19) we introduce the following compact notation (using
1
iωρ∂3p= v3)∫

SA

1

iωρ
{pA(∂3pB)− (∂3pA)pB}dx=

∫
SA

qtANqBdx (A32)

and ∫
SA

1

iωρ
{p∗A(∂3pB)− (∂3p

∗
A)pB}dx=

∫
SA

q†AKqBdx, (A33)

respectively. With the decomposition of q defined in Eq. (A14), the properties of L formulated in Eqs. (A29) and (A30), and
the definition of p in Eq. (A16) we obtain∫

SA

qtANqBdx=

∫
SA

ptAL
tNLpBdx=−

∫
SA

2

ω

(
p+A(

1
ρH

s
1)
tp−B − p

−
A(

1
ρH

s
1)
tp+B
)
dx (A34)

and, ignoring evanescent waves,∫
SA

q†AKqBdx=

∫
SA

p†AL
†KLpBdx=

∫
SA

2

ω

(
p+∗A ( 1ρH

s
1)
†p+B − p

−∗
A ( 1ρH

s
1)
†p−B

)
dx. (A35)

Assuming that in state A there are no vertical derivatives of the medium parameters at SA, we find from Eq. (A19)

∂3p
±
A =±iHs1p±A at SA. (A36)

Using this in Eqs. (A34) and (A35) and substituting the results into Eqs. (A32) and (A33), we obtain∫
SA

1

iωρ
{pA(∂3pB)− (∂3pA)pB}dx=−

∫
SA

2

iωρ

(
(∂3p

+
A)p
−
B +(∂3p

−
A)p

+
B

)
dx (A37)

and, ignoring evanescent waves,∫
SA

1

iωρ
{p∗A(∂3pB)− (∂3p

∗
A)pB}dx=−

∫
SA

2

iωρ

(
(∂3p

+
A)
∗p+B +(∂3p

−
A)
∗p−B

)
dx. (A38)

When S0 in Eqs. (S18) and (S19) is also a horizontal surface, with n= (0,0,−1), we obtain (assuming that in state A there
are no vertical derivatives of the medium parameters at S0)∫

S0

−1
iωρ
{pA(∂3pB)− (∂3pA)pB}dx=

∫
S0

2

iωρ

(
(∂3p

+
A)p
−
B +(∂3p

−
A)p

+
B

)
dx (A39)

and, ignoring evanescent waves,∫
S0

−1
iωρ
{p∗A(∂3pB)− (∂3p

∗
A)pB}dx=

∫
S0

2

iωρ

(
(∂3p

+
A)
∗p+B +(∂3p

−
A)
∗p−B

)
dx. (A40)
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A5 Decomposition of the volume integrals

Assuming both S0 and SA are horizontal surfaces, we introduce the following compact notation for the volume integrals in
Eqs. (S18) and (S19)∫

VA

{pAqB− qApB}dx=

∫
VA

(
dtANqB + qtANdB

)
dx (A41)

and ∫
VA

{p∗AqB + q∗ApB}dx=

∫
VA

(
d†AKqB + q†AKdB

)
dx, (A42)

respectively. With the decomposition of q and d defined in Eqs. (A14) and (A15), the properties of L formulated in Eqs. (A29)
and (A30), and the definition of p and s in Eq. (A16), we obtain∫

VA

(
dtANqB + qtANdB

)
dx=

∫
VA

(
stAL

tNLpB +ptAL
tNLsB

)
dx

=−
∫
VA

2

ω

(
s+A(

1
ρH

s
1)
tp−B − s

−
A(

1
ρH

s
1)
tp+B + p+A(

1
ρH

s
1)s
−
B − p

−
A(

1
ρH

s
1)s

+
B

)
dx (A43)

and, ignoring evanescent waves,∫
VA

(
d†AKqB + q†AKdB

)
dx=

∫
VA

(
s†AL

†KLpB +p†AL
†KLsB

)
dx

=

∫
VA

2

ω

(
s+∗A ( 1ρH

s
1)
†p+B − s

−∗
A ( 1ρH

s
1)
†p−B + p+∗A ( 1ρH

s
1)s

+
B − p

−∗
A ( 1ρH

s
1)s
−
B

)
dx. (A44)

From s= L−1d, and the definitions of d, L−1 and s in Eqs. (A2), (A11) and (A16), we find

s± =±
( 2

ωρ
Hs1
)−1

q. (A45)

We define new decomposed sources q+ and q−, according to

q± =± 2

ωρ
Hs1s±. (A46)

Using this definition in Eqs. (A43) and (A44) and substituting the results in Eqs. (A41) and (A42), we obtain∫
VA

{pAqB− qApB}dx=

∫
VA

(
p+Aq

−
B + p−Aq

+
B − q

+
Ap
−
B − q

−
Ap

+
B

)
dx (A47)

and, ignoring evanescent waves,∫
VA

{p∗AqB + q∗ApB}dx=

∫
VA

(
p+∗A q+B + p−∗A q−B + q+∗A p+B + q−∗A p−B

)
dx. (A48)
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