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Abstract. The earthquake seismology and seismic explo-
ration communities have developed a variety of seismic
imaging methods for passive- and active-source data. Despite
the seemingly different approaches and underlying princi-
ples, many of those methods are based in some way or an-
other on Green’s theorem. The aim of this paper is to discuss
a variety of imaging methods in a systematic way, using a
specific form of Green’s theorem (the homogeneous Green’s
function representation) as a common starting point. The
imaging methods we cover are time-reversal acoustics, seis-
mic interferometry, back propagation, source–receiver reda-
tuming and imaging by double focusing. We review classical
approaches and discuss recent developments that fully ac-
count for multiple scattering, using the Marchenko method.
We briefly indicate new applications for monitoring and fore-
casting of responses to induced seismic sources, which are
discussed in detail in a companion paper.

1 Introduction

Through the years, the earthquake seismology and seismic
exploration communities have developed a variety of seismic
imaging methods for passive- and active-source data, based
on a wide range of principles such as time-reversal acous-
tics, Green’s function retrieval by noise correlation (a form
of seismic interferometry), back propagation (also known as
holography) and source–receiver redatuming. Many of these
methods are rooted in some way or another in Green’s the-
orem (Green, 1828; Morse and Feshbach, 1953; Challis and
Sheard, 2003). The current paper is a modest attempt to dis-
cuss a variety of imaging methods and their underlying prin-
ciples in a systematic way, using Green’s theorem as the com-
mon starting point. We are certainly not the first to recog-
nize links between different imaging methods. For example,

Esmersoy and Oristaglio (1988) discussed the link between
back propagation and reverse-time migration, Derode et al.
(2003) derived Green’s function retrieval from the principle
of time-reversal acoustics by physical reasoning and Schuster
et al. (2004) linked seismic interferometry to back propaga-
tion, to name but a few.

We start by reviewing a specific form of Green’s theo-
rem, namely the classical representation of the homogeneous
Green’s function, originally developed for optical hologra-
phy (Porter, 1970; Porter and Devaney, 1982). The homo-
geneous Green’s function is the superposition of the causal
Green’s function and its time reversal. We use its surface-
integral representation to derive time-reversal acoustics, seis-
mic interferometry, back propagation, source–receiver reda-
tuming and imaging by double focusing in a systematic way,
confirming that these methods are all very similar. We briefly
discuss the potential and the limitations of these methods.
Because the classical homogeneous Green’s function repre-
sentation is based on a closed surface integral, an implicit
assumption of all of these methods is that the medium of in-
terest can be accessed from all sides. Due to the fact that
acquisition is limited to the Earth’s surface in most seismic
applications, a major part of the closed surface integral is
necessarily neglected. This implies that errors are introduced
and, in particular, that multiple reflections between layer in-
terfaces are not correctly handled. To address this issue, we
also discuss a recently developed single-sided representation
of the homogeneous Green’s function. We use this to derive,
in the same systematic way, modified seismic imaging meth-
ods that account for multiple reflections between layer inter-
faces. In a companion paper (Brackenhoff et al., 2019) we
extensively discuss applications for monitoring induced seis-
micity.

Although the solid Earth supports elastodynamic (vecto-
rial) waves, to facilitate the comparison of the different meth-
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ods discussed in this paper we have chosen to consider scalar
waves only. Scalar waves, which obey the acoustic wave
equation, serve as an approximation for compressional body
waves propagating through the solid Earth, or for the funda-
mental mode of surface waves propagating along the Earth’s
surface, depending on the application. In several places we
give references to extensions of the methods that account for
the full elastodynamic wave field.

2 Theory and applications of a classical wave field
representation

2.1 Classical homogeneous Green’s function
representation

We consider an inhomogeneous lossless acoustic medium,
with mass density ρ(x) and compressibility κ(x), where x =

(x1,x2,x3) denotes the Cartesian coordinate vector. In this
medium we define a unit impulsive point source of volume-
injection rate density q(x, t)= δ(x−xA)δ(t), where δ(·) de-
notes the Dirac delta function, xA represents the position of
the source and t stands for time. The response to this source,
observed at any position x in the inhomogeneous medium,
is the Green’s function G(x,xA, t) and obeys the following
wave equation:

∂i(ρ
−1∂iG)− κ∂

2
t G=−δ(x− xA)∂tδ(t), (1)

where ∂t stands for the temporal differential operator ∂/∂t
and ∂i represents the spatial differential operator ∂/∂xi . Latin
subscripts (except t) take on the values 1, 2 and 3, and Ein-
stein’s summation convention applies to repeated subscripts.
We impose the condition G(x,xA, t)= 0 for t < 0, so that
G(x,xA, t) for t > 0 is the causal solution of Eq. (1), repre-
senting a wave field originating from the source at xA. Note
that the Green’s function obeys source–receiver reciprocity,
i.e., G(xB,xA, t)=G(xA,xB, t), assuming both are causal
and obey the same boundary conditions (Rayleigh, 1878;
Landau and Lifshitz, 1959; Morse and Ingard, 1968). This
property will be frequently used without always mentioning
it explicitly.

The time-reversal of the Green’s function, G(x,xA,−t),
is the acausal solution of Eq. (1), which, for t < 0, represents
a wave field converging to a sink at xA. The homogeneous
Green’s functionGh(x,xA, t) is defined as the superposition
of the Green’s function and its time reversal, according to

Gh(x,xA, t)=G(x,xA, t)+G(x,xA,−t). (2)

It is called “homogeneous” because it obeys a homogeneous
wave equation, i.e., a wave equation without a singularity
on the right-hand side. Hence ∂i(ρ−1∂iGh)− κ∂

2
t Gh = 0, in

which the medium parameters ρ(x) and κ(x) are generally
not homogeneous. Note that in this paper we use the adjective
“homogeneous” in two different ways. We define the Fourier

transform of a time-dependent function u(t) as

u(ω)=

∞∫
−∞

u(t)exp(iωt)dt. (3)

Here ω denotes angular frequency and i the imaginary unit.
For notational convenience, we use the same symbol for
quantities in the time domain and in the frequency domain.
The wave equation for the Green’s function in the frequency
domain reads

∂i(ρ
−1∂iG)+ κω

2G= iωδ(x− xA). (4)

The homogeneous Green’s function in the frequency domain
is defined as

Gh(x,xA,ω)=G(x,xA,ω)+G
∗(x,xA,ω)

= 2<{G(x,xA,ω)}, (5)

where the superscript asterisk denotes complex conjugation,
and < means that the real part is taken. The classical repre-
sentation of the homogeneous Green’s function reads (Porter,
1970; Oristaglio, 1989; Supplement, Sect. S1.3)

Gh(xB,xA,ω)=

∮
S

1
iωρ(x)

(
{∂iG(x,xB,ω)}G

∗(x,xA,ω)

−G(x,xB,ω)∂iG
∗(x,xA,ω)

)
nidx, (6)

see Fig. 1. Here S is an arbitrarily shaped closed surface
with an outward pointing normal vector n= (n1,n2,n3),
which does not necessarily coincide with the boundary of
the medium. It is assumed that xA and xB are situated in-
side S. Note that the aforementioned authors use a slightly
different definition of the Green’s function (the factor iω in
the source term in Eq. (4) is absent in their case). Never-
theless, we will refer to Eq. (6) as the classical homoge-
neous Green’s function representation. When S is sufficiently
smooth and the medium outside S is homogeneous (with
mass density ρ0, compressibility κ0 and propagation velocity
c0 = (κ0ρ0)

−1/2), the two terms under the integral in Eq. (6)
are nearly identical (but opposite in sign); hence, this repre-
sentation may be approximated by

Gh(xB,xA,ω)=−2
∮
S

1
iωρ0

G(x,xB,ω)∂iG
∗(x,xA,ω)nidx.

(7)

The main approximation is that evanescent waves are ne-
glected (Zheng et al., 2011; Wapenaar et al., 2011).

In the following sections we discuss different imaging
methods. Each time we first introduce the specific method in
an intuitive way, after which we present a more quantitative
derivation based on Eq. (7).
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Figure 1. Configuration for the homogeneous Green’s function rep-
resentation (Eq. 6). The rays in this and subsequent figures represent
the full responses between the source and receiver points, including
primary and multiple scattering.

2.2 Time-reversal acoustics

Time-reversal acoustics has been pioneered by Fink and co-
workers (Fink, 1992, 2006; Derode et al., 1995; Draeger
and Fink, 1999). It makes use of the fact that the acous-
tic wave equation for a lossless medium is invariant under
time reversal (for discussions regarding elastodynamic time-
reversal methods we refer the reader to Scalerandi et al.,
2009; Anderson et al., 2009; Wang and McMechan, 2015).
Hence, given a particular solution of the wave equation, its
time-reversal obeys the same wave equation. Figure 2 il-
lustrates the principle (following Derode et al., 1995, and
Fink, 2006). In Fig. 2a, an impulsive source at xA emits a
wave field which, after propagation through a highly scat-
tering medium, is recorded by receivers at x on the surface
S0. In the practice of time-reversal acoustics, S0 is a finite
open surface. We discuss the limitations of this later. The
recordings at S0 are denoted as vn(x,xA, t), where vn stands
for the normal component of the particle velocity. Note that
these recordings are very complex due to multiple scattering
in the medium. In Fig. 2b, the time-reversals of these com-
plex recordings, vn(x,xA,−t), are emitted from the surface
S0 into the medium. After propagating through the same scat-
tering medium, the field should focus at xA, i.e., at the po-
sition of the original source. Figure 2c shows a snapshot of
the field at t = 0, which indeed contains a focus at xA. Fig-
ure 2d shows a horizontal cross-section of the amplitudes at
t = 0 at the depth level of the focus (the solid blue curve with
the sharp peak). For comparison, the dotted red curve shows
the amplitude cross-section of the focus that is obtained with
a similar time-reversal experiment in absence of scatterers.
As the solid blue curve has a sharper peak than the dotted red
curve, we can conclude that multiple scattering contributes to
the formation of the focus in Fig. 2c. The scattering medium
effectively widens the aperture angle, which explains the bet-
ter focus.

The time-reversal principle can be made more quantitative
using Green’s theorem (Fink, 2006). First, using the equation

of motion, we express the normal component of the particle
velocity at S in the frequency domain as

vn(x,xA,ω)=
1

iωρ0
∂iG(x,xA,ω)nis(ω), (8)

where s(ω) is the spectrum of the source at xA. Using this in
the homogeneous Green’s function representation of Eq. (7)
we obtain

Gh(xB,xA,ω)s
∗(ω)= 2

∮
S

G(xB,x,ω)v
∗
n(x,xA,ω)dx, (9)

or, in the time domain (using Eq. 2),

{G(xB,xA, t)+G(xB,xA,−t)} ∗ s(−t)

= 2
∮
S

G(xB,x, t)︸ ︷︷ ︸
“propagator”

∗ vn(x,xA,−t)︸ ︷︷ ︸
“secondary sources”

dx, (10)

where the inline asterisk (∗) denotes temporal convolu-
tion. This is the fundamental expression for time-reversal
acoustics. The integrand on the right-hand side formulates
the propagation of the time-reversed field vn(x,xA,−t)

through the inhomogeneous medium by the Green’s function
G(xB,x, t) from the sources at x on the boundary S to any
receiver position xB inside the medium. The integral is taken
along all source positions x on the closed boundary S. The
right-hand side resembles Huygens’ principle, which states
that each point of an incident wave field acts as a secondary
source, except that here the secondary sources on S consist
of time-reversed measurements instead of an incident wave
field. The left-hand side quantifies the field at any point xB
inside S, which consists within the negative time of a back-
ward propagating fieldG(xB,xA,−t)∗s(−t), converging to
xA, and within the positive time of a forward propagating
field G(xB,xA, t) ∗ s(−t), originating from a virtual source
at xA. By setting xB equal to xA we obtain the field at the fo-
cus (i.e., at the position of the original source). By taking xB
variable in a small region around xA, while setting t equal to
zero, Eq. (10) quantifies the focal spot. Assuming the source
function s(t) is symmetric, this yields

[{G(xB,xA, t)+G(xB,xA,−t)} ∗ s(t)]t=0 =−
ρ̄

2πr
ṡ(d/c̄)

(11)

(Douma and Snieder, 2015; Wapenaar and Thorbecke, 2017),
where c̄ and ρ̄ are the propagation velocity and mass density
in the neighborhood of xA, d is the distance of xB to xA, and
ṡ(t) denotes the derivative of the source function s(t).

It should be noted that the integration in Eq. (10) takes
place over sources on a closed surface S. However, in the
example in Fig. 2 the time-reversed field is emitted into
the medium from a finite open surface S0. Despite this dis-
crepancy, a good focus is obtained around xA. Neverthe-
less, Fig. 2c also shows a noisy field at t = 0, particularly in
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Figure 2. Principle of time-reversal acoustics. (a) Forward propagation from xA to the finite open surface S0. (b) Emission of the time-
reversed recordings from S0 into the medium. (c) Snapshot of the wave field at t = 0, with focus at xA. (d) Solid blue curve: amplitude
cross-section of the focused field in (c), taken along a horizontal line through the focal point xA. Dotted red curve: amplitude cross-section
obtained from a similar time-reversal experiment, in the absence of scatterers.

the scattering region. According to Eq. (10), this noisy field
would vanish if the time-reversed field was emitted from a
closed surface into the medium.

Figure 2 is representative of ultrasonic applications of
time-reversal acoustics, because in those applications it is
feasible to physically emit the time-reversed field into the
real medium (Fink, 1992, 2006; Cassereau and Fink, 1992;
Derode et al., 1995; Draeger and Fink, 1999; Tanter and
Fink, 2014). Time-reversal acoustics also finds applica-
tions in geophysics at various scales, but in those applica-
tions the time-reversed field is emitted numerically into a
model of the Earth. This is used for source characteriza-
tion (McMechan, 1982; Gajewski and Tessmer, 2005; Lar-
mat et al., 2010) and for structural imaging by reverse-time
migration (McMechan, 1983; Whitmore, 1983; Baysal et al.,
1983; Etgen et al., 2009; Zhang and Sun, 2009; Clapp et al.,
2010). In these model-driven applications it is much more
difficult to account for multiple scattering, which is there-
fore usually ignored. Moreover, the scattering mechanism is
often very different, particularly in applications dedicated to
imaging the Earth’s crust. We discuss a second time-reversal
example to illustrate this.

Whereas in Fig. 2 we considered short-period multiple
scattering at randomly distributed point-like scatterers in a
homogeneous background medium, in Fig. 3 we consider
long-period multiple scattering at extended interfaces be-
tween layers with distinct medium parameters (which is rep-
resentative for multiple scattering in the Earth’s crust). Fig-
ure 3a shows the response vn(x,xA, t) to a source at xA in-
side a layered medium, observed at the surface S0. The time-
reversal of this response is emitted from S0 into the same
layered medium. The field at t = 0 is shown in Fig. 3b. We
again observe a clear focus at xA, but this time the multiple
scattering does not contribute to the resolution of the focus
(because there are no point scatterers that effectively widen
the aperture angle). On the contrary, the multiply scattered
waves give rise to strong, distinct artefacts in other regions in
the medium. Again, these artefacts would disappear entirely
if the time-reversed field was emitted from a closed surface,
but this is of course unrealistic for geophysical applications.
In Sect. 3.2 we discuss a modified approach to single-sided
time-reversal acoustics which does not suffer from artefacts
such as those in Fig. 3b.
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Figure 3. Time-reversal acoustics in a layered medium. (a) Forward propagation from xA to the finite open surface S0. (b) Emission of the
time-reversed recordings from S0 into the medium and a snapshot of the wave field at t = 0, with focus at xA.

2.3 Seismic interferometry

Under certain conditions, the cross-correlation of passive
ambient-noise recordings at two receivers converges to the
response that would be measured at one of the receivers if
there were an impulsive source at the position of the other.
This methodology, which creates a virtual source at the po-
sition of an actual receiver, is known as Green’s function re-
trieval by noise correlation (a form of seismic interferome-
try). At the ultrasonic scale it has been pioneered by Weaver
and co-workers (Weaver and Lobkis, 2001, 2002; Lobkis and
Weaver, 2001), and the object of investigation at this scale
is often a closed system (i.e., a finite specimen with reflect-
ing boundaries on all sides). Early applications for open sys-
tems are discussed by Aki (1957), Claerbout (1968), Duvall
et al. (1993), Rickett and Claerbout (1999), Schuster (2001),
Wapenaar et al. (2002), Campillo and Paul (2003), Derode
et al. (2003), Snieder (2004), Schuster et al. (2004), Roux
et al. (2005), Sabra et al. (2005a), Larose et al. (2006) and
Draganov et al. (2007). A detailed discussion of the many
aspects of seismic interferometry is beyond the scope of this
paper. Overviews of seismic interferometry, for passive as
well as controlled-source data, are given by Schuster (2009),
Wapenaar et al. (2010) and Nakata et al. (2019).

Figure 4 illustrates the principle for passive ambient-noise
data. In Fig. 4a, a distribution of uncorrelated noise sources
N(x, t) at some finite open surface S0 emits waves through
an inhomogeneous medium to receivers at xA and xB. The
cross-correlation of the responses at xA and xB converges to
G(xB,xA, t) ∗CN (t), where CN (t) is the autocorrelation of
the noise. The result is shown in Fig. 4b, for a fixed virtual
source at xA and an array of receivers at variable xB.

We use the homogeneous Green’s function representation
of Eq. (7) to explain this in a more quantitative way (Wape-
naar et al., 2002; Weaver and Lobkis, 2004; van Manen
et al., 2005; Korneev and Bakulin, 2006). Representations
for elastodynamic interferometry are discussed by Wape-
naar (2004), Halliday and Curtis (2008) and Kimman and
Trampert (2010). Applying source–receiver reciprocity to the
Green’s functions under the integral in Eq. (7), we obtain

Gh(xB,xA,ω)=−
2

iωρ0

∮
S

G(xB,x,ω)∂iG
∗(xA,x,ω)nidx.

(12)

The integrand can be interpreted as the Fourier transform of
the cross-correlation of responses to sources at x on closed
surface S, observed by receivers at xA and xB. Note that S
is the surface containing the sources; it is not the boundary
of the medium. G(xB,x,ω) is the response to a monopole
source at x, and ∂iG(xA,x,ω)ni is the response to a dipole
source at the same position. In most situations there will only
be one type of source present at x; therefore, we approximate
the dipole sources by monopole sources, using the far-field
approximation:

∂iG(xA,x,ω)ni→
iω|cos(α(x))|

c0
G(xA,x,ω). (13)

Here α(x) is the angle between the normal to S at x and
the ray from the source at x to the receiver at xA. When
the medium inside S is inhomogeneous, there will be mul-
tiple rays between x and xA; hence, the angle α(x) is not
unique. Moreover, for passive interferometry the positions of
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Figure 4. Principle of seismic interferometry. (a) Propagation of ambient noise from S0 through an inhomogeneous medium to receivers at
xA and xB. (b) Cross-correlation of responses at xA and xB (with xA fixed and xB variable).

the sources are usually unknown. For simplicity we ignore
the |cos(α(x))| term in Eq. (13) and substitute the remaining
expression into Eq. (12). This yields

Gh(xB,xA,ω)≈
2
ρ0c0

∮
S

G(xB,x,ω)G
∗(xA,x,ω)dx, (14)

or, in the time domain (using Eq. 2),

G(xB,xA, t)+G(xB,xA,−t)

≈
2
ρ0c0

∮
S

G(xB,x, t) ∗G(xA,x,−t)dx (15)

(the approximation sign refers to the far-field approxima-
tion, with the term |cos(α(x))| ignored). This expression
shows that the Green’s function and its time-reversal between
xA and xB can be approximately retrieved from the cross-
correlation of responses to impulsive monopole sources at x

on S, followed by an integration along S. This expression,
and variants of it, are used in situations where responses to
individual transient sources are available (Kumar and Bo-
stock, 2006; Schuster and Zhou, 2006; Bakulin and Calvert,
2006; Abe et al., 2007; Tonegawa et al., 2009; Ruigrok et al.,
2010). Next, we modify this expression for simultaneous
noise sources. For a distribution of noise sourcesN(x, t) on S
(like in Fig. 4a), we can write the following for the observed
fields at xA and xB:

p(xA, t)=

∮
S

G(xA,x, t) ∗N(x, t)dx, (16)

p(xB, t)=

∮
S

G(xB,x
′, t) ∗N(x′, t)dx′. (17)

Assuming the noise sources are mutually uncorrelated, they
obey

〈N(x′, t) ∗N(x,−t)〉 = δS(x− x′)CN (t), (18)

where CN (t) is the autocorrelation of the noise (which is as-
sumed to be the same for all sources), 〈·〉 stands for time
averaging and δS(x−x′) is a 2-D delta function defined in S.
Cross-correlation of the observed noise fields in xA and xB
gives

〈p(xB, t) ∗p(xA,−t)〉 =

〈∮
S

∮
S

G(xB,x
′, t) ∗N(x′, t)

∗G(xA,x,−t) ∗N(x,−t)dx′dx

〉
.

(19)

Using Eq. (18) this becomes

〈p(xB, t) ∗p(xA,−t)〉

=

∮
S

G(xB,x, t) ∗G(xA,x,−t) ∗CN (t)dx. (20)

Note that the right-hand side resembles that of Eq. (15).
Hence, if we convolve both sides of Eq. (15) with CN (t),
we can replace its right-hand side with the left-hand side of
Eq. (20), according to

{G(xB,xA, t)+G(xB,xA,−t)} ∗CN (t)

≈
2
ρ0c0
〈p(xB, t) ∗p(xA,−t)〉. (21)

Equation (21) (and its extension for elastodynamic waves)
is the fundamental expression of Green’s function retrieval
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from ambient noise in an open system. The right-hand side
represents the cross-correlation of the ambient-noise re-
sponses at two receivers at xA and xB. The left-hand side
consists of a superposition of the virtual-source response
G(xB,xA, t) ∗CN (t) and its time-reversal G(xB,xA,−t) ∗

CN (t). Originally this methodology was based on intuitive
arguments and was only used to retrieve the direct wave be-
tween the two receivers. As Eq. (21) is derived from a repre-
sentation which holds for an inhomogeneous medium, it fol-
lows that the retrieved response is that of the inhomogeneous
medium, hence, in principle it includes scattering (this will
be illustrated below with a numerical example). The deriva-
tion that leads to Eq. (21) also reveals the approximations
underlying the methodology of Green’s function retrieval.

According to Eqs. (16) and (17), it is assumed that the
fields p(xA, t) and p(xB, t) are the responses to noise
sources on a closed surface S. However, in the example
in Fig. 4, the noise field is emitted into the medium from
a finite open surface S0. A consequence of this discrep-
ancy is that the retrieved response in Fig. 4b lacks the
acausal term G(xB,xA,−t) ∗CN (t). Moreover, the causal
term G(xB,xA, t) ∗CN (t) is blurred by scattering noise,
which does not vanish with longer time-averaging. Accord-
ing to Eqs. (16), (17) and (21), the retrieved response would
contain the causal and acausal terms and the scattering noise
would vanish if the noise field was emitted from a closed sur-
face and the recorded fields at xA and xB were correlated for
a long enough time.

Figure 4 is representative of seismic surface-wave inter-
ferometry (Campillo and Paul, 2003; Sabra et al., 2005b;
Shapiro and Campillo, 2004; Bensen et al., 2007), in which
case Fig. 4a should be interpreted as a plan view, with the
noise signals representing microseisms, S0 representing a
coast line and the Green’s functions representing the funda-
mental mode of surface waves (with additional effort, higher-
mode surface waves can be retrieved as well – Halliday and
Curtis, 2008; Kimman and Trampert, 2010; Kimman et al.,
2012; van Dalen et al., 2014). The retrieved surface-wave
Green’s functions are typically used for tomographic imag-
ing (Sabra et al., 2005a; Shapiro et al., 2005; Bensen et al.,
2008; Lin et al., 2009). Seismic interferometry can also be
used for reflection imaging of the Earth’s crust with body
waves. Because the scattering mechanism is very different,
we discuss a second example to illustrate seismic interfer-
ometry with body waves. Figure 5a shows the same layered
medium as Fig. 3a, but this time with noise sources at S0 in
the subsurface and with the upper surface being a free sur-
face. For this situation the part of the closed-surface integral
over the free surface in Eq. (6) vanishes. Hence, the closed
surface integrals in Eqs. (16) and (17) can be replaced by
open surface integrals over the noise sources in the subsur-
face in Fig. 5a. The responses to these noise sources, shown
in the upper part of Fig. 5a, are recorded by receivers be-
low the free surface. For p(xA, t) we take the central trace
(indicated by the red box) and for p(xB, t) (with variable

xB) all other traces. We apply Eq. (21) to obtain the virtual-
source response G(xB,xA, t) ∗CN (t) and its time-reversal
G(xB,xA,−t)∗CN (t) for a fixed virtual source at xA and re-
ceivers at variable xB. The causal part is shown in Fig. 5b. In
agreement with the theory, this is the full reflection response
of the layered medium, including multiple reflections. Ap-
plications of reflection-response retrieval from ambient noise
range from the shallow subsurface to the global scale (Chaput
and Bostock, 2007; Draganov et al., 2009, 2013; Forghani
and Snieder, 2010; Ryberg, 2011; Ruigrok et al., 2012; Tone-
gawa et al., 2013; Panea et al., 2014; Boué et al., 2014; Boul-
lenger et al., 2015; Oren and Nowack, 2017; Almagro Vidal
et al., 2018). As body waves in ambient noise are usually
weak in comparison with surface waves, much effort is spent
on recovering the body waves from behind the surface waves.
Reflection responses retrieved by body-wave interferometry
are typically used for reflection imaging.

For both methods discussed here (surface-wave interfer-
ometry and body-wave interferometry) we assumed that the
noise sources are regularly distributed along a part of S and
that they all have the same autocorrelation function. In many
practical situations the source distribution is irregular, and
the autocorrelations are different for different sources. Sev-
eral approaches have been developed to account for these is-
sues, such as iterative correlation (Stehly et al., 2008), mul-
tidimensional deconvolution (Wapenaar and van der Neut,
2010; van der Neut et al., 2011), directional balancing (Cur-
tis and Halliday, 2010a) and generalized interferometry, cir-
cumventing Green’s function retrieval (Fichtner et al., 2017).

2.4 Back propagation

Given a wave field observed at the surface of a medium, the
field inside the medium can be obtained by back propaga-
tion (Schneider, 1978; Berkhout, 1982; Fischer and Langen-
berg, 1984; Wiggins, 1984; Langenberg et al., 1986). Be-
cause back propagation implies retrieving a 3-D field inside
a volume from a 2-D field at a surface, it is also known as
holography (Porter and Devaney, 1982; Lindsey and Braun,
2004). Figure 6 illustrates the principle. In Fig. 6a, the field
at the finite open surface S0 due to a source at xA inside a
layered medium (the same medium as in Figs. 3 and 5) is
back propagated to an arbitrary point xB inside the medium
by the time-reversed direct arrival of the Green’s function,
Gd(x,xB,−t). Figure 6b shows Gd(x,xB,−t) (for fixed
xB) and a snapshot of the back propagated field at time in-
stant t1 > 0 for all xB. Note that above the source (which
is located at xA) the primary upgoing field coming from
the source is clearly retrieved. However, the field below
the source is not retrieved. Moreover, several artefacts are
present because multiple reflections between the layer inter-
faces are not accounted for.

Back propagation is conceptually different from time-
reversal acoustics. In time-reversal acoustics the observed
wave field is reversed in time and (physically or numeri-
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Figure 5. Seismic interferometry with body waves in a layered medium. The upper boundary is a free surface. (a) Noise observed by receivers
just below the surface, due to uncorrelated noise sources in the subsurface (only the first 5 s of approximately 5 min of noise registrations are
shown). (b) Retrieved reflection response, including multiple reflections.

Figure 6. Principle of back propagation. (a) The upgoing wave field p−(x,xA, t) at the surface S0 and illustration of its back propagation to
xB inside the medium. (b) The back propagation operator Gd(x,xB,−t) (for variable x along S0 and fixed xB) and a snapshot of the back
propagated wave field p−(xB,xA, t) at t1 = 300 ms for all xB.

cally) emitted into the medium, whereas in back propaga-
tion the original observed wave field is numerically back-
propagated through the medium by a time-reversed Green’s
function. Despite this conceptual difference (time reversal of
the wave field versus time reversal of the propagation oper-
ator), it is not surprising that these methods are very similar
from a mathematical point of view.

A quantitative discussion of back propagation follows
from Eq. (7). By interchanging xA and xB and multiplying
both sides by the spectrum s(ω) of the source at xA, we ob-
tain
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Figure 7. (a) Principle of source–receiver redatuming. (b) Reflectivity image r(xA)≈ p
−,+(xA,xA, t = 0) for all xA. The red arrows

indicate erroneously imaged multiples.

Gh(xB,xA,ω)s(ω)

=−2
∮
S

1
iωρ0
{∂iG

∗(x,xB,ω)}G(x,xA,ω)s(ω)nidx. (22)

Here G(x,xA,ω)s(ω) stands for the observed field
p(x,xA,ω) at the surface S, and − 2

iωρ0
∂iG
∗(x,xB,ω)ni is

the back propagation operator, both in the frequency domain.
Hence, in theory the exact field Gh(xB,xA,ω)s(ω) can be
obtained at any xB inside the medium. Because in practical
situations the field p(x,xA,ω) is only observed at a finite
part S0 of the surface, approximations arise in practice when
the closed surface S is replaced by S0. One of the conse-
quences is that multiple reflections are not handled correctly.
A detailed analysis (Wapenaar et al., 1989) shows that the
primary arrival of the upgoing wave field p−(xB,xA,ω)=

G−(xB,xA,ω)s(ω) is reasonably accurately retrieved with
the following approximation of Eq. (22):

p−(xB,xA,ω)≈

∫
S0

F+d (x,xB,ω)p
−(x,xA,ω)dx. (23)

Here the back propagation operator F+d (x,xB,ω), also
known as the focusing operator, is defined as

F+d (x,xB,ω)=
2

iωρ0
∂3G

∗

d(x,xB,ω), (24)

where we used n3 =−1 at S0, considering that the positive
x3 axis is pointing downward. Equations (23) and (24) rep-
resent the common approach to back propagation for many
applications in seismic imaging and inversion. It works well
for primary waves in media with low contrasts, but it breaks
down when the contrasts are strong and multiple reflections
between the layer interfaces cannot be ignored. In Sect. 3.3
we discuss a modified approach to back-propagation which

enables the recovery of the full wave field p(xB,xA,ω), in-
cluding the multiple reflections, inside the medium (also be-
low the source at xA) and which also suppresses artefacts like
those in Fig. 6b in a data-driven way.

2.5 Source–receiver redatuming and imaging by
double focusing

In the previous section we discussed back propagation of
p−(x,xA,ω), which is the response to a source at xA inside
the medium, observed at x at the surface. Here we extend
this process for the situation in which both the sources and
receivers are located at the surface. To this end, we first adapt
Eqs. (23) and (24). We replace S0 with S′0 (just above S0), x

with x′ ∈ S′0, xA with x ∈ S0 and xB with xA, and we add
an extra superscript (+) to the wave fields (explained below),
which yields

p−,+(xA,x,ω)≈

∫
S′0

F+d (x
′,xA,ω)p

−,+(x′,x,ω)dx′, (25)

with

F+d (x
′,xA,ω)=

2
iωρ0

∂ ′3G
∗

d(x
′,xA,ω). (26)

Here ∂ ′3 stands for differentiation with respect to x′3. In
Eq. (25), p−,+(x′,x,ω)=G−,+(x′,x,ω)s(ω) represents
the reflection data at the surface. The first superscript (−)
denotes that the field is upgoing at x′; the second superscript
(+) denotes that the source at x emits downgoing waves. Fur-
thermore, p−,+(xA,x,ω)=G

−,+(xA,x,ω)s(ω) is the back
propagated upgoing field at xA. Applying source–receiver
reciprocity on both sides of Eq. (25) we obtain

p−,+(x,xA,ω)≈

∫
S′0

p−,+(x,x′,ω)F+d (x
′,xA,ω)dx′. (27)
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The receiver for upgoing waves at xA has turned into a source
for downgoing waves at xA, and so on. Hence, Eq. (27) back
propagates the sources from x′ on S′0 to xA. Substituting this
into Eq. (23), with p− replaced by p−,+ on both sides, gives

p−,+(xB,xA,ω)

≈

∫
S0

∫
S′0

F+d (x,xB,ω)p
−,+(x,x′,ω)F+d (x

′,xA,ω)dx′dx.

(28)

Here p−,+(x,x′,ω) represents the reflection response at the
surface (illustrated by the blue arrows in Fig. 7a). Similarly,
p−,+(xB,xA,ω) denotes the reflection response to a source
for downgoing waves at xA, observed by a receiver for upgo-
ing waves at xB (illustrated by the yellow arrows in Fig. 7a).
According to Eq. (28), it is obtained by back propagating
sources from x′ to xA with operator F+d (x

′,xA,ω) and re-
ceivers from x to xB with operator F+d (x,xB,ω), indicated
by the dashed arrows in Fig. 7a. In the exploration com-
munity this process is called (source–receiver) redatuming
(Berkhout, 1982; Berryhill, 1984) and is closely related to
source–receiver interferometry (Curtis and Halliday, 2010b).
For the elastodynamic extension, see Kuo and Dai (1984),
Wapenaar and Berkhout (1989) and Hokstad (2000).

The redatumed response p−,+(xB,xA,ω) can be used for
reflectivity imaging by setting xB equal to xA and selecting
the t = 0 component in the time domain, as follows:

r(xA)≈ p
−,+(xA,xA, t = 0)=

1
2π

∞∫
−∞

p−,+(xA,xA,ω)dω.

(29)

The combined process (Eqs. 28 and 29) comprises imaging
by double focusing (Berkhout, 1982; Wiggins, 1984; Bleis-
tein, 1987; Berkhout and Wapenaar, 1993; Blondel et al.,
2018), because it involves the application of the focusing
operator F+d (x,xA,ω) twice. By taking the focal point xA
variable, a reflectivity image of the entire region of interest
is obtained. Figure 7b shows an image of the same layered
medium as considered in previous examples obtained in this
way. Note that the interfaces are clearly imaged, but also that
significant artefacts are present because multiple reflections
are not correctly handled (indicated by the red arrows). In
Sect. 3.4 and 3.5 we discuss more rigorous approaches to
source–receiver redatuming and imaging by double focusing,
which account for multiple reflections in a data-driven way.

3 Theory and applications of a modified single-sided
wave field representation

The applications of Green’s theorem, discussed in Sect. 2, are
all derived from the classical homogeneous Green’s function

Figure 8. The focusing function f1(x,xA, t) in a truncated version
of the actual medium.

representation. This representation is exact, but it involves an
integral over a closed surface. In many practical situations the
medium of interest is only accessible from one side, which
implies that the integration can only be carried out over an
open surface. This induces approximations, of which the in-
complete treatment of multiple reflections is the most sig-
nificant one. In the following we discuss a modification of
the homogeneous Green’s function representation which in-
volves an integral over an open surface and yet accounts for
all multiple reflections. We call this modified representation
the single-sided homogeneous Green’s function representa-
tion. Next, we discuss how it can be used to improve several
of the applications discussed in Sect. 2.

3.1 Single-sided homogeneous Green’s function
representation

The classical homogeneous Green’s function representations
(Eqs. 6 and 7) are entirely formulated in terms of Green’s
functions and their time reversals. A Green’s function is the
causal response to a source at a specific position in space,
say at xA. A time-reversed Green’s function can be seen as
a focusing function which focuses at xA. However, this only
holds when it converges to xA equally from all directions,
which can be achieved by emitting it into the medium from a
closed surface. For practical situations we need another type
of focusing function, which, when emitted into the medium
from a single surface, focuses at xA. We introduce the focus-
ing function using Fig. 8. This figure shows a truncated ver-
sion of the medium, which is identical to the actual medium
between the upper surface S0 and the focal plane SA (the
plane which contains the focal point xA), but it is reflection
free above S0 and below SA (here “reflection free” means that
the medium parameters do not vary in the vertical direction).
We call the focusing function f1(x,xA, t). In the reflection-
free half-space above S0 the focusing function consists of
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Figure 9. Numerical example of the focusing function. (a) Emission of the downgoing part of the focusing function from S0 into a truncated
version of the actual medium. (b) Responses at S0 and SA.

both a downgoing and upgoing part, according to

f1(x,xA, t)= f
+

1 (x,xA, t)+ f
−

1 (x,xA, t), (30)

where the superscripts + and − indicate downgoing and
upgoing, respectively. The downgoing part f+1 (x,xA, t) is
shaped such that f1(x,xA, t) focuses at xA at t = 0, and con-
tinues as a diverging downgoing field into the reflection-free
half-space below SA. The upgoing part of the focusing func-
tion in the upper half-space, f−1 (x,xA, t), is defined as the
reflection response of the truncated medium to the downgo-
ing focusing function f+1 (x,xA, t). The focusing property at
the focal plane SA can be formulated as

δ(x′H,A−xH,A)δ(t)=

∫
S0

T (x′A,x, t)∗f
+

1 (x,xA, t)dx, (31)

where T (x′A,x, t) is the transmission response of the trun-
cated medium between S0 and SA, and xH,A and x′H,A are
the horizontal coordinates of xA and x′A (both at SA), re-
spectively (the precise definition of T (x′A,x, t) is given in
Appendix A of Wapenaar et al., 2014a). In physical terms,
Eq. (31) formulates the emission of f+1 (x,xA, t) from S0
into the truncated medium, leading to a focus at xA. In
mathematical terms, Eq. (31) defines f+1 (x,xA, t) as the in-
verse of the transmission response T (x′A,x, t). Because the
evanescent part of the transmission response cannot be in-
verted in a stable way, in practice the focusing function, and
hence the focus at SA, is band-limited.

The focusing function is illustrated using a numerical ex-
ample in Fig. 9. Figure 9a shows how the downgoing part of
the focusing function, f+1 (x,xA, t), is emitted from x at S0
into the medium. The first event (at negative time) propagates

downward toward the focal point xA, indicated by the outer
yellow rays (represented using arrows). On its path to the fo-
cal point it is reflected at layer interfaces, indicated by the
blue rays. During upward propagation, these blue rays meet
new yellow rays (coming from the later events of the focus-
ing function), in such a way that effectively no downward re-
flection takes place at the layer interfaces, and so on. Hence,
only the first event of the focusing function reaches the focal
depth, where it focuses at xA. Figure 9b shows the responses
to the focusing function, at S0 and SA. The response at S0 is
the upgoing part of the focusing function, f−1 (x,xA, t); the
response at SA is the band-limited focused field.

Given the focusing function for a focal point at xA and
the Green’s function for a source at xB, the single-sided rep-
resentation of the homogeneous Green’s function in the fre-
quency domain reads (Wapenaar et al., 2016a)

Gh(xB,xA,ω)= 2
∫
S0

1
ωρ(x)

(
{∂iGh(x,xB,ω)}={f1(x,xA,ω)}

−Gh(x,xB,ω)={∂if1(x,xA,ω)}
)
nidx,

(32)

where = denotes the imaginary part. The derivation can be
found in the Supplement, Sect. S2.2 (a similar single-sided
representation for vectorial wave fields is derived by Wape-
naar et al., 2016b, and illustrated using numerical examples
by Reinicke and Wapenaar, 2019). In Eq. (32), S0 may be a
curved surface. Moreover, the actual medium, in which the
Green’s function is defined, may be inhomogeneous above
S0 (in addition to being inhomogeneous below S0). Note
the resemblance with the classical representation of Eq. (6).
Unlike the classical representation, which is exact, Eq. (32)
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holds under the assumption that evanescent waves can be ne-
glected. When S0 is horizontal and the medium above S0 is
homogeneous (for the Green’s function as well as for the fo-
cusing function), this representation may be approximated by

Gh(xB,xA,ω)= 4<
∫
S0

1
iωρ0

G(x,xB,ω)∂3
(
f+1 (x,xA,ω)

−{f−1 (x,xA,ω)}
∗
)
dx (33)

(Van der Neut et al., 2017). For the derivation, see the Sup-
plement, Sect. S2.3. For the decomposed Green’s function
G−,+(xB,xA,ω), introduced in Sect. 2.5, we have the fol-
lowing representation (by combining Eqs. S31 and S38 of
the Supplement)

G−,+(xB,xA,ω)

= 2
∫
S0

1
iωρ0

G−,+(x,xB,ω)∂3f
+

1 (x,xA,ω)dx

−χ(xB)f
−

1 (xB,xA,ω), (34)

where χ is the characteristic function of the medium en-
closed by S0 and SA. It is defined as

χ(xB)=


1, for xB between S0 and SA,
1
2
, for xB on S= S0 ∪SA,

0, for xB outside S.
(35)

In many practical situations S0 is a free surface, which means
that the assumption of a homogeneous medium above S0 is
not fulfilled. A free surface gives rise to surface-related mul-
tiple reflections. These can be removed by a process called
surface-related multiple elimination (Verschuur et al., 1992).
Applying this process is equivalent to replacing the free sur-
face with a transparent surface and a homogeneous half-
space above this surface (Fokkema and van den Berg, 1993;
van Borselen et al., 1996). Hence, when S0 is a free surface,
Eqs. (33) and (34) hold for the situation after surface-related
multiple elimination.

The representations of Eqs. (33) and (34) form the starting
point for modifying several of the applications discussed in
Sect. 2. These methods, which will be discussed in the subse-
quent sections, have the fact in common that they make use
of focusing functions. As stated earlier, the focusing func-
tion f+1 (x,xA, t) for x at S0 is the inverse of the transmis-
sion response of the truncated medium between S0 and SA.
Hence, when a detailed model of the medium between these
depth levels is available, its transmission response can be
numerically modeled and f+1 (x,xA, t) can be obtained by
inverting this transmission response. Next, f−1 (x,xA, t) can
be obtained by applying the reflection response of the trun-
cated medium to f+1 (x,xA, t). This is obviously a model-
driven approach. Conversely, when the reflection response
of the actual medium is available at S0, the focusing func-
tions f+1 (x,xA, t) and f−1 (x,xA, t) for x at S0 can be re-
trieved from this reflection response using a 3-D extension of

the Marchenko method (Wapenaar et al., 2014a; Slob et al.,
2014). This method needs an initial estimate of f+1 (x,xA, t),
for which one could use the inverse of the direct arrival of the
transmission response. This requires only a smooth model of
the medium between S0 and SA. In practice, the back propa-
gating direct arrival of the Green’s function, Gd(x,xA,−t),
is usually taken as initial estimate. Because the Marchenko
method uses the reflection response (obtained from reflec-
tion measurements at the surface S0) and a smooth model of
the medium, it is a data-driven approach for retrieving the fo-
cusing functions. One of the underlying assumptions of the
Marchenko method is that the Green’s functions and the fo-
cusing functions are separable in time. This assumption is
satisfied for layered media with moderate lateral variations
(like in Fig. 3), considering moderate horizontal source–
receiver offsets; it breaks down for strongly scattering me-
dia (like in Fig. 2). In the latter case the Marchenko method
is only approximately valid, but despite the approximation it
can still lead to better images than standard imaging meth-
ods (Wapenaar et al., 2014b). A further discussion of the 3-D
Marchenko method is beyond the scope of this paper.

3.2 Modified time-reversal acoustics

We discuss a modification of time-reversal acoustics. Assum-
ing the focusing functions are available for x at S0 (for exam-
ple, from the Marchenko method), we define a new particle
velocity field, according to

v̂∗n(x,xA,ω)

=
1

iωρ0
∂3
(
f+1 (x,xA,ω)−{f

−

1 (x,xA,ω)}
∗
)
s(ω), (36)

where for s(ω) we take a real-valued spectrum. Using this in
Eq. (33) we obtain

Gh(xB,xA,ω)s(ω)= 4<
∫
S0

G(xB,x,ω)v̂
∗
n(x,xA,ω)dx.

(37)

In the time domain this becomes

Gh(xB,xA, t) ∗ s(t)= 2
∫
S0

G(xB,x, t) ∗ v̂n(x,xA,−t)dx

+ 2
∫
S0

G(xB,x,−t) ∗ v̂n(x,xA, t)dx.

(38)

The first integral is the same as that in Eq. (10) (except that
v̂n is defined differently), whereas the second integral is the
time reversal of the first one. For ultrasonic applications, as-
suming there are receivers at one or more xB locations, the
field v̂n(x,xA,−t) can be emitted physically into the real
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Figure 10. Time-reversal acoustics in a layered medium. (a) Classical approach: emission of the time-reversed recordings from S0 into the
medium. (b) Emission of a modified field, defined by Eq. (36), into the medium. Note the improved focus.

medium and its response can be measured at xB. The homo-
geneous Green’s function is then obtained by superposing
this response and its time reversal. For geophysical applica-
tions, the first integral can, at least in theory, be evaluated
by numerically emitting the field v̂n(x,xA,−t) into a model
of the Earth. The superposition of this integral and its time-
reversal gives the homogeneous Green’s function. Following
either one of these procedures, the result obtained at t = 0
is shown in Fig. 10b. For comparison, Fig. 10a once more
shows the classical time-reversal result of Fig. 3b. Note the
different character of the fields vn and v̂n in the upper panels,
which only have one event in common i.e., the time-reversed
direct arrival. The snapshots at t = 0 in the lower panels are
also very different: the artefacts in Fig. 10a are almost en-
tirely absent in Fig. 10b. The latter figure only shows a clear
focus at xA.

Obtaining an accurate focus as in Fig. 10b by numeri-
cally emitting the field v̂n(x,xA,−t) into the Earth requires a
very accurate model of the Earth, which should include accu-
rate information on the position, structure and contrast of the
layer interfaces. This requirement can be overcome by also
retrieving the Green’s function G(xB,x, t) in Eq. (38) using
the Marchenko method and evaluating the integrals for all
xB. This is not discussed any further here. Alternative meth-
ods that do not require information about the layer interfaces
are discussed in Sect. 3.3 to 3.5 and are illustrated using ex-
amples.

3.3 Modified back propagation

We modify the approach for back propagation. By inter-
changing xA and xB in Eq. (33) and multiplying both sides

with a real-valued source spectrum s(ω), we obtain

p(xB,xA,ω)+p
∗(xB,xA,ω)

= 2<
∫
S0

F(x,xB,ω)p(x,xA,ω)dx, (39)

with p(x,xA,ω)=G(x,xA,ω)s(ω) and

F(x,xB,ω)=
2

iωρ0
∂3
(
f+1 (x,xB,ω)−{f

−

1 (x,xB,ω)}
∗
)
.

(40)

Note that the operator F+d (x,xB,ω) in Eq. (24) is an ap-
proximation of the operator F(x,xB,ω) in Eq. (40). It is
obtained by omitting the term {f−1 (x,xB,ω)}

∗ and replac-
ing the term f+1 (x,xB,ω) by its initial estimate, i.e., the
Fourier transform of the direct arrival of the Green’s func-
tion,Gd(x,xB,−t). Figure 11 illustrates, in the time domain,
the principle of modified back propagation. In Fig. 11a, the
field p(x,xA, t) is back propagated to an arbitrary point xB
inside the medium by operator F(x,xB, t). This operator can
be obtained from reflection data at the surface and the initial
estimate Gd(x,xB,−t), using the Marchenko method. Fig-
ure 11b shows F(x,xB, t) (for fixed xB) and a snapshot of
the back propagated field at a time instant t1 > 0 for all xB.
Note that the full field p(xB,xA, t) is retrieved (downgoing
and upgoing components, primaries and multiples) and that
hardly any artefacts are visible. The dashed lines in the snap-
shot in Fig. 11b indicate the interfaces to aid with the in-
terpretation of the snapshot. Note, however, that these inter-
faces need not be known to obtain this result: only a smooth
subsurface model is required to define the initial estimate
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Gd(x,xB,−t) of the focusing operator. All other events in
the focusing operator come directly from the reflection data
at the surface.

This back propagation method has an interesting appli-
cation in the monitoring of induced seismicity. Assuming
p(x,xA, t) stands for the response to an induced seismic
source at xA, this method creates, in a data-driven way, omni-
directional virtual receivers at any xB to monitor the emitted
field from the source to the surface. This application is exten-
sively discussed in the companion paper (Brackenhoff et al.,
2019).

3.4 Modified source–receiver redatuming

We modify the approach for source–receiver redatuming.
First, in Eq. (39), we replace S0 with S′0 (just above S0), x

with x′ ∈ S′0, xA with x ∈ S0 and xB with xA. Next, we ap-
ply source–receiver reciprocity on both sides of the equation.
This yields

p(x,xA,ω)+p
∗(x,xA,ω)

= 2<
∫
S′0

p(x,x′,ω)F (x′,xA,ω)dx′; (41)

F(x′,xA,ω) is defined as in Eq. (40), with ∂3 replaced by ∂ ′3,
similar to Eq. (26). The field p(x,x′,ω)=G(x,x′,ω)s(ω)
represents the data at the surface. Equation (41) back propa-
gates the sources from x′ on S′0 to xA. Source–receiver reda-
tuming is now defined as the following two-step process. In
step one, apply Eq. (41) to create an omnidirectional virtual
source at any desired position xA in the subsurface. Accord-
ing to the left-hand side, the response to this virtual source
is observed by actual receivers at x at the surface. Isolate
p(x,xA,ω) from the left-hand side by applying a time win-
dow (a simple Heaviside function) in the time domain. In
step two, substitute the retrieved response p(x,xA,ω) into
Eq. (39) to create virtual receivers at any position xB in the
subsurface. Figure 12a illustrates the principle. The operators
can be obtained using the Marchenko method. Figure 12b
shows a snapshot of p(xB,xA, t) at a time instant t2 > t1 > 0
for all xB (the retrieved snapshot at t1 is indistinguishable
from that in Fig. 11b, which is why we chose to show a snap-
shot at another time instant). The dashed lines in the snapshot
in Fig. 12b indicate the interfaces to aid with the interpreta-
tion of the snapshot, but the interfaces need not to be known
to obtain this result. This method has an interesting applica-
tion in forecasting the effects of induced seismicity. Assum-
ing xA is the position where induced seismicity is likely to
take place, this method forecasts the response by creating, in
a data-driven way, a virtual source at xA and virtual receivers
at any xB that observe the propagation and scattering of its
emitted field from the source to the surface. This method is
extensively discussed in the companion paper (Brackenhoff
et al., 2019).

3.5 Modified imaging by double focusing

If we applied imaging to the retrieved response
p(xB,xA,ω)+p

∗(xB,xA,ω) in a similar fashion to
Eq. (29), we would obtain an image of the virtual sources
instead of the reflectivity. Similar to Sect. 2.5 we need a pro-
cess to obtain the decomposed response p−,+(xB,xA,ω).
Our starting point is Eq. (34), in which we interchange xA
and xB and choose both of these points at SA, such that
f−1 (xA,xB,ω)= 0. Applying source–receiver reciprocity
on the left-hand side and multiplying both sides by a source
spectrum s(ω), we obtain

p−,+(xB,xA,ω)=

∫
S0

F+(x,xB,ω)p
−,+(x,xA,ω)dx,

(42)

with p−,+(x,xA,ω)=G
−,+(x,xA,ω)s(ω) and

F+(x,xB,ω)=
2

iωρ0
∂3f
+

1 (x,xB,ω). (43)

Next, in Eq. (34), replace S0 with S′0 (just above S0), x with
x′ ∈ S′0 and xB with x ∈ S0. Applying source–receiver reci-
procity on the right-hand side and multiplying both sides by
a source spectrum s(ω), we obtain

p−,+(x,xA,ω)=

∫
S′0

p−,+(x,x′,ω)F+(x′,xA,ω)dx′

− f−1 (x,xA,ω)s(ω); (44)

F+(x′,xA,ω) is defined as in Eq. (43), with ∂3 replaced by
∂ ′3, similar to Eq. (26). Substitution of Eq. (44) into Eq. (42)
yields

p−,+(xB,xA,ω)+

∫
S0

F+(x,xB,ω)f
−

1 (x,xA,ω)s(ω)dx

=

∫
S0

∫
S′0

F+(x,xB,ω)p
−,+(x,x′,ω)F+(x′,xA,ω)dx′dx.

(45)

This is the modified version of Eq. (28), with the opera-
tors F+d , which account for primaries only, replaced by the
operators F+, which account for both primaries and multi-
ples. These operators can be obtained using the Marchenko
method from the reflection data p−,+(x,x′,ω) and a smooth
model of the medium to define the initial estimate of f+1 .
The second term on the left-hand side can be removed by
a time-window in the time domain, which leaves the reda-
tumed reflection response p−,+(xB,xA,ω). The reflectivity
imaging step to retrieve r(xA) is the same as that in Eq. (29)
and is not repeated here. Figure 13b shows an image obtained
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Figure 11. Principle of modified back propagation. (a) The wave field p(x,xA, t) at the surface S0 and illustration of its back propagation
to xB inside the medium. (b) The back propagation operator F(x,xB, t) (for variable x along S0 and fixed xB) and a snapshot of the back
propagated wave field p(xB,xA, t) at t1 = 300 ms for all xB.

Figure 12. (a) Principle of modified source–receiver redatuming. (b) Snapshot of the wave field p(xB,xA, t) at t2 = 500 ms for all xB.

by applying Eqs. (45) and (29) for all xA in the region of in-
terest, for the same medium that was imaged using the clas-
sical double-focusing method (which for ease of comparison
is repeated in Fig. 13a). Note that the artefacts caused by the
internal multiple reflections (indicated by the red arrows in
Fig. 13a), have almost entirely been removed. In practical sit-
uations the modified method may suffer from imperfections
in the data, such as incomplete sampling, anelastic losses,
out-of-plane reflections and 3-D spreading effects. Several
of these imperfections can be accounted for by making the
method adaptive (van der Neut et al., 2014). Promising re-
sults have been obtained using real data (Ravasi et al., 2016;
Staring et al., 2018).

Other methods exist that deal with internal multiple reflec-
tions in imaging. Davydenko and Verschuur (2017) discuss a
method called full wave field migration. This is a recursive

method, starting at the surface, which alternately resolves
layer interfaces and predicts the multiples related to these
interfaces. In contrast, Eq. (45) is non-recursive. The field
p−,+(xB,xA,ω) at SA is obtained without needing informa-
tion about the layer interfaces between S0 and SA; a smooth
model suffices. Following the work of Weglein et al. (1997,
2011) on an inverse-scattering series approach to multiple
elimination, Ten Kroode (2002) proposes a method that at-
tenuates the internal multiples directly in the reflection data
at the surface, without requiring model information. This
method resembles a multiple prediction and removal method
proposed by Jakubowicz (1998). These methods address all
orders of internal multiples, but only with approximate am-
plitudes. Variants of the Marchenko method have been de-
veloped that aim to eliminate the internal multiples from the
reflection data at the surface (Meles et al., 2015; van der Neut
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Figure 13. Reflectivity images obtained using the double-focusing method. (a) Classical approach. (b) Modified approach.

and Wapenaar, 2016; Zhang et al., 2019). The last reference
shows that all orders of multiples are, at least in theory, pre-
dicted with the correct amplitudes without needing model
information. Once the internal multiples have been success-
fully eliminated from the reflection data at the surface, stan-
dard redatuming and imaging (for example as described in
Sect. 2.5) can be used to form an accurate image of the sub-
surface, without artefacts caused by multiple reflections.

4 Conclusions

The classical homogeneous Green’s function representation,
originally developed for optical image formation by holo-
grams, expresses the Green’s function plus its time-reversal
between two arbitrary points in terms of an integral along a
surface enclosing these points. It forms a unified basis for
a variety of seismic imaging methods, such as time-reversal
acoustics, seismic interferometry, back propagation, source–
receiver redatuming and imaging by double focusing. We
have derived each of these methods by applying some simple
manipulations to the classical homogeneous Green’s func-
tion representation, which implies that these methods are
all very similar. As a consequence, they share the same ad-
vantages and limitations. Because the underlying represen-
tation is exact, it accounts for all orders of multiple scatter-
ing. This property is exploited by seismic interferometry in
a layered medium below a free surface and, to some extent,
by time-reversal acoustics in a medium with random scatter-
ers. However, in most cases multiple scattering is not cor-
rectly handled because in practical situations data are not
available on a closed surface. We also discussed a single-
sided homogeneous Green’s function representation, which
requires access to the medium from one side only, say from
the Earth’s surface. This single-sided representation ignores
evanescent waves, but it accounts for all orders of multiple
scattering, similar as the classical closed-surface representa-
tion. We used the single-sided representation as the basis for
deriving modifications of time-reversal acoustics, back prop-
agation, source–receiver redatuming and imaging by double

focusing. These methods account for multiple scattering and
can be used to obtain accurate images of the source or the
subsurface, without artefacts related to multiple scattering.
Another interesting application is the monitoring and fore-
casting of responses to induced seismic sources, which is dis-
cussed in detail in a companion paper.
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