The North China Craton (NCC) is one of the oldest cratons in the world. Currently, the destruction mechanism and geodynamics of the NCC remain controversial. All of the proposed views regarding the issues involve studying the internal density structure of the NCC lithosphere. Gravity field data are among the most important data in regard to investigating the lithospheric density structure, and gravity gradient data and gravity data each possess their own advantages.

Given the different observational plane heights between the on-orbit GOCE
(Gravity Field and Steady-State Ocean Circulation Explorer) satellite gravity gradient and terrestrial gravity and the effects of the
initial density model on the inversion results, sequential inversion of the
gravity gradient and gravity are divided into two integrated processes. By
using the preconditioned conjugate gradient (PCG) inversion algorithm, the
density data are calculated using the preprocessed corrected gravity anomaly
data. Then, the newly obtained high-resolution density data are used as the
initial density model, which can serve as constraints for the subsequent
gravity gradient inversion. Several essential corrections are applied to the
four gravity gradient tensors (

This study clearly illustrates that GOCE data are helpful in understanding the geological settings and tectonic structures in the NCC with regional scale. The inversion results show that in the crust the eastern NCC is affected by lithospheric thinning with obvious local features. In the mantle, the presented obvious negative-density areas are mainly affected by the high-heat-flux environment. In the eastern NCC, the density anomaly in the Bohai Bay area is mostly attributed to the extension of the Tancheng–Lujiang major fault at the eastern boundary. In the western NCC, the crustal density anomaly distribution of the Qilian block is consistent with the northwest–southeast strike of the surface fault belt, whereas such an anomaly distribution experiences a clockwise rotation to a nearly north–south direction upon entering the mantle.

The North China Craton (NCC, Fig. 1) is an outstanding example of a craton that has undergone both reconstruction and destruction. Studies on the NCC have enabled us to understand the formation, evolution, stabilization and destruction of the ancient continent. Two dominant NCC destruction mechanisms have been proposed, namely, delamination (Gao et al., 2009) and thermal erosion (Zhu et al., 2012). However, both of these mechanisms involve internal tectonic deformation and substance distribution in the lithosphere of the NCC, which highlights the importance of obtaining the high-resolution density structure of the lithosphere. Gravity field data play an important role in determining and interpreting the lithospheric density structure and state of motion. For studies on the density structure of the NCC, Fang (1996) managed to invert the density distribution of the lithosphere in the North China area, with the constrained least square method using the Bouguer anomaly. Additionally, using the Bouguer gravity anomaly, Wang et al. (2014) obtained the three-dimensional density structure of the NCC lithosphere through the algebraic reconstruction inversion method, which was constrained by seismic travel time. Based on gravity, geoidal surface and topography data, Xu et al. (2016) calculated the crustal density and depth of the interface between the lithosphere and asthenosphere using the rapid integrated inversion method. Using the preprocessed data of the GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) satellite gravity gradient anomaly, Tian and Wang (2018) constructed a three-dimensional density structure within the depth range of 0–120 km in the NCC lithosphere, during which the density variation induced by the temperature differences was incorporated. Previous studies on the NCC only adopted gravity or gravity gradient measurements, both of which have their own unique advantages as first-order and second-order derivatives of the gravity potential, respectively. In the frequency domain, the high frequencies of the deep structures are strongly attenuated due to the distance, which is masked by the signals of closer masses. The gravity data are mainly used to provide mid- to low-frequency information about the deep structure. The amplitude of the gravity gradient data declines rapidly with increasing depth in the field source, which demonstrates that the gravity gradient anomaly is applicable to the high-frequency signal information of the shallow structure, characterized by short wavelengths. By using both the gravity and gravity gradient data as the observation quantities, both the low-frequency signal information and high-frequency signal information of the gravity anomaly data can expand the frequency of the gravity field data. Sequential inversions of the gravity and gravity gradient data are able to achieve mutual supplementation, which is favorable to enhance the reliability of the inversion result and obtain more reasonable analyses of the inversion solutions.

Topography and main tectonics of the study area. NCC – North China Craton.

Currently, most studies are based on the joint inversion of gravity and gravity gradient data instead of sequential inversions. Zhdanov et al. (2004) introduced the concept of the curvature of gravity to carry out a joint inversion of gravity and gravity gradient data and applied the proposed method to the existing models. Wu et al. (2013) inverted gravity and gravity gradients by transforming the formulas of the gravity and gravity gradients with the target body treated as a mass point. Given the varied decline rates of the kernel functions of the gravity and gravity gradient data, Capriotti and Li (2014) balanced the two decline rates using the density matrix to conduct a joint inversion of the gravity and gravity gradient data, after which the validity of the proposed method was confirmed with the published SEG (Society of Exploration Geophysicists) model. Qin et al. (2016) developed an integrated focusing inversion algorithm for gravity and gravity gradient data and applied this method to gravity and gravity gradient data from aerial surveys in the Vinton salt dome area. Li et al. (2017) inverted the lithospheric three-dimensional density structure of the Qinghai–Tibet Plateau and its adjacent area within a depth range of 0–120 km using the gravity gradient data measured by GOCE L2 together with the vertical gravity calculated by EGM2008. For small research areas, studies involving the gravity and gravity gradient joint inversion focused on applications of existing models or aerial gravity and gravity gradient data at the same height. With respect to previous studies covering a large area, researchers often adopted gravity or gravity gradient data that were directly computed by the gravity field model. Although the gravity field model is able to rapidly calculate the gravity and gravity gradient data for large research areas worldwide, the resulting data are based on the spherical harmonic coefficients rather than actual measurements. In addition, directly using observations rather than the gravity field models is advantageous because it avoids the global average effect during gravity field modeling (Pavlis et al., 2012). Thus, compared with the calculated data based on the gravity field model, the high precision gravity and gravity gradient data obtained from measurements with high resolution possess the same importance (Liu et al., 2003; Li et al., 2011).

We selected GOCE satellite gravity gradient data along the orbit and gravity
data of the terrestrial survey as the measurements. The GOCE satellite data
at the mean orbital height only reflect large structures of the earth. To
highlight the high-frequency information of shallow abnormal bodies and the
detailed information of structural features, it is necessary to move the
GOCE satellite data from the mean orbital height downward to the near
surface in the NCC area. However, given the feasibility of the downward
continuation result of the gravity gradient data from the GOCE satellite,
the height of the observation plane after the downward continuation should
be located outside the topographic mass unit (Sebera et al., 2014; Li et
al., 2017; Tian and Wang, 2018), while each observation location for gravity
data acquired through the survey is always located on the topographic
surface. Therefore, an inconsistency problem in the observation plane height
is anticipated between the processed GOCE satellite gravity gradient data
and the gravity data obtained by the terrestrial survey. Furthermore,
although gravity and gravity gradient data are favored by higher resolutions
and sensitivity to density, the inversion method is characterized by a
strong nonuniqueness of solutions. To constrain the gravity and gravity
gradient inversion, seismic data are often input into the inversion after a
transformation based on empirical formulas to suppress the nonuniqueness of
solutions. In this regard, the effects of the initial model on the inversion
results should be considered. For the two aforementioned aspects, the
sequential inversions of gravity and gravity gradient are divided into two
processes. First, the density data converted from the seismic wave velocity
are used as the initial density model. The preprocessed corrected gravity
anomaly data of the NCC terrestrial survey are collected as the observation
quantity, and then, the density anomaly within a depth range of 0–180 km is
calculated using the preconditioned conjugate gradient (PCG) algorithm in
the first process. The obtained inversion results are used as the new
initial density model and serve as constraints. The four high-accuracy
(Rummel et al., 2011; Yi et al., 2013) GOCE satellite gravity
gradient anomaly tensors (

By considering the features of the gravity anomaly and gravity gradient anomaly data, we used the corrected gravity data as the initial measurements rather than gravity gradient data, which can be used first to determine the major and deep structures of the lithosphere based on the inversion results. Then, the inversion results of the corrected gravity gradient data are applied to identify the fine structures of the lithosphere. This presented method can be exempt from the limitation imposed by the observational plane height, which is able to sufficiently exploit and utilize the available actual gravity and gravity gradient measurements. The corrected initial model with the effect of the gravity inversion results can provide more reliable and effective initial density models for the following gravity gradient inversion. Compared with the inversion results based on either the gravity or gravity gradients in the NCC, the integrated inversion results offer both regional detailed information and a density structure model penetrating deeper underground, which is favorable for discussions and analyses of data regarding the crust and mantle in the same area; consequently, the phenomenon and origin of the NCC destruction mechanism can be investigated.

Under the Cartesian coordinate system, according to the geological body with
the residual density of

Essentially, the inversion of the gravity and gravity gradient tensors is a process of solving a system of linear equations. The quantity of the unknown

The objective function can be expressed as follows:

The data fitting function is defined as follows:

The Lagrangian multiplier is used as the regularization parameter in the PCG inversion algorithm. In the process of solving a large-scale matrix, the calculation of the Lagrangian multiplier is complex; therefore, an empirical value is often adopted as the relative optimal value for the regularization parameter. Since the regularization parameter serves to balance the data fitting function and the model fitting function, an excessively large value will result in substantial differences between the inverse results response and the observation, while an overwhelmingly small value leads to ineffectiveness of the model fitting function.

Given these problems, the L-curve method was developed for the selection of regularization parameters in the solution for ill-posed problems (Hansen, 1992). The L curve is a criterion that is based on a comparison between
the actual data fitting function and the model objective function, which is applicable to solving large-scale problems. The value corresponding to the inflection point of the L curve is assigned to the regularization
parameter. The effectiveness of this method has been validated in previous studies (Tian et al., 2018, 2019a). The curvature of the L curve can be expressed as follows (Hansen, 1992):

To constrain the spatial structure of the model and achieve a continuous
variation in the inversion image along the three axis directions, a
roughness matrix is introduced into the model objective function (Constable
et al., 1987), with reference to the minimization model function. The
three-dimensional model vector

Because the gravity data and gravity gradient data have no fixed depth
resolution, the kernel function declines rapidly with increasing depth, and
the inversion results are limited near the surface, which results in
difficulties in capturing the true position of the anomaly. By introducing
the depth weighting function into the model objective function, the kernel
function is optimized to reflect the true weighted value of the anomaly
element at each depth. The depth weighting function designed by Li and
Oldenburg (1996), especially for the inversion of gravity data and gravity
gradient data, is adopted as follows:

In accordance with the minimization model function, the model objective
function can be constructed as shown below, in reference to the roughness
matrix and depth weighting function:

Additionally,

The PCG method is an algorithm for solving linear or nonlinear equations
through an iterative calculation process and is mainly used to solve the
quadratic equation

Two models (Figs. 2 and 3) are designed to test the effects of the
initial model on the inversion results. Model 1 (Fig. 2) consists of two
independent cubes equipped with density values. The densities are different
at each layer to study the role of the initial values in the inversion.
Model 2 (Fig. 3) is composed of an upright cuboid and a trapezoid
structure of multiple anomalies. This model test can be used to illustrate
the initial model effects on the shape and magnitude of the inversion
results. Since this study aims to capture the initial model effects upon the
final inversion results, carrying out the integrated inversion for the four
components (

As shown in Figs. 2 and 3, the inversion has been carried out for
identical density anomaly bodies (Figs. 2a and 3a), during
which the gravity gradient measurement, kernel function and algorithm
parameters are all the same, except that the varied values are assigned to
the initial model. In model 1, the anomalies are set to 0 g cm

In terms of the inversion of model 1, the iterations are 10, 7, 6 and 3, and the inversion results are illustrated in Fig. 2b–e. The detailed results of every inversion test are summarized in Table 1.

Conditions and results for initial density model 1.

Figure 2b–e indicates that as the initial model becomes more precise, the
inversion results become more reliable, with the values of the anomalies
becoming more similar to the true model. With no defined initial model (Fig. 2b), it is difficult to capture the layered structure of the anomaly, and
the resulting average density is only 0.38 g cm

Initial density model experiments.

For model 2, the inversions for each case are calculated after 8, 7, 5 and
13 iterations. The inversion results are illustrated in Fig. 3b–e, and the
details of the results of each case are given in Table 2. With the aid of a
more precise initial model and more data, Fig. 3b–d demonstrates that it
would be easier to determine the shape and dimensions of the density anomaly
body from the inversion results. In the inversion results of Fig. 3b, it is
feasible to directly capture the upright cuboid of the density anomaly on
the right, and for the complicated density anomaly body on the left, the
interpretation based on the inversion results is limited to this anomaly
body having an irregular shape and its size growing with increasing depth.
In Fig. 3c, the anomaly body on the left reveals a stair-like shape, yet it
is surrounded by multiple small anomaly bodies, and the density values of
the upright cuboid on the right are closer to those of the true model. Next,
the optimal inversion results are found in Fig. 3d, with anomalous body
shapes that are completely consistent with those of the true model, and it
is easy to discriminate the shape of the anomalous body. Meanwhile, it
should also be noted that the density anomaly value of the upright cuboid on
the right is higher than that of the stair-like body on the left. Finally,
the inversion results in Fig. 3e make it difficult to determine the shapes
and sizes of both anomalous bodies. In addition, according to the inversion
results summary (Table 2), the average density anomaly is only 0.3276 g cm

Conditions and results for initial density model 2.

Initial density experiment model 2.

The model tests show that the inversion results are not only related to the observation but also affected by the physical and geometric parameters of the initial density model. Therefore, the density values for the initial model, as well as the general area where the density anomaly body is located, should be more accurately set for the initial density model.

The sequential inversion is realized in two steps, namely, gravity inversion
and gravity gradient inversion. The detailed workflow of the whole inversion
process is illustrated in Fig. 4. Given the constraint imposed on the
inversion results by the initial density model, the high-precision results
of the gravity inversion are used as the new initial density model for the
subsequent steps, and the ultimate inversion results are somewhat
constrained during the gravity gradient inversion calculation. Specifically,
the density data converted from the seismic wave velocity are first used as
the initial density model, and the preprocessed corrected gravity anomaly
data are collected to serve as the observation quantity. Then, the kernel
function corresponding to the gravity data is calculated, and the density
anomaly data within the depth range of 0–180 km in the study area are
calculated through the PCG algorithm. Then, the obtained gravity inversion
results are used as the new initial density model, and the gravity gradient
components in this area that are measured by the GOCE satellite are
processed; the four corrected gravity gradient anomaly components
(

The flowchart for the whole PCG inversion algorithm procedure.

The corrected gravity anomaly data (Wang et al., 2012) with depths of 0–180 km in the NCC have been directly collected. The corrected gravity anomaly
data are based on the

Although the gravity data are favored by their higher resolutions, the
gravity inversion suffers from a strong nonuniqueness of solutions. It is
effective to introduce seismic data into the gravity inversion to constrain
the gravity inversion process and the nonuniqueness of the solution. Based
on the 0.5

The three-dimensional density anomaly distribution of the lithosphere within
0–180 km, which is meshed into 0.25

Lithospheric density distribution of the NCC based on gravity values at different depths.

The GOCE L2 (GOCE GO_CONS_EGG_TRF_2) gravity gradient measurement product provided for
users includes the gravity gradient data along the orbit. This study
directly downloads the preprocessed gravity gradient anomaly data with a
spatial resolution of 10 arcmin, acquired over 48 months from November 2009
to October 2013 (Sebera et al., 2014) from the website GOCE

Gravity gradient anomaly (

The data of the GOCE satellite at the average orbit height only reflect the long-wavelength information and the large structural features inside the earth. To highlight the high-frequency information of the shallow anomaly body and detailed information of the structural features, such as depth and shape, the GOCE satellite data at the average orbit height for the NCC have been continued downward to the near-surface area (Martinec, 2014). The obtained results benefit the lithospheric structural analysis for local areas. The Tesseroids software developed by Uieda et al. (2016) is used in the topography calculation and the underground interface undulation effects. To ensure the accuracy of the calculation, the software recommends a distance of at least 1 km between the observation plane and the mass body, while the highest point of the topography in the study area is located at approximately 5 km. Thus, the gravity gradient components continued downward to 10 km above the geoidal surface (Fig. 8a–d). The iterative continuation methods based on the Poisson approximate integration theory, specifically developed for the satellite gravity gradient components by Sebera et al. (2014), are adopted, and the space outside the earth's surface is regarded as mass free.

Gravity gradient effect (

The gravity gradient anomaly components after downward continuation are a
combination of the interface undulation and density heterogeneity. Thus,
topographic correction, underground interface undulation correction and long-wavelength correction should be carried out in accordance with the existing
precise model. These three corrections are affected by the masses within and
outside the study area, and far zone corrections outside the study area
should be considered, based on previous studies (Szwillus et al., 2016). This points out that for satellite-based gravity gradients to reduce the
remaining rms distant effect to 10 % of the global rms, a radius of
10

First, the topographic effects are calculated using the Tesseroids software
(

To directly reveal the correlation between the topography and calculated
gravity gradient effects, the three-dimensional figure of the topographic
gravity gradient effect

Gravity gradient effect caused by topographic masses:

First, the average depth and density of the sediment in this area should be
calculated for the interface undulation effects. The average depth is
calculated from the depth data of the sediment in NCC (Fig. 10a) provided by
CRUST 1.0 with a spatial resolution of 1

To more intuitively illustrate the correlation between the sedimentary layer
interface undulation and the calculated gravity gradient effects, in Fig. 10g, the interface undulation denotes the sedimentary layer interface
undulation (Fig. 10b), and the contour lines represent the corresponding
gravity gradient effects

The depth of the Moho interface in the NCC provided by CRUST 1.0 is shown in
Fig. 11a. The average depth calculated from the depth data of the Moho is
36.5 km, and the corresponding average density is 3.32 g cm

The long-wavelength gravity gradient effects are mainly induced by substance
density heterogeneity in the lithosphere at depths greater than 180 km. The
correlation between the depth of the field source and the order of the
spherical harmonic function of the gravity potential developed by Bowin et
al. (1986) is adopted as follows:

The gravity gradient effect (

Since models with different spatial resolutions are used in several
corrections, the spatial resolutions of the obtained results are different.
Therefore, before calculating the corrected gravity gradient component, the
resolutions of the results for each calculation are homogenized to the same
spatial resolution of 0.5

The amplitude of the topography effects and the underground interface
undulation effects is obvious, but the topographic correction and
underground interface undulation correction balance each other to a certain
degree (Szwillus et al., 2016). This counteraction is obvious in the
extended study area, as shown in Fig. 13e (topographic correction) and Fig. 13f (underground interface undulation correction). The detailed statistical
amplitudes for each gravity gradient correction are summarized in Table 3. To
present the different corrections more intuitively, several corrections,

The corrected gravity gradient components

Statistics for each gravity gradient correction.

In Fig. 14, after eight iterations, the curve of the defined rms misfit
tends to be horizontal, and the variation is increasingly slighter between
the values of the defined rms misfit. A calculated rms misfit of

For the iterative calculation, the residual mean square between the forward-calculated theoretical gravity gradient and the gravity gradient measurements versus the iteration number in the PCG inversion algorithm.

Comparison of gravity and gravity gradient inversion results.

In general, obvious density anomalies at a depth of 10 km are only seen in the eastern and central areas of the NCC. At depths of 25–40 km, significant negative-density residuals are present in the Taihang Orogenic belt along the central NCC and in the Qilian and Qaidam blocks along the western NCC. Significant high-density residuals exist in the Ordos block. For depths of 60–80 km, low-density residuals are found in the Bohai Bay area in the eastern NCC, while widely distributed low-density residuals are seen in the Yinshan orogenic belt. At a depth of 100 km, the entire NCC is characterized by spatially alternating positive- and negative-density residuals. In comparison, at depths of 140–180 km, an obvious regional differentiation in the density anomaly distribution is seen, with obvious low-density residuals in the Datong volcano at the junction of the Yinshan–Yanshan and Taihang orogenic belts in the eastern NCC, as well as the Qilian block at the junction of the Qaidam and Ordos blocks in the western NCC.

According to the horizontal spatial distribution of the lithospheric density, the NCC is divided into three main areas, namely, the eastern NCC, which consists of the North China Basin and Bohai Bay area; the central NCC, which consists of the central transitional belts; and the western NCC, which consists of the Ordos Basin and its surrounding areas. Based on the three main local density anomaly areas in Fig. 15a–h, the density anomaly distribution in each area at different depths is discussed.

Lithospheric density distribution in the NCC at different
depths:

The eastern NCC is characterized by obvious features with connections to Bohai Bay. In the eastern NCC, the distribution of positive and negative densities is always alternately characterized within depths 0–180 km. From the Tancheng–Lujiang fault belt (E2 and E3) in the south, to Bohai Bay (E5) and North China Basin (E1) in the middle, and the Songliao Basin (E6) in the north, the density always has the features of a regional distribution instead of a large-scale distribution in the central NCC. The obvious spatial distributions of the density anomalies are consistent with the theory that this area has experienced strong deformation (Tian and Zhao, 2011).

At the depth interval of 10–180 km in the eastern NCC, there are positive-density anomalies in the E1 area of the North China Basin, which are mainly distributed along the Tangshan–Xingtai earthquake belt. This result is consistent with the positive P-wave velocity along the earthquake belt (Huang and Zhao, 2004, 2009), which implies a positive-density distribution affected by the Tangshan–Xingtai earthquake belt.

The Tancheng–Lujiang fault belt is one of the major north-northeast fault
zones in the East Asian continent. This fault belt extends more than 2400 km
in China and cuts through different structural units (Huang et al., 2011).
The geological structure of the Tancheng–Lujiang fault belt is complicated.
The Tancheng–Lujiang fault belt in the eastern NCC is extended in the
north-northeast direction, and on both sides (the E2 area on the right and
the E3 area on the left), the density anomalies are significantly different.
At a depth of 42 km, significant positive-density residuals are present in
the E3 area as the locally extreme value, while regional positive-density
residuals are observed in the E2 area (Fig. 15c). At a depth of 80 km,
significant positive-density residuals are present in the E3 area, while no
density anomalies are observed in the E2 area (Fig. 15e). At a depth range
of 100–180 km, the density anomalies are obvious (Fig. 15h), including those
in the E3 area with a direction consistent with the fault belt strike and
those in the E2 area with alternating distributions of positive- and negative-density residuals. Moreover, these positive- and negative-density residuals
are the local extremes, reaching 0.10 and

In the E5 area of Bohai Bay, there are significant negative-density anomalies at depths of 60–80 km. This area features a columnar shape density distribution at a depth of 80 km. However, as the depth increases from 100 to 180 km, there are no continuous regional negative-density residuals in the E5 area. In contrast, distinct low-density residuals are seen in the E4 area, which is in the extended region of the Tancheng–Lujiang fault belt. Meanwhile, density anomalies are seen in the extended region of the major fault belt in the area adjacent to the eastern boundary of the Tancheng–Lujiang fault belt. According to previous studies (Teng et al., 1997; Su et al., 2009), these density anomalies are ascribed to the extension of the Tancheng–Lujiang fault belt and the development of the mantle plume in the deep Bohai Bay area. However, the distribution of density anomalies in this region does not conform to the features of the mantle plume with continuous negative-density residuals in the mantle. Based on this study, these density anomalies are mainly ascribed to the extension of the Tancheng–Lujiang fault belt. Negative-density residuals (E4) continuously exist at the extension of the Tancheng–Lujiang fault belt (100–180 km), which implies that the region at the extension of the fault zone has penetrated the crust to the mantle. The cutting effect of the Tancheng–Lujiang fault belt and lithospheric thinning result in asthenospheric upwelling with negative-density residuals in Bohai Bay.

In the E6 area, which is a transitional area between the Yanshan block and
Songliao Basin, significant low-density residuals are present at a depth of
10 km (Fig. 15a). As the depth increases, persistent high-density residuals
are seen in the upper mantle, especially in the depth range of 100–140 km,
with values reaching up to 0.07–0.08 g cm

The central NCC, formed by the central transitional zone, is characterized by significant low-density residuals with obvious segmented distributions. The Taihang Orogenic belt is generally northeast–southwest oriented, and this belt can be divided into three blocks, namely, southern block C1, middle block C2, and northern block C3. From 42 to 100 km, C1 is connected to the high-density anomaly area of the western NCC (W4), while C3 is connected to the high-density anomaly area of the eastern NCC (E1) and the low-density anomaly area in the Yinshan–Yanshan blocks (C5). Blocks C3 and C5 are connected, forming low-density anomalies in large-scale areas. These features may indicate that the Taihang Orogenic belt has experienced different geological processes from south to north.

C4 in the northern part of the Linfen–Weihe Graben block is mainly distributed in the Datong volcanic area. As the depth increases, the density anomalies become significant high-density residuals at 25 km (Fig. 15b) and then become obvious low-density residuals from 42 to 140 km. Although the Datong volcano is no longer active (Tian et al., 2009), its surrounding area still exhibits low-density residuals. Similarly, C5 is at the junction of Yinshan–Yanshan and north of the Taihang Orogenic belt, which features obvious low-density residuals at depths of 60–180 km. When the depth increases to 60 km (Fig. 15d), these anomalies become connected with C3 north of the Taihang Orogenic belt and with C4 at the junction of the Datong volcanic area, forming a large low-density anomaly zone. As the depth further increases, the low-density anomaly area covering C5 presents persistently negative density residuals that extend to a depth of 180 km (Fig. 15h). Moreover, the negative-density anomaly value is more significant.

From the distribution of the temperature difference (An and Shi, 2007; Yang et al., 2013) in Fig. 15i–j, C5 is located in an area with a continuous high-heat environment. Based on previous studies using the magnetotelluric imaging method (Zhang et al., 2016), melting occurs in the mantle of the Datong volcanic area and north of the Taihang Orogenic belt. According to the seismic receiver function, the Poisson's ratio in the northern Taihang Orogenic belt is as high as 0.3, while in the southern Taihang Orogenic belt, the value is approximately 0.25–0.26 (Ge et al., 2011). The Poisson's ratio of the continent is generally between 0.25 and 0.27, and although the temperature and material composition seem to have a dominant influence on Poisson's ratio (Zandt and Ammon, 1995), it is difficult to increase the Poisson's ratio to 0.3 only by changing the material composition. Therefore, the obvious negative-density residuals in this area are mainly affected by the high-heat environment. The upwelling of the thermal materials from the deep asthenosphere formed the magma migration pathway, which apparently transforms the lithosphere and upper mantle.

In contrast, with the northern region, negative-density residuals are
observed in the central and southern parts of the Taihang Orogenic belt from
60 to 180 km, with an extreme value of

C6 in the central NCC exhibits significant positive-density residuals at depths of 140–180 km, which are in contrast to the low-density residuals over a large area of the central NCC. The mantle part of C6 is connected to the positive-density anomaly area in the W1 area, Ordos block, and western NCC (Fig. 15e–f). In Fig. 15i–j, the temperature in C6 is normal at depths of 140–180 km, and the temperature boundary exists between the C6 and W1 areas. Based on previous studies (Ai et al., 2019), the Taihang Orogenic belt in the mantle part experienced a blocking effect from the rigid Ordos block during the expansion of the orogenic belt. The stable Ordos block area presents continuous large-scale high-density residuals. It is inferred that the Ordos block's blocking effect creates the positive-density residuals in the central NCC (C6) and connects with the Ordos block.

At a depth of 42 km, the W1 area in the central Ordos block is characterized by high-density residuals (Fig. 15c), whereas no obvious anomalies are seen in the northern part of the Ordos block. According to the receiver function (Tian and Zhao, 2011), the central part of the Ordos block is 41 km thick, which increases to 45 km in the northern part. Therefore, it can be inferred that the southern part of the Ordos block has entered the lithospheric mantle at a depth of 42 km. From 60 to 100 km, the high-density residuals in the W1 area of the central Ordos block gradually change to low-density residuals. At the depth interval of 140–180 km, the high-density residuals still dominate the W1 area of the central Ordos block. Although Ordos is a relatively stable block with high-density features, a low-density block invasion appears at depths of 80–100 km. At a depth of 80 km, the low-density anomaly of the Ordos block (W1) on the east side is connected with the low-density anomaly in the central NCC (C2), which indicates that Ordos is affected to some extent by the destruction of the central NCC. At a depth of 100 km, the low-density anomaly of the Ordos block (W1) is connected to the Qilian block (W3) and Qaidam block (W5), and the distributions of the density anomalies are consistent with the theories that the Ordos block is affected by the northeast compression of the Qinghai–Tibet Plateau and substantial deep expansion (Sheng et al., 2015).

The whole Qilian block (W2 and W3 areas) features significant low-density residuals in the crustal part at 25–40 km, which falls in the range of the Haiyuan fault belt. The boundary of the negative-density residuals is essentially consistent with the strike of the fault belt shown on the surface. The W3 area at the junction of the Qilian and Ordos blocks is characterized by a sharp transition from low density to significant high density. At depths of 25–80 km, the density anomalies in the Qilian block present a dominant NW–SE strike; however, this strike turns clockwise to the NS direction as the depth further increases to 180 km, especially after entering the mantle. This observation is consistent with previous research results in this region. The mantle convective stress field calculated based on gravity anomalies is demonstrated to be significantly inconsistent with the crustal movement pattern (Xiong and Teng, 2002; Wang et al., 2013), which indicates obvious decoupling between the crustal and mantle materials in the Qilian block. The Qilian block is located at the junction of the northeastern Qinghai–Tibet Plateau and the Alashan and Ordos blocks in the western NCC. The Qilian block has not only been influenced by collisions and subduction of the Indian plate but also by the blocking effect of the Ordos Block, which results in a strong regional tectonic stress background in the deep part of the Qilian block with an associated clockwise rotation of the material movement.

As the depth increases in the range of 140–180 km, persistent obvious
negative-density residuals are increasingly dominant in the Qilian block (W2
areas) of the western NCC. According to a previous study (Teng et al.,
2010), the lithosphere in the western NCC is the thickest, with an average
depth of 140–150 km. However, within this depth range, obvious low-density
residuals are present in the orogenic belts of the western NCC, which
eliminates the possibility that lithospheric thinning is the main cause of
the density anomalies at depths of 140–180 km. According to the temperature
differences (Fig. 15i–j), the Qilian block in the western NCC has a high
temperature at depths of 140–180 km. Furthermore, according to research
on the terrestrial heat flux (An and Shi, 2007), the Qilian block has an
average heat flux value of up to 68.340 mW m

The low-density anomalies in the Qilian block and northern Taihang Orogenic belt are affected by the high-heat-flux environments. Low-density anomalies in the central Taihang Orogenic belt exist but are not accompanied by continuous high-heat-flux environments at mantle depth. However, without mantle plumes, the low-density anomalies in Bohai Bay are affected by the extension of the Tancheng–Lujiang fault belt, and mechanical extension destroys the lithosphere in this area. Based on our studies, one theory is that it is hard to explain the destruction phenomena and modes in the whole NCC. The destruction of NCC is not only affected by physical tension but also caused by thermal erosion and delamination. Previous dynamic studies have shown that (Zhu et al., 2012; Zhu, 2018) since the Mesozoic, the Pacific Plate subducted westward to the Taihang Orogenic belt in the central part of the NCC. The residual dehydration of the subducted plate in the mantle transition zone promoted an increase in the molten fluid content in the upper mantle beneath the NCC. The delamination and thermal erosion of the lithosphere in the NCC reflect different forms of mantle convection instability. Therefore, through this study, it is believed that the destruction in the NCC is caused by several forms. Several destruction modes of the NCC coexist in different geological structural backgrounds.

The sequential inversion of the lithosphere density structure in the NCC is
divided into two stages. The effects of the initial density model are
considered. The inversion results obtained by the inversion of the corrected
gravity anomaly are used as the initial model for the inversion of the GOCE
satellite gravity gradient components. The GOCE satellite gravity gradient
data were processed with several corrections to obtain the corrected gravity
gradient components. The density distribution with a depth range of 0–180 km
in the NCC is outlined as follows:

In the eastern NCC, affected by lithosphere thinning, the eastern NCC has local features in the density anomaly distribution. Obvious differences in the density anomaly distribution are observed, and the Tancheng–Lujiang fault belt in the eastern NCC penetrates through the lithosphere. The density anomaly in Bohai Bay is mainly induced by the extension of the Tancheng–Lujiang major fault at the eastern boundary.

In the central NCC, the Taihang Orogenic belt located in the central NCC is characterized by a segmented density anomaly distribution.

In the western NCC, the Qilian block in the western NCC presents a clockwise rotation of the density anomaly distribution with an increasing lithospheric depth, while the adjacent Ordos block remains continuously stable.

Across the Taihang Orogenic belt in the central NCC and the Qilian–Qaidam blocks in the western NCC, stronger impacts of the orogenic belt and a high-heat-flux environment are observed, which results in an upwelling of the deeply buried asthenospheric substances and consequently results in a reconstruction of the lithospheric density structure distribution.

The on-orbit GOCE gravity gradient data can be viewed and downloaded from GOCE

YT performed the methodology, validation, original draft preparation, review and editing. YW contributed the conceptualization, supervision and funding acquisition.

The authors declare that they have no conflict of interest.

We are grateful to editor Mioara Mandea and two anonymous referees for providing a lot of constructive comments and suggestions, which really helped us a lot to make remarkable progress. We are grateful to Xinsheng Wang in the Development Research Center of the China Earthquake Administration for providing corrected gravity data. We are also grateful to Qi Lin and Bojie Yan in Minjiang University for providing a lot of help when we prepared this paper.

This research has been supported by the R&D of Key Instruments and Technologies for Deep Resources Prospecting (the National R&D Projects for Key Scientific Instruments, grant no. ZDYZ2012-1-04).

This paper was edited by Mioara Mandea and reviewed by two anonymous referees.