Supplement of

Characterizing a decametre-scale granitic reservoir using ground-penetrating radar and seismic methods

Joseph Doetsch et al.

Correspondence to: Hannes Krietsch (hannes.krietsch@ilf.com)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
Supplementary material for Doetsch et al., “Characterizing a decameter-scale granitic reservoir using GPR and seismic methods”

S1. Anisotropy inversion

The basis is the Thomsen’s anisotropy formula for weak anisotropy (Thomsen, 1986)

\[v_p \left(v_p^{\min}, \varepsilon, \delta, \theta^0 \right) = v_p^{\min} \left(1 + \delta \sin^2 \theta \cos^2 \theta + \varepsilon \sin^4 \theta \right), \]

where \(v_p^{\min} \) is the minimum P wave velocity, \(\delta \) and \(\varepsilon \) are the Thomsen anisotropy parameters and \(\theta = \theta' - \theta^0 \) is the angle between the seismic ray (\(\theta' \)) and the direction of minimum velocity (\(\theta^0 \)). For travel time inversions it is convenient to work with slowness \(s_p \) instead of velocity \(v_p \). The corresponding equation is

\[s_p \left(s_p^{\min}, \varepsilon, \delta, \theta^0 \right) = s_p^{\min} \left(1 + \delta \sin^2 \theta \cos^2 \theta + \varepsilon \sin^4 \theta \right)^{-1}. \]

In the following equations the subscript \(p \) is omitted. The travel time from source \(i \) to receiver \(j \) is

\[t_{ij} = \sum_k s_k l_k, \]

where \(s_k \) and \(l_k \) are the slownesses and ray lengths in the \(k \)th cell along the ray path connecting source \(i \) and receiver \(j \). In the isotropic case, the partial derivatives contained in the Jacobian matrix are

\[\frac{\partial t_{ij}}{\partial s_k} = l_k. \]

In case of weak anisotropy, the corresponding derivatives are

\[\frac{\partial t_{ij}}{\partial s_k^{\min}} = l_k a^{-1}, \]

\[\frac{\partial t_{ij}}{\partial \varepsilon_k} = -l_k s_k^{\min} a^{-2} \sin^4 \theta, \]

\[\frac{\partial t_{ij}}{\partial \delta_k} = -l_k s_k^{\min} a^{-2} \sin^2 \theta \cos^2 \theta, \]

and

\[\frac{\partial t_{ij}}{\partial \theta_k^0} = l_k s_k^{\min} a^{-2} \left(4 \varepsilon \sin^3 \theta \cos \theta + 2 \delta \sin \theta \cos \theta \left[\cos^2 \theta - \sin^2 \theta \right] \right). \]

with \(a = \left(1 + \delta \sin^2 \theta \cos^2 \theta + \varepsilon \sin^4 \theta \right). \)
Supposed that the ray geometry is known (e.g., computed with an isotropic ray tracer), implementation of weak anisotropy is merely a matter of adding three more columns per inversion cell to the Jacobian matrix. The isotropic case can be considered as a special case of anisotropy, where the derivatives with respect to ε, δ, and θ are set to zero.

S2. Extra GPR Figures

Figure 6 in the main manuscript shows the unmigrated GPR data recorded from the AU tunnel and Figure 7 the migrated data acquired from the VE tunnel. Here, we show the migrated data from the AU tunnel and the unmigrated data from the VE tunnel.

![Figure S1: Fully processed and migrated GPR data acquired from the AU tunnel.](image1)

![Figure S2: GPR reflection data measured from the VE tunnel in the N-S plane, looking East. These data are processed up to step 8 (Section 3.1.2) but not migrated.](image2)

References