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Abstract. Characterizing the zone of damaged and altered
rock surrounding a fault surface is highly relevant to geotech-
nical and geo-environmental engineering works in the sub-
surface. Evaluating the uncertainty associated with 3D geo-
logic modeling of these fault zones is made possible using
the popular and flexible input-based uncertainty propagation
approach to geologic model uncertainty assessment – termed
probabilistic geomodeling. To satisfy the automation require-
ments of probabilistic geomodeling while still preserving the
key geometry of fault zones in the subsurface, a clear and
straightforward modeling approach is developed based on
four geologic inputs used in implicit geologic modeling al-
gorithms (surface trace, structural orientation, vertical termi-
nation depth and fault zone thickness). The rationale applied
to identifying and characterizing the various sources of un-
certainty affecting each input are explored and provided us-
ing open-source codes. In considering these sources of un-
certainty, a novel model formulation is implemented using
prior geologic knowledge (i.e., empirical and theoretical re-
lationships) to parameterize modeling inputs which are typ-
ically subjectively interpreted by the modeler (e.g., vertical
termination depth of fault zones). Additionally, the applica-
tion of anisotropic spherical distributions to modeling dis-
parate levels of information available regarding a fault zone’s
dip azimuth and dip angle is demonstrated, providing im-
proved control over the structural orientation uncertainty en-
velope. The probabilistic geomodeling approach developed
is applied to a simple fault zone geologic model built from
historically available geologic mapping data, allowing for a
visual comparison of the independent contributions of each
modeling input on the combined model uncertainty, reveal-
ing that vertical termination depth and structural orientation

uncertainty dominate model uncertainty at depth, while sur-
face trace uncertainty dominates model uncertainty near the
ground surface. The method is also successfully applied to
a more complex fault network model containing intersect-
ing major and minor fault zones. The impacts of the model
parameterization choices, the fault zone modeling approach
and the effects of fault zone interactions on the final geologic
model uncertainty assessment are discussed.

1 Introduction

Three-dimensional (3D) geologic models are becoming the
state of the art for the prediction and communication of sub-
surface geology in a wide range of projects (Turner and
Gable, 2007; Wellmann and Caumon, 2018) including re-
gional geologic characterization (Stafleu et al., 2012; Waters
et al., 2015), natural resource exploration (Zhou et al., 2007,
2015; Zhou, 2009; Anderson et al., 2014), structural geol-
ogy (Bond et al., 2015; Ailleres et al., 2019), geotechnical
site characterization (Thum and De Paoli, 2015; Zhu et al.,
2013), geophysics (Guillen et al., 2008; Høyer et al., 2015;
Anderson et al., 2014), hydrology (Watson et al., 2015), and
mining (Wellmann et al., 2018; Yang et al., 2019). The re-
cent widespread adoption of flexible, implicit 3D geologic
modeling algorithms (Cowan et al., 2003; Calcagno et al.,
2008; Guillen et al., 2008; Jessell et al., 2014; Hillier et al.,
2014, 2017) is leading the field of 3D geologic modeling
away from the creation of static models based on a single,
best interpretation and towards stochastic geologic modeling
with quantified uncertainty (Caumon, 2010). Understanding
the uncertainty of a 3D geologic model not only provides a
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measure of model quality to an end user (Turner and Gable,
2007; Walker et al., 2003; Stamm et al., 2019) but also aids
the geologist during model creation by analyzing the qual-
ity of input data and highlighting the impacts of subjective
prior knowledge and interpretations (Bond, 2015; Wood and
Curtis, 2004; Jessell et al., 2018). As the use of 3D geologic
modeling continues to grow, novel methods for assessing the
uncertainty of various aspects of geologic models is perti-
nent.

Because a single model conveys no information regarding
its uncertainties (Wellmann and Caumon, 2018), multiple re-
alization approaches are becoming a popular method for as-
sessing geologic model uncertainty (Wellmann et al., 2010;
Wellmann and Regenauer-Lieb, 2012; Pakyuz-Charrier et al.,
2018a, b, 2019; Jessell et al., 2014; Jessell et al., 2018;
Lindsay et al., 2013; de la Varga and Wellmann, 2016; de
la Varga et al., 2019; Schweizer et al., 2017; Thiele et al.,
2016; Yang et al., 2019; Schneeberger et al., 2017). Re-
cently, the well-established Monte Carlo simulation method
has been adopted into a widely used method for 3D geo-
logic model uncertainty assessment by way of uncertainty
propagation of geologic model inputs into the 3D geologic
model space (Wellmann and Caumon, 2018). The method,
henceforth termed “probabilistic geomodeling”, focuses on
the impact of uncertainty in geologic modeling inputs on a
3D geologic model by generating a set of model realizations
based on perturbations in selected modeling inputs, sampled
using Monte Carlo simulation algorithms. Probabilistic ge-
omodeling is flexible, allowing for a wide variety of uncer-
tainty sources affecting various geologic modeling inputs to
be quantified by the user and propagated into the 3D geologic
model.

While growing in popularity, the field of geologic model
uncertainty assessment remains a developing one, and the ap-
plication of probabilistic geomodeling to new, practical prob-
lems requires unique model formulations. The development
of novel probabilistic geomodeling approaches to address
specific aspects of 3D geologic modeling will lead to growth
in the field not only by broadening the usability of the method
but also by advancing the understanding of the method’s
strengths and limitations. In addition to assessing the uncer-
tainty in a single geologic model, probabilistic geomodeling
using Monte Carlo sampling naturally fits into Bayesian in-
ference schemes (de la Varga and Wellmann, 2016; Salvatier
et al., 2016; Scalzo et al., 2019; Thiele et al., 2019), allowing
for future refinement of model uncertainty as new informa-
tion is made available.

This study expands the use of probabilistic geomodeling
to a new aspect of geologic modeling – fault zones, the lo-
calized volume of fractured and displaced rock surrounding
a finite fault surface, typically composed of a fault core and
a damage zone (Caine et al., 1996; Childs et al., 2009; Pea-
cock et al., 2016; Choi et al., 2016). Fault zones introduce
regions of altered geotechnical strength and hydraulic per-
meability into the surrounding intact rockmass and are there-

fore of major importance to geological engineering projects
that rely on accurate assessments of subsurface rock proper-
ties (e.g., tunnels, mines). While faults have been the focus
of a significant amount of recent geologic modeling research
(Røe et al., 2014; Cherpeau et al., 2010; Cherpeau and Cau-
mon, 2015; Aydin and Caers, 2017), these works have fo-
cused on modeling fault surfaces directly rather than model-
ing the 3D geometry of fault zones. Detailed modeling of the
3D geometry of fault zones can improve the understanding
of faults’ impacts on geotechnical and reservoir engineering
projects due to the fact that variations in fault zone thickness
or composition can greatly alter the mechanical and hydro-
logical behavior of a fault, e.g., its sealing potential (Caine
et al., 1996; Fredman et al., 2008; Manzocchi et al., 2010).
Building on the existing literature on understanding the un-
certainties about faults in the subsurface (Choi et al., 2016;
Shipton et al., 2019; Torabi et al., 2019b), this study develops
a novel, dedicated approach to leveraging probabilistic geo-
modeling to characterize the uncertainty in fault zones using
3D geologic models.

Fault zones may be irregular in shape, creating complex
geometries which are difficult to characterize quantitatively
(Torabi et al., 2019a, b). Peacock et al. (2016) provide a de-
tailed list of the various types of damage zones and inter-
secting fault networks that comprise the general term “fault
zone”. The inherent complexity of fault zone structure makes
their precise modeling intractable in an automated geologic
modeling application, such as that required by probabilistic
geomodeling. A simplified approach to modeling fault zones
in 3D geologic models is developed in this study based on
the key elements defining fault zone geometry at a practical
level of detail.

2 Model implementation

The proposed workflow for modeling fault zones is provided
in Fig. 1. The workflow combines observations from a ge-
ologic map with prior knowledge from the literature to ap-
proximate the 3D geometry of subsurface fault zones. The
implicit geologic modeling software Leapfrog Works, a soft-
ware specially designed to support creation of subsurface
geological models, is used in this study. The 3D fault zone
is modeled in Leapfrog Works from four inputs – surface
trace (polyline), structural orientation (dip/dip azimuth vec-
tor), fault zone thickness (scalar distance function) and ver-
tical termination depth (discretized surfaces). The modeling
approach preserves the essential 3D geometry of fault zones
in the subsurface while providing sufficient generalization to
fit into an automated implicit modeling workflow for uncer-
tainty propagation.

The popular implicit geologic modeling method was cho-
sen for modeling the uncertainty in fault zones due to its abil-
ity to directly incorporate structural orientation data to mod-
eling geologic structures. Leapfrog Works uses radial basis
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Figure 1. The proposed fault zone modeling workflow implemented includes (a) modeling the central fault surface from a polyline and
structural orientation, (b) terminating the fault surface on a predefined vertical termination surface, and (c) defining the 3D fault zone volume
using a distance function from the central fault surface (Krajnovich et al., 2020a).

functions (RBFs) to efficiently interpolate the scalar fields
describing implicit geologic surfaces (Seequent, 2014). Im-
plicit geologic modeling using RBFs is comparable in qual-
ity to modeling using popular co-kriging approaches (Cowan
et al., 2003; Hillier et al., 2014, 2017).

2.1 Probabilistic geomodel setup

Setting up the probabilistic geomodel begins with the careful
selection of key geologic modeling inputs for perturbation
(Fig. 1). The set of geologic modeling inputs is character-
ized using probability distributions chosen and parameter-
ized based on the believed and/or observed uncertainties in
the input variables. Monte Carlo simulations independently
explore the uncertainty space of each input, generating a
set of input realizations which are propagated into 3D ge-
ologic models through the use of an automated implicit geo-
logic modeling algorithm. From the set of geologic model
realizations, the commonly used Shannon information en-
tropy metric (Shannon, 1948) allows for quantifying the un-
certainty about modeled geologic structures (Wellmann and
Regenauer-Lieb, 2012). This overview is provided merely to
introduce the reader to the general idea of probabilistic geo-
modeling as applied to implicit geologic modeling; the reader
is referred to the book by Wellmann and Caumon (2018) for
a more thorough review of the probabilistic geomodeling and
implicit modeling methods’ conceptual bases.

The same flexibility that allows probabilistic geomodeling
to be effectively formulated for nearly any geologic model-
ing problem is also a potential susceptibility – the model for-
mulation and input uncertainties must be predefined by the
user. This can lead to potential over- or underestimation and
biases in the uncertainty assessment performed with proba-
bilistic geomodeling due to inappropriate selection of model-
ing inputs or incorrect parameterization of input probability
distributions (de la Varga and Wellmann, 2016; Wellmann
and Caumon, 2018; Pakyuz-Charrier et al., 2018b). Follow-
ing the school of thought reviewed by Nearing et al. (2016),

the modeler must ask questions along the lines of the follow-
ing:

– What inputs control the geometry of the modeled struc-
ture?

– How can these inputs be defined probabilistically?

– What information is available to characterize each
source of input uncertainty?

For hard data inputs (e.g., observed contacts, structural ori-
entation measurements), the answers to these questions are
relatively well-established using measures of variance and
deviation to directly characterize uncertainties (Caers, 2011;
Wellmann and Caumon, 2018). On the other hand, for sub-
jective inputs to geologic models (e.g., interpreted fault ter-
minations), there are generally two approaches with which
the subjective uncertainties can be characterized. The first is
describing and quantifying the uncertainty associated with
prior knowledge by utilizing believed theoretical or empirical
relationships to quantify the reasoning behind a subjective
geologic interpretation (Wood and Curtis, 2004). The second
method, operating within a Bayesian inference scheme, is to
incorporate additional geological knowledge or observations
to validate – or rather, as Tarantola (2006) states, invalidate –
model realizations. This study focuses on the first method of
applying prior knowledge from published structural geology
literature (Torabi et al., 2019a) to parameterize the reasoning
behind subjective inputs used for probabilistic geomodeling
of fault zones. This approach is demonstrated effectively in
this study when considering the vertical termination depth of
fault surfaces (Sect. 4.3).

Having identified the geologic modeling inputs control-
ling the geometry of the modeled fault zone and appro-
priate methods for defining these inputs probabilistically,
Fig. 2 shows an illustration depicting possible uncertainty
envelopes due to key sources of uncertainty affecting each
input.
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Figure 2. A schematic showing expected uncertainty envelopes due
to the specified sources of uncertainty regarding characterizing the
3D geometry of a fault zone in the subsurface. Modified from Kra-
jnovich et al. (2020a).

In the 3D geologic model, the geometry and extent of
fault zones in the subsurface often are approximated from
limited information available. While useful for conceptualiz-
ing subsurface geology and guiding future investigations, the
lack of detailed data contributes significant sources of un-
certainty to the 3D geologic model (Fig. 2). This study fo-
cuses on and provides guidelines for performing realistic un-
certainty assessments when creating 3D geologic models of
fault zones from limited, preliminary investigation data (e.g.,
a geologic map), further demonstrating how prior knowledge
is used to characterize uncertainty about inputs which are
typically subjective (i.e., vertical termination depth). While
formulated for a case with limited data, the developed prob-
abilistic geomodeling approach allows for accommodating
additional observations of the fault zone geologic modeling
inputs (e.g., via a modern outcrop study) through a straight-
forward reparameterization of the input probability distribu-
tions to include the new data.

Moving forward, Sect. 3 details the appropriate selection
and parameterization of probability distributions to accu-
rately characterize input uncertainties for various the data
types used in 3D geologic modeling of fault zones. Sec-
tion 4 highlights the considerations for characterizing each
modeling input’s uncertainty and references the Python code
written for performing and assessing the input perturbations
on a single fault zone model built from a geologic map in
the Rocky Mountains of Colorado, USA. Section 5 demon-
strates the probabilistic geomodeling approach applied to
a more complex fault network model to assess how the
method scales and investigate the interaction of intersecting
fault zones. Section 6 discusses the observed results of each
model, highlighting key contributions of the probabilistic ge-
omodeling approach including the impact of different un-
certainty parameterizations and guidelines for future model
refinement. Section 7 reviews the probabilistic geomodeling
implementation for fault zones and reiterates the importance

of the rationale used, concluding with recommendations for
future work.

3 Probability distributions

The probabilistic geomodeling approach developed requires
additional advancements in the selection and parameteriza-
tion of probability distributions used for characterizing the
uncertainty in objective and subjective geologic modeling
inputs. The selection of an appropriate probability distribu-
tion type from the various distributions available for model-
ing involves the consideration of two factors: the data type
and the level of knowledge about the input. Geologic data
may be discrete (e.g., lithological categories) or continuous
(e.g., thickness), with various probability distributions avail-
able to characterize both data types (e.g., normal, uniform,
log-normal, binomial – see Gelman et al., 2013). All of the
modeling inputs used for modeling the 3D geometry of fault
zones are described using continuous data types.

An additional consideration in the case of continuous data
types is the distinction between scalar and vectorial data
(e.g., structural orientations). A probability distribution de-
scribing orientation data resides on the surface of a unit
sphere in 3D and can be characterized using spherical prob-
ability distributions (Fisher et al., 1987; Mardia and Jupp,
2000). The benefit of using spherical probability distributions
to describe structural orientation uncertainty in 3D geologic
modeling is clearly stated by Pakyuz-Charrier et al. (2018b),
and their application in probabilistic geomodeling continues
to develop (Pakyuz-Charrier et al., 2018b, a; Carmichael and
Ailleres, 2016). To remain concise, the following section fo-
cuses on the new contributions made to the use of spheri-
cal probability distributions utilizing the Rfast open-source
package available in the R language (Papadakis et al., 2018).

3.1 Spherical probability distributions

Fault orientations are vectors described by dip and dip az-
imuth components. Stereographic projection is often used
to describe the fault plane using its pole (i.e., normal), de-
fined by a unit vector or a trend and plunge. For handling
orientation data in the probabilistic geomodel, distributions
of the Fisher–Bingham family (Bingham, 1964; Kent, 1982)
provide a wide variety of choices for modeling varying de-
grees of uncertainty. Pakyuz-Charrier et al. (2018b) recently
showed that scalar distributions are inadequate for modeling
the uncertainty in structural orientation data, providing an ex-
ample using the von Mises–Fisher (vMF) distribution (spher-
ical analogue to the isotropic bivariate normal distribution).
This research continues the exploration into the use of spheri-
cal distributions in probabilistic geomodeling by implement-
ing the more general Bingham and Kent distributions (Fisher
et al., 1987) from the Fisher–Bingham family to characterize
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anisotropic uncertainty in structural orientations used in 3D
geologic modeling.

In structural geology, the use of spherical distributions to
understand the uncertainty about structural orientation mea-
surements is well established (Mardia, 1981; Cheeney, 1983;
Davis and Titus, 2017; Roberts et al., 2019). The open-source
Orient and Stereonet softwares by Vollmer (2018) and All-
mendinger (2015) provide uncertainty estimates of structural
data using spherical statistics, while Davis and Titus (2017)
and Roberts et al. (2019) used spherical distributions to es-
timate confidence intervals about uncertain structural ori-
entation measurements of folds and foliations. The analy-
sis of anisotropic orientation uncertainty in structural geol-
ogy is well established with Zhou and Maerz (2002), Peel
et al. (2001), Carmichael and Ailleres (2016), and Davis
and Titus (2017) applying it to joint set identification, struc-
tural data clustering and foliation-lineation characterization.
While Pakyuz-Charrier et al. (2018a) showed clearly that the
dip angle and dip azimuth should not be simulated indepen-
dently as scalar values, it is apparent that the uncertainty af-
fecting each of these aspects of the structural orientation need
not be equal.

Two spherical distributions were reviewed in this study:
the Bingham and Kent distributions. As opposed to the
isotropic vMF distribution, the Bingham and Kent distri-
butions are capable of modeling potentially more realis-
tic anisotropic uncertainty envelopes. This study explores
a novel application of anisotropic spherical distributions in
probabilistic geomodeling: characterizing subjective bias in
the structural orientation uncertainty in fault zones (i.e., dif-
fering levels of information regarding the dip angle and dip
azimuth of faults modeled in implicit 3D geologic models).
The distributions, typically characterized from a series of in-
put measurements, can also be characterized by directly con-
trolling the input parameters themselves. This method allows
for the modeler to assume the size and shape of the struc-
tural orientation uncertainty envelope in the probabilistic ge-
omodel setup.

The Bingham distribution is an antipodally symmetric dis-
tribution for axial data, defined explicitly in R3 (p = 3) by a
set of orthogonal eigenvectors (e1,e2,e3) and corresponding
eigenvalues (λ1 ≥ λ2 ≥ λ3 = 0). The eigenvector and eigen-
value pairs, respectively, detail the direction and degree of
maximum, intermediate and minimum variance in the Bing-
ham distribution. The distribution is described by Eq. (1),
where A= diag(λ1,λ2,λ3), and c(A) is the corresponding
normalization constant (Fallaize and Kypraios, 2016). Set-
ting λ3 = 0 merely ensures that the distribution shows max-
imum variance in the axial direction (i.e., across the unit
sphere), allowing λ1 and λ2 to fully control the shape of the
distribution when projected onto the lower hemisphere.
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The Kent distribution (or Fisher–Bingham five-parameter
distribution) is a more generalized form of the Bingham dis-
tribution, defined for vectorial data focused around a known
mean vector with an anisotropic uncertainty envelope. It is
characterized by a mean vector (x = x1,x2,x3), the concen-
tration parameter κ and an ovalness parameter β. Its density
is described by Eq. (2) for κ ≥ 0,β ≥ 0, where � is an or-
thogonal p×p matrix that can be likened to the eigenvec-
tor matrix used in simulating the Bingham distribution. The
reader is referred to Appendix C of Pakyuz-Charrier et al.
(2018a) for a more thorough explanation of the parameteri-
zation of the Kent distribution.
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When modeling structural geologic orientation data, the dis-
tinction between axial (i.e., undirected) and vectorial (i.e.,
directed) data is irrelevant following the application of lower-
hemisphere stereographic projection. The stereographic pro-
jection is applicable because in reality the orientation of geo-
logic structures is defined by an axis laying within the plane
of the structure. Regardless of the method of characterizing
and sampling the orientation data, a stereographic projection
to the lower-hemisphere will return the conventional down-
dip orientations as defined by dip/dip-azimuth or righthand-
rule systems.

3.2 Sampling

Sampling of scalar data is straightforward and well estab-
lished through the use of Monte Carlo sampling algorithms,
easily accessible through the open-source Python package
PyMC3 (Salvatier et al., 2016). The PyMC3 library is de-
signed to facilitate Bayesian inference using computational
sampling algorithms, though the inclusion of likelihood func-
tions is not required, thereby allowing for utilization of the
package functions for Monte Carlo sampling alone. The use
of PyMC3 has been demonstrated successfully in the con-
text of 3D geologic modeling by de la Varga and Wellmann
(2016) and Schneeberger et al. (2017), and its implemen-
tation in Theano has allowed for seamless integration with

https://doi.org/10.5194/se-11-1457-2020 Solid Earth, 11, 1457–1474, 2020



1462 A. Krajnovich et al.: Uncertainty assessment for 3D geologic modeling of fault zones

Figure 3. (a) Random e3 orientation of anisotropic Bingham distribution resulting from simulation and (b) rotated distribution with properly
aligned e3 orientation.

the open-source geologic modeling platform GemPy (de la
Varga et al., 2019). This study focuses solely on the step of
probabilistic geomodeling based on 3D geologic modeling
inputs, leveraging only the Monte Carlo sampling capabili-
ties of PyMC3.

Simulating samples from spherical distributions requires
dedicated algorithms separate from those used for scalar data
types, due to the transformation between rectangular and
spherical coordinates creating nonuniform areas of angular
trend and plunge increments on the unit sphere. Several so-
lutions have been demonstrated to simulate random samples
from spherical distributions, which are comprehensively doc-
umented in Kent et al. (2018). Simulation algorithms for dis-
tributions of the Fisher–Bingham family have been imple-
mented by Papadakis et al. (2018) in an open-source R pack-
age Rfast. Open-source tools for statistical simulation in the
R and Python environments (including their combined us-
age through the rypy2 package), provide convenient, well-
documented tools for applying established statistical tech-
niques to novel fields in geoscience.

The algorithm for simulating random points from the
Bingham and Kent distributions included in Rfast uses the
acceptance–rejection method, inspired by Kent et al. (2013)
and Fallaize and Kypraios (2016). The method uses a cen-
tral angular Gaussian (CAG) distribution as an envelope to
approximate the Bingham distribution. The algorithm uses
only the first two eigenvalues for identifiability, resulting in
the need to use a rotation to align the sampled points with the
desired orientation. The rotation of data sampled from spher-
ical distributions to any new set of axes is possible due to the
rotation independence of the dispersion of spherical distribu-
tions.

Two rotations using the Euler–Rodrigues formula (Dai,
2015) are useful for properly aligning the data simulated us-
ing the Rfast algorithms. The first, necessary for the Bingham
distribution, interchanges two axes by a rotation of π about
an axis defined by the sum of the two axes to be interchanged,
k = v1+ v2. The second rotation is necessary with either
the Bingham or Kent distribution to correct for the arbitrary
alignment of the orientation uncertainty envelope (Fig. 3a),
which is not desired when characterizing anisotropic uncer-
tainty in dip angle and dip azimuth of a fault. This occurs in
the probabilistic geomodel setup when characterizing the dis-
tributions from input parameters directly rather than through
eigen-decomposition or maximum likelihood estimation. An
effective approach to rotating anisotropic spherical distribu-
tions was developed that rotates iteratively by small incre-
ments about the input orientation vector until an accuracy
threshold on the desired alignment of the e3 plane is satisfied
(Fig. 3b).

4 Uncertainty assessment

After determining the appropriate probability distributions
to use in the probabilistic geomodel, the uncertainty in cho-
sen geologic modeling inputs is quantified based on geologic
data and prior knowledge available. This essential step re-
quires a thorough consideration of the types of uncertainty
and methods for quantification available for each modeling
input. To minimize potentially unwanted bias in the proba-
bilistic geomodel, careful attention must be paid to under-
standing the geologic nature of the objective and subjective
sources of uncertainty affecting each modeling input.
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Figure 4. 1 : 12 000 geologic map from Robinson et al. (1974) showing mapped fault zones of varying widths. The white rectangle and
associated overlay (a) show the single-fault model, while the blue rectangle and associated overlay (b) show the fault network model. Fault
trace(s) used for modeling are highlighted within each rectangle as green polylines.

Two models were generated for this study from data de-
rived from a historical geologic map in the Rocky Mountains
of Colorado, USA (Fig. 4). The first model contains a sin-
gle fault zone (Fig. 4a) and is analyzed to clearly illustrate
the impacts of different geologic modeling inputs and uncer-
tainty parameterizations on a 3D geologic model. The second
model contains a network of major and minor fault zones
(Fig. 4b) and is provided to demonstrate how the method-
ology developed can be generalized to more complex mod-
els and to discuss the implications of fault zone interactions
on geologic model uncertainty. The models follow the work-
flow illustrated in Fig. 1 to simplify the 3D geometry of fault
zones to satisfy the flexibility and automation required for
uncertainty propagation.

The geology in the project area consists of uplifted, Pre-
cambrian crystalline igneous and metamorphic rocks. The
most recent period of tectonic activity occurred from ca.
∼ 70 to 40 Ma. during the Laramide Orogeny, which formed
the modern-day Rocky Mountains. During this time, brit-
tle faulting occurred pervasively throughout the study area
as part of the regional Loveland–Berthoud Pass fault zone
which passes just east of the study site, where it trends NNE
for nearly 50 km (Lovering, 1935). A large number of fault
zones of varying widths cross through the study area and
were mapped at a 1 : 12 000 scale by Robinson et al. (1974).
The geologic map (Fig. 4) contains approximate traces and
boundaries of fault zones in the study area, showing fault
zones with thickness ranging from 5 to 50 ft (∼ 1.5–15 m)

as lines and fault zones greater than 50 ft (∼ 15 m) thick as
hatched zones. Robinson et al. (1974) provided contoured
stereonets of all faults mapped in the area, revealing that
the majority of fault zones mapped dip steeply to the east-
northeast. However, specific information on the dip angle of
individual faults is missing from the geologic map. In ad-
dition to this significant source of orientation uncertainty,
the historic map also includes significant geographical un-
certainty resulting from georeferencing and drafting errors.

Model realization creation is handled by custom Leapfrog
Works back-end support developed for this study to allow
for automated updating of geologic modeling parameters
from an initial model containing input fault zones. The ini-
tial model must be created in Leapfrog using the workflow
provided in Fig. 1, and naming conventions for the geologic
model, fault zones, polylines and termination surfaces are
specified in a user-generated text file. The custom version
of Leapfrog Works uses this text file in conjunction with
the Leapfrog model and input realization files to automati-
cally step through creation of each geologic model realiza-
tion based on the simulated data, following the workflow
from Fig. 1. Model realizations generated in this manner are
automatically evaluated onto a grid of cells defined by the
text file for subsequent analysis. The method put forward by
Wellmann and Regenauer-Lieb (2012) is implemented to cal-
culate the probability of occurrence of fault zone lithology
in each cell. The probability of occurrence is then used to
compute information entropy to describe the uncertainty in

https://doi.org/10.5194/se-11-1457-2020 Solid Earth, 11, 1457–1474, 2020



1464 A. Krajnovich et al.: Uncertainty assessment for 3D geologic modeling of fault zones

fault zones in the geologic model. In a binary system (e.g.,
fault zone vs. intact rock), information entropy is maximal
when the probability of occurrence of a fault zone is 50 %,
which as discussed in Krajnovich et al. (2020a) can intro-
duce potential for misinterpretation of the geologic model
uncertainty envelope if an inappropriate color map is used.
The method implemented in Leapfrog can be made available
to other researchers on the basis that they contact the devel-
opers of Leapfrog (Seequent) independently to inquire about
access to the unique functionality (which is built on top of a
default Leapfrog installation).

A set of 1000 realizations for each modeling input was
propagated into the 3D geologic model independently and
compared with the combined geologic model uncertainty as-
sessment from all four modeling inputs (Fig. 5). The signif-
icance of orientation and vertical termination depth uncer-
tainty on the combined model uncertainty is clearly appar-
ent at depth, while the uncertainty in the fault zone near the
ground surface is dominated by surface trace uncertainty. Un-
certainty about the fault zone thickness appears to be largely
overshadowed by that of the surface trace, which is consid-
ered to be a consequence of the significant georeferencing
and drafting errors arising from the use of the historic geo-
logic map (Sect. 6.1).

The following sections provide a detailed description of
the methods implemented for parameterizing each geologic
modeling input propagated into the model shown in Fig. 5.
The input perturbation script, which is compatible with vir-
tually any 3D geologic modeling software, has been devel-
oped using open- source code of the R and Python languages
and is published at the code and data supplement. It is sug-
gested that the interested reader refers to the script alongside
Sect. 4.1–4.4 for exact results, figures and parameters of the
probabilistic geomodel setup.

4.1 Structural orientation

The structural orientation of a fault zone varies along its
surface and is implemented in modeling as a single dip az-
imuth and dip angle vector applied to the implicit model-
ing interpolant. Natural variability in the fault surface and
error of individual measurements contribute objective uncer-
tainty to the orientation used for modeling (Whitmeyer et al.,
2019; Stigsson, 2016). Additional, subjective sources of un-
certainty are present that may affect the fault orientation in
nonrandom ways (Bond, 2015), including the application of
prior knowledge (e.g., regional structural analysis) or mea-
surement bias from difficulty interpreting fault slip surfaces.

Stigsson (2016) shows that the objective uncertainty in
measurement imprecision often underestimates the true un-
certainty associated with a geologic structure’s orientation,
suggesting that a more robust characterization of structural
uncertainty should consider potential sources of subjective
bias. In the example of modeling fault zones from a geologic
map (Fig. 4), anisotropic uncertainty untold by any single

measurement is present due to the inconsistent information
available regarding fault zone dip azimuth and dip angle. An
anisotropic Bingham distribution is simulated to capture the
uncertainty in the input orientation data from the geologic
map. Observed variability in the surface trace and the re-
gional structural analysis provided in Robinson et al. (1974)
were used to establish the uncertainty space used in the simu-
lation. Section 6.3 continues the discussion regarding the use
of an anisotropic structural orientation uncertainty envelope.

As the dataset from Robinson et al. (1974) lacks specific
measurements of fault zone orientations to generate a Bing-
ham distribution directly using the orientation matrix (Fisher
et al., 1987), the parameters of the Bingham distribution were
assigned manually to generate a distribution covering the ex-
pected range of orientations. Varying the parameterization
of the Bingham distribution ultimately resulted in determin-
ing an appropriate parameterization for the fault zone in the
single-fault model using an input orientation of 75◦/123◦

(dip/dip azimuth), maximum eigenvalue of λ1 = 200 (match-
ing the observed azimuth variation in the surface trace) and
intermediate eigenvalue of λ2 = 22.5 (providing an approxi-
mate ±20◦ dip angle variation).

4.2 Surface trace

The surface trace of a fault zone is a polyline along the topog-
raphy which follows an approximate central fault surface. In
ideal conditions, the fault trace would follow the centerline
of the fault zone and reach along the whole length of the
fault, ending at the fault tip points. However, in reality, the
centerline of the fault zone can rarely be determined exactly
(Childs et al., 2009). Additionally, when extracting the sur-
face trace from a scanned geologic map, digitization error
and geographical errors are likely to be present as well. In
the proposed probabilistic geomodel setup, the fault center-
line inherits uncertainty from its possible position within the
perceived fault zone as well as from the relevant geographi-
cal errors.

The uncertainty affecting the surface fault trace results in
changes in the trace location and shape. Independent per-
turbations of the trace’s endpoints are applied and linearly
propagated along the fault trace to arrive at a smoothly
varied location and shape. The three primary sources of
uncertainty are quantified using the available information
listed in respective order: average fault zone thickness, pub-
lished metrological studies (Zhong-Zhong, 1995) and ap-
proximate geographical error of known landmarks (e.g.,
mountain tops).

First, a bounded uniform distribution is parameterized to
simulate a random direction of perturbation for each trace
endpoint due to geographical error (i.e., drafting and geo-
referencing error). A normal distribution representing the to-
tal bound on geographical error is converted to respective x̂
and ŷ components using the directional cosine of the angle
sampled from the uniform distribution. This conversion to
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Figure 5. Block models showing information entropy quantified from (a) independent modeling inputs and (b) combined modeling inputs.
The difference between the combined geologic model uncertainty and each independent modeling input is shown in (c), where blue values
indicate that the independent modeling input showed greater entropy than the combined model uncertainty.

unit components is used similarly with the fault zone center-
line definition uncertainty and digitization uncertainty using
the acute angle θ between the orientation of the fault trace
with the northing and easting directions. An additional log-
ical check for the strike quadrant of the surface trace is re-
quired to implement this approach.

The three individual sources of uncertainty affecting the
surface trace endpoint locations are combined into a de-
rived distribution using a deterministic function to determine
the total uncertainty affecting the location of each endpoint,
given by Eq. (3).

P(x̂|σcenterline,σdig,σgeo,θ)= cos(θ)(
N(0,σcenterline)+N(0,σdig)

)
+N(0,σgeo)

sin
(
U(0,2π)

)
,

P (ŷ|σcenterline,σdig,σgeo,θ)= sin(θ)(
N(0,σcenterline)+N(0,σdig)

)
+N(0,σgeo)

cos
(
U(0,2π)

)
(3)

The average fault zone thickness was used to characterize
the fault zone centerline definition uncertainty affecting each
surface trace endpoint. The geographical error was calculated
to be approximately 40 m based on the average distance mea-
sured between known landmarks (e.g., mountain tops) on the
geologic map and modern satellite imagery data. For both of
these sources of uncertainty, the maximum error range de-
scribed is treated as a 95 % confidence interval, allowing a
normal distribution to be parameterized with a mean of zero
and a standard deviation equal to maximum error divided by

3.92. The digitization error for a 1 : 12 000 map was repre-
sented by a normal distribution with a standard deviation of
3.666 m based on (Zhong-Zhong, 1995).

4.3 Vertical termination depth

In implicit geologic modeling, by default, all faults extend
through the entire model domain. To arrive at a more realis-
tic approximation of the 3D fault geometry, a series of sur-
faces at fixed elevations are defined and used to terminate
faults. The depth at which a fault is expected to terminate
is based on prior knowledge obtained from past works into
approximating the 3D geometry of faults (Walsh and Wat-
terson, 1988; Nicol et al., 1996; Schultz and Fossen, 2001;
Torabi et al., 2019a). These works established empirical re-
lationships for fault surface geometry using an aspect ratio
of fault length along strike from tip to tip (flength, hence-
forth length) vs. fault height along dip (fheight, henceforth
height): Aspect ratio= flength

fheight
. The fault surface aspect ratio,

while highly variable (ranging from ∼ 1.5 to 16 in the sedi-
mentary basin rocks studied by Torabi et al., 2019a), has been
demonstrated to be an effective measure for quantifying the
3D geometry of fault surfaces. While studies into the aspect
ratio of faults in crystalline rock are scarce and typically fo-
cus on major thrust faults, a reasonable assumption is that the
aspect ratio will lie in the lower range of that for sedimentary
basin rocks (Torabi et al., 2019a) due to the lack of mechan-
ical stratigraphy; an aspect ratio of 1 to 5 was assumed to be
appropriate for this study.

The vertical termination depth used in modeling inherits
uncertainty from the aspect ratio and persistence of the fault
trace used. Lacking specific information on the location of
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fault tip points, an assumption of length must be made us-
ing the persistence of a fault trace at the surface as a proxy
for the fault length. However, the endpoints of the fault trace
may not be the true tip points due to artificial truncation by
overburden or lack of outcrop. Lacking a detailed study of
fault tip points, this uncertainty can be characterized by aver-
aging the fault trace lengths of a number of faults of the same
group (i.e., similar orientation).

Sampling the uncertainty in the fault zone vertical termi-
nation depth involves combining multiple probability distri-
butions using a deterministic function to generate an empir-
ically derived probability distribution. In the derived distri-
bution for fault zone vertical termination depth, flength and
aspect ratio are characterized as independent probability dis-
tributions and combined using a deterministic function based
on the empirically derived description of 3D fault surface
geometry, zterm = fheight · sin(θ);fheight =

flength
Aspect ratio . In this

manner, the vertical termination depth (zterm) is calculated
by converting the fault height to the vertical height using the
average dip angle (θ ) and subtracting this from the average
elevation of the fault outcrop (zoutcrop). Sampled vertical ter-
mination depths are subsequently discretized onto the pre-
defined termination surfaces created during the initial geo-
logic modeling step (Fig. 1b). The interval of these termina-
tion surfaces can be adjusted based on the end-user needs of
the geologic model; 50 m intervals were used in this study to
balance illustrative quality with model processing time.
flength is characterized as a normal distribution with a

mean of zero and a standard deviation of 20 m based on as-
sumed deviance of the surface trace length vs. the true tip–tip
fault length. Aspect ratio was characterized using both a uni-
form and a log-normal distribution, respecting the expected
maximum and minimum values of 1 and 5. Section 6.2 ex-
plores the impact of these two different parameterizations on
the shape of the derived distribution for vertical termination
depth.

4.4 Fault zone thickness

In the ideal case, a detailed study of fault zone thickness at
outcrop provides a measure of the average thickness and its
variability. Given the thickness range of 5–50 ft (1.5–15 m)
on fault zones mapped as lines in Fig. 4, a conservative es-
timate on fault zone thickness in the case study project area
was characterized using a normal distribution with µ= 30 m
and σ = 2 m.

While not directly applied in the model shown in Fig. 5,
when lacking direct observations, fault zone thickness can
also be approximated based on prior knowledge of a fault’s
estimated displacement using an established displacement to
thickness (D : T) relationship appropriate for the project’s ge-
ology (Torabi et al., 2019b; Childs et al., 2009). This ap-
proach would inherit uncertainty from the subjective inter-
pretation of the fault’s historical displacement and the empir-
ical derivation of the fault’s D : T relationship. With a mea-

sure of displacement, a power-fit relationship allows for ap-
proximating the fault zone thickness. The input perturbation
script includes functions for exploring the use of the D : T
relationship based on a linearized power-law function pro-
vided by Torabi et al. (2019b), with curve-fitting parame-
ters log10(b) and m to approximate fault zone thickness (ft)
from displacement (fd), and a modifier fCoreVsZone used to
model different sections of the fault zone based on the work
by Childs et al. (2009). Uncertainty arises in the parameters
of the D : T power-fit relationship, log10(b) and m and the
assumed fault displacement.

4.5 Simulation quality assessment

The quality of the probabilistic simulation is a product of the
size of the uncertainty space, the simulation method used and
the number of samples drawn. For any simulation, the real-
izations generated can be plotted in the data space and vi-
sually examined for appropriate coverage and shape (termed
a realization plot). For scalar data types, histograms of the
Monte Carlo draws provide an intuitive method for indepen-
dently assessing the quality of simulation for each input. Vi-
sual analysis of the shape of the histogram compared to the
expected shape of the distribution and a comparison between
the input distribution parameters (e.g., mean and standard de-
viation for a normal distribution) and their values calculated
from the samples can quickly determine whether the sam-
ples drawn have sufficiently explored the uncertainty space.
Figure 6 shows an example of the realization plot sample his-
tograms generated for the simulation of vertical termination
depths from Sect. 4.3. This figure allowed the identification
of a strong tailing behavior in the output realizations, leading
to a reparameterization discussed in Sect. 6.2.

For spherical data simulations, histograms may be re-
placed by exponential Kamb contouring (Vollmer, 1995) or
Rose diagrams to visualize the density of sampled poles
across the surface of the unit sphere (as projected onto a
lower-hemisphere projection). This visual assessment pro-
vides a semiquantitative evaluation of the shape and distri-
bution of the sampled structural orientations. Additionally, a
recalculation of the eigenvector decomposition from the set
of simulated samples provides a measure of the accuracy of
the distribution of samples with respect to the input parame-
ter values. Tools for generating figures for simulation quality
assessment are provided and detailed in the input perturba-
tion script.

Based on the assessment of simulation quality and con-
sideration of compounding factors during uncertainty prop-
agation, probabilistic geomodeling of the single-fault model
was run for a number of various realization counts (100, 300,
500, 1000, 2000 and 3000). The processing time generally in-
creases linearly with realization count, reaching many hours
to several days for high realization counts on the single-fault
mock model containing 2.5 million cells. The vast major-
ity of processing time is taken up by the model updating
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Figure 6. Visualization of Monte Carlo samples and associated geologic input realizations from perturbation of the fault zone vertical
termination depth based on a uniform distribution of fault aspect ratio. The 95 % highest predictive density is overlain on the histograms of
the Monte Carlo samples.

and block model calculation in Leapfrog. For the single-fault
mock model with 1000 realizations and 2.5 million cells the
sampling benchmark time was 87 s, while the model process-
ing benchmark time was 38.5 h. This study is intended to in-
troduce and expand on the use of probabilistic geomodeling
for specific geologic modeling problems, and work regarding
optimizing the efficiency of model processing is not a focus.
The experiments conducted do highlight the need to under-
stand (i) the realization requirement for exploring modeling
inputs independently and its relationship to the size of the in-
dependent uncertainty spaces, (ii) the interactions of various
related parameters during the uncertainty propagation step,
and (iii) identification of a balance between final model res-
olution, coverage, complexity, and processing time.

5 Fault network model

The fault network model shown in Fig. 4b contains a major
fault zone (thickness=∼ 175 m) with five minor fault zones
(thickness ≤ 16 m) branching out of it. The parameterization
of modeling inputs was conducted following the methods de-
scribed in Sect. 4. The input orientations of each fault were
determined based on the measured surface trace strike and a
dip angle assigned initially by a static random value based
on the data published by Robinson et al. (1974). The resul-
tant uncertainty model is shown in Fig. 7, with cross sections
highlighting the intersection of three minor fault zones with
the major fault zone. The modeling formulation scaled ef-
fectively to the more complex fault network model, which
included two deterministic horizontal terminations of minor
faults into the major fault zone.

Figure 7. Combined geologic model entropy results for the fault
network model, highlighting three intersection points between mi-
nor fault zones with the major fault zone: (a) approaching major
fault zone boundary, (b) bordering major fault zone boundary and
(c) overlapping boundaries.

Focusing on the intersection of fault zones reveals the in-
teraction between fault zone uncertainty envelopes. In Fig. 7,
the slice (a) shows the uncertainty envelope of the major fault
zone being deflected by a zone of lower entropy as the nearby
minor fault zone approaches it. Slices (b) and (c) show the
uncertainty envelopes of major and minor fault zones merg-
ing, showing how the deflection from (a) transfers into a
hotspot of high uncertainty at the peak intersection point
(overlapping boundaries). Just as the uncertainty in a single
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fault zone is maximal at its boundaries, the overlapping of
two fault zone boundaries produces an entropy hotspot.

6 Discussion

6.1 Historic dataset sensitivity

The observed sensitivity of the model uncertainty to the sur-
face trace perturbation may be due to the relative significance
of geographical sources of uncertainty in the case of model-
ing from a historic geologic map. These errors include inher-
ent error in the geologic map stemming from its accuracy
and georeferencing errors arising from the conversion be-
tween geographical and projected coordinate systems. Geo-
referencing typically uses a rubber-sheet method, moving,
rotating and stretching the map – in an ArcGIS platform –
to optimally translate from the geographical coordinate sys-
tem of the map (lat–long) to the projected coordinate sys-
tem required by modeling (UTM northing and easting), and
the error typically reported by these methods may underes-
timate the true error associated with the georeferenced map.
Quantifying the true geographical error is difficult but can
be approximated by comparing the location of known land-
marks (e.g., intersection of roads, mountain tops, corners of
buildings) between the georeferenced map and modern, dig-
ital datasets. From Fig. 4, a maximum bound on the error in
the location of known features across the geologic map was
approximated to be 40 m by visual examination of the geo-
referenced map. While the same methodology would apply
to a surface trace obtained from modern mapping methods
(e.g., global positioning systems), it is apparent that the con-
tribution to model uncertainty could be drastically reduced.
Reapplying the methodology to a modern dataset may high-
light different sensitivity.

6.2 Model reparameterization

Based on the inherent variability in fault aspect ratios, ini-
tially a bounded uniform distribution was determined to
be appropriate (Fig. 6a). However, the empirically derived
distribution of vertical termination depths resulting from
a bounded uniform parameterization of fault aspect ratio
showed a strong tailing effect (right skewed). This could
be interpreted as being unrealistic, arising as an artifact due
to the shortening of vertical termination depth intervals for
equivalent increases in fault aspect ratio. A reparameteriza-
tion using a custom log-normal distribution of aspect ratio
respecting similar maximum bounds of 1 and 5 is illustrated
in Fig. 8b, showing a significant reduction in the tailing ef-
fect present in the vertical termination depth realizations.
This reparameterization highlights the key strength – and
susceptibility – of probabilistic geomodeling based on ge-
ologic modeling inputs, the reliance on a user-defined char-
acterization of input uncertainty. Again, it is necessary to re-
iterate that the modeler must take into consideration not only

field observations and theoretical prior knowledge when as-
sessing a geologic modeling uncertainty formulation but also
their informed expectation of what is geologically realistic
for their chosen modeling problem. Furthermore, reparam-
eterizing individual aspects of the probabilistic model may
prove to be insufficient due to the presence of inherently un-
known relationships between the chosen model parameters.

6.3 Parameter relationships

While many probabilistic geomodeling approaches – includ-
ing this study – have focused on independent perturbations
of geologic modeling inputs, relationships between model-
ing inputs are apparent in the modeling formulation devel-
oped. Intuitively, there is a relationship between the average
orientation of a fault’s surface trace and the structural ori-
entation applied to the fault surface modeling interpolant’s
global trend. Deviations in the modeled fault surface from the
input orientations can occur when the two inputs are signifi-
cantly different, typically arising in Leapfrog Works by way
of overestimation of fault surface dip by up to 10◦ when the
surface trace azimuth (i.e., average normal to the fault sur-
face trace) and global trend dip azimuth differed by greater
than 20◦ (Krajnovich et al., 2020a). Comparing two geologic
models generated with orientations sampled from anisotropic
and isotropic Bingham distributions with equivalent maxi-
mum uncertainty ranges (Fig. 9) showed a skewing of the ge-
ologic model uncertainty envelope when generated from the
isotropic Bingham distribution. The results show a consistent
skew towards near-vertical dips of the modeled fault zone
realizations. This issue is alleviated when the structural ori-
entation is parameterized with an anisotropic Bingham dis-
tribution, allowing for increased variability in the dip angle
without compromising the certainty of the dip azimuth.

The observed interaction between the surface trace and
structural orientation inputs to the implicit 3D geologic
model suggests that coupling and correlation may be present
between different geologic modeling inputs.

Despite performing a thorough exploration of each, inde-
pendent parameter’s uncertainty during Monte Carlo sam-
pling (Sect. 4.5), undersampling of the combined geologic
model uncertainty space can still occur during uncertainty
propagation. An example of this arises when considering the
vertical termination depth and structural orientation. Trunca-
tion of fault zone realizations at any given termination inter-
val effectively reduces the number of realizations available
for sampling the full range of structural orientation uncer-
tainty at deeper intervals. This is evidenced in Fig. 5b by the
increasing prevalence of “stair-stepping” artifacts in the com-
bined model uncertainty with depth.

Coupling of the surface trace and structural orientation
or structural orientation and vertical termination depth is
not implemented in the current formulation due to incon-
sistencies in the sampling methods, which required indepen-
dent sampling of spherical and nonspherical distributions. In-

Solid Earth, 11, 1457–1474, 2020 https://doi.org/10.5194/se-11-1457-2020



A. Krajnovich et al.: Uncertainty assessment for 3D geologic modeling of fault zones 1469

Figure 8. Visualization of Monte Carlo samples and associated geologic input realizations from perturbation of the fault zone vertical
termination depth, reparameterized using a log-normal distribution of fault aspect ratio. The 95 % highest predictive density is overlain on
the histograms of the Monte Carlo samples.

Figure 9. Visual comparison of geologic model entropy generated using (a) anisotropic and (b) isotropic Bingham distributions. The entropy
difference between these two models in (c) highlights slight skewing of the uncertainty envelope towards steeper dipping fault zones when
parameterized using samples from an isotropic Bingham distribution (d). Entropy difference is shown such that negative values indicate
higher entropy in the isotropic orientation model.

creasing the number of model realizations mitigated some
of the effects of input correlations, though this comes at the
expense of increased processing time. A treatment of these
relationships through parameterizing previously independent
input probability distributions using a joint distribution (and
an appropriate sampling scheme) could potentially generate
more realistic and efficient assessments of model uncertainty.
While the correlation between parameters in a probabilistic
model is typically unknown, in some cases – such as the cor-
relation between fault trace azimuth and structural orienta-

tion azimuth – the correlation can be assumed based on avail-
able prior geologic knowledge of the parameter’s real-world
relationships. However, until standard methods for simulat-
ing spherical and scalar data types in a single system are
made available, creative model parameterizations – such as
constraining the dip azimuth uncertainty to observed surface
trace variability using an anisotropic spherical distribution –
can circumvent some of the issues associated with these re-
lationships.
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6.4 Anisotropic spherical distributions

For modeling anisotropic uncertainty in structural orientation
data, the Bingham and Kent distributions generate practically
equivalent uncertainty envelopes, differing primarily in their
parameterization. For the Bingham distribution, variations in
the magnitudes of λ1 and λ2 allow for independently vary-
ing the size of the uncertainty space in orthogonal directions,
while for the Kent distribution variations in the values of κ
and β can generate distributions with different overall size
and ellipticity. To achieve independent uncertainty ranges of
the dip angle and dip azimuth, both distributions require a se-
ries of rotations (described in Sect. 3.2) to properly align the
distribution such that the major ellipse axis is aligned with
a great circle with 90◦ dip (Fig. 3). Once aligned, the range
of the Bingham distribution in the dip azimuth and dip angle
directions can easily be varied independently through direct
changes in the magnitudes of λ1 and λ2. The Kent distribu-
tion, however, introduced difficulty in varying these uncer-
tainties independently due to coupling of the κ and β pa-
rameters. Compared to the Kent distribution, the Bingham
distribution was observed to be more efficient at modeling
strongly girdle-shaped distributions, which as discussed in
Sect. 4.1 can be particularly useful for the limited data avail-
able from a geologic map. For these reasons, the Bingham
distribution was chosen for the analysis in this study, though
methods for simulating and rotating the Kent distribution are
still provided for thoroughness.

6.5 Additional complexity for fault zone geometry

The authors acknowledge that in reality fault zone geome-
try includes horizontal terminations. The mechanisms affect-
ing the location of horizontal terminations are numerous and
varied, including fault zone anastomosing, abrupt termina-
tion in intact rock and false trace termination due to obscur-
ing by overburden. While several works have investigated
the nature of fault–fault terminations using stochastic simula-
tion (Aydin and Caers, 2017; Cherpeau and Caumon, 2015),
due to the presence of other poorly defined sources of uncer-
tainty, the placement of horizontal terminations in this study
remained deterministic. Future work supplementing the lim-
ited dataset used in this study with detailed outcrop studies
will be required for defining the nature and uncertainty in
horizontal fault zone terminations.

Aside from horizontal fault terminations, fault zones
present other interesting complexities that introduce addi-
tional levels of refinement for the developed modeling work-
flow. For example, internal fault zone composition is hetero-
geneous, and modeling the different fault zone components
(fault core, transition zone and damage zone) could be imple-
mented using the developed methods if desired. Asymmetry
of fault zone structure between the hanging wall and footwall
has also been documented by Choi et al. (2016), which would
require a new method of defining the distance function for

generating the 3D fault zone volume. Similarly, variations in
fault zone thickness along the area of the central fault surface
are realistic, though would similarly require a new method
for defining the distance function. These research questions
enter into the realm of implicit geologic modeling theory and
are introduced merely to shed light on where refinements in
model creation can benefit the modeling of fault zone struc-
ture.

7 Conclusions

The flexible probabilistic geomodeling method should con-
tinue to be leveraged to model novel problems in geologic
modeling, such as the uncertainty in fault zones in 3D geo-
logic models based on limited data from a historic geologic
map and available prior knowledge. The setup of the proba-
bilistic geomodel should make full use of open-source statis-
tical packages in the R and Python languages, many of which
are experiencing ongoing development at the time of writing.
While a unique modeling case was presented, the rationale
applied to assessing uncertainty in poorly constrained, pre-
liminary geologic models sheds light on new ways to imple-
ment varied types of information in probabilistic geomodel-
ing formulations.

Practical guidelines for developing probabilistic geomod-
els are also provided, reinforcing (i) the importance of devel-
oping a clear yet robust modeling workflow for the structure
of interest, (ii) consideration of varied sources of geologic
uncertainty and (iii) creatively exploring the methods avail-
able for characterizing both objective and subjective model-
ing inputs. Prior knowledge in the form of established em-
pirical and theoretical relationships from structural geology
present an opportunity to quantify and parameterize geologic
modeling inputs that are usually interpretive, allowing for
their inclusion in the probabilistic geomodel. The Bingham
distribution, while only moderately impactful on model un-
certainty when comparing anisotropic and isotropic parame-
terizations, is recommended to replace the vMF distribution
for modeling structural orientations due to the increased flex-
ibility of its parameterization. While the Bingham distribu-
tion was preferred in this study, the use of the Kent distribu-
tion appears to be practically equivalent.

Future work stemming from this input-based probabilis-
tic geomodeling formulation may include incorporating new
information in a Bayesian inference scheme to further re-
fine the geologic model, by following the methodology in-
troduced either by de la Varga and Wellmann (2016) to infer
additional information about the model parameters (requir-
ing a full integration of the probabilistic modeling with the
automated geologic modeling approach) or by Schneeberger
et al. (2017) to validate the initial model in light of its gener-
ated uncertainty. Additionally, refining the modeling of fault
zone internal structure and variability is recommended not
only to further the usefulness of 3D geologic models in prac-
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tical applications (e.g., subsurface construction, fluid flow)
but also to expand the understanding of the geometry and
characteristics of these complex geologic structures.

Code and data availability. The necessary code and data for gen-
erating realizations of the geologic modeling inputs (includ-
ing example results) is available at https://github.com/ajkran2/
Geologic-Model-Input-Uncertainty-Characterization (last access:
3 July 2020) and https://doi.org/10.5281/zenodo.3930592 (Kra-
jnovich et al., 2020b). Version updates, if applicable, will be made
available via GitHub.
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