

Supplement of

Data acquisition by digitizing 2-D fracture networks and topographic lineaments in geographic information systems: further development and applications

Romesh Palamakumbura et al.

Correspondence to: Romesh Palamakumbura (romesh@bgs.ac.uk)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Supplementary material

Calculating geometries in QGIS field calculator

Area: \$area

Length: \$length

Orientation: Degrees(azimuth(start_point(\$geometry), end_point(\$geometry)))

Calculating basic fracture parameters in Python

#Import key modules including geopandas, numpy and pandas

Import geopandas as gpd

Import numpy as np

Import pandas as pd

You may need install geopandas using either: #Anaconda install conda install -c conda-forge geopandas or #pip install pip install geopandas

#Import fracture trace shape file and analysis window shapefile as Geopandas dataframes. (Terms in italics and capitals need to changed).

df=gpd.read_file(r"LINK TO SHAPE FILE LOCATION OF FRACTURE TRACES")

aoi=gpd.read_file(r"LINK TO SHAPE FILE LOCATION OF AREAS")

#Group dataframe by each analysis window.

df2=df[df['ANALYSIS_WINDOW']== 'ANALYSIS_WINDOW_REFERENCE']

aoi2=aoi[aoi['ANALYSIS_WINDOW']== 'ANALYSIS_WINDOW_REFERENCE']

For making individual density and spacing calculations

#Make python array of lengths and area from shapefile geometries.

df2_length=np.array(df2.geometry.length)

aoi2_area=np.array(aoi2.geometry.area)

#Calculate sum of lengths.

df2_length_sum=np.sum(df2.length)

#Finally, calculate fracture density based total fracture length and area.

density=df2_length_sum/aoi2_area

#In addition, as before calculate spacing, which is the reciprocal of Density.

spacing=aoi2_area /df2_length_sum

For making density and spacing calculations for multiple groups of data

#Add length from the geometry column to a new column

df['length']=df.geometry.length

#Group dataframe based on digitisation areas

df_group=df.groupby(df. ANALYSIS_WINDOW)

#Calculate the sum lengths for each group and convert to pandas dataframe

df_group_lengths=pd.DataFrame(np.sum(df_group.length))

#Add Location column to dataframe

df_group_lengths['Location']=df_group_lengths.index

#Merge main data frame with area dataframe based on location

df3=pd.merge(df_group_lengths, aoi, how='inner', on='ANALYSIS_WINDOW')

#Calculate density and intensity in new a columns

df3['density']=df3.length/df3.area

df3['spacing']=df3.area/df3.length

#Export as excel file

df3.to_excel(r"LINK TO LOCATION TO CREARE EXCEL FILE IN")