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Figure 4. An experiment showing the performance of ILDL preconditioning for an elasticity problem with a heterogeneous medium in

compression; the outer box shows the reference (undeformed) state and the wire mesh shows the deformed state. The surrounding medium

has a Poisson ratio of 1/3 (λ= 2, µ= 1), and the originally-spherical (radius 0.25) inclusion is almost incompressible, with a Poisson ratio

greater than 0.4999 (λ= 104, µ= 1). Boundary conditions are free-slip everywhere except the top, which is stress free. The results show

that ILDL preconditioning offers substantially better-scaling performance (with a lower memory footprint) than a direct solver, without the

auxiliary information, implementation, and tuning required for the even-better-scaling ABF solver. These experiments were run on a slightly

different cluster than the preceding ones (see Section 5), so solve times are not directly comparable.

preprocessing gives a vastly superior option to a direct solve, while using no additional information beyond the specification

of a single drop tolerance. Memory usage is very similar to the plots shown in Figure 3.

5.3 Using ILDL within a parallel preconditioner

An obvious limitation of the results presented thus far, and of the particular implementation of the ILDL decomposition that355

we have employed, is that they have focused on single-process (i.e. “sequential”) usage. However, most scientific computation

is now performed with some degree of multi-process (or multi-thread) parallelism.

A well-known and often-used approach to extend a sequential preconditioner to a parallel preconditioner is to employ a

domain decomposition method (Smith et al., 2004) wherein the computational domain is decomposed into possibly-overlapping

patches where local preconditioners can be applied before the results are used to update the global solution. The simplest such360

preconditioner is the block Jacobi method, with non-overlapping subdomains, and a natural extension is the Additive Schwarz

Method (ASM), wherein overlapping subdomains, here defined in terms of finite elements, are used to define subsolves.
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