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Abstract. Residual pressure can be preserved in mineral in-
clusions, e.g. quartz-in-garnet, after exhumation due to dif-
ferential expansion between inclusion and host crystals. Ra-
man spectroscopy has been applied to infer the residual pres-
sure and provides information on the entrapment temperature
and pressure conditions. However, the amount of residual
pressure relaxation cannot be directly measured. An under-
estimation or overestimation of residual pressure may lead to
significant errors between calculated and actual entrapment
pressure. This study focuses on three mechanisms responsi-
ble for the residual pressure modification: (1) viscous creep;
(2) plastic yield; (3) proximity of inclusion to the thin-section
surface. Criteria are provided to quantify how much of the
expected residual pressure is modified due to these three
mechanisms. An analytical solution is introduced to demon-
strate the effect of inclusion depth on the residual pressure
field when the inclusion is close to the thin-section surface.
It is shown that for a quartz-in-garnet system, the distance
between the thin-section surface and inclusion centre needs
to be at least 3 times the inclusion radius to avoid pressure
release. In terms of viscous creep, representative case stud-
ies on a quartz-in-garnet system show that viscous relaxation
may occur from temperatures as low as 600–700 ◦C depend-
ing on the particular pressure–temperature (P–T ) path and
various garnet compositions. For quartz entrapped along the
prograde P –T path and subject to viscous relaxation at peak
T above 600–700 ◦C, its residual pressure after exhumation
may be higher than predicted from its true entrapment con-
ditions. Moreover, such a viscous resetting effect may intro-
duce apparent overstepping of garnet nucleation that is not
related to reaction affinity.

1 Introduction

During metamorphism, the growth of porphyroblasts often
results in the entrapment of solid or fluid inclusions, which
then provide important information about the rock’s history
(e.g. Farber et al., 2014; Yardley and Bodnar, 2014; Ferrero
and Angel, 2018). Due to the differences in the elastic com-
pressibility and thermal expansion coefficient between the
inclusion and host, residual inclusion pressures may be pre-
served after exhumation (e.g. Rosenfeld and Chase, 1961;
Gillet et al., 1984; Zhang, 1998; Angel et al., 2015). The
residual pressure can be inferred by Raman shift based on
experimental calibrations, e.g. quartz inclusions (Liu and
Mernagh, 1992; Schmidt and Ziemann, 2000). This allows
the application of Raman thermobarometry to infer the en-
trapment pressure and temperature (P –T ) conditions (e.g.
Ashley et al., 2014; Bayet et al., 2018; Enami et al., 2007;
Izraeli et al., 1999; Kohn, 2014; Spear et al., 2014; Taguchi
et al., 2019a; Zhong et al., 2019a). Existing models that
link residual pressure and entrapment P –T conditions are
based on elastic rheology and often assume an infinite host
radius (Rosenfeld and Chase, 1961; Van Der Molen and
Van Roermund, 1986; Guiraud and Powell, 2006; Angel et
al., 2017b). Despite these simplifications, recent experimen-
tal works have been successfully performed to compare the
measured residual pressure with modelled residual pressure
under well-controlled P–T conditions for synthetic samples
with a quartz-in-garnet system (Thomas and Spear, 2018;
Bonazzi et al., 2019).

Although many studies using Raman spectroscopy re-
ported maximal residual pressure close to the predictions
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from elastic models (e.g. Ashley et al., 2014; Enami et al.,
2007; Zhong et al., 2019a), a large amount of inclusion pres-
sure estimates are lower than theoretically predicted by the
elastic model (Korsakov et al., 2009; Kouketsu et al., 2016;
Yamamoto et al., 2002). The modification of inclusion pres-
sure can be due to various reasons and a systematic inves-
tigation is critical to better apply Raman thermobarometry
to natural samples. Meanwhile, Raman thermobarometry has
been employed to investigate the amount of overstepping for
garnet growth by comparing the P –T constraints from phase
equilibria and elastic thermobarometry (Spear et al., 2014;
Castro and Spear, 2017; Wolfe and Spear, 2017). Particu-
larly, when comparing the determined paleopressures based
on phase equilibria and elastic barometry using a quartz-in-
garnet system, careful examination of the amount of residual
quartz pressure modification due to the creep of garnet host
becomes critical.

When a mineral inclusion maintains residual pressure, dif-
ferential stress is concomitantly developed around the inclu-
sion on the host side to maintain mechanical equilibrium (e.g.
Zhang, 1998; Tajčmanová et al., 2014). The host mineral may
experience viscous creep, which is manifested by the dislo-
cation structures (Chen et al., 1996; Yamamoto et al., 2002;
Taguchi et al., 2019b). Furthermore, the host mineral may
also experience rate-independent plastic yield when the dif-
ferential stress exceeds the yield criterion (e.g. Zhang, 1998).
In the mechanics literature, plastic deformation is commonly
considered as any inelastic deformation (time-dependent and
time-independent) (e.g. Kachanov, 1971). In this work, we
distinguish between viscous creep, i.e. the rate-dependent in-
elastic deformation, and the rate-independent plastic flow.
Mechanical models show that both viscous creep (disloca-
tion or diffusion creep of host) and plastic flow during de-
compression and cooling can cause a significant inclusion
pressure drop (Dabrowski et al., 2015; Zhang, 1998). This
would lead to an underestimate of residual inclusion pressure
(Zhong et al., 2018) (Fig. 1). Meanwhile, during the thin-
section preparation, mineral inclusions are positioned into
proximity towards the thin-section surface (Fig. 1). The thin-
section surface is stress-free and may elastically release the
residual pressure (Mindlin and Cheng, 1950; Seo and Mura,
1979; Zhong et al., 2019b). It is of petrological interest to
study how deep the inclusion needs to be in order to pre-
serve the residual pressure. Experimental works and numer-
ical simulations with the finite-element method have been
performed to test the safe inclusion depth (inclusion radius
less than one-third of host radius) so that the residual inclu-
sion pressure can be preserved for the application of Raman
barometry (Campomenosi et al., 2018; Mazzucchelli et al.,
2018).

In this contribution, we systematically investigate the fol-
lowing mechanisms for residual inclusion pressure modifica-
tion: (1) viscous creep of the host materials, (2) plastic yield
within the host, and (3) pressure release due to the prox-
imity of inclusion towards the thin-section surface. For the

Figure 1. Schematic illustration for the residual pressure. The grey
and black curves are retrograde P –T paths for host and inclu-
sion, respectively. Pressure drop is possibly due to the follow-
ing reasons: (1) viscous relaxation preferentially occurs at high-
temperature conditions; (2) plastic yield commonly occurs at low
confining pressures where residual pressure is high; (3) thin-section
preparation that drives inclusion close to the thin-section surface.
Note that this illustration refers to systems where the inclusion is
elastically softer than its host (e.g. quartz in garnet).

first and second purposes, a 1-D visco-elasto-plastic mechan-
ical model is developed in a radially symmetric spherical
coordinate frame. The derived system of equations is non-
dimensionalized to extract the key parameters that control
the amount of viscous relaxation and plastic yield. For the
third mechanism, a simple analytical solution for the residual
inclusion pressure field close to the thin-section surface is in-
troduced based on the existing work of Seo and Mura (1979).
The analytical solution demonstrates the effect of the inclu-
sion depth that controls the amount of pressure release. This
solution applies to the case where the inclusion possesses the
same elastic moduli as the host. The inclusion is initially sub-
ject to an arbitrary hydrostatic pressure in an infinite host
and its pressure is released as it moves towards a stress-free
thin-section surface. In comparison, for a natural quartz-in-
garnet system, numerical solutions are applied to investigate
the safe distance that causes negligible pressure release due
to the presence of the thin-section surface (stress-free bound-
ary). In this study, both inclusion and host are treated as elas-
tically isotropic as an assumption to put focus on the effect
of these three mechanisms on preserved residual pressure.
The effects of elastic anisotropy for commonly encountered
quartz inclusion have been studied experimentally and the-
oretically by, e.g., Murri et al. (2018) and Campomenosi et
al. (2018) and are discussed at the end.
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2 1-D mechanical model with visco-elasto-plastic
rheology

2.1 Governing equations

We develop a 1-D mechanical model with spherical symme-
try that is based on the conservation of mass and momentum.
In 1-D radially symmetric spherical coordinate frame, me-
chanical equilibrium is expressed as follows:

∂τrr

∂r
+

3τrr
r
−
∂P

∂r
= 0, (1)

where τrr is the radial component of deviatoric stress (Pa), P
is pressure (Pa), and r is radial coordinate (m). We apply the
Maxwell visco-elasto-plastic rheology as follows:

ėrr = ė
e
rr + ė

v
rr + ė

p
rr , (2)

where ėrr is the radial components of the deviatoric strain
rate (s−1) composed of elastic, viscous (rate-dependent)
and plastic (rate-independent) parts. The elastic and viscous
strain rates are expressed as

ėerr =
τ̇rr

2G
,

ėvrr =
τrr

2η
, (3)

where the dot above τ̇rr denotes time derivative, G is shear
modulus (Pa), and η is viscosity (Pa s). The non-Newtonian
(effective) viscosity is expressed as follows:

η = A|τrr |
1−n, (4)

where A is the temperature-dependent pre-factor and n is the
stress exponent (e.g. Dabrowski et al., 2015, Eq. 10). The
plastic strain rate is obtained by using the Tresca yield crite-
rion (e.g. Kachanov, 1971):

F = |τrr − τt t | −C, (5)

where C is plastic yield strength (Pa) and τt t is the tangential
component of deviatoric stress. Due to spherical symmetry,
we have τt t =−1/2τrr . Applying the plastic flow law (e.g.
Vermeer and De Borst, 1984), we get

ė
p
rr = λ

∂F

∂τrr
= λ sgn(τrr)= λδ,

{
λ= 0 forF ≤ 0
λ 6= 0 forF > 0 , (6)

where λ is the plastic multiplier (s−1), which provides the
amount of plastic strain (rate) that guarantees the yield crite-
rion is not exceeded, and δ is the sign of τrr . For isotropic ma-
terials, the pressure (negative mean stress) can be expressed
as a function of volume and temperature via the equation of
state (EoS), and its time derivative is as follows:

Ṗ =−ε̇kk/β +αṪ /β, (7)

where β is compressibility (Pa−1), α is the thermal expansion
coefficient (K−1), and Ṫ is the rate of temperature change
(K s−1). Temperature is treated as homogeneous within the
inclusion–host system. Einstein summation is used here for
the volumetric strain rate (ε̇kk = ε̇rr + 2ε̇t t , where due to
spherical symmetry the two tangential strain rates are equal).
No viscous or plastic volumetric strain is considered. This as-
sumption is a good approximation for non-porous, crystalline
materials (e.g. Moulas et al., 2019).

Substituting Eqs. (3) and (6) into Eq. (2) and applying first-
order finite difference in time to Eqs. (2) and (7) (i.e. τ̇rr =
τrr−τ

o
rr

1t
and Ṗ = P−P o

1t
), we can explicitly express τrr and P

as

τrr = 2ηZėrr + (1−Z)τ orr − 2ηZλδ, (8)
P = P o−1tε̇kk/β +α1tṪ /β, (9)

where Z = 1tG
1tG+η

is the viscoelastic coefficient, 1t is the
time increment, τ orr is the radial component of deviatoric
stress in the previous time step, P o is the pressure in the pre-
vious time step. If the yield criterion in Eq. (5) is exceeded
(F > 0), the plastic multiplier must be adjusted to drive F
to zero. This can be achieved by substituting the deviatoric
stress Eq. (8) into Eq. (5), and we let F = 0. Therefore, we
obtain λ as follows:

λ= δėrr +
(1−Z)δ

2ηZ
τ orr −

δC

3ηZ
,

ifF > 0(otherwiseλ= 0). (10)

2.2 Non-dimensionalization

The variables in the above equations can be scaled to de-
rive non-dimensional parameters for better understanding
the behaviour of the inclusion–host system. This is done by
choosing the following six parameters to non-dimensionalize
the system of equations: the temperature drop in the host-
inclusion system 1T , the inclusion radius R, the time of the
P –T path t∗, the host’s viscosity pre-factor Ah, the host’s
plastic yield strength Ch, and the expected pressure perturba-
tion Pexp that is given as follows:

Pexp =
1P(βi−βh)−1T (αi−αh)

βi+ 3/4Gh
, (11)

where 1P and 1T are the confining pressure and temper-
ature drops from entrapment to the Earth’s surface, βi and
βh are the compressibility of inclusion and host, αi and αh
are the thermal expansion coefficients of inclusion and host,
and Gh is the shear modulus of host. The number Pexp is
the expected amount of residual inclusion pressure after ex-
humation assuming linear thermo-elasticity and an infinite
host (Zhang, 1998). It is noted that this is not the actual fi-
nal residual inclusion pressure but merely a scale to non-
dimensionalize the stress (and pressure). By choosing Pexp
as the stress scale, the inclusion residual pressure is expected
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to be between 0 and 1 for a case of cooling and decompres-
sion. This pressure scale allows convenient quantification for
the amount of pressure modification due to viscous creep and
plastic yield. The involved physical variables are scaled as
shown below:

r = R r,

β =
1
Pexp

β,

G= PexpG,

α =
1
1T

α,

P = PexpP ,

Ṫ =
1T

t∗
Ṫ ,

τrr = Pexpτrr ,

C = ChC,

η = Pexpt
∗η,

F = ChF,

1t = t∗1t,

A= AhA,

λ=
1
t∗
λ,

vr =
R

t∗
vr , (12)

where the overhead bars indicate dimensionless properties.
Substituting these scaling equations into Eqs. (1), (8), and
(9), we get

∂τrr

∂r
+

3τrr
r
−
∂P

∂r
= 0, (13)

P = P o+
1
β

[
−1t

∂r2vr

r2∂r
+αṪ

]
, (14)

τrr =
4
3
ηZ

(
∂vr

∂r
−
vr

r

)
+
(
1−Z

)
τ orr − 2ηλδZ, (15)

where dimensionless viscosity, viscoelastic coefficient, and
plastic multiplier are expressed as

η = De ·A|τrr |1−n, (16)

Z =
1tG

1tG+ η
, (17)

λ=
4
3
δ

(
∂vr

∂r
−
vr

r

)
+

(
1−Z

)
δ

2ηZ
τ orr

−C∗
C

3ηZ
, ifF > 0. (18)

Two dominant dimensionless numbers emerge after non-
dimensionalization. They are the Deborah number De and

dimensionless yield strength C∗ defined as follows:

De=
Ah/P

n
exp

t∗
, (19)

C∗ =
Ch

Pexp
. (20)

The Deborah number (De) is the ratio between the char-
acteristic viscous relaxation time (Ah/P

n
exp) and model dura-

tion (t∗) (Reiner, 1964). If De> 1, the system behaves in an
elastic manner, and if De< 1, viscous creep becomes impor-
tant. The pre-factor of viscosity is temperature-dependent.
By choosing the pre-factor Ah at peak temperature, one can
directly use De to estimate the maximal amount of vis-
cous relaxation. This is especially suitable for the process of
isothermal decompression in many high-pressure (HP) rocks.

The dimensionless yield strength C∗ characterizes the
ability of a host mineral to plastically yield and a high C∗

implies that the material is less prone to plastic yield given
the amount of residual inclusion pressure Pexp. The viscosity
of different mineral phases may vary by orders of magnitude,
and the plastic yield strength of different minerals may also
vary by several factors. Therefore, these two dimensionless
numbers have a dominant effect on the amount of inclusion
pressure modification due to viscous relaxation and plastic
yield.

2.3 The numerical approach for the visco-elasto-plastic
model

The dimensionless viscosity (Eq. 16), viscoelastic coefficient
(Eq. 17), and plastic multiplier (Eq. 18) can be substituted
into pressure equation (Eq. 14) and deviatoric stress equa-
tion (Eq. 15). Together with mechanical equilibrium equation
(Eq. 13), they form a system of three equations with three
unknowns, namely vr , τrr , and P . The numerical model is
based on a finite-difference scheme over a 1-D staggered grid
(on the numerical stencil, see, e.g., Gerya, 2010, chap. 7).
The initial pressure P is set at the beginning of the numerical
model. If upon entrapment, the inclusion and host possess the
same hydrostatic pressure, the deviatoric stress τrr is zero in
the inclusion and host. If pressure heterogeneity exists upon
entrapment, the deviatoric stress of the host (τrr ) needs to be
precalculated with the elastic model τrr =−(Pinc−Phost)/r

3

to ensure that mechanical equilibrium is satisfied at the be-
ginning of the model (Pinc is the initial inclusion pressure
and Phost is the initial host pressure).

For predefined P –T path, the inclusion–host system is
loaded by the increment of confining pressure and temper-
ature. Both temperature and far-field pressure are obtained
directly from the P–T –t path as prescribed. Temperature is
treated as homogeneous in the model and the new pressure
is set as the outer boundary value. Because viscosity, the vis-
coelastic coefficient, and the plastic multiplier are functions
of deviatoric stress (viscosity is also a function of tempera-
ture as prescribed by the P –T path), the system of the me-
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chanical equations is nonlinear. We solve for the three vari-
ables (vr , τrr , and P ) using an iterative (Picard) method.
Within the iteration loop, an elastic test stress is first evalu-
ated by letting λ= 0 so that the prediction for the yield func-
tion F is obtained. If F < 0, no plastic yield occurs and λ
remains zero. Otherwise the prediction of the yield function
is positive and λ is computed based on Eq. (18). The calcu-
lated λ is then substituted back into Eq. (15) to adjust the
amount of plastic strain rate. This will drive F to zero (on
the plastic yield surface). After the Picard iteration loop, the
residuals of the three Eqs. (13), (14), and (15) are minimized
below ca. 10−12.

The elastic moduli are updated based on pressure and tem-
perature conditions from tabulated lookup tables within the
iteration. The lookup tables are pre-computed based on EoS.
We used the EoS for quartz crystal from Angel et al. (2017a)
and the EoS for pyrope, grossular, and almandine crystals
from Milani et al. (2015). The detailed expressions of EoS
can be found in the EoSFit7c software documentation (An-
gel et al., 2014). The EoS for spessartine is from Gréaux and
Yamada (2014). The compressibility and thermal expansion
coefficient for garnet are averaged based on the molar per-
centage of garnet endmembers. The shear moduli of garnet
endmembers are from Bass (1995). The numerical model has
been benchmarked using the analytical solution with elas-
tic, non-Newtonian viscous rheology in Zhong et al. (2018).
The numerical benchmark for elasto-plastic rheology is per-
formed by using the analytical solution of Zhang (1998) (see
Supplement).

3 Inclusion pressure modification due to visco-plastic
deformation of host

3.1 Residual pressure affected by viscous or plastic
flow

The solutions of the system of equation (Eqs. 13, 14, 15)
are obtained using the elasticity of a quartz-in-garnet sys-
tem. The host radius is set to be 50 times the inclusion radius
to make boundary effects negligible. Temperature is treated
as homogeneous in space. At the beginning of the model, a
pressure perturbation within the inclusion is prescribed, and
the far-field host maintains zero confining pressure. The pre-
factor of viscosity is fixed as temperature does not vary in this
case. The amount of inclusion pressure relaxation is system-
atically investigated for the two inelastic deformation mech-
anisms (i.e. viscous creep and plastic yield) as a function of
De and C∗. The results are shown in Fig. 2 with the pur-
pose of systematically demonstrating how much the initially
prescribed residual pressure can be reduced due to viscous
creep and plastic yield. This diagram may assist petrologi-
cal investigations because De and C∗ can be evaluated based
on experimental rock deformation data for different miner-
als. The Deborah number can be evaluated using the exper-

imental flow law of a single crystal, e.g. garnet (Karato et
al., 1995; Wang and Ji, 1999), as given in the next section.
The plastic yield strength is evaluated using microhardness
test data (see Discussion below for details). The thickness of
the plastic yield region is plotted as contours. The thick grey
contour represents the onset of plastic yield starting from
the inclusion–host interface and propagating towards the host
side (Fig. 2). Based on the amount of inclusion pressure re-
laxation, three regimes are distinguished.

The elastic regime takes place when De and C∗ are higher
than 1. Under these circumstances, no viscous relaxation and
plastic yield occurs. The residual inclusion pressure is close
to the expected residual pressure (Pinc ≈ Pexp). This regime
is the most suitable for the application of Raman thermo-
barometry.

The viscous regime dominates when De is lower than 1,
and C∗ is above the plastic onset shown by the thick grey
contour. In this case, the main mechanism responsible for the
inclusion pressure relaxation is the viscous creep. The effect
of stress exponent on the amount of viscous relaxation is also
significant. In general, a higher stress exponent delays pres-
sure relaxation (cf. Dabrowski et al., 2015). As the viscosity
of natural minerals is low at high-temperature conditions, the
viscous regime may be reached at a high temperature, which
leads to the relaxation of residual pressure.

The plastic regime prevails when C∗ is lower than 1 and
De is above 1. Under this circumstance, the residual pressure
is not significantly relaxed by viscous creep, but by plastic
yield. In general, the radius of the plastic yield region is pos-
itively related to the amount of residual pressure release.

It is noted here that although viscous relaxation and plas-
tic yield of the host mineral have the same effect in reduc-
ing the residual inclusion pressure after exhumation, there is
a fundamental difference between them. Viscous relaxation
is time-dependent (De includes time), which means that the
residual pressure will vanish given an infinite amount of time.
Plastic yield refers to a time-independent process, and it will
only limit the amount of deviatoric stress supported by the
host mineral. If the yield criterion is reached, plastic strain
(rate) in the host immediately occurs, which leads to the in-
clusion pressure release. Both viscous relaxation and plastic
yield are irreversible; as a consequence, if the inclusion-host
system is placed back in the original entrapment condition,
the stress state would be different.

3.2 Viscous relaxation of garnet host

Assuming that the thin-section surface is sufficiently far
away from a quartz inclusion and no plastic yield occurs
around the quartz inclusion, only viscous creep may con-
tribute to the modification of residual pressure. Here, we
show the effect of viscous relaxation, particularly influenced
by the temperature, on the preserved residual pressure. Us-
ing De as a criterion to estimate the amount of viscous relax-
ation, we show the relationship between temperature, inclu-
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Figure 2. Inclusion pressure as a function of the Deborah number and dimensionless yield strength given different stress exponents. The
contours denote the radius of plastic yield region Ryield scaled by inclusion radius. The thick grey contour represents the onset of plastic
yield. Three regimes are labelled: (1) elastic (De> 1, C∗ > 1); (2) viscous (De< 1 and C∗ is above the onset of plastic yield); (3) plastic
(C∗ < 1, De is above the onset of plastic yield). To obtain the results, a residual pressure is prescribed at the beginning and the confining
pressure and temperature are fixed, i.e. no temporal variations in P –T conditions.

sion pressure, and relaxation time given De= 1 (see Eq. 19)
in Fig. 3. The flow law of garnet from Wang and Ji (1999) is
applied. The pre-factor A of the effective viscosity (Eq. 4) is
as follows:

A=
Gn

2B
exp(

g · Tm

T
), (21)

where B = exp(40.1) in s−1 and g = 32. The stress expo-
nent n= 3. Geometric correction based on experimental set-
up (simple or pure shear) was not applied. The melting point
Tm of pyrope-rich garnet, grossular, and spessartine is from
the Table 1 in Karato et al. (1995). For almost pure alman-
dine, the garnet melting point is found to be 1588 K from
Mohawk Garnet Inc., which is slightly higher than 1570 K
for almandine-rich (Alm0.68Prp0.20Grs0.12) garnet in Karato
et al. (1995).

As an example (Fig. 3), for a quartz inclusion possessing
0.5 GPa residual pressure maintained at 650 ◦C, significant
viscous relaxation is expected during 1 Myr for almandine-
rich garnet host based on the applied flow law. This tem-
perature becomes higher (700 ◦C) for pyrope-rich garnet. If
the residual pressure is used to recover the entrapment pres-
sure given that the temperature experienced by the garnet-
host system was higher than 650–700 ◦C, an underestimate
of the entrapment pressure may potentially occur.

In Fig. 4, synthetic retrograde P –T paths from eclog-
ite and amphibolite-facies metamorphic conditions are pre-
scribed with different peak temperatures. The entrapment P –
T conditions for the three synthetic P –T paths are along an
elastic isomeke, which is the isopleth where no relative elas-
tic interaction exists between inclusion and host. Thus, the
residual inclusion pressure would be the same if the inclu-

Table 1. Averaged plastic strength from microhardness tests for
some minerals at room conditions. Strength is converted from mi-
crohardness based on Ch =H/Cg, where the geometry constant Cg
is taken as 3. Raw data are dependent on crystallographic orienta-
tion, composition, and applied load that are examined in some of
the involved references.

Minerals Yield strength (GPa)

Calcite2 0.6
Zircon4 1.2
Dolomite2 1.5
Orthoclase1 2.3
Andalusite1 2.3
Diopside3 2.7
Sillimanite1 3.7
Quartz1 4.0
Kyanite1 4.0
Spinel5 4.1
Grossular1 4.4
Almandine-pyrope1 5.0

1 Data reported in Whitney et al. (2007). 2 Data reported in
Wong and Bradt (1992). The reported data for calcite and
dolomite are averaged from the applied load and azimuthal
angle from [1011]. 3 Data reported in Smedskjaer et
al. (2008). 4 Data reported in Yuan et al. (2017) 5 Data
reported in Dekker and Rieck (1974). The reported data are
averaged from the applied load at [110] and [100].

sions were entrapped along the same isomeke and they were
purely elastic. By involving the viscous rheology of the gar-
net host, different residual inclusion pressures are predicted.
For the P –T path starting at 800 ◦C, 2 GPa, the quartz in-
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Figure 3. Viscous relaxation time (in years) of different garnet hosts as functions of temperature and inclusion overpressure. The viscous
relaxation time is calculated based on the expression of the Deborah number (De= 1) in Eq. (19). The viscosity’s pre-factor is T -dependent
and is obtained using the flow law from Wang and Ji (1999). The melting temperature is from Karato et al. (1995) (the melting temperature
of almost pure almandine is taken from the data of Mohawk Garnet Inc. to be 1588 K). Shear modulus is from Bass (1995). The flow law is
given in the main text (Wang and Ji, 1999). The four garnet endmembers are almandine (Alm), grossular (Grs), pyrope (Prp), and spessartine
(Sps).

clusion pressure is predicted to be less than 0.2 GPa. This re-
duced value of the residual pressure is then used to determine
the apparent entrapment pressure (Fig. 4b). In Fig. 4b, it is
shown that for the entrapment pressure within eclogite-facies
conditions at 700 ◦C, and by using a purely-elastic model,
a value of entrapment pressure is inferred that is approxi-
mately 10 % less than the actual value. The amount of un-
derestimation of entrapment pressure increases to 30 % when
the entrapment temperature reaches 800 ◦C. These values are
conservative estimates since the total exhumation time is set
to 1 Myr. Longer residence at high-temperature conditions
would result in larger modifications of the residual pressure.

For amphibolite-facies entrapment conditions, the resid-
ual pressure that is preserved in the quartz inclusion is sig-
nificantly lower compared to the case where the entrapment
occurred at eclogites-facies conditions. As shown in Fig. 4d,
ca. 5 % and 20 % underestimates of true entrapment pressure
are predicted depending on whether the entrapment occurred
at 700 ◦C or 800 ◦C, respectively. Similarly, the amount of

underestimation will be larger if the duration of exhumation
is longer than 1 Myr.

3.3 Pressure relaxation along the prograde P –T path
and apparent overstepping

The pressure relaxation problem becomes more complicated
when the quartz inclusion is entrapped not at the peak P –
T conditions but along the prograde P –T path. In this case,
viscous relaxation occurs also along the prograde P –T path
and the pressure difference between host and inclusion will
relax with time and increasing temperature. This effect starts
before the rock reaches the peak P –T conditions. Two syn-
thetic P –T paths are illustrated in Fig. 5. In Fig. 5a, the
quartz is entrapped in the almandine-garnet host at 400 ◦C,
1 GPa, and further experiences eclogites-facies P –T condi-
tions. During the prograde path, the quartz inclusion will de-
velop underpressure (e.g. Angel et al., 2015, Fig. 5), which
will also be subject to viscous relaxation over geological
time. The quartz pressure starts to converge towards the gar-
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Figure 4. (a) Synthetic retrograde P–T paths from eclogite-facies metamorphic conditions. The quartz inclusions are entrapped within
almandine at different peak P –T conditions along the same isomeke; thus a purely-elastic model would predict the same value for the
residual inclusion P . Due to viscous relaxation, the residual P is lower than the pressure predicted by an elastic model. In (b), the apparent
entrapment P is calculated based on the relaxed residual inclusion pressure given different entrapment T along the elastic isomeke that
is given in (a). Pressure relaxation is manifested by lower values of apparent entrapment P and it becomes more significant if the host
experiences high temperatures with time. Panels (c) and (d) are the same plots for amphibolite-facies entrapment conditions. The amount of
viscous relaxation is less compared to eclogite facies due to the lower magnitude of inclusion overpressure and the stress-dependent viscosity
of garnet host. Pure almandine garnet is used as host, and its flow law is from Wang and Ji (1999).

net host pressure at T > 600 ◦C. Nearly complete viscous re-
setting is observed when the system is brought up to 800 ◦C.
The prograde time is set to 1 Myr or 10 Myr to compare the
amount of viscous relaxation as a function of time in Fig. 5.

An alternative scenario is considered where the rock may
also stay at the peak P –T conditions before decompression
occurs. A synthetic clockwise P –T path reaching eclogite-
facies metamorphic conditions is constructed as shown in
Fig. 6. The quartz inclusion is entrapped in the garnet host
at 400 ◦C, 0.6 GPa, which is considered to be along the en-
trance of the garnet stability field. Subsequently the sys-
tem is brought to 700–750 ◦C, 1.8–1.9 GPa, conditions and

stays there for 5 Myr. Afterwards, the retrograde P –T path
takes 10 Myr. Two different P –T paths of quartz inclu-
sions are constructed based on the implemented elastic and
visco-elastic rheologies. Interestingly, the residual pressure
of the inclusion that was subject to viscous relaxation is
significantly higher (by 0.2 GPa) than the prediction of the
pure elastic model as shown by the black dashed curve
(0.14 GPa). The apparent entrapment pressure is calculated
using the predicted residual pressure for the inclusion whose
host experienced viscous relaxation. A large discrepancy ex-
ists between the apparent entrapment pressure (ca. 1 GPa at
the entrapment T 400 ◦C) and the true entrapment pressure
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Figure 5. The prograde P–T path for inclusion (dashed curve) and host (solid curve). Panel (a) is for rocks that experienced eclogite-
facies peak P –T conditions. The quartz inclusion is entrapped at 400 ◦C and 1 GPa. Along the given prograde P–T path, viscous relaxation
becomes significant at > 600 ◦C. The duration of the prograde P–T path is illustrated with different colours (1 and 10 Myr; see legend).
At 800 ◦C, the quartz inclusion pressure is reset to the confining pressure (host). For rocks that experienced amphibolite-facies peak P –T
conditions (b), viscous relaxation becomes significant at ca. 650–700 ◦C and the quartz inclusion pressure is partially reset at 700 ◦C. Pure
almandine garnet is used as a host, and its flow law is from Wang and Ji (1999).

(0.6 GPa). The overall overestimate of true entrapment pres-
sure (0.6 GPa) is about 0.3–0.4 GPa, which may potentially
be interpreted as overstepping the garnet growth or nucle-
ation.

4 Inclusion pressure modification due to proximity to
the thin-section surface

Despite the importance of viscous or plastic relaxation in
the post-entrapment modification of pressure, residual pres-
sure measurements may be different when the inclusions are
closer to the thin-section surface (Enami et al., 2007). When
a pressurized mineral inclusion in an infinite host under me-
chanical equilibrium is moved towards the thin-section sur-
face, its pressure is released and the pressure distribution
within the inclusion becomes heterogeneous. Mindlin and
Cheng (1950) provided a closed-form analytical solution
of stress field inside and outside a spherical inclusion with
thermal strain in a semi-infinite host. The analytical solu-
tion has been generalized to ellipsoidal inclusion (Seo and
Mura, 1979). Substantial mathematical investigations have
also been done in deriving the analytical solution of the elas-
tic field for inclusion in half-space (e.g. Tsuchida and Naka-
hara, 1970; Aderogba, 1976; Jasiuk et al., 1991). Although
the analytical formulations for individual stress components
of inclusion are non-trivial, here, we show that the formula
for the pressure distribution of a pressurized inclusion can be
significantly simplified (detailed derivations are provided in

the Appendix):

Pinc

Pini
= 1−

2
3

1+ ν

R
3
2

(
3
(
z+L

)2
R

2
2

− 1), (22)

where Pini is the initial inclusion pressure in an infinite
host under mechanical equilibrium, L is the scaled inclu-

sion depth (L= L/R) and R2 =

√
x2

1 + x
2
2 + (x3+L)2/R is

a function of position in Cartesian coordinate system (Fig. 7),
and ν is the Poisson ratio of the inclusion and host. It is em-
phasized that in this situation the inclusion and host possess
the same elastic moduli.

The released inclusion pressure due to proximity to the
thin-section surface is plotted in Fig. 7b and c using Eq. (22).
Pressure release is concentrated at the top of the inclusion,
while the bottom of the inclusion is subject to minimal pres-
sure releases (< 10 %). Interestingly, the top of the inclusion
is subject to negative pressure (expansion) when the inclu-
sion is very close to the thin-section surface (see, e.g., the
case of L= 1.1). Based on the analytical solution, the safe
inclusion depth to avoid residual pressure release is ca. L=
2.5 (the amount of pressure release is less than 3 % within
the entire inclusion). Here, the simple analytical solution in
Eq. (22) can precisely model the inclusion’s residual pressure
due to stress release at the thin-section surface, where the in-
clusion possesses the same elastic moduli as the host. In a
natural mineral inclusion–host system, the inclusion and host
possess different elastic properties. As a case study, the stress
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fields of quartz-in-almandine and almandine-in-quartz sys-
tems are numerically modelled using a finite-difference (FD)
thermo-elastic model (model benchmarks are provided in the
Supplement). These examples are chosen to investigate two
endmembers: elastically stiffer host (quartz-in-almandine in
Fig. 8a) and softer host (almandine-in-quartz in Fig. 8b).
Pressures at three points within the inclusion (top, centre, and
bottom) are contoured as a function of L. The pressures eval-
uated at these three localities based on the analytical solution
in Eq. (22) are also shown by the dashed curves for com-
parison with numerical solutions. With decreasing distance
to the thin-section surface, the heterogeneity of the pressure
field increases. It is shown that the pressure release is less
significant in elastically stiffer host (garnet) than in elasti-
cally softer host (quartz).

It is shown that the difference between the analytical and
the numerical solution due to the difference in elastic mod-
uli becomes significant when the inclusion depth is shallow.
The analytical and solutions are similar when evaluated at
the bottom point at any depth (Fig. 8). For a quartz-in-garnet
system, the analytical solution overestimates the amount of
pressure release (Fig. 8a). Assuming 3 % pressure release as
acceptable for the application of Raman barometry, the ana-
lytical solution yields a safe distance of ca. L= 2.0 for the
bottom and centre point, while the numerical solution yields
ca.L= 1.5. For the top point, the safe distance of ca.L= 2.5
based on the analytical solution is again higher than the pre-
diction of ca. L= 2.0 based on a numerical solution. The
difference in safe distance between analytical and numeri-
cal solution is due to the presence of elastically stiffer garnet
host.

Differential stress (|σ1−σ3|) is also shown in Fig. 8b. High
differential stress at the host appears when the inclusion is
close to the thin-section surface. Differential stress may also
exist inside the inclusion, but it is in general smaller than
that of the host. For a quartz-in-garnet system, the differ-
ential stress forms a “ring”-shaped pattern with a peak at
the surface. The differential stress may reach up to 3 times
the expected residual pressure. This may potentially trigger
plastic failure at the thin-section surface. However, for the
garnet-in-quartz system, such pattern is not observed even if
the inclusion depth is shallow.

5 Discussion

5.1 What may cause the residual pressure
modification?

The mechanisms investigated here, i.e. visco-plastic flow of
the host and proximity of the inclusion to the thin-section
surface, can all be responsible for the modification of the
residual inclusion pressure. The amount of inclusion pressure
change due to these mechanisms is controlled by the Debo-
rah number (De), dimensionless yield strength (C∗), and di-

mensionless depth (L). In the examples of quartz-in-garnet
systems, the residual pressure is considered to be sealed in a
perfectly elastic garnet host. Based on our study, the presence
(radius) of a plastic yield region and preserved residual inclu-
sion pressure are dominated by dimensionless yield strength
(C∗ = Ch/Pexp) as shown in Fig. 2. Strength Ch can be con-
verted from hardness test data using the formula below (e.g.
Evans and Goetze, 1979):

Ch =H/Cg (23)

where H is the measured microhardness and Cg is a con-
stant accounting for the indenter’s geometry in the experi-
ment. Taking Cg = 3 (Evans and Goetze, 1979), the yield
strength of garnet host is between 4.4 and 5 GPa at room con-
ditions (Whitney et al., 2007), which leads to C∗ = 4.4∼ 5
given residual inclusion pressure Pexp = 1 GPa. This sug-
gests that plastic yield does not occur in an idealized scenario
of isotropic, spherical quartz inclusion entrapped in an infi-
nite garnet host. However, such an ideal scenario is highly
improbable in natural samples. Localized plastic yield may
still occur due to the following reasons: (1) elevated differ-
ential stress when the inclusion is close to the thin-section
surface (“ring”-shaped pattern in Fig. 8); (2) stress concen-
tration at the corners of the quartz inclusion (Whitney et al.,
2000); (3) anisotropic elastic deformation of the quartz inclu-
sion (e.g. Murri et al., 2018); (4) pre-fractures or weakness
in garnet host before the entrapment of quartz inclusions that
leads to the localization of dislocations. Although our model
does not predict exact conditions for plastic yield due to the
above possibilities, it gives a lower bound for the strength
and provides information on what type of host mineral phase
cannot be used for Raman barometry. Plastic yield strength
of some common rock-forming minerals measured in hard-
ness tests are compiled and provided in Table 1. As an ex-
ample, given Pexp = 1 GPa, the dimensionless yield strength
of calcite host is ca. 0.6 and dolomite is ca. 1.5 (Wong and
Bradt, 1992). This implies that plastic flow will most likely
affect the residual pressure Pexp in the calcite host but not in
dolomite host.

After thin-section preparation, the inclusion pressure may
be (partially) released. The dimensionless depth can be eval-
uated by performing depth-step scan analysis with Raman
spectroscopy in order to observe if the pressure gradually de-
creases towards the thin-section surface (Enami et al., 2007).
For a quartz-in-garnet system, to avoid significant pressure
release (> 3 %) in the bottom half of the inclusion, the dimen-
sionless depth needs to be above at least 1.5 (Fig. 8). To avoid
significant pressure release in the entire quartz inclusion, the
dimensionless depth needs to be above ∼ 2. Therefore, we
recommend a safe dimensionless depth of 2–2.5 (from the
surface to the centre of the inclusion) for quartz-in-garnet
Raman barometry (see also Mazzucchelli et al., 2018). For a
30 µm thick thin section, the maximal radius of an inclusion
is ca. 6 µm (12 µm in diameter) located at the mid-point of the
thin section. In practice, it is difficult to precisely measure the
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Figure 6. (a) Clockwise P–T path of inclusion (dashed curve) and host (solid curve). The dashed black curve shows the inclusion P–T path
based on a pure elastic model, and the blue dashed curve is based on a visco-elastic model. The quartz inclusion is entrapped in almandine
garnet at 400 ◦C, 0.6 GPa. The prograde P –T path lasts 5 Myr, and the rock stays at peak P for 5 Myr before the retrograde P–T path, which
lasts 10 Myr. The residual pressure preserved by the quartz inclusion that was subject to viscous relaxation is in fact higher than the elastic
limit. Therefore, the apparent entrapment pressure, calculated using elastic isomeke, is higher than the actual entrapment pressure as shown
in (a). This may lead to a ca. 3–4 kbar apparent overstepping effect. The almandine flow law is from Wang and Ji (1999).

Figure 7. (a) Analytical model configuration of a mineral inclusion close to the thin-section surface. The distance between the surface to the
inclusion centre is denoted by L. (b) Pressure distribution on an x–z plane. The pressure is scaled by the initial inclusion pressure (Pini).
The initial inclusion pressure is under force equilibrium in an infinite host. The analytical model describes the amount of pressure release
when the inclusion approaches the thin-section surface. (c) Pressure at three localities (inclusion top, centre, and bottom) as a function of
dimensionless depth L/R. The analytical solution of Eq. (22) is used for the pressure plot.

depth of an inclusion, and it is uncommon that an inclusion
is located right in the middle of a thin section. Therefore, it
is ideal to choose smaller inclusions or prepare a thicker thin
section for measurement (Campomenosi et al., 2018; Maz-
zucchelli et al., 2018).

For commonly used quartz-in-garnet Raman barometry,
our results show that below 550–600 ◦C, the effect of vis-
cous relaxation can be negligible. Above ca. 650–750 ◦C, the

effect of viscous relaxation needs to be taken into account de-
pending on a particular P –T path, garnet composition, and
timescale (Figs. 3, 4). This is similar to the empirical esti-
mate ca. 750 ◦C in Walters and Kohn (2014). It is also shown
that the preserved residual pressure may even increase due
to viscous relaxation if viscous resetting occurs at peak P
condition (Fig. 6). This is simply because viscous creep does
not only relax the overpressure in the quartz inclusion but
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Figure 8. Dimensionless pressure and differential stress plotted on an x–z plane or as a function of dimensionless depth. (a) Quartz-in-
almandine system; (b) almandine-in-quartz system. For the profiles, pressure and differential stress are measured at different locations
denoted by the coloured dots. In the top panel, the dashed curves in the pressure plot are based on the analytical solution in Eq. (22)
considering the same elastic moduli between inclusion and host, while the solid curves are based on finite-difference results. The discrepancy
between the solid (numerical solution) and dashed (analytical solution) curves in (a) is due to the fact that the host elasticity is different from
the inclusion.

also the underpressure that develops along the prograde P –T
path. Meanwhile, the amount of viscous relaxation is time-
dependent (De is a function of the operating time of vis-
cous relaxation). Thus, the above temperature criterion for
Raman barometry applies only for exhumation lasting at a
million years’ timescale. A higher temperature criterion for
Raman barometry (e.g. ∼ 1000 ◦C for garnet host at high
pressure close to the coesite–quartz transition) is applicable
for more rapid exhumation, e.g. xenolith ascent carried by
magma (Zhong et al., 2018) or garnet synthesis experiments
that lasts hours or days (Thomas and Spear, 2018; Bonazzi et
al., 2019).

5.2 Implications to garnet overstepping

Quartz-in-garnet Raman barometry has been used to de-
termine the entrapment pressure, i.e. garnet nucleation or
growth conditions, and compared it to the P–T conditions

determined based on phase equilibria or classical chemi-
cal thermobarometry (Castro and Spear, 2017; Spear et al.,
2014). As has been shown in Fig. 6, viscous resetting occurs
when the inclusion–host system is brought to high tempera-
ture (> 600–700 ◦C). Even if the quartz inclusion is entrapped
at lower P–T conditions, e.g. the garnet entrance conditions,
the preserved residual inclusion pressure may still be sig-
nificantly higher than predicted from the actual entrapment
P –T conditions using a pure elastic model. In this case, er-
roneous results may emerge if one uses the relaxed residual
quartz inclusion pressure to determine the entrapment pres-
sure. In case of significant viscous resetting at peak T con-
ditions followed by decompression, as in the case of some
HP rocks, apparent garnet growth overstepping will be in-
ferred (see Fig. 6b). In that case, care must thus be taken
to interpret the discrepancy between the results of quartz-in-
garnet Raman barometry and phase equilibria. As shown in
the example with a synthetic clockwise P –T path (Fig. 6),
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ca. 3–4 kbar apparent overstepping is predicted by consid-
ering viscous resetting at peak T condition. The amount of
apparent overstepping will be even larger if the exhumation
process happens faster (current model assumes 10 Myr de-
compression time).

6 Conclusions

We first presented a 1-D visco-elasto-plastic model to study
the inclusion–host system undergoing a prograde or retro-
grade P–T path. The non-dimensionalization of the govern-
ing equations yields two controlling parameters: the Deborah
number (De) and dimensionless yield strength (C∗), which
control the amount of pressure drop due to viscous relaxation
and plastic yield. Both De and C∗ must be higher than 1 to
avoid underestimating the residual pressure. Subsequently, a
simplified analytical solution for inclusion pressure (Eq. 22)
close to a stress-free thin-section surface is presented based
on the existing analytical solution from Seo and Mura (1979).
It is suggested that the distance between the thin-section sur-
face and inclusion must be higher than 2–3 times the inclu-
sion radius to avoid stress release.

The relevance of our presented visco-elasto-plastic model
to quartz-in-garnet elastic barometry has been systematically
studied. Although plastic yield is not expected for garnet host
due to its high yield strength, the residual inclusion pres-
sure preserved in quartz inclusion can be partially modified
at high temperature due to time-dependent viscous creep. It is
shown that above 650–700 ◦C over a Myr timescale, viscous
creep of garnet host may partially reset the quartz pressure.
This may have important implications for the determination
of entrapment pressure of quartz inclusion. Additionally, this
may also cause apparent overstepping of garnet growth; thus
care must be taken when applying quartz-in-garnet barom-
etry at rocks which experienced high temperatures (> 600–
700 ◦C).
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Appendix A

Here, we introduce a simplified formula for the pressure dis-
tribution of an initially pressurized inclusion in an infinite
host moved toward a stress-free surface based on the exist-
ing analytical solution of Seo and Mura (1979). A Cartesian
coordinate system is employed as shown in Fig. 7. The full
stress tensor σij of inclusion loaded with eigenstrains is rep-
resented as follows (Seo and Mura, 1979):

σij =
ε∗ (1+ ν)G
2π (1− ν)

[
−4πδij −

∂2ψ

∂xixj
+ 4νδij

∂2φ

∂x3x3

+ (3− 4ν)
(
δ3i + δ3j − 1

) ∂2φ

∂xixj

−
(
δ3i + δ3j

) ∂2φ

∂xixj
− 2x3

∂3φ

∂x3xixj

]
. (A1)

While for the host, stresses are given below:

σij =
ε∗ (1+ ν)G
2π (1− ν)

[
−
∂2ψ

∂xixj
+ 4νδij

∂2φ

∂x3x3

+ (3− 4ν)
(
δ3i + δ3j − 1

) ∂2φ

∂xixj

−
(
δ3i + δ3j

) ∂2φ

∂xixj
− 2x3

∂3φ

∂x3xixj

]
, (A2)

where the indices of xi (i = 1,2,3) are in Cartesian coordi-
nate frame following the order of x, y, and z(see Fig. 7) and
ε∗ is the isotropic eigenstrain that is expressed as the dif-
ference of volumetric strain between inclusion and host as-
suming that they are not bounded by each other. The elliptic
integrals ψ and φ are expressed below:

ψ = πR3
∫
∞

λ

1− R2
1

R2+s(
R2+ s

) 3
2

ds, (A3)

where λ= R2
1 −R

2 for host, λ= 0 for inclusion, and R1 =√
x2

1 + x
2
2 + (x3−L)2.

φ = πR3
∫
∞

λ

1− R2
2

R2+s(
R2+ s

) 3
2

ds, (A4)

where λ= R2
2 −R

2 for both host and inclusion and R2 =√
x2

1 + x
2
2 + (x3+L)2. Here, we focus on the stress experi-

enced by the inclusion and derive a simplified form for the
pressure of inclusion. For the inclusion, the elliptic integrals

are derived:

ψ = 2π
(
R2
−

1
3
R2

1

)
, (A5)

φ =
4
3
πR3R−1

2 . (A6)

The normal stresses in the inclusion are

σ11 =
ε∗ (1+ ν)G
2π (1− ν)

[
−4π −

∂2ψ

∂x1x1
+ 4ν
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]
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σ22 =
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σ33 =
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By substituting ψ and φ into the equations above, the nor-
mal stresses can be obtained. In deriving the pressure, i.e.
negative mean stress, many terms in Eqs. (A7)–(A9) can be
cancelled out. A simplified form is obtained as follows:

Pinc =
4ε∗ (1+ ν)G

3(1− ν)[
1−

2
3
R3

R3
2
(1+ ν)

(
3(z+L)2

R2
2
− 1

)]
. (A10)

The pre-factor 4ε∗(1+ν)G
3(1−ν) is in fact the initial pressure of

the inclusion in an infinite host loaded by the eigenstrain ε∗

under mechanical equilibrium. Therefore, we may simplify
Eq. (A10) as follows:

Pinc = Pini

[
1−

2
3
R3

R3
2
(1+ ν)
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3(z+L)2

R2
2
− 1

)]
. (A11)

where Pini is the inclusion pressure in an infinite host loaded
by eigenstrain ε∗ under mechanical equilibrium before mov-
ing it close to the thin-section surface. The equation can be
non-dimensionalized by using R as a length scale shown be-
low:

Pinc

Pini
= 1−
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3
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2
2

− 1

)
. (A12)

The analytical solution for pressure in the mineral in-
clusion subject to an initial residual pressure Pini is ob-
tained. When the inclusion is far from the thin-section sur-
face (L→+∞, and R2→+∞), the actual residual pres-
sure approaches the expected residual pressure based on a
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classical elastic model (Pinc→ Pini). Another potential ap-
plication of the solution in Eq. (A12) is for benchmarking
numerical solutions. Due to the simplicity of the pressure ex-
pression, it is particularly suitable for quick validation of nu-
merical models, e.g. the finite-difference model presented in
the Supplement.
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witnessing high-rate exhumation processes, Sci. Rep., 8, 2234,
https://doi.org/10.1038/s41598-018-20291-7, 2018.

Zhong, X., Andersen, N. H., Dabrowski, M., and Jamtviet, B.:
Zircon and quartz inclusions in garnet used for complimentary
Raman- thermobarometry: application to the Holsnøy eclogite,
Bergen Arcs, Western Norway, Contrib. Mineral. Petrol., 4, 1–
17, https://doi.org/10.1007/s00410-019-1584-4, 2019a.

Zhong, X., Dabrowski, M., and Jamtveit, B.: Analytical solution for
the stress field in elastic half space with a spherical pressurized
cavity or inclusion containing eigenstrain, Geophys. J. Int., 216,
1100–1115, 2019b.

Solid Earth, 11, 223–240, 2020 www.solid-earth.net/11/223/2020/

https://doi.org/10.1016/0254-0584(92)90234-Y
https://doi.org/10.1016/S0012-821X(02)00528-9
https://doi.org/10.1002/9781444394900.ch17
https://doi.org/10.1088/1755-1315/61/1/012140
https://doi.org/10.1016/S0012-821X(98)00036-3
https://doi.org/10.1038/s41598-018-20291-7
https://doi.org/10.1007/s00410-019-1584-4

	Abstract
	Introduction
	1-D mechanical model with visco-elasto-plastic rheology
	Governing equations
	Non-dimensionalization
	The numerical approach for the visco-elasto-plastic model

	Inclusion pressure modification due to visco-plastic deformation of host
	Residual pressure affected by viscous or plastic flow
	Viscous relaxation of garnet host
	Pressure relaxation along the prograde P–T path and apparent overstepping

	Inclusion pressure modification due to proximity to the thin-section surface
	Discussion
	What may cause the residual pressure modification?
	Implications to garnet overstepping

	Conclusions
	Appendix A
	Code availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

