

Cenozoic deformation in the Tauern Window (Eastern Alps) constrained by in situ Th-Pb dating of fissure monazite

Emmanuelle Ricchi¹, Christian A. Bergemann², Edwin Gnos³, Alfons Berger⁴, Daniela Rubatto^{4,5}, Martin J. Whitehouse⁶, and Franz Walter⁷

¹Department of Earth Sciences, University of Geneva, Rue des Maraîchers 13, 1205 Geneva, Switzerland
 ²Institute of Geosciences, Heidelberg University, Im Neuenheimer Feld 236, 69120 Heidelberg, Germany
 ³Natural History Museum of Geneva, Route de Malagnou 1, 1208 Geneva, Switzerland
 ⁴Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, 3012 Bern, Switzerland
 ⁵Institute of Earth Sciences, University of Lausanne, Geopolis, 1015 Lausanne, Switzerland
 ⁶Swedish Museum of Natural History, P.O. Box 50007, 104-05 Stockholm, Sweden
 ⁷Institut für Erdwissenschaften, Karl-Franzens-Universität, Universitätsplatz 2, 8010 Graz, Austria

Correspondence: Emmanuelle Ricchi (emmanuelle.ricchi@unige.ch)

Received: 21 October 2019 – Discussion started: 30 October 2019 Revised: 14 February 2020 – Accepted: 24 February 2020 – Published: 3 April 2020

Abstract. Thorium-lead (Th-Pb) crystallization ages of hydrothermal monazites from the western, central and eastern Tauern Window provide new insights into Cenozoic tectonic evolution of the Tauern metamorphic dome. Growth domain crystallization ages range from 21.7 ± 0.4 to 10.0 ± 0.2 Ma. Three major periods of monazite growth are recorded between $\sim 22-20$ (peak at 21 Ma), 19–15 (major peak at 17 Ma) and 14-10 Ma (major peak around 12 Ma), respectively, interpreted to be related to prevailing N-S shortening, in association with E-W extension, beginning strike-slip movements and reactivation of strike-slip faulting. Fissure monazite ages largely overlap with zircon and apatite fission track data. Besides tracking the thermal evolution of the Tauern dome, monazite dates reflect episodic tectonic movement along major shear zones that took place during the formation of the dome. Geochronological and structural data from the Pfitschtal area in the western Tauern Window show the existence of two cleft generations separated in time by 4 Ma and related to strike-slip to oblique-slip faulting. Moreover, these two phases overprint earlier phases of fissure formation.

Highlights.

- New constraints on the exhumation of the Tauern metamorphic dome.
- Distinct tectonic pulses recorded from east to west.

1 Introduction

In situ thorium–lead (Th-Pb) dating of hydrothermal fissure monazite-(Ce) (in the following simply monazite) has recently been demonstrated to be a reliable method for dating tectonic activity under retrograde metamorphic conditions (Bergemann et al., 2017, 2018, 2019, 2020; Berger et al., 2013; Fitz-Diaz et al., 2019; Gasquet et al., 2010; Gnos et al., 2015; Grand'Homme et al., 2016a; Janots et al., 2012; Ricchi et al., 2019). These studies conducted through the entire Alpine orogenic belt allowed constraining tectonic activity in relation with exhumation and fault activity under retrograde lower greenschist to sub-greenschist facies metamorphic conditions.

Hydrothermal fissure monazite, concentrating light rare earth elements (LREE), Th and U, generally crystallizes in Ca-poor lithologies, outside the stability field of titanite or epidote/allanite. However, once formed, hydrothermal processes may cause dissolution-reprecipitation events leading to resetting of the monazite Th-Pb decay

⁻ In situ dating of hydrothermal monazite-(Ce).

system in parts of the crystal. Chemically and isotopically homogeneous crystals indicate a single, rapid growth episode (e.g. Grand'Homme et al., 2016a). However, crystals showing different growth domains indicative of successive growth episodes are more common. In other cases, parts of, or entire, grains display a patchy zoning due to dissolution–reprecipitation processes (e.g. Ayers et al., 1999; Grand'Homme et al., 2016b). These processes involve element fractionation resulting in crystal zones with often distinct Th/U values (Seydoux-Guillaume et al., 2012).

The advantage of using hydrothermal monazite for dating tectonic activity is related to the high closure temperature of monazite of > 800 °C, implying that diffusion in monazite is negligible (Cherniak et al., 2004; Gardés et al., 2006, 2007) under P-T conditions at or below 450–500 °C and 0.3-0.4 GPa (e.g. Mullis et al., 1994; Mullis, 1996; Sharp et al., 2005) where hydrothermal fissures form. Fissure monazites date crystallization following chemical disequilibrium within a fissure. This causes a dissolution-precipitation cycle that may include dissolution or partial dissolution of existing fissure monazite. This has the consequence that late dissolution-precipitation steps may be well recorded, whereas earlier growth domains may be completely destroyed. Thus, monazite crystallization due to chemical disequilibrium is interpreted as being related to tectonic activity (e.g. volume change, fissure propagation, exposure of fresh host rock, delamination of fissure wall, seismic activity, fluid loss or gain).

Recent studies have shown that fissure monazite typically forms between generally lower to higher 200–400 °C (Gnos et al., 2015; Janots et al., 2019). For this reason, fissure monazite ages are generally interpreted as dating crystallization or re-crystallization. Monazite geochronology can thus be utilized to constrain shear and damage zone activity under greenschist and very low-grade metamorphic conditions at least down to 200 °C (e.g. Bergemann et al., 2017, 2018; Gnos et al., 2015).

Fissures and clefts develop close to the brittle–ductile transition (< 450 °C; Mullis, 1996) and are usually oriented perpendicular to the foliation and lineation of the host rock (Gnos et al., 2015). Fissures are generally straight when they form and either became enlarged by subsequent tectonic activity to form fluid-filled decimetre- to metre-sized clefts, displaying a more open shape with rounded surfaces (e.g. Ricchi et al., 2019) when the stress field retains the same orientation, or become completely filled to form mineral veins. However, they may show a complex shape when the stress field direction changes during deformation. Fluid inclusion studies (e.g. Mullis, 1996) show that clefts generally suffered several deformation episodes.

Interaction of the fluid that fills the fissures with the surrounding rock leads to dissolution of minerals in the wall rock and mineral precipitation in the fissure. As long as deformation continues, fluid-filled clefts will react to deformation via dissolution–precipitation cycles due to disequilibrium between fluid, rock wall and mineral assemblage within the cleft (e.g. Putnis, 2009). Thus, hydrothermal minerals like monazite do not only grow following the initial fissure formation but form, continue to grow or dissolve during subsequent deformation stages. The timing of these growth or alteration stages may not always be resolvable with the precision of currently available geochronological methods, but different growth stages may be distinguishable through differences in the chemical composition (Grand'Homme et al., 2018). In contrast to the surrounding country rock, the fissures and clefts remain highly reactive at low temperature due to the presence of fluids. For this reasons, deformation steps during brittle deformation may be registered through mineral growth or recrystallization in clefts (e.g. Berger et al., 2013) down to conditions where clay minerals form in fault gauges.

The Tauern Window (TW) is a thermal and structural dome of the eastern Alps (Fig. 1) exhumed over a period of about 30 Ma starting from the Early Oligocene (e.g. Rosenberg et al., 2018; Schmid et al., 2013). Previous monazite crystallization ages obtained in the eastern subdome of the TW record tectonic activity between 19.0 ± 0.5 and 15.0 ± 0.5 Ma (Gnos et al., 2015). In the current study, monazite geochronology is extended to the entire TW in order to investigate its Cenozoic deformation history. We particularly aim to establish a chronological record for the younger exhumation history recorded by fissure monazite crystallization, to be compared with known deformation phases.

A total of 23 monazite grains together with provenance data, and in some cases host-rock information, were dated (Table 1). Seven grains come from the western limb of the TW (INNB1 ZEI1, SCHR1, MAYR4, PFIT1, BURG2 and PLAN1; samples 1-7; Fig. 1), another seven grains come from the eastern border of the western subdome (central TW; SCHEI1, HOPF2, GART1, NOWA3, GART3, STEI2 and KNOR1; samples 8-14; Fig. 1), and nine grains were collected in the eastern subdome (KAIS6, SALZ18, LOHN4, ORT1, EUKL2, HOAR1, MOKR1, SAND1 and REIS1; samples 15-25; Fig. 1, Table 1). In order to capture at best the tectonic activity during the exhumation of the TW, the investigated samples were selected in a way that gives priority to sample localities in regions affected by major fault zones and at lithological boundaries. In the following, we will discuss the ages in terms of sample ID numbers (1-25) provided in Table 1.

2 Geologic settings

In the largest tectonic window of the Austroalpine nappe stack, the TW, Penninic (Glockner nappe system and Matrei zone; Fig. 1) and Subpenninic nappes (mainly the Venediger Duplex) are exposed (e.g. Schmid et al., 2013; Fig. 1). The TW metamorphic and structural dome consists of two subdomes, with E–W-striking upright folds in the internal parts Table 1. Summary of monazite samples investigated in this study and by Gnos et al. (2015). Samples name, number, location, host-rock lithology, metamorphic degree and fissure mineral according on are provided. Samples with antrovingte finding location are modeld with "antrovo".

Locality	Sample	No.	Latitude (° N)	Longitude (° E)	Remark	Host rock	Host rock Alpine met.	Fissure mineral association	Reference	Ion probe
Western Tauern Window										
Innerböden, Zillertal, Tyrol, Austria	INNB1	1	47°05.850'	$011^{\circ}47.667'$	approx.	gneiss	AM	Qtz, Adl, Chl	this study	SwissSIMS
Zeischalm, Valsertal, Tyrol, Austria	ZEI1	~ ~	47°01.400′	011°35.767	approx.	gneiss	AM	Qtz, Adl, Chl	this study	SwissSIMS
Schrämmäcner, Zhuertal, 1yrol, Italy Klumman Détechtel South Turol Itely	MAVPA	0 Z	4/-01/4/ /14/-00/100/	00.86-110 /710-36-010	approx.	gneiss	AM	Otz, Cni, Adi, Kt, Sni Otz Adi Ant Co Pt	this study	CIMICE SIMIS
миррен, глизенка, зоцин тугол, цагу	MIALIN4	+	4/ 00.400	/17.06 110	approx.	guerss	AM	Viz, Aut, Aitt, UC, Kt, Xnt	uns study	CINICSSIMC
Pfitscherjoch, Tyrol, Austria	PFIT1	5	46°59.65′	011°39.60′		mica schist	AM	Qtz, Hm, Adl, Trm, Rt, Deb Ant Svin Acc	this study	NordSIMS
Burgumalpe, Pfitschtal, South Tyrol, Italy ^a Schwarzenbach, Ahmtal, South Tyrol, Italy	BURG2 PLAN1	9	46°55.217′ 46°58.641′	011°33.350′ 011°53.302′	approx. approx.	serpentinite eneiss	GAT AM	DIK, AIR, 3311, ASC Ilm, Rt, Cc Otz, Adl	this study this study	SwissSIMS SwissSIMS
Central Tauern Window					:	,				
Scheisseraben (Kotriesen), Habachtal, Salzburg, Austria	SCHEII	0	47°14.483′	012°18.667′		mica schist	UGS	Otz. Ab. Ant. Ank. Rt	this study	SwissSIMS
Hopffeldboden, Obersulzbachtal, Salzburg, Austria	HOPF2	6	47°12.278′	$012^{\circ}14.844'$		gneiss	GAT	Qtz, Ilm, Rt, Ant, Brk,	this study	NordSIMS
Honffeldgrahen. Obersulzhachtal. Salzhurg. Austria	GART1	10	47°12.100′	012°14.167′		gneiss	GAT	Asc, Syn, Ap, Chl, Lm Otz, Adl, Ant, Rtl.	this study	SwissSIMS
						D		Asc + Bt and Chl from		
Wildenkerer Wold Hebochtel Selzhura Austrie	NOWA3	=	47017633/	012020.000/	voluue	sieno	GAT	Ctr Ab Adl	this study	SwiseCIMS
Beryller, Untersulzbachtal, Salzburg, Austria	GART3	12	47°11.250′	012°18.517'	approx.	gneiss	AM	Otz, Adl	this study	SwissSIMS
Sattelkar, Obersulzbachtal, Salzburg, Austria	STE12	13	47°09.783'	012°17.250'	approx.	gneiss	AM	Qtz, Adl, Rt, Chl	this study	SwissSIMS
Innerer Knorrkogel, East Tyrol, Austria	KNOR1	14	47°06.117′	012°25.183′	:	gneiss	AM	Adl, Qtz, Chl	this study	NordSIMS
Eastern Tauern Window										
Kaiserer Steinbruch, Hüttwinkeltal, Rauris, Salzburg, Austria $^{\rm b}$	KAIS6	15	47°07.787′	012°58.708′		meta-arenite	GAT	Qtz, Adl, Trm, Cc, Hm, Rt. Chl	this study	NordSIMS
Lohninger Quarry, Hüttwinkeltal, Rauris, Salzburg, Austria ^b	SALZ18	16a	47°07.20′	012°59.33′		meta-arenite	GAT	Qtz, Adl, Trm, Cc, Hm, Rt Chl	this study	NordSIMS
I ohninger Ouarry Hiittwinkeltal Rauris Salzhuro Austria ^b	Т3	16h	47°07 20/	012059 33/		meta-arenite	GAT	Alh Otz Trm Hm Rt	Gnos et al (2015)	NordSIMS
Lohninger Quarry, Hüttwinkeltal, Rauris, Salzburg, Austria ^b	LOHN4	17	47°07.20'	012°59.33′		meta-arenite	GAT	Qtz, Adl, Trm, Cc, Hm, Rt, Chl	this study	NordSIMS
Ortherø hei Böckstein. Salzhurø: Austria	ORT1	18	$47^{\circ}05.150'$	$013^{\circ}04.217'$		granitic gneiss	GAT	Otz, Adl. Rt. Chl. An	this study	SwissSIMS
Euklaskluft, Griesswies, Salzburg, Austria	EUKL2	19a	47°04.683′	012°57.250′		Bt-Mu schist	GAT	Alb, Pyr, Qtz, Rt, Chl euclase Xnt	this study	NordSIMS
								goethite-todorokite- nordstrandite		
Euklaskluft, Griesswies, Salzburg, Austria	T2	19b	47°04.683′	012°57.250′		Bt-Mu schist	GAT	Alb, Pyr, Qtz, Rt,	Gnos et al. (2015)	NordSIMS
								Chl, euclase, Xnt, goethite-todorokite- nordstrandite		
Hocharn, Kärnten, Austria	HOAR1	20	47°04.500'	012°56.083′		granitic gneiss	GAT	Qtz, Ab, Rt	this study	SwissSIMS
Erfurter Steig, Rauris, Salzburg, Austria	H	21	47°04.133	012~57.917		Bt-Mu schist	GAL	Qtz, Ab, Adl, nhenakite Rt Cc	Gnos et al. (2015)	NordSIMS
Gjaidtroghöhe, Grosses Fleisstal, Kärnten, Austria	T4	22	47°03.783′	012°54.650′		gneiss	GAT	Qtz, Ab, Ant/Rt, Chl,	Gnos et al. (2015)	NordSIMS
Mokritzen, Kleines Fleisstal, Kärnten, Austria	MOKR1	23	47°03.033′	012°53.983′		graphite-bearing schist	GAT	Qtz, Sid	this study	SwissSIMS
Sandkopf, Grosses Zirknitztal, Kärnten, Austria Kleiner Reisseck, Reisseckgruppe, Kärnten, Austria	SAND1 REIS1	24 25	47°01.983′ 46°56.950′	012°56.05′ 013°22.433′		banded gneiss banded gneiss	GAT AM	Qtz, Adl, Chl, Sid, Ant Qtz, Ant, Ab, Chl	this study this study	SwissSIMS SwissSIMS

Figure 1. Tectonic map of the TW dome modified after Bertrand et al. (2017), Scharf et al. (2013), Schmid et al. (2013) and Schneider et al. (2013). Yellow stars on the map represent sample locations, and numbers inside the stars refer to samples listed in Table 1. Range of weighted mean growth domain ages are indicated for each grain from this study and Gnos et al. (2015), labelled in black and green, respectively, on the map (see Table 4 for an exhaustive summary of all the ages). Only the spot date range is indicated for grains 1, 4 and 6. Locations of AA', BB' and CC' cross sections are indicated by black lines, and individual cross sections are presented in Fig. 6 together with monazite crystallization ages. Two normal faults delimit the western and eastern borders of the TW, the Brenner normal fault (BNF) and the Katschberg normal fault (KNF), respectively. Note that the KNF prolongation results in dextral and sinistral strike slips in the north and south, respectively (KSZS: Katschberg shear zone system). Several sinistral strike-slip faults (AhSZ: Ahrntal shear zone; ASZ: Ahorn shear zone; DAV: Defereggen–Antholz–Vals fault; GSZ: Greiner shear zone; InF: Inntal fault; MüF: Mur–Mürz fault; NF: Niedere Tauern southern fault; OSZ: Olperer shear zone; SEMP: Salzach–Ennstal–Mariazell–Puchberg fault; SpSZ: Speikboden shear zone; TSZ: Tuxer shear zones; ZWD: Zwischenbergen–Wöllatratten and Drautal faults), dextral shear zones (HoF: Hochstuhl fault; IsF: Iseltal fault; KLT: Königsee–Lammertal–Traunsee fault; Mölltal fault (MöF); PF: Pustertal fault) and a reverse fault (MM: Meran–Mauls fault) are also visible in red on the map.

and bordered by two major normal faults, the Katschberg normal fault (KNF) in the east and the Brenner normal fault (BNF) in the west (Fig. 1). The western subdome is dissected by numerous sinistral shear zones (Ahorn shear zone (ASZ), Olperer shear zone (OSZ), Tuxer shear zones (TSZ), Greiner shear zone (GSZ) and Ahrntal shear zone (AhSZ)) and is bordered by the Salzach–Ennstal–Mariazell–Puchberg fault (SEMP) in the north (Fig. 1). The eastern subdome is bordered to the east by the Katschberg normal fault (KNF), continuing to the north into the dextral Katschberg shear zone system (KSZS) and to the south into an unnamed sinistral shear zone and oriented parallel to the Mölltal fault (MöF). The deformation history of these fault complexes will be discussed later.

The Alpine evolution of the TW started in the Early Paleocene with the accretion and subduction of the Piemonte-

Age (Ma)	Phase	Fault	Domain	Characteristics	Ref.	Remarks
Estimated p	peaks of c	leformat	ion			
~ 65	D1		Penninic nappes	Accretion and subduction of Piemonte–Liguria Ocean	Е	
~ 41	D2		Penninic and Subpenninic nappes	Subduction of Valais Ocean and parts of the distal European margin	Е	
~ 35	D3		Central TW	Exhumation of high-pressure units	Е	Folding of D2 thrust, decompression
~ 29	D4		Subpenninic nappes	European slab break-off, Venediger Duplex formation and "Tauernkristallisation"	E	Contemporaneous intrusion of Periadriatic plutons and incipient NE-wards subduction of the Adriatic slab
~ 23–21			East of the Giudicarie belt	Incipient indentation of the southern alpine units in the Eastern Alps	D, E	
~ 17	D5		TW	Indentation, doming and lateral extrusion	Е	
Faults' mot	ion					
33–15		ASZ	Western TW	Sinistral ductile shear	F, G	Ductile continuation of the SEMP fault
24–12		TSZ	Western TW	Sinistral ductile shear	B, F	
20–7		GSZ	Western TW	Sinistral ductile shear	F	
21-10		BNF	Western TW	Normal fault	С	
22-13		KNF	Eastern TW	Normal fault	С	

Table 2. Summary of deformation phases in the Tauern metamorphic dome.

A: Bertrand et al. (2017, 2015); B: Blanckenburg et al. (1989); C: Favaro et al. (2017); D: Scharf et al. (2013); E: Schmid et al. (2013); F: Schneider et al. (2013); G: Rosenberg and Schneider (2008). ASZ: Ahorn shear zone, BNF: Brenner normal fault, GSZ: Greiner shear zone, KNF: Katschberg normal fault, SEMP: Salzach–Ennstal–Mariazell–Puchberg fault, TSZ: Tuxer shear zones.

Liguria Ocean (Matrei zone; Fig. 1) under the Apulian margin (Austroalpine nappe stack; e.g. Schmid et al., 2004, 2013; D1 deformation of Schmid et al., 2013; Fig. 1, Table 2). In the Middle Eocene, the Valais Ocean and parts of the distal European margin (Glockner nappe system, Eclogite zone and parts of the Modereck nappe system; Fig. 1) were equally subducted below the Austroalpine nappe stack and the Matrei zone accreted during D1 deformation (D2 deformation of Schmid et al., 2013; Table 2). In the Late Eocene, exhumation was achieved by extrusion of the high-pressure units that went together with major folding of the D2 thrust formed between the subducted Glockner nappe system and Modereck nappe system (D3 deformation of Schmid et al., 2013; Table 2). In the Early Oligocene, nearly contemporaneous break-off of the subducting European slab and formation of the Venediger Duplex (crustal-scale duplex structure) occurred, followed by the "Tauernkristallisation" (reheating of the whole nappe stack to amphibolite facies conditions) (D4 deformation of Schmid et al., 2013; Table 2). This was followed by an inversion of subduction polarity at ~ 23 to 21 Ma (e.g. Rosenberg et al., 2018; Scharf et al., 2013; Schmid et al., 2013; Table 2). The following exhumation of the TW started in the Early to Middle Miocene by Alpine N-S collisional shortening and E-W orogen-parallel extension leading to folding, erosion and lateral extrusion through shear zone development (e.g. Luth and Willingshofer, 2008; Rosenberg and Berger, 2009; Rosenberg and Garcia, 2011; Schmid et al., 2004, 2013; Selverstone, 1988; D5 deformation of Schmid et al., 2013). Previous shear zone age dating in the TW was achieved using different geochronometers: Rb-Sr whole-rock-phengite dating (20 Ma; Blanckenburg et al., 1989), Rb-Sr whole-rock-white mica dating (39-16 Ma; Glodny et al., 2008), Sm-Nd dating on garnet (27.5-20 Ma; Pollington and Baxter, 2010, 2011) and ⁴⁰Ar / ³⁹Ar dating on mica (35-28 Ma; Urbanek et al., 2002). A recent detailed study by Schneider et al. (2013) using texturally controlled in situ ⁴⁰Ar / ³⁹Ar dating of syn-kinematic phengite and Kfeldspar returned ages of 33-15, 24-12 and 20-7 Ma. They were interpreted as recording deformation along three major shear zones (ASZ, TSZ and GSZ, respectively) of the western subdome.

Sample location

Fissure monazite is rare and difficult to find, meaning that this study could not have been conducted without the help of crystal searchers who provided samples. Fissure monazites were selected to cover all parts of the TW areas with known shear zones within it. It was, however, unfortunately not possible to obtain exact coordinates for all of the samples (Table 1). This is due to the rarity of fissure monazite, so that some samples were obtained from old finds or collections. In other cases, the crystal searcher could not anymore precisely identify the fissure in which the monazite was found. These samples are marked with "approx." in Table 1. We could therefore only revisit some of the sample locations in order to add structural information. Experience from other parts of the Alps (e.g. Bergemann et al., 2017, 2019; Ricchi et al., 2019) shows that fissure monazite sampled within the damage or central zones of a shear zone generally records shear zone activity well. Information on the source localities, host rocks, degree of alpine metamorphism and mineral associations is in Table 1.

3 Methods

The crystals were polished individually on a lapidary disc and embedded in epoxy together with the monazite standard "44069" (425 Ma, Aleinikoff et al., 2006), following the same procedure as that in Bergemann et al. (2017). Backscatter electron (BSE) images were acquired in order to investigate the internal textural features of each grain (e.g. zoning, evidence of alteration) using an energy dispersive spectrometer (EDS)-equipped JEOL JSM7001F and a Zeiss DSM940A electron microscope at the University of Geneva with a beam current of 3.5 nA and acceleration voltage of 15 kV. BSE images helped in the selection of secondary-ion mass spectrometry (SIMS) spot analysis points, carefully placed in chemically distinct domains.

Ion probe U-Th-Pb analyses of 15 monazite crystals were conducted at the SwissSIMS ion microprobe facility, University of Lausanne, Switzerland, and analyses of another eight crystals were performed at the NordSIMS facility, Swedish Museum of Natural History, Stockholm (Tables 1 and 3). Both laboratories are equipped with a Cameca IMS 1280-HR instrument. The instruments were run following the procedure of Janots et al. (2012), applying a -13 kV O^{2-} primary beam, an intensity of \sim 3 and 6 nA focused on the sample (SwissSIMS and NordSIMS, respectively) to produce a spot of 15-20 µm in diameter. A mass resolution of 4300-5000 ($M/\Delta M$, ²⁰⁸Pb/²³²Th at 10% peak height) and an energy window at 40 eV were applied, with data collection in peak hopping mode using an ion-counting electron multiplier. All the unknowns were standardized to 44069 (425 Ma; Aleinikoff et al., 2006) monazite, and the uncertainty on the standard ²⁰⁸Pb / ²³²Th-ThO / Th calibration in each session was 1.7 % on average.

A ²⁰⁷Pb and ²⁰⁴Pb common lead (Pbc) correction calculated at time zero was applied to the data acquired at the SwissSIMS and NordSIMS (Table 3) using the terrestrial Pb evolution model of Stacey and Kramers (1975). Cameca customizable ion probe software (CIPS) was used for data reduction. ²⁰⁴Pb- and ²⁰⁷Pb-corrected ages agree within uncertainty (Table 3), but we preferred to discuss ²⁰⁷Pb-corrected ages because they are more robust and consistent (better statistics and less scatter in the data). Calculation of weighted mean ages, based on ²⁰⁷Pb correction, and plotting was carried out using the IsoPlot Ex 4.1 programme (Ludwig, 2003). Single and weighted mean ages (or average ages) are quoted at the 1σ and at the 95 % confidence level in the text, respectively.

Weighted mean 208 Pb / 232 Th ages were calculated for each growth domain following the approach of Bergemann et al. (2017, 2018, 2019, 2020) and Ricchi et al. (2019). Distinct chemical and textural domains were carefully defined in each grain based on Th concentrations as function of U concentrations and BSE image information. Since fissure monazite is dissolved and re-precipitated under changing chemical conditions (e.g. Grand'Homme et al., 2018), spot analyses affected by Pbc (resulting in older dates directly related to higher Pbc, i.e. positive age-f208 correlation), inclusions or those with high uncertainty ($1\sigma > 1$ abs.) were removed from the dataset and marked in italic in Table 3. However, spot dates located on dissolution trails, generally providing younger dates, were considered in the age ranges because they likely record a later phase of monazite crystallization.

4 Results

4.1 Field observations

An example of deformed fissures and different stages of fissure formation is well exposed in outcrops along the road leading to Pfitscherjoch (in proximity to the PFIT1 sample locality 5, western TW; Table 1), where two fissure generations are present (Fig. 2a and b). In this outcrop, an earlier fissure generation (C_2 , green ellipses) is partly deformed during subsequent deformation, and a younger generation of fissures $(C_3, \text{blue ellipses})$ is also present. Subhorizontal fissures (C_3) seem linked to a strongly inclined lineation $(L_3, blue ar$ rows), whereas older subvertical fissures (C_2) seem related to a weakly inclined strike-slip lineation (L_2 , green arrows). The older fissures are wider and sigmoidal in shape and contain muscovite which is not found in the younger fissures. In some cases, younger fissures crosscut older ones (Fig. 2b). Moreover, the orientation of the foliation $(S_{2,3}; Fig. 2c)$ of these two fissure generations (C_2 and C_3) is different from the foliation $(S_1; Fig. 2c)$ of early fissure formation mainly observed in the eastern part of the TW (C_1 , Fig. 2c, discussed below). This suggests that, in the Pfitscherjoch area, early fissures C_1 were overprinted by younger tectonic movements.

The large majority of the fissures present in all the investigated localities are oriented subvertically (C_1 and C_2 type in Fig. 2c), roughly striking NE–SW. For C_2 , this would indicate a similar direction of extension for the development of this fissure type, which is in line with palaeostress orientations provided by Bertrand et al. (2015). However, even if all subvertical fissures are subparallel, at least two generations exist. (i) Early subvertical fissures (C_1 , Fig. 2c) are re-

t ages	lσ (abs.)		0.16	0.18	01.0	0.18	0.15	0.17	0.42	0.26	0.29	0.28	0.26	07.0	0.27	0.28	0.27	0.26	0.28	0.28	0.38	0.28	0.20	0.28	0.23	77.0	0.22	100	0.24	0.28	0.22	0.20	0.20 0.24	0.45	0.51	0.48	0.46	0.44	0.47	0.45	0.46	0.45	0.45 24 0	0.45	0.45	0.45	0.44	0.44	0.45	0.44	0.44	0.44	0.44
207-corr spo	²⁰⁸ Pb / ²³² Th Age (Ma)		10.97	11.52	11.04	10.60	10.54	10.53	8.21	9.80	9.65	10.20	9.84	90.9 10.01	10.03	10.75	10.38	9.75	10.37	10.11	10.37	10.09	56.6 - 0 - 0 - 0	10.01	10.24	9.49	9.61	220	9C.8 81.7	8.82	8.15	7.30	7.38 9.03	20.53	20.28	21.85	20.98	20.35	21.33	20.47	20.95	20.54	10.02	20.60	20.75	20.37	20.07	20.31	20.30	19.83	19.95	19.12	20.01
	α (%)		1.5	1.6	4. I	0.1	6.1	1.6	5.1	2.7	3.0	2.7	1.1	1.7	1.7	2.6	2.6	2.7	2.7	2.7	3.6	2.8	0.7	8 0 0 73	7.7	, c	2.3		0 X X	0.7	2.8	2.7	2.7	22	2.5	2.2	2.2	2.2	2.2	2.2	2.2	2.2	7 0	10	2.2	2.2	2.2	2.2	2.2	2.2	7.7 7.7	0.7 C	
207-corr	²⁰⁸ Pb/ ²³² Th 1		0.000543	0.000570	1000000	0.000516	0.000521	0.000521	0.000406	0.000485	0.000477	0.000505	0.000487	0.000405	0.000496	0.000532	0.000514	0.000482	0.000513	0.000500	0.000513	0.000499	0.000492	0.000495	0.000507	0.0000470	0.000471	0.000402	0.000425	0.000436	0.000403	0.000361	0.000365 0.000447	0.001016	0.001004	0.001082	0.001039	0.001007	0.001056	0.001013	0.001037	0.001016	0.001050	0.001020	0.001027	0.001008	0.000993	0.001005	0.001005	0.000981	0.000988	0/600000	0.00091
ot ages	lσ (abs.)		0.29	0.19	0.18	120	0.17	0.27	0.45	0.29	0.36	0.36	0.32	70.0	0.34	0.28	0.29	0.27	0:30	0.30	0.52	0.33	0.26	0.27	0.24	0.73	0.24	000	67.0	0.33	0.27	0.28	0.26 0.24	0.44	0.51	0.47	0.45	0.44	0.46	0.43	0.45	0.44	0.46	0.40	0.44	0.44	0.43	0.44	0.44	0.43	0.43	0.43	0.43
204-corr spc	²⁰⁸ Pb / ²³² Th Age (Ma)		10.39	11.32	CU.11	10.47	10.39	10.26	8.74	9.39	9.60 0	9.79	10.16	17.6	09.6	10.49	10.29	9.58	10.23	9.79	10.00	9.91	9.62	9.78	19.9	9.20	9.19 9.19	5	8.12 7.19	8.78	8.12	7.12	7.37 8.89	20.42	20.29	21.80	20.97	20.32	21.24	20.38	20.88	20.44	21.02	20.57	20.76	20.29	20.05	20.27	20.23	19.72	19.81	19.00	20.03
	1σ (%)		2.7	1.7	0.0	0.7	1.7	2.6	5.1	3.1	3.8	3.6	3.2	0.0	2.5	2.6	2.8	2.8	2.9	3.0	5.2	3.3	1.7	2.1	2.4 7 4	0.4 C	2.6		0.0 7 2		3.4	3.9	3.5 2.7	22	2.5	2.2	2.2	2.2	2.2	2.1	2.2	2.1	1.7	1.4	2.1	2.2	2.2	2.2	2.2	2.2	7.7 7.7	7.7	2.2
204-corr	^{.08} Pb / ²³² Th		0.000514	0.000560	1400000	0.000050	0.000514	0.000508	0.000433	0.000465	0.000475	0.000485	0.000503	0.000430	0.000475	0.000519	0.000509	0.000474	0.000506	0.000484	0.000495	0.000491	0.0004/6	0.000484	0.000491	0.000458	0.000455	000000	0.000402	0.000030	0.000402	0.000352	0.000365 0.000440	0.001011	0.001004	0.001079	0.001038	0.001006	0.001051	0.001009	0.001033	0.001012	0.001053	0.001018	0.001028	0.001004	0.000993	0.001004	0.001001	0.000976	0.000981	6/6000.0 0.000079	0.000991
	f208 from ² 207 (%)		13	4 1	0 <u>5</u>	1	. 9	12	13	9	9	6 1	L 01	01	- 6	ŝ	5	∞	7	11	18	9	n o	m i		06	0 m		0 0	0 1-	. 9	×	∞ 4	-		1	1	1	1	2	5	0.0	7 0	10	10	0	2	-	7	7	(1)	10	10
	1σ (%)		1.4	1.6	1.4	0.1	1.4	1.6	5.1	2.6	3.0	2.6	5.6	1.7	2.6	2.6	2.6	2.7	2.6	2.7	3.3	2.8	0.7	7.8	2.7	0,6	2.3	00	8.7 7	4 6	2.7	2.7	2.6 2.6	2.19	2.51	2.18	2.18	2.18	2.20	2.18	2.20	2.19	71.7 710	2.18	2.19	2.22	2.21	2.19	2.20	2.21	2.21	01 0	2.18
	²⁰⁸ Pb / ²³² Th		0.000621	0.000592	202000.0	0.000552	0.000557	0.000594	0.000466	0.000515	0.000509	0.000558	0.000524	0.000542	0.000546	0.000558	0.000542	0.000523	0.000553	0.000561	0.000622	0.000533	0.00000	0.000509	0.000523	0.000465	0.000485	0.000451	0.000378	0.000468	0.000429	0.000394	0.000398 0.000464	0.001025	0.001012	0.001090	0.001048	0.001016	0.001064	0.001037	0.001060	0.001040	100100.0	0.001043	0.001052	0.001031	0.001016	0.001020	0.001020	0.000998	0.001004	766000.0 766000.0	0.001007
	σ (%)		3.0	5.8	0.0	- r - i c	2.3	2.6	2.7	5.2	5.8	4.2	4 ¢	4.4	4.6	3.2	3.8	3.4	3.7	3.1	3.8	4.6	4.v	4.0 1	4.7	0 7 7 t	6.4. 4.4		0.0	2.9	6.4	5.4	5.0 4.7	2.4	2.7	2.2	2.3	2.5	2.3	2.0	2.0	1.9	0.7	2.0	2.0	2.1	2.1	2.3	2.3	2.5	2.5	C-7 P C	. 4 6
	⁰⁷ Pb/ ²⁰⁶ Pb 1		0.359	0.253	0.280	0.216	0.215	0.194	0.228	0.202	0.196	0.185	0.159	0.143	0.180	0.163	0.153	0.204	0.158	0.234	0.114	0.094	0.219	0.281	0.235	0.220	0.109	101.0	0.194	0.286	0.127	0.139	0.127 0.307	0.126	0.124	0.132	0.142	0.126	0.137	0.160	0.158	0.167	0.160	0.212	0.233	0.239	0.247	0.132	0.151	0.119	0.116	0.134	0.149
	σ (%) 2		Ξ	9 :	= 2	19	6	Ξ	13	21	25	18	5 5	7 6	88	15	18	16	18	14	52	57	<u></u>	2	61	17	21	5	2 F	7	3 8	24	22 20	v	x x	5	9	7	5	9	9	0	0 4	o vo	o	9	5	7	9	6	× °	c x	, r
	^{.08} Pb/ ²⁰⁴ Pb 1		180	497	124	707	364	200	283	393	408	251	547 316	016	2.98	559	532	412	422	282	188	485	666 800	08/	617	0/0	505 565	250	700 700	000 447	615	312	393 744	1766	2194	1969	1960	2172	1859	1168	1167	110	1171	1099	1243	1200	1151	1676	1358	1599	1339 1461	1500	1475
	Th/U ²		34	67	<u>،</u>	0 YC	3 8	12	13	31	27	4 :	15	71	11	26	21	16	16	19	4	5	4 ç	124	82	00	30	20	6 5	15	6	17	12 82	68	73	108	66	80	104	47	52	ςς 2	00 5	6	70 70	94	94	54	60	38	37 36	0C 07	55
	Th (ppm)		8810	26461	20761	71/0	24902	10635	15622	2630	2041	2086	2785	3078	1820	5870	4846	4694	3057	3756	1152	2715	(1335	9153	4809 5157	2010	6179 6179	0100	2499	2301	2860	1943	3058 6403	37708	36495	45163	43245	37059	46170	24001	25025	26320	CC282	02180	28957	29632	31105	25641	28482	18234	18252	20402 21802	24816
	(mqq) U		258	397	140	0201	883	923	1217	84	75	147	185	108	107	230	226	284	192	200	325	391	5	74	28	0 F	207	6	99 130	45	325	117	258 78	423	499	417	438	465	443	509	482	4/8	010	331	312	316	331	471	477	480	492 506	000 443	453
	Analysis ID	auern Window	INNB1@01	INNBI @02	INNB1@03	INNB1@05	INNBI @06	INNB1@07	INNB1@08	ZEI1@01	ZEI1@04	ZEI1@06	ZEI1@07 ZEI1@00	ZELL@ 00 ZELL@ 10	ZEII@11	ZEI1@13	ZEI1@14	ZEI1@15	ZEI1@16	ZEI1@17	ZEI1@19	ZEI1@20	ZEI1@21	ZEI1@ 22	ZEI1@24 7511@25	7511@26	ZEI1@27	ZEN 600	ZEI1@02 ZEI1@03	ZEI1@05	ZEI1@09	ZEI1@12	ZEI1@18 ZEI1@23	SCHR1@01	SCHR1@02	SCHR1@03	SCHR1@04	SCHR1@05	SCHR1@06	SCHR1@07	SCHR1 @08	SCHRI@09	SCHKI@10	SCHR1@12	SCHR1@13	SCHR1@14	SCHR1@15	SCHR1@16	SCHR1@17	SCHR1@18	SCHR1@19 scup1@70	SCHR1@20	SCHR1@22
	Groups	Western T								A																		¢	'n					A	4					в													

	ω	>		Q	Table Groups Western
BURG2@07 BURG2@08 BURG2@09 BURG2@10 BURG2@13 BURG2@12	PFIT1@06 PFIT1@07 PFIT1@08 PFIT1@09 PFIT1@10	PETI (0 12 PETI (0 13 PETI (0 14 PETI (0 15 PETI (0 15 PETI (0 15 PETI (0 16 PETI (0 17) PETI (0 17) PETI (0 17) PETI (0 17) PETI (0 17) PETI (0 17)	MAYR4@01 MAYR4@02 MAYR4@03 MAYR4@04 MAYR4@05 MAYR4@05 MAYR4@05 MAYR4@17 MAYR4@17 MAYR4@17 MAYR4@17	SCHR1@23 SCHR1@24 SCHR1@25 SCHR1@26 SCHR1@27 SCHR1@28	3. Continue Analysis ID
30 53 52	245 336 347 383 388	1103 1117 1117 1117 1117 1117 1117 1117	259 340 311 358 313 368 338 338 338 251 251 251 251 251 251 251 251 251 251	211 306 363 447 351	U (ppm)
769 1014 626 1067 529 2273	5464 4523 3300 3220 2889	111683 18466 13986 13449 15956 13368 12054 12054 12054 12054 8358 8358 8358 8358 8358 8358 8358 83	5113 3449 3769 2201 1190 6938 5038 4829 5038 5038 5038 5038 5038 5038 5038 5038	16187 17861 17322 17105 18354 18145	Th (ppm)
26 12 36 44	22 13 7	114 1165 120 130 244 153 153 153 153 153 166 466 166 166	$\begin{array}{c} 20\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 1$	77 58 38 52 36	Th / U
193 219 275 324 403 69	525 381 314 238	554 569 569 569 586 662 871 871 871 871 871 871 808 871 808 871 803 348	514 341 305 246 189 370 370 370 370 370 370 370 370 370 370	921 513 546 1579 1635 1394	208рь / ²⁰⁴ рь
20 16 24 55 <i>18</i>	10 11 11 11	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	18 19 19 19 11 11 11 11 11 14	5 5 11 11	lσ (%)
0.165 0.306 0.087 0.179 0.112 0.415	0.155 0.161 0.201 0.170 0.190	$\begin{array}{c} 0.387\\ 0.450\\ 0.413\\ 0.490\\ 0.490\\ 0.490\\ 0.506\\ 0.365\\ 0.365\\ 0.368\\ 0.287\\ 0.360\\ 0.371\\ 0.317\\ 0.328\\ 0.$	0.127 0.120 0.109 0.114 0.114 0.224 0.294 0.294 0.294 0.294 0.135 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.127 0.231	0.323 0.371 0.370 0.168 0.177 0.215	207 pb / 206 pb
4.7 3.6 5.1 4.1 7.5 3.7	3.0 3.6 3.9 3.7	226 224 223 223 223 224 224 224 224 225 224 226 255 255 255 257 257 257	3.3 3.5 3.6 3.6 3.8 3.0 3.2 2.7 3.2 2.7 3.2 3.2 3.4 3.4 3.4 3.5 3.4 3.5 3.5 3.4 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.6 3.6 3.7 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	2.4 2.0 3.8 3.5	1σ (%)
0.000732 0.000959 0.000797 0.000878 0.000683 0.000683	0.000697 0.000706 0.000728 0.000704 0.000740	0.000891 0.000891 0.000918 0.000918 0.000895 0.000895 0.000892 0.000892 0.000892 0.000892 0.000892 0.000892 0.000892 0.000858 0.000854 0.000754 0.000754 0.000754	0.000567 0.000527 0.000527 0.000541 0.000545 0.000618 0.000618 0.000602 0.000602 0.000621 0.000621 0.000621 0.000625 0.000625 0.000625 0.000625 0.000545	0.000994 0.001025 0.001036 0.001047 0.000973 0.001031	208pb/232Th
2.2 2.3 8.6	2.20 2.33 2.21 2.21 2.33	2.19 2.21 2.31 2.21 2.24 2.25 2.19 2.19 2.29 2.29 2.29 2.29 2.23 2.24 2.25 2.24 2.23 2.24 2.23 2.24 2.23	11 12 12 12 12 12 12 12 12 12 12 12 12 1	2.42 2.39 2.65 3.28 3.21	Ισ (%)
10 12 12 46	6 11 6 6	N 4 N N 4 4 W W W W J A A	4 6 8 6 7 9 4 4 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	30064	f208 from 207 (%)
0.000585 0.000790 0.000685 0.000774 0.000660 0.000660	0.000664 0.000642 0.000647 0.000647 0.000641	0.000869 0.000868 0.000868 0.000855 0.000833 0.000833 0.000859 0.000859 0.000853 0.000853 0.000853 0.000853 0.000853 0.000853 0.000853 0.000853 0.000853 0.000853 0.000853 0.000853 0.000853 0.000853 0.000853 0.000853 0.000853 0.000853 0.000855 0.000857 0.0	0.000527 0.000476 0.000476 0.000476 0.000451 0.000536 0.000536 0.00052 0.00052 0.00052 0.00052 0.00052 0.000553 0.000491 0.000541 0.000543	0.000957 0.000960 0.000968 0.001027 0.000954 0.001006	204-corr 208 pb / ²³² Th
4.4 3.4 3.9 6.5 10.7	2.2 2.4 2.5	2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	1.8 1.8 2.5 2.5 2.5 2.5 1.5 1.6 1.6 1.9 1.5 1.5 1.5 1.5	2.3 2.3 3.2 3.1	Ισ (%)
11.83 15.97 13.85 15.63 13.35 9.34	13.42 12.98 13.07 12.86 12.95	16.34 17.64 17.54 17.52 16.87 17.25 17.25 17.25 17.25 17.25 17.25 17.25 14.57 14.57 13.94 15.28	10.65 9.45 9.62 10.84 10.19 10.98 10.98 10.84 10.84 11.17 9.00 9.00 9.00 9.00 11.17 11.05 11.05 11.09 10.04 10.04	19.34 19.39 19.55 20.74 19.28 20.33	204-corr spot 208Pb/232Th Age (Ma)
0.53 0.54 0.54 0.47 0.86 <i>1.00</i>	0.30 0.31 0.32 0.32 0.36	$\begin{array}{c} 0.35\\ 0.39\\ 0.39\\ 0.39\\ 0.39\\ 0.39\\ 0.39\\ 0.39\\ 0.39\\ 0.39\\ 0.39\\ 0.37\\$	0.19 0.23 0.23 0.24 0.24 0.34 0.21 0.21 0.21 0.21 0.35 0.23 0.35 0.23 0.35 0.23 0.23 0.23 0.23 0.24 0.23	0.45 0.44 0.49 0.67 0.52 0.64	t ages 1σ (abs.)
0.000659 0.000844 0.000751 0.000818 0.000600 <i>0.000571</i>	0.000658 0.000661 0.000648 0.000638 0.000650	0.000813 0.000814 0.000874 0.000849 0.000849 0.000840 0.000866 0.000866 0.000866 0.000869 0.000869 0.000869 0.000867 0.000756 0.000754	0.000542 0.000493 0.000493 0.000565 0.000565 0.000551 0.000553 0.000553 0.000553 0.000547 0.000547 0.000541 0.000541 0.000554 0.000554 0.000554 0.000554 0.0005519 0.000552 0.000551	0.000954 0.000963 0.000975 0.001029 0.000955 0.001004	207-corr 208 Pb / 232 Th
2.4 2.3 2.4 2.8 9.5	2.3 2.3 2.4	222 233 24 253 253 253 253 253 253 253 253 253 253	1.3 1.5 1.5 1.5 1.7 2.0 2.0 2.0 2.0 2.0 2.0 1.7 1.5 1.7 1.5 1.7 2.6 1.7 1.5 1.7 1.5 1.7 1.5 1.7 1.5 1.7 1.5 1.5 1.7 1.5 1.5 1.5 1.5 1.7 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	2.4 2.7 3.3 3.2	Ισ (%)
13.32 17.06 15.17 16.53 12.12 17.53	13.30 13.35 13.09 12.89 13.13	17.15 17.15 17.15 17.15 17.80 17.03 17.03 17.03 17.49 17.49 17.49 17.49 17.49 17.48 14.86 16.45 13.84 15.43	10.95 10.95 10.35 9,44 11.41 10.58 11.33 11.17 11.105 11.148 11.17 11.105 11.148 10.50 11.39 11.54	19.27 19.45 19.70 20.78 19.30 20.28	207-corr spot 208Pb / 232Th Age (Ma)
0.31 0.39 0.36 0.38 0.33 <i>1.10</i>	0.29 0.31 0.30 0.29 0.32	$\begin{array}{c} 0.36\\ 0.39\\ 0.41\\ 0.41\\ 0.40\\ 0.38\\ 0.40\\ 0.38\\ 0.38\\ 0.38\\ 0.39\\ 0.38\\ 0.39\\ 0.39\\ 0.34\\ 0.37\\ 0.34\\$	0.14 0.15 0.15 0.15 0.23 0.23 0.14 0.28 0.14 0.15 0.21 0.21 0.21 0.22 0.15 0.15 0.15 0.13	0.47 0.47 0.52 0.53 0.53	ages 1σ (abs.)

												100		-	100		200	-	LOC	
												504	1102-	_	- 10ds II02-407	ages	100-107		nds IInn-707	ages
Groups	Analysis ID	U (ppm)	Th (ppm)	Th/U	²⁰⁸ Pb / ²⁰⁴ Pb	1σ (%)	²⁰⁷ Pb / ²⁰⁶ Pl	b 1σ (%)	$^{208}\mathrm{Pb}/^{23}$	² Th 1 <i>o</i> (%) f208 froi 207 (%	m ²⁰⁸ Pb/ ²³² 1	Th lot	(%) 2081	Pb / ²³² Th 1 Age (Ma)	σ (abs.)	²⁰⁸ Pb/ ²³² Th	1σ (%)	²⁰⁸ Pb / ²³² Th Age (Ma)	lơ (abs.)
Western	Tauern Window																			
A	PLAN1@01	190	1647	6	56	6	0.57.	7 2.2	0.001	582 3.1	1 6	3 0.00070	. 90	6.9	14.27	0.98	0.000580	5.1	11.73	09.0
	PLAN1@02	177	12498	12	284	Ξ '	0.36.	1 2.9	0.000	1.4 1.4 1.4	4	9 0.0005	85	2.1	11.81	0.25	0.000587	1.5	11.86	0.17
	PLANI @03	209	7757	1 °	90	× 5	0.0260	9.1 0 C	100.0	034 3 700	o c n c	30000 0 5	8/ 8	0.0	11.0/	0.04	209000.0	4. /	12.23	/5.0
	PLAN1@05	410	1542	04	101	1 1	0.20	0.7 L C	0.00	043 25	7 4	0.000.0	08	4.0	9 88	0.78	0.000574	0.7 7 7	11.61	67.0
	PLAN1@06	458	1687	4	58	1 0	0.377	7 2.4	0.001	231 6.4	, v.	5 0.00057	75	0.8	11.62	0.93	0.000550	7.5	10.11	0.84
	PLAN1@07	462	2662	. 9	6	12	0.284	1 2.5	0.000	864 4.0	0 C	0 0.0006	35	6.3	12.83	0.81	0.000520	4.5	10.50	0.47
	PLAN1@08	509	3332	7	104	14	0.242	2 3.3	0.00	1751 2.2	3	4 0.00060	07	6.0	12.26	0.74	0.000569	2.7	11.50	0.31
	PLAN1@09	594	4167	7	101	12	0.235	3 2.9	0.000	1690 2.4	4	4 0.0005(01	5.1	10.12	0.51	0.000522	2.6	10.55	0.28
	PLAN1@10	774	5878	8	148	12	0.19(0 2.8	0.000	1661 2.1	1	7 0.0005	57	3.9	11.26	0.44	0.000550	2.2	11.11	0.25
	PLAN1@13	1215	1759	-	68	12	0.13(5 2.5	0.000	967 5.4	4 4	1 0.00057	76	8.2	11.65	0.96	0.000567	9.9	11.45	0.75
	PLANI@14	589	4750	× o	176	14	0.16	7 3.2	0.00	0680 1.: 200 1.:	5	5 0.0005	81	3.7	11.73	0.43	0.000579	1.6	11.71	0.19
	PLANI@15	424	3653	6 o	86 39	= =	0.23.	5 2.9	0.000	9.60 7.6	8 0	2 0.0006. 0 0.00050	24	5.1	12.61	0.65	0.000610	5.0	12.32	0.20
	PLANI@17	440	3815	0 x	00 108	91	0.195	3.0 2.4	0.000	744 1.6	с — С —	8 0.0005K	. 95	5.5 4 7	11 44	0.02	0.000608	2.0	12.28	60.0
	PLANI@18	443	4422	01	161	1 11	0.250	2.7	0000	763 3.5	. 0	1 0.00067	. 02	4.9	13.53	0.67	0.000600	4.0	12.13	0.48
	PLAN1@19	365	10351	28	214	10	0.305	5 2.7	0.000	685 1.2		1 0.00059	96	2.5	12.04	0.31	0.000609	1.8	12.30	0.22
	PLAN1@20	467	8041	17	153	6	0.359	3 2.1	0.000	751 1.5	5 2	2 0.0006(.06	2.8	12.25	0.34	0.000588	1.6	11.88	0.20
	PLAN1@21	627	6050	10	103	6	0.322	2 2.0	0.000	1836 2.(9 2	8 0.00057	17	3.7	11.66	0.43	0.000600	2.2	12.12	0.27
	PLAN1@23	373	4646	12	715	17	0.102	2 2.9	0.000	1645 2.(4 0.0006	Π	2.7	12.34	0.33	0.000617	2.7	12.46	0.33
	PLANI@24	390	4664	12	677	8 !	0.09() 3.5	0.000	0610 2.t	9	4 0.0005	76	2.7	11.63	0.31	0.000588	2.7	11.89	0.32
	PLANI @25	359	0813	4	519	1	0.12	1 3.0	0.000	1639 2. 207 2.		0.0005	16	5.8	11.94	0.33	0.000598	7.7	12.09	0.32
	PLANI@20 PLANI@27	205 476	461/ 3538	0 L	401 541	CI 01	0101	0.0 1	0.000	120 2.7 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	0	2000.0 8	2,6	0.2	50°11	0.35	0.000601	1.7	11.88	76.0 0 33
	PLAN1@28	564	8192	15	460	=	0.12	23	0000	4660 2.4		6 0.0006	8 2	2.6	12.21	0.32	0.000622	2.6	12.56	0.33
	PLAN1@29	620	14199	23	619	10	0.130	2.1	0.000	1637 2.6		4 0.00059	98	2.6	12.09	0.31	0.000609	2.6	12.32	0.33
	PLAN1@30	528	8241	16	420	13	0.127	7 2.7	0.000	632 2.1		6 0.00057	74	2.7	11.60	0.31	0.000595	2.7	12.02	0.32
	PLAN1@31	1028	1527	-	124	12	0.09(0.2.0	0.000	802 3.1	1 2	6 0.0005	52	4.4	11.16	0.49	0.000595	3.8	12.02	0.45
	PLAN1@32	1152	1721	- '	227	19	0.060	5 2.7	0.000	1661 2.		2 0.0005	84	4.0	11.08	4.0 4.0	0.000579	3.1	11.70	0.36
	PLANI @33	926	4303	νţ	361	4 5	0.08:	2.2	0.00	0642 2.		8 0.0005 1	13	2.8	11.57	0.33	0.000588	5.8	11.87	0.33
	PLANI@34 DI ANI@35	623 408	006/	15 16	485	8	0.12:0	57 57	0.000	1009 2.0	- 0 -	/ 0.0006. 0.00050	5	0.7	12.43	0.36	0.000624	0.7	10.21	0.35
	PLAN1@36	304	7521	25	427	° [0.182	2 2.7	0.000	646 2.6		0.0005	18	2.7	11.87	0.31	0.000603	2.6	12.19	0.32
	PLAN1@38	580	9607	17	525	14	0.112	2.4	0.000	1626 2.2		5 0.00058	80	2.3	11.73	0.27	0.000596	2.2	12.05	0.27
	PLAN1@39	331	10707	32	497	13	0.16^{2}	4 2.7	0.000	1628 2.2	. 2	4 0.00058	81	2.3	11.74	0.27	0.000600	2.2	12.12	0.27
	PLAN1@40	344	2342	2	311	21	0.14	3 2.9	0.000	1698 2.2	3	5 0.0006	12	3.3	12.36	0.41	0.000593	2.5	11.98	0.30
	PLANI @41	48/	10098	77	360	=	0.17	7.1.2	0.00		7	2000.0 /	84	2.3	11.80	0.27	0.00000	2.5	12.28	0.28
в	PLAN1@11	1410	6659	5	175	20	0.20	4 4.3	0.00	568 2.5	5 1	8 0.00057	78	6.4	11.69	0.74	0.000464	2.8	9.38	0.26
	PLANI@12	1310	7371	9	160	23	0.200	5.3	0.000)467 2.		8 0.0005(6 2	7.9	10.28	0.81	0.000384	2.5	7.75	0.19
	PLANI@22	733	5140 1514	0 0	512	02 0	0.29	2.1	0.001	727 722'	¢ - د	1 U.UUU4: 0 0.00054	56 74	5.3 8.3	9.90 10.99	0.92	0.000491	1.6	9.91	06.0
Central 7	Fauern Window													-		-		-		
	SCHEII@16	406	09005	144	1005	4	0.191	10		10 920		00000		190	17 14	0.44	0.000864	190	17.46	0.46
c	SCHEIL@17	304	61361	202	1483	0	0.210	0.1 1.9	0.000	10/00 2.6		1 0.00091	15	2.6	18.49		0.000928	2.6	18.75	0.50
	SCHEI1@18	265	60179	227	1432	9	0.23	5 1.9	0.000	1949 2.t		1 0.000%	24	2.6	18.66	0.48	0.000937	2.6	18.93	0.50
	SCHEI1@20	311	62554	201	1416	7	0.22	2 2.0	0.000	906 2.:	2	1 0.0008	81	2.6	17.81	0.46	0.000893	2.7	18.05	0.48
в	SCHEI1@11	394	53473	136	780	7	0.305	9 2.0	0.000	868 1.4	4	3 0.0008	29	1.4	16.75	0.23	0.000842	1.4	17.02	0.23
	SCHEIL@12	434	47204 50556	109	857	с ,	0.268	2.2	0.000	007 1.4	4 -	3 0.0008	55 51	1.4	17.28	0.24	0.000862	4 -	17.41	0.24
	SCHEIL@13	321	53530	167	559	0 1-	0.405	1.7	0.000	1 1 1 1 1 1		4 0.00084	5	+ - T	17.45	0.24	0.000876	1 1	17.69	0.25
	SCHEIL@32	291	55126	189	1026	. 9	0.305	3 1.5	0.000	868 2.5	+ ∞	2 0.0008	36	2.7	16.88	0.46	0.000848	2.8	17.14	0.48

led.	
atinu	
G	
ć	
le	
q	
E	

GARTIEN J. 111.5 4.01 1.00 1.11 GARTIEN 11 23948 218 894 7 GARTIEN 11 7183 23535 263 679 7 GARTIEN 11 7183 21334 220 755 7 GARTIEN 10 13775 207 755 7 7 GARTIEN 10 13775 207 55 7 7 GARTIEN 10 13775 207 55 7 7 GARTIEN 10 13775 207 55 7 7 NOWA3601 19 718 73 207 7 7 NOWA3601 146 7715 53 176 7 7 NOWA3621 129 908 667 7 7 7 7 NOWA3621 129 667 7 7 2 137 7 7 <t< th=""><th>0.239 0.397 0.307 0.437 0.437 0.321 0.330 0.870 0.870</th><th>3.4 0.000731 3.4 0.000854 1.5 0.000820 1.7 0.000820</th><th>7 V C</th><th></th></t<>	0.239 0.397 0.307 0.437 0.437 0.321 0.330 0.870 0.870	3.4 0.000731 3.4 0.000854 1.5 0.000820 1.7 0.000820	7 V C	
	0.397 0.307 0.437 0.321 0.330 0.802 0.810	1.5 0.000854 1.7 0.000820		
	0.307 0.437 0.321 0.330 0.802 0.810	1.7 0.000820	1.8	. 4
GARTI@() 14 7182 501 822 14 GARTI@(2) 106 2334 220 73 3 GARTI@(2) 106 2334 220 73 3 GARTI@(2) 106 2334 220 73 3 GARTI@(4) 99 7183 73 397 10 NOWA3@(1) 99 7183 73 205 7 NOWA3@(2) 111 7973 72 205 7 NOWA3@(2) 107 6658 62 94 7 NOWA3@(1) 107 6658 62 94 7 NOWA3@(1) 106 6470 61 1230 14 NOWA3@(1) 106 6470 61 1230 14 NOWA3@(2) 118 7 9 9 7 NOWA3@(2) 116 655 45 131 7 NOWA3@(2) 119 78 9 9 <td>0.437 0.321 0.330 0.802 0.810</td> <td></td> <td>1.8</td> <td>7</td>	0.437 0.321 0.330 0.802 0.810		1.8	7
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	0.320 0.330 0.802 0.810	3.9 0.000778	2.2	(1 (
	0.802 0.810	1.6 0.000839	2.0	n w
GARTT@(d) 19 1309 696 69 4 GARTT@(d) 93 12315 133 2322 26 CARTT@(d) 93 1183 73 397 10 NOWA3802 111 713 73 295 10 NOWA3802 105 102 112 506 9 NOWA3803 117 605 112 506 9 NOWA3801 175 109 113 214 7 NOWA3801 178 3925 22 114 81 7 NOWA3822 106 571 26 137 7 7 NOWA3821 106 592 22 124 7 7 NOWA3822 193 563 56 138 7 7 NOWA3822 190 563 57 124 7 7 NOWA3821 192 563 56 57 124 7	0.810	0.8 0.001916	11.9	62
CARTI@0693 12315 133 2322 26 NOWA3@019971837339710NOWA3@021117973722057NOWA3@0310751091012507NOWA3@0310765862945NOWA3@0310765862947NOWA3@03107658621777NOWA3@03107653611777NOWA3@03107653512711481NOWA3@0310765310661737NOWA3@0310647061123019NOWA3@2110293390846147NOWA3@21192942505125310NOWA3@2121210026273388NOWA3@21212107505122513NOWA3@21212107505122513NOWA3@21213107505122513NOWA3@21213107505122513NOWA3@21213107505122513NOWA3@21213107505122513NOWA3@21213107505122513NOWA3@21213107505122513NOWA3@212131075023123149NOWA3@21		1.0 0.001303	7.8	48
$\begin{array}{l l l l l l l l l l l l l l l l l l l $	0.182	6.4 0.000453	4.0	Ι
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.433	2.1 0.000894	4.3	6
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.569	1.8 0.000864	3.8	15
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.474	2.1 0.000852	3.8	7
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.724	1.2 0.001132	5.8	37
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.695	1.4 0.001145	8.0	38
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.606	C/80000 0.0000	0.0	77 2
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.445	1.0 0.001023	8.4 0 z	17
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.445	1.7 0.001077	9.9 9	00
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.478	CC0100.0 C.1	0.0	00
$\begin{array}{lcccccccccccccccccccccccccccccccccccc$	0.133	3.9 0.000837	÷ -	- c
NOWA3@24 100 9053 90 84 1010 15 NOWA3@17 192 9482 50 555 10 15 NOWA3@15 193 1655 54 533 10 15 NOWA3@13 193 8655 54 533 13 8 NOWA3@13 193 1655 62 531 9 13 NOWA3@12 212 10760 51 2255 13 8 NOWA3@13 34 34 11123 231 8 9 9 NOWA3@15 48 11123 231 48 11 7 9 NOWA3@16 48 11123 231 49 9 9 NOWA3@15 48 11123 231 49 9 9 NOWA3@15 48 11123 231 49 9 9 9 NOWA3@16 48 11123 231 231 3 <td>0.300</td> <td>2.7 0.000864</td> <td>6.0</td> <td>14</td>	0.300	2.7 0.000864	6.0	14
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0.265	3.1 0.000786	1.0	ю
$\begin{array}{l l l l l l l l l l l l l l l l l l l $	0.176	3.6 0.000857	0.9	2
NOWA3@18 193 8656 45 388 8 NOWA3@20 179 11023 62 531 9 NOWA3@21 212 10750 51 225 13 NOWA3@21 212 10750 51 225 13 NOWA3@21 212 10750 51 225 13 NOWA3@13 34 9676 287 371 8 NOWA3@15 48 11123 250 347 7 NOWA3@16 48 11124 256 331 8 NOWA3@16 48 11124 256 339 9 NOWA3@16 48 11124 256 349 9 NOWA3@16 48 11124 256 349 9 NOWA3@18 212 3097 15 123 9 NOWA3@16 48 11124 256 251 19 NOWA3@16 9 9 9 9<	0.290	1.7 0.000859	3.7	7
$\begin{array}{l l l l l l l l l l l l l l l l l l l $	0.288	1.7 0.000838	3.8	8
NOWA3@20 189 10600 56 451 8 NOWA3@21 212 10750 51 225 13 NOWA3@12 30 1253 233 347 7 NOWA3@13 34 9676 287 371 8 NOWA3@13 34 10246 260 323 8 NOWA3@15 48 11123 231 498 10 NOWA3@16 48 11123 231 498 10 NOWA3@16 48 11123 231 498 9 NOWA3@16 212 3097 123 8 9 GART3@13 85 8547 101 226 9 GART3@14 112 9936 89 207 10 GART3@18 161 8380 52 123 13 GART3@18 161 8380 52 123 13 GART3@18 161 8380 52 <td< td=""><td>0.286</td><td>1.7 0.000832</td><td>3.9</td><td>9</td></td<>	0.286	1.7 0.000832	3.9	9
NOWAJ@CI 212 1070 51 223 13 NOWAJ@CI 50 1253 253 347 7 NOWAJ@CI 39 10246 260 323 8 NOWAJ@CI 48 11123 231 498 10 NOWAJ@CI 48 11123 231 498 10 NOWAJ@CI 48 11123 231 498 9 NOWAJ@CI 48 11123 231 498 9 NOWAJ@CI 85 8547 101 226 9 ART3@CI 917 917 112 9936 89 207 10 GART3@CI 159 9327 59 179 13 11 GART3@CI 318 90 207 10 206 11 GART3@CI 318 930 52 123 11 10 GART3@CI 318 930 207 11 10 212 <td>0.278</td> <td>1.7 0.000836</td> <td>3.9</td> <td>9 [</td>	0.278	1.7 0.000836	3.9	9 [
$\begin{array}{llllllllllllllllllllllllllllllllllll$	000.0	106000.0 C.7	4.0	-
NOWA3@13 34 9676 287 371 8 NOWA3@14 33 10246 287 371 8 NOWA3@16 48 110245 260 323 8 NOWA3@16 48 11123 231 498 10 NOWA3@16 48 10718 225 349 9 NOWA3@15 38 5847 101 226 9 GART3@15 95 9197 97 184 10 GART3@15 193 9255 99 175 18 10 GART3@16 94 9255 99 179 13 10 GART3@17 161 830 52 123 11 10 GART3@17 151 870 52 13 10 1 10 GART3@17 151 830 52 123 11 10 11 10 13 11 10 13 11 1	0.547	1.8 0.000868	3.9	8
NOWAJSE1 39 10246 200 32.5 8 NOWAJSE15 4.8 11123 231 438 10 NOWAJSE15 4.8 10718 225 349 9 NOWAJSE15 4.8 10718 225 349 9 GART3@14 112 9936 89 227 10 226 GART3@15 94 9295 997 97 184 10 GART3@15 195 9307 52 123 13 9 GART3@16 94 9205 99 173 184 10 GART3@17 159 9207 52 128 11 GART3@17 159 9207 52 128 11 GART3@10 337 8930 30 229 11 GART3@10 387 10683 28 244 13 GART3@10 387 10683 28 244 13	0.556	1.9 0.000839	8.0	× 0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.534	2.0 0.000783	6.6 9.6	ж г
NOMMAGE 21 10110 223 339 9 GART3@13 S S447 101 226 9 GART3@15 95 9197 97 15 739 8 GART3@15 95 9197 97 112 206 9 GART3@15 94 9295 99 178 10 GART3@15 159 9325 59 179 13 GART3@17 159 9325 59 179 13 GART3@08 318 9325 59 179 13 GART3@08 318 953 30 219 11 GART3@08 318 993 31 221 11 GART3@09 318 9895 37 220 11 GART3@01 318 8919 31 221 11 GART3@01 318 93 244 13 267 13 GART3@02 251	0.500	1//000/0 0.0	0.0	- 0
GART3@13 85 8547 101 226 9 GART3@14 112 9936 89 207 10 GART3@15 95 9197 97 11 10 GART3@15 94 9295 99 184 10 GART3@15 199 9325 59 179 13 GART3@18 161 8380 52 128 11 GART3@07 251 11739 47 318 10 GART3@08 318 9553 30 219 11 GART3@08 318 9819 31 221 11 GART3@01 318 9819 31 221 11 GART3@11 387 10683 28 224 13 GART3@21 244 11366 244 13 21 11 GART3@20 251 4358 17 221 11 221 11 GART3@20	0.375	C#1000:0 0.7 1.7 0.001111	4:4 6.8	29
GART3@c1 35 Value Value <th< td=""><td></td><td></td><td></td><td>; ;</td></th<>				; ;
GART3@(1 112 9956 89 207 10 GART3@(5 94 995 97 97 184 10 GART3@(5 94 925 97 97 184 10 GART3@(5 94 925 97 97 184 10 GART3@(5 159 9237 59 179 13 91 GART3@(8 161 8380 52 123 11 91 91 91 91 93 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 93 91 91 91 91 91 91 91 92 91 91 91 91 91 91 91 91 93 91 91 91 91 91 93 93 93 91 91 91 91 91 91	0.537	2.1 0.000901	2.6	14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.541	2.4 0.000879	5.8	14
GART3@T 94 9.255 99 185 9 GART3@T 15 19 9225 99 185 13 GART3@T 161 830 52 128 11 GART3@T 161 830 52 128 11 GART3@08 318 9953 30 219 11 GART3@08 318 9953 30 219 11 GART3@08 318 9953 37 221 11 GART3@10 315 8955 27 221 11 GART3@11 387 10683 28 244 13 GART3@21 484 11366 24 13 210 13 GART3@21 247 1356 24 13 26 17 210 13 GART3@20 251 4358 17 100 7 2 23 13 GART3@20 251 4358 17	C6C.0	2.10 0.0000	9.5 9.6	61
GAR(13@1/) 1.9 932/ 5.9 1/9 13 GART3@08 161 8380 52 128 11 GART3@07 2.51 11739 47 318 11 GART3@08 315 8995 27 239 11 GART3@09 335 8995 27 220 11 GART3@10 318 9819 31 221 11 GART3@10 318 9819 31 221 11 GART3@10 318 9819 31 221 11 GART3@12 344 110683 28 244 13 GART3@20 251 438 17 122 11 GART3@22 241 13787 56 218 8 GART3@23 240 123646 54 247 10 GART3@23 240 12846 54 247 10 GART3@23 240 12846 54	0.585	1.9 0.000017	3.2	20
GAR(13@18) Iol 830 52 128 I1 GAR(13@0) 251 11739 47 318 10 GAR(13@0) 318 9593 30 210 11 GAR(13@0) 318 8955 27 220 11 GAR(13@0) 318 9819 31 221 11 GAR(13@0) 318 9819 31 221 11 GAR(13@0) 318 9819 31 221 11 GAR(13@1) 387 10683 28 244 13 GAR(13@2) 244 11366 24 210 11 GAR(13@2) 241 13787 56 218 8 GAR(13@2) 240 12846 54 247 10 GAR(13@2) 240 12846 54 217 10 GAR(13@2) 240 12846 54 247 10	0.621	2.6 0.000881	2.9	25
GART3@07 251 11739 47 318 10 GART3@08 318 9933 30 219 11 GART3@08 318 9933 30 219 11 GART3@00 318 9933 30 219 11 GART3@10 318 9819 31 221 11 GART3@11 387 10683 28 244 13 GART3@12 484 11366 24 210 13 GART3@20 251 4358 17 122 10 GART3@20 251 4358 17 122 10 GART3@20 251 4358 17 122 10 GART3@22 240 12846 54 247 10 GART3@23 240 12846 54 247 10 GART3@23 240 12846 54 247 10	0.623	2.6 0.000904	2.9	25
GART3@08 318 9593 30 219 11 GART3@00 335 8995 27 221 11 GART3@10 335 8995 27 221 11 GART3@10 335 8915 27 221 11 GART3@11 387 10683 28 244 13 GART3@12 444 11366 24 13 GART3@20 129 126 14 100 7 GART3@20 251 4358 17 122 10 7 GART3@21 247 13387 56 218 8 GART3@22 240 13387 55 218 8 GART3@23 240 13387 55 218 8 GART3@23 240 12846 54 247 10 GART3@23 240 12846 54 247 10 GART3@23 114 795 255 <	0.312	2.1 0.000865	2.8	~
GART3@09 335 8995 27 220 11 GART3@10 318 9819 31 221 11 GART3@11 318 9819 31 221 11 GART3@11 318 9819 31 221 11 GART3@12 434 11366 24 210 13 GART3@12 129 5307 41 100 7 GART3@20 231 4358 17 122 10 GART3@20 241 13787 56 218 8 GART3@22 241 13787 56 218 8 GART3@23 240 12846 54 247 10 GART3@23 240 12846 54 247 10 GART3@01 114 7936 69 285 12	0.374	2.3 0.000836	2.7	15
GART3@() 318 9819 31 221 11 GART3@(1) 387 10683 28 244 13 GART3@(1) 387 10683 28 244 13 GART3@(1) 129 5307 41 100 7 GART3@(2) 251 4358 17 122 10 GART3@(2) 251 4358 17 122 10 GART3@(2) 247 13787 56 215 8 GART3@(2) 240 12846 54 247 10 GART3@(2) 114 7936 69 285 12	0.379	2.2 0.000858	2.7	17
GART3@11 387 10683 28 244 13 GART3@12 484 11366 24 210 13 GART3@12 144 11366 24 210 13 GART3@12 129 136 24 100 7 GART3@20 251 4358 17 122 10 GART3@21 247 13787 56 218 8 GART3@23 240 13646 54 247 10 GART3@23 240 12846 54 247 10 GART3@23 114 7936 69 285 12	0.377	2.2 0.000875	2.8	15
GART3@12 484 11366 24 210 13 GART3@19 129 5307 41 100 7 GART3@210 251 4378 17 122 10 7 GART3@210 251 13787 817 122 10 7 GART3@22 431 10631 25 215 13 GART3@23 240 12846 54 247 10 GART3@21 114 7936 69 285 12	0.326	2.8 0.000829	2.7	11
GART3@19 129 5307 41 100 7 GART3@20 251 4358 17 122 10 GART3@21 241 13787 56 218 8 GART3@22 431 10631 25 215 13 GART3@23 240 12846 54 247 10 GART3@23 240 12846 54 247 10 GART3@01 114 7936 69 285 12	0.388	3.1 0.000864	2.6	12
GART3@20 251 4358 17 122 10 GART3@21 247 13787 56 218 8 GART3@23 240 10631 256 218 8 GART3@23 240 12846 54 247 10 GART3@23 240 12846 54 247 10 GART3@01 114 7936 69 285 12	0.543	1.7 0.001103	4.2	31
GART3@21 247 13787 56 218 8 GART3@22 431 10631 25 215 13 GART3@23 240 12846 54 247 10 GART3@23 240 12846 54 247 10 GART3@01 114 7936 69 285 12	0.408	2.1 0.000990	3.6	29
GART3@22 431 10631 25 215 13 GART3@23 240 12846 54 247 10 GART3@01 114 7936 69 285 12	0.411	1.9 0.000901	2.7	12
GART3@23 240 12846 54 247 10 GART3@01 114 7936 69 285 12	0.466	2.5 0.000880	2.6	19
GART3@01 114 7936 69 285 12	0.414	2.2 0.000879	2.9	12
GART3@01 114 7936 69 285 12				: :
C 100 000 000 000 000 000	0.352	2.7 0.000/62	2.6	01 8
CI 001 77 2002 100 100 7700 77 100 100 100 100 100 100	260.0		6.7 C	C7 2
CAKI3@04 1/0 329/ 19 138 1/	262.0	5.5 0.0008U2	6.7 9.6	07 5
CiAKI3@05 123 4/84 39 191 14	0.595	2.9 0.000/ /0	2.2	1
GART3@06 166 4521 27 197 17	0.374	3.5 0.000763	2.6	17

 $\begin{array}{c} 0.37\\ 0.05\\$

-																																																		
208 Pb / ²³² Th Aoe (Ma)) D	15.32	14.47	15.59	14.04	16.15	15.42	16.26	16.48	14.72	13.72	9.09	16.35	14.80	16.03	14.40	14.57	15 01	13.86	14.91	15.38	16.65	16.85	15.45	17.01	16.15	15.64	15.87	15.87	15.30	16.08	15.62	14.61	14.00	15.08 15.93	15.65	15.36	15.78	14.82	13.38	13.65	16.04	14.37	14.43	c0.cl	14.92	15.27	14.29	16.09	14.58
1σ (%)		2.4	2.4	2.2	0.0	81	2.2	2.0	2.0	17.7	12.9	4.0	4.3	3.8	3.8	9.0	9.0 9.5	4.8	5.9	6.0	4.7	1.2	0.9	1.1	0.9	3.7	3.8	3.9	3.9	4.0	3.9	3.8	3.9	8.C	4.4 6.9	26	2.9	3.9	3.3	3.0	3.0	2.8	2.7	2.8	67.0	17	4.3	3.7	2.7	2.9
$^{208}\mathrm{Pb}/^{232}\mathrm{Th}$		0.000758	0.000716	0.000771	0.000820	0.0007999	0.000763	0.000805	0.000816	0.000729	0.000679	0.000450	0.000809	0.000733	0.000793	0.000/13	0.000681	0.000061	0.000686	0.000738	0.000761	0.000824	0.000834	0.000765	0.000842	0.000799	0.000774	0.000786	0.000786	0.000757	0.000796	0.000773	0.000723	07/0000	0.000788	0.000775	0.000760	0.000781	0.000733	0.000662	0.000676	0.000794	0.000711	0.000714	0.0000	0.000.0	0.000756	0.000707	0.000797	0.000773
1σ (abs.)		0.34	0.37	0.33	0.242	0.28	0.32	0.31	0.32	0.43	0.48	0.35	0.65	0.48	0.57	80.0	96.0	0.50	0.50	0.68	0.59	0.22	0.18	0.18	0.17	0.57	0.53	0.57	0.56	0.60	0.56	0.54	0.50	0.52	0.81	0 41	0.43	0.58	0.47	0.51	0.51	0.41	0.41	0. 4. :	4.0	4.0 4.0	0.53	0.56	0.40	0.49
208 Pb / ²³² Th Age (Ma)		14.89	13.51	15.19	14.28	15.84	14.98	15.86	16.10	10.43	11.53	9.01	16.31	14.23	15.90	14.29	13.02	14.84	11.42	14.68	14.80	16.38	16.81	15.19	16.65	16.15	15.24	15.58	15.45	15.18	15.58	15.18	13.93	14.48	15.39 15.41	15.09	14.46	15.54	14.61	13.95	12.90	15.36	13.92	14.37	14.28	14.20	13.75	13.65	14.99	14.85
1σ (%)		2.3	2.7	2.2	1.8	1.8	2.2	2.0	2.0	4.1	4.2	3.9	4.0	3.4	3.6	4.1	4.1	40	4.4	4.6	4.0	1.3	1.0	1.2	1.0	3.5	3.5	3.7	3.6	4.0	3.6	3.5	3.6	0.0	4.0 5.3	2.7	3.0	3.7	3.2	3.7	4.0	2.7	3.0	3.0	3.0	3.1	3.9	4.1	2.7	3.3 2.9
$^{208}\mathrm{Pb}/^{232}\mathrm{Th}$		0.000737	0.000669	0.000752	0.000/07	0.000784	0.000742	0.000785	0.000797	0.000516	0.000571	0.000446	0.000807	0.000704	0.000787	0.000/07	0.000683	0.00000	0.000565	0.000726	0.000732	0.000811	0.000832	0.000752	0.000824	0.000799	0.000755	0.000771	0.000765	0.000752	0.000771	0.000751	0.000689	0.00017	0.000763	0 000747	0.000715	0.000769	0.000723	0.000691	0.000638	0.000760	0.000689	0.000711	0.000/22	CU/00000	0.000681	0.000676	0.000742	0.000745

1σ (abs.)

207-corr spot ages

207-corr

204-corr spot ages

204-corr

f208 from 207 (%)

 1σ (%)

 $^{208}\mathrm{Pb}\,/\,^{232}\mathrm{Th}$

 1σ (%)

²⁰⁷ Pb / ²⁰⁶ Pb

 208 Pb / 204 Pb $~1\sigma~(\%)$

Th/U

Th (ppm)

U (ppm)

Analysis ID

Groups

13.92 12.17 12.02 12.02 12.92 11.28

0.000689 0.000602 0.000595 0.000639 0.000630 0.000538

0.37 0.52 0.60 0.44 0.51 0.73

												204-corr		204-corr spot age	ŝ	207-corr		207-corr spot ages	
Groups	Analysis ID	U (ppm)	Th (ppm)	Th / U	²⁰⁸ Pb / ²⁰⁴ Pb	lσ (%)	²⁰⁷ Pb / ²⁰⁶ Pb	$1\sigma~(\%)$	²⁰⁸ Pb / ²³² Th	lσ (%)	f208 from 207 (%)	²⁰⁸ Pb / ²³² Th 1σ	(%) 2	⁰⁸ Pb / ²³² Th 1σ Age (Ma)	(abs.)	²⁰⁸ Pb / ²³² Th 1σ	(%)	²⁰⁸ Pb / ²³² Th 1σ (a Age (Ma)	bs.)
Central	Tauern Window																		
	STEI2@01	395	15567	39	1346	5 1	0.106	2.0	0.000873	2.12	32	0.000848	2.1	17.14	0.36	0.000859	2.1	17.36).37 136
	STEI2@02	417	16643	40 5	1020	910	0.115	1.9	0.000869	2.04	2	0.000836	2.0	10.82 16.89	0.34	0.000854	2.0	17.25 ().35
	STEI2@04	376	17989	48	1436	Ξ	0.097	2.2	0.000854	2.15	1	0.000831	2.1	16.79	0.35	0.000844	2.1	17.05 ().37
	STEI2@05	348	7706	22	844	13	0.101	22	0.000860	2.50	× 00	0.000820	2.5	16.57	0.41	0.000837	2.5	16.92	
	STEL2@00 STEL2@07	280 257	5814	23	556	12	0.123	2.0	0.000915	2.06	6 4	0.000843	2.1	17.20	0.36	0.000858	21	17.34 () 36
	STEI2@08	387	5851	15	730	13	0.090	2.3	0.000874	2.49	3	0.000830	2.5	16.76	0.41	0.000848	2.5	17.13 ().43
	STEI2@09	443	5143	12	649	14	0.080	2.3	0.000859	2.51	3	0.000810	2.5	16.37	0.41	0.000832	2.5	16.82 ().43
	STEI2@10	295	6041	20	689	14	0.118	224	0.000875	2.18	ათ	0.000828	2.2	16.73	0.37	0.000844	2.2	17.06	0.37
	STEI2@11	548	11690	210	755	10	0.088	1.2	0.000828	1 96	2 1	0.000829	1.0	16.76	0.33	0.000841	2.1	10.99 (0.00
	STEI2@13	579	10095	17	798	= :	0.101	1.8	0.000871	2.26	3	0.000829	2.2	16.75	0.37	0.000844	2.3	17.06 ().39
	STEI2@14	601	10283	17	745	10	0.099	1.8	0.000869	2.15	3	0.000824	2.1	16.65	0.35	0.000843	2.2	17.03 ().37
	STEI2@15	352	10505	33 33	962 676	10	0.138	1.0	0.000864	1.83	2 2	0.000829	1.8	16.75	0.30	0.000848	3.1.8	17.14 (0.31
	STEI2@17	387	8068	21	902	13	0.091	2.2	0.000864	2.03	2	0.000827	2.0	16.71	0.34	0.000846	2.0	17.10 ().35
	STEI2@18	348	11391	33	1180	13	0.101	2.5	0.000846	2.09		0.000819	2.1	16.55	0.34	0.000835	2.1	16.87 (0.35
	STEI2@20	323	7488	23	943	13	0.035	2.6	0.000871	2.04		0.000835	2.0	16.87	0.34	0.000858	2.0	17.33 ().35
A	KNOR 1@19	149	12269	82	466	7	0.392	3.5	0.000558	2.34	4	0.000527	2.3	10.64	0.24	0.000535	2.3	10.81 ().25
	KNOR 1@20	730	9307	30	285	13	0.488	5 1	0.000587	3.28	<u>م</u>	0.000515	3.1	10.41	0.32	0.000522	ω ω ω	10.55	0.35
	KNOR 1@22	172	8289	48	512	9	0.321	4.1	0.000570	2.76	4	0.000537	2.7	10.86	0.29	0.000545	2.8	11.01 ().30
	KNOR 1@24	194	7199	37	605	13	0.268	5.3	0.000549	3.18	4	0.000517	3.1	10.44	0.32	0.000529	3.2	10.68 (0.34
в	KNOR 1@01	32	7767	246	189	, UI	0.737	2.5	0.000615	2.18	18	0.000498	2.1	10.06	0.21	0.000505	2.2	10.21 ().23
	KNOR 1@02	3 3	9885	273	115	4 0	0.731	1.8	0.000537	2.66	32	0.000521	2.3	10.53	0.26	0.000518	2.5	10.39 (0.28
	KNOR 1 @05	27	9535	356	102	ω	0.786	1.4	0.000869	2.35	36	0.000560	1.9	11.32	0.22	0.000558	2.4	11.28 ().27
	KNOR 1@06	3 33	9203	277	167	4 1	0.734	221	0.000661	2.18	19	0.000522	2.0	10.54	0.21	0.000533	2.2	10.77 (0.24
	KNOR 1@08	36 S	3783	105	136	6 (0.652	2.8	0.000701	2.17	24	0.000516	2.4	10.42	0.25	0.000533	2.3	10.76 ().24
	KNOR 1 @09	39	5846	149	281	7	0.573	3.4	0.000577	2.30	Ξ	0.000513	2.3	10.37	0.24	0.000514	2.3	10.38 ().24
	KNOR1@04	30	6902	234	95	ω	0.759	1.6	0.000920	2.21	37	0.000555	1.9	11.21	0.22	0.000576	2.3	11.63 (0.27
C	KNOR1@10	48 48	36 <i>33</i> 4611	96 811	428 444	11	0.495	5.6	0.000560	2.37 2.48	6 0	0.000499	2.4 2.6	10.07	0.24	0.000528	2.4	10.27 ().24
	KNOR1@12	57	4583	81	399	: =	0.355	5.3	0.000540	2.18	, Ui	0.000498	2.3	10.06	0.23	0.000513	2.2	10.36 (0.23
	KNOR1@13	₹¥	4104	108	443 729	13	0.331	5.0	0.000516	2.29	ມບ	0.000200	2.4	10.10	0.24	0.000501	223	10.3/ (0.24
	KNOR 1@15	76	6847	91	639	= ;	0.237	5.4	0.000529	2.19	2	0.000508	2.2	10.27	0.23	0.000515	2.2	10.41 ().23
	KNOR 1@16	65	5872	91	524	Ξ	0.224	5.8	0.000529	2.17	2	0.000503	2.2	10.17	0.23	0.000517	2.2	10.45 (0.23
	KNOR1@18 KNOR1@17	73	8867 6281	114 86	585	10	0.141	5.4	0.000590	2.32 2.24	2	0.000564	2.5	11.00 11.41	0.28	0.000578	2.5	11.68 ().28
Eastern	Tauern Window																		
Α	KAIS6@29	12	32285	2726	324	2	0.816		0.001135	2.68	11	0.001014	2.4	20.48	0.49	0.001015	2.7	20.51 ().55
	KAIS6@37	10	35152	3587	322	, 12	0.817	: =	0.001192	2.71	10	0.001065	2.4	21.51	0.52	0.001072	2.7	21.66	0.59
	KAIS6@39	10	31600	3400 3326	420 316	ას	0.820	1.4	0.001157	2.73	11 °	0.001022	2.4	20.65	0.50	0.001045	2.0 2.7	20.81 ().57
	KAIS6@41	8	32642	4280	351	2	0.824	1.2	0.001173	2.74	9	0.001057	2.5	21.36	0.53	0.001063	2.8	21.48 ().59
	KAIS6@42	6	29873	4677	292	2	0.836	1.2	0.001200	2.69	11	0.001054	2.4	21.28	0.51	0.001066	2.7	21.54 (0.58

tages	lσ (abs.)	0.50	0.57	0.59	0.61	0.60	0.61	0.57	0.60	0.60	0.58	0.59	0.58	0.58	0.59	0.58	0.50	050	0.57	020	050	020	950	050	65.0	10.0	0.63	0.62	0.63	0.63	0.77	0.64	0.63	0.59	0.66	0.65	0.59	0.58	0.63	0.68	0.52	0.58	750	00 0.59	0.43	0.41	0.39	0.47	0.40	0.43	0.40	0.42	0.46	0.46	040	0.60	0.43	0.37
207-corr spo	²⁰⁸ Pb / ²³² Th Age (Ma)	21.10	20.65	21.20	20.71	21.28	20.86	20.35	21.07	20.74	21.02	20.98	20156	20.02	21 02	21.30	90.00	20.73	20.51	10:07	70.02	20.02	00.02	6C-07	21.12	11.22	20.21	20.44	20.91	20.09	20.94	20.87	20.98	18.67	18.65	17.71	19.31	17.58	19.19	17.79	19.22	19.53	19.28	21.87	18.61	18.75	17.25	18.84	18.22	18.90	17.31	17.66	18.88	10.65	18.30	17.37	19.01	15.81
	1σ (%)	0 0	5.7	2.8	2.9	2.8	2.9	2.8	2.8	2.9	7.7	, c	8 0	i c	8 0	0 F	ic	0 0 1 C	2 0	0 0	0 0 1 C	0 0 1 C	0 0	0 F 1 C	- 10	7.7	3.1	3.0	3.0	3.1	3.7	3.1	3.0	3.2	3.5	3.7	3.1	3.3	3.3	3.8	2.7	3.0	1.7	2.7	231	2.17	2.25	2.52	2.20	2.26	2.34	2.39	2:42	10.7 02 C	0C.2	3.43	2.24	2.37
207-corr	²⁰⁸ Pb/ ²³² Th	0.001045	0.001022	0.001049	0.001025	0.001053	0.001033	0.001007	0.001043	0.001027	0.001041	0.001039	0 001017	0.001036	0 001041	0.001050	0.00100	200100.0	0.001015	120100.0	0.001034	+COTOO 0	0.00100.0	600100.0	0/0100.0	0.001094	0.001001	0.001012	0.001035	0.000994	0.001037	0.001033	0.001039	0.000924	0.000923	0.000877	0.000956	0.000870	0.000950	0.000881	0.000951	0.000967	CC6000.0	0.001083	0.00001	0.000928	0.000854	0.000933	0.000902	0.000935	0.000857	0.000874	0.000934	0.00000	0100000	0.000860	0.000941	0.000783
ages	lσ (abs.)	0.42	0.44	0.47	0.45	0.44	0.46	0.43	0.43	0.46	0.46	0.46	0.46	0.45	0.46	0.48	0.43	CH-0	110	44.0	0.46	010	0.40	0.40	0.49	100	0.34	0.39	0.38	0.40	0.32	0.37	0.37	0.38	0.38	0.40	0.33	0.33	0.35	0.44	0.44	0.51	0.40	0.51	110	0.39	0.39	0.46	0.41	0.44	0.41	0.42	0.47	0.47	0.50	0.65	0.43	0.38
204-corr spot	²⁰⁸ Pb / ²³² Th Age (Ma)	20.63	20.61	21.12	21.01	20.96	20.85	20.27	20.88	20.76	21.11	21.05	20.60	20:02	21.06	21.10	20.35	00 55 OC	20.50	10100	20.62	09.02	20.02	22.02	CC.12	21.88	20.43	20.83	20.41	20.11	20.81	20.96	20.61	19.07	17.98	17.93	19.37	17.09	18.52	16.89	19.20	19.44	19.16	21.66	18.75	18.46	17.23	18.36	18.24	19.00	17.33	17.29	18.87	10.44	17.80	17.18	18.95	15.79
	1σ (%)	0,0	2.1	2.2	2.2	2.1	2.2	2.1	2.1	2.2	2.2	; c	; c	; с	- c	10	1 -	- c - i c	36	1 c 1 c	1 0	4 - 4 -	t t i c	t c	<u>, 7</u>	2.3	1.7	1.9	1.9	2.0	1.5	1.8	1.8	2.0	2.1	2.3	1.7	2.0	1.9	2.6	2.3	2.6	4.7	2.3	- <i>c c</i>	2.1	2.3	2.5	2.2	2.3	2.4	2.4	5.5	0,7	4.7 8	9 00 1 (C	2.3	2.4
204-corr	²⁰⁸ Pb/ ²³² Th	0.001031	0.001020	0.001046	0.001040	0.001038	0.001032	0.001003	0.001034	0.001028	0.001045	0 001042	0.001020	0.001030	0.001043	0.001049	0.00100	0.00100.0	0.001016	200100.0	0.001021	1001000	120100.0	100100.0	0.001067	0.001083	0.001011	0.001031	0.001010	0.000995	0.001030	0.001037	0.001020	0.000944	0.000890	0.000887	0.000959	0.000846	0.000917	0.000836	0.000950	0.000962	0.000949	0.001072	0.0000	0.000914	0.000853	0.00000	0.000903	0.000941	0.000858	0.000856	0.000934	0.000062	0.000881	0.000850	0.000938	0.000781
	f208 from 207 (%)	36	33	19	26	24	24	24	27	24	21	24	: 6	1 %	1 %	11	26	18	27	16	15	17	<u>.</u>	<u>+</u> <u>+</u>	<u>c</u> ;	cı	46	40	38	36	52	42	41	39	40	44	44	42	41	33	16	12	= 5	14	×	04	-	1	1	-	-			- (- v	- ന	-	-
	1σ (%)	2 60	2.69	2.73	2.81	2.75	2.83	2.73	2.76	2.82	2.69	LL C	275	CL C	2.76	2 67	21.0	01.7	21.2	56	71.7	92.0	01.4	1.7	10.7	2.70	2.70	2.76	2.69	2.84	2.71	2.74	2.68	2.91	3.25	2.89	2.68	2.92	2.84	3.57	2.68	2.93	2.08	2.69	230	2.16	2.25	2.52	2.20	2.26	2.34	2.39	2.42	10.7	0C.7	3.43	2.24	2.37
	²⁰⁸ Pb / ²³² Th	0.001300	0.001329	0.001299	0.001392	0.001390	0.001351	0.001320	0.001424	0.001353	0.001313	0 001366	0.001304	0.001325	0 001354	0.001275	0.001352	2001000	0.001280	0001000	0.001316	0101000	017100.0	//1100.0	0.001204	0.001284	0.001865	0.001682	0.001672	0.001564	0.002146	0.001795	0.001752	0.001524	0.001531	0.001562	0.001711	0.001493	0.001621	0.001323	0.001130	0.001094	0.001069	0.001252	0.001001	0.000970	0.000859	0.000943	0.000911	0.000947	0.000863	0.000880	0.000942	/ 16000.0	7700000	0.000887	0.000953	0.000792
	1σ (%)	00	6.0	1.0	0.9	0.9	0.9	0.9	0.9	1.0	Ξ	0.0	10	2 =	01	2 -	10	0.1	0.1		0.0		7.1	<u>;</u>		C.I	0.8	0.9	1.0	1.0	0.7	0.9	1.0	1.0	1.0	1.6	0.8	1.1	1.0	1.7	1.1	1.4	5.1 2	0.1 8.1	0 0	3.0	7.3	6.5	6.6	7.5	9.6	10.0	5.6	10.2	0.7 8 01	11.1	6.1	7.5
	²⁰⁷ Pb / ²⁰⁶ Pb	0.823	0.831	0.825	0.827	0.825	0.829	0.837	0.813	0.828	0.830	0.833	0.820	0.821	0.817	0.876	0.2020	0.810	0.926	20000	0.021	170.0	070.0	070.0	0.834	0.813	0.844	0.823	0.837	0.828	0.828	0.828	0.822	0.844	0.829	0.843	0.824	0.830	0.842	0.827	0.837	0.800	0.818	0.020 0.813	0.647	0.546	0.191	0.246	0.235	0.314	0.208	0.186	0.180	0.178	71C.U	0.207	0.270	0.224
	1σ (%)	6	10	0	6	6	6	2	6	6	0			10		10	1 (1 0	1 (1 0	1 (1 0	4 (о с	n c	3	2	7	2	7	-	7	2	6	0	4	6	2	2	4	6	ŝ	ی ر <u>ہ</u>	0 m	Y	0 0	Ξ	10	12	13	19	4	8 9	15	J 5	27	Ξ	14
	²⁰⁸ Pb/ ²⁰⁴ Pb	CF1	191	189	148	148	157	155	134	153	178	154	167	165	160	201	145	<u>f</u>	171	221	091	000	677	707	C77	231	83	26	96	104	74	90	16	100	16	89	87	89	88	105	225	301	311	248	8CV	515	1291	800	1239	1200	1862	980	1353	894 1122	731 731	161	975	1073
	Th/U	1562	4771	4752	4905	5173	5377	5040	4625	5349	4822	3588	5281	5290	5368	6314	5720	5305	6003	0019	6710	4040	1016	0144	4418	3614	6002	4835	2957	3566	3946	4224	3171	3922	3905	2002	3145	3210	3273	1568	1840	3141	2692	1449	Q	639	552	407	245	200	429	232	224	124	+CI 767	106	48	262
	ľh (ppm)	21644	22052	25100	25260	23495	24260	25950	20175	18427	17328	17901	19477	19595	17683	19464	17623	73433	CCEC7	11077	07407	70/17	11061	27261	1/200	66641	13078	14140	10157	15227	10348	12624	10457	15947	16156	11981	10466	13094	13271	13459	25376	32326	31411	18/28	443	11907	12452	8334	6912	2256	79797	4607	3952	1205	10/1	1752	1037	9684
	U (ppm)	2	n vo	ŝ	5	5	5	5	4	б	4	·v	4	4) (^с) (1	<i>ح</i> ر	+ (*	<i>ء</i> ر	t 7	t -	t u	، ر	4 •	4	2	ŝ	ю	4	б	3	ю	4	4	9	3	4	4	6	14	10	۶ ۲	c1 51	=	19	23	20	28	Ξ	23	20	18	91 51	5 E	11	22	37
	Analysis ID auern Window	K ATC6@15	KAIS6@16	KAIS6@17	KAIS6@18	KAIS6@19	KAIS6@20	KAIS6@21	KAIS6@22	KAIS6@23	K AIS6@24	K AIS6@25	K AIS6@26	K AIS6@27	K AIS6@28	K AIS6@31	V AICE@37	V AIS6@33	V AICE@34	200931V A	V AIS6@36	DC DOCIVI	VAISUE45	TVAISUE 45	KAIS0@45	KAIS6@46	KAIS6@01	KAIS6@02	KAIS6@05	KAIS6@06	KAIS6@09	KAIS6@10	KAIS6@12	KAIS6@03	KAIS6@04	KAIS6@07	KAIS6@08	KAIS6@11	KAIS6@13	KAIS6@14	KAIS6@30	KAIS6@40	KAIS6@4/	KAIS6@49 KAIS6@49	SAL 718@01	SALZ18@02	SALZ18@03	SALZ18@04	SALZ18@05	SALZ18@06	SALZ18@07	SALZ18@08	SALZ18@09	SALZ18@10	SAL210@11 SAL218@17	SALZ18@13	SALZ18@14	SALZ18@15
	Groups Eastern T	4	2																								C							D																								

в	A A A A A A A A A A A A A A A A A A A	Groups
LOHN4@05 LOHN4@06 LOHN4@17 LOHN4@18	auern Window LIOHN4@01 LIOHN4@01 LIOHN4@03 LIOHN4@04 LIOHN4@04 LIOHN4@04 LIOHN4@04 LIOHN4@11 LIOHN4@11 LIOHN4@11 LIOHN4@11 LIOHN4@11 LIOHN4@11 LIOHN4@11 LIOHN4@11 LIOHN4@11 LIOHN4@11 LIOHN4@11 LIOHN4@11 LIOHN4@11 LIOHN4@21 LIOHN4@22 LIOHN4@23 LIOHN4@23 LIOHN4@23 LIOHN4@23 LIOHN4@23 LIOHN4@23 LIOHN4@24 LIOHN4@25 LIOHN4 LIOHN4 LIOHN4 LIOHN4 LIOHN	Analysis ID
19 31 39 23		U (ppm)
14990 9191 23011 23334 19054	14552 25804 12883 16561 32345 22955 22955 22955 22955 22955 22955 22955 22955 22955 22955 22955 22955 22955 22955 23964 17265 169864 17265 169864 237768 25226 21857 27168 17857 21857 22405 22526 23852 24807 25226 25326 256	Th (ppm)
787 298 717 591 816	1076 1076 1077 1017 1017 1017 1017 1017	Th / U
171 146 222 170	79 277 151 151 151 151 151 152 155 155 155 155	²⁰⁸ Рb / ²⁰⁴ Рb
4 20 5 5 2 2	- w d d d d d w w d d d 4 4 w w d d d d w w d d d d	1σ (%)
0.821 0.794 0.732 0.760 0.808 0.833	0.825 0.792 0.825 0.779 0.820 0.779 0.782 0.790 0.792 0.792 0.792 0.792 0.795 0.795 0.795 0.795 0.795 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.810 0.810 0.812 0.812 0.812 0.812 0.812 0.812 0.812 0.813 0.812 0.813 0.813 0.813 0.813 0.813 0.813 0.813 0.813 0.813 0.813 0.813 0.813 0.813 0.813 0.813 0.813 0.813 0.815 0.813 0.815 0.813 0.815	²⁰⁷ Pb / ²⁰⁶ Pb
1.6 2.3 2.3 1.2	$\begin{array}{c} 1000 \\ 10$	Ισ (%)
0.001129 0.001237 0.000980 0.001003 0.001120 0.001272	0.0011981 0.0011981 0.0011182 0.0011322 0.0011322 0.0011322 0.0011322 0.0011322 0.0011322 0.0011322 0.0011232 0.001124 0.001132 0.001124 0.0011232 0.001124	²⁰⁸ Pb / ²³² Th
3.06 3.80 3.29 2.66 2.78	$\begin{array}{c} 2.29\\ 2.29\\ 2.26\\ 2.67\\ 2.68\\$	1σ (%)
22 5 15 28	207 (%) 207 (%) 201 (%	f208 from
0.000882 0.000913 0.000927 0.000923 0.000933	0.001031 0.001031 0.001051 0.0010964 0.0010977 0.001097 0.001097 0.001097 0.001094 0.001097 0.001094 0.001097 0.001042 0.001094 0.001094 0.001094 0.001094 0.001094 0.001094 0.001094 0.001094 0.001094 0.001095 0.001065 0.001065 0.001065 0.001065 0.001065 0.001065 0.001065 0.001085 0.0001085 0.0001085 0.0001085 0.0001085 0.000085 0.000085 0.000085 0.000085 0.0000	204-con 208 pb / ²³² Th
2.5 3.1 2.9 2.1	$\begin{array}{c} 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$	1σ (%)
17.83 18.45 18.73 18.73 18.85	Age (Ma) 20.84 19.47 20.84 19.47 20.73 20.73 20.73 20.73 20.73 21.23 21.23 21.23 21.77 21.77 21.77 21.77 21.77 21.73 21.77 21.77 21.73 21.77 21.75 21.77 21.75 21.	204-corr sp 208Pb / ²³² Th
0.45 0.58 0.54 0.43 0.38	$\begin{array}{c} 0.35\\ 0.35\\ 0.42\\ 0.43\\ 0.43\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.54\\ 0.447\\ 0.45\\ 0.447\\ 0.51\\ 0.54\\ 0.448\\ 0.$	ot ages 1σ (abs.)
0.000875 0.000912 0.000933 0.000923 0.000923 0.000913	0.001059 0.000969 0.000197 0.001097 0.001097 0.001080 0.001080 0.001081 0.001080 0.001081 0.001085 0.0001085 0.0001085 0.0001085 0.0001085 0.000085 0.000085 0.000085 0.000085 0.000085 0.000085 0.000085 0.000085 0.000085 0.000085 0.000085	207-corr 208 Pb / ²³² Th 1
3.15 3.95 3.29 3.07 2.70 2.70		σ(%)
17.68 18.42 18.85 18.66 19.12 18.45	Age (Ma) 121.39 121.39 121.39 121.39 121.39 20.85 20.85 21.12 21.13 2	207-corr spot a ²⁰⁸ Pb / ²³² Th 1c
0.56 0.73 0.62 0.57 0.52	$\begin{array}{c} 0.76\\ 0.63\\ 0.63\\ 0.63\\ 0.53\\ 0.53\\ 0.55\\$	ges 7 (abs.)

tages	lσ (abs.)		0.47	0.46	0.53	0.42	0.61	0.43	0.56	0.65	0.44	0.51	0.66	0.51	0.42 1.04	0.47	0.56	0.50	0.45	0.48	0.48	0.47	0.32	0.28	0.17	0.74	0.19 0.70	0.91	0.87	0.00	0.94	0.59	0.56	0.57	0.67	0.045	0.48	0.59	0.88	0.53	0.77	0.89	0.82	CC.U	79.0	0.64	0.54	0.58	0.63	1.53
207-corr spo	²⁰⁸ Pb / ²³² Th Age (Ma)		18.63	18.80	15.41	19.01	18.95	18.21	18.21	16.98	18.43	19.01	18.08	17.83	18.65 18.24	21.47	21.81	21.77	21.16	21.79	22.26	21.92	20.26	20.84	20.47	19.76	20.35 19.91	20.55	19.27	20.13	18.98	19.73	20.07	18.95	21.20	90.02 15.05	19.96	19.37	20.30	20.78	19.58	20.16	20.58	19.76	19.41 20.70	19.52	19.67	19.08	18.99	19.47
-	1σ (%)		2.5	2.5	0.7 0.7	0.0	3.2	2.4	3.1	3.8	2.4	2.7	3.6	2.9	5.7	2.21	2.56	2.30	2.13	2.18	2.14	2.14	1.6	1.3	0.8	3.7	3.5	4.4	4.5	5.0	0.0	3.0	2.8	3.0	3.2	0.7	2.4	3.0	4.4	2.5	3.9	4.4	4.0	8.7	4 c 1 0	i	2.8	3.0	3.3	7.9
207-corr	²⁰⁸ Pb / ²³² Th		0.000922	0.000930	0.000877	0.000941	0.00038	0.000902	0.000901	0.000841	0.000912	0.000941	0.000895	0.000883	0.000923 0.000903	0.001063	0.001080	0.001078	0.001048	0.001079	0.001102	0.001085	0.001003	0.001031	0.001013	0.000978	0.001007 0.000985	0.001017	0.000954	0.000997 0.00000	0.000940	0.00077	0.000993	0.000938	0.001050	0.001005	0.000988	0.000959	0.001005	0.001029	0.000969	0.000998	0.001019	0.000978	0.001025	0.000966	0.000974	0.000944	0.000940	0.000964
Iges	σ (abs.)		0.46	0.44	0.50	0.41	0.54	0.41	0.52	0.60	0.38	0.50	0.60	0.48	0.40	0.37	0.47	0.41	0.39	0.43	0.40	0.40	0.48	0.55	0.17	0.88	0.28 0.76	0.92	0.83	0.89	0.92	0.57	0.55	0.62	0.63	20.02	0.49	0.56	0.72	0.51	0.71	0.79	0.81	20.0	0.57	0.63	0.53	0.60	0.63	0.70
204-corr spot a	²⁰⁸ Pb / ²³² Th 1 Age (Ma)		18.43	18.27	13.10	18.67	18.12	18.05	18.09	16.65	18.01	18.71	17.44	17.28	17.86 18.06	21.07	22.00	21.65	21.39	21.74	22.17	21.91	19.65	19.00	20.00	19.10	19.94 19.20	20.18	18.40	18.59	18.84	18.66	19.66	18.94	20.04	19.19	20.04	10.01	19.33	20.41	18.26	19.07	20.73	67.61 10.01	10.01	19.55	19.27	18.57	18.34	17.88
-	1σ (%)		2.5	2.4	0 0		3.0	2.3	2.9	3.6	2.1	2.7	3.5	2.8	2.3 4.2	1.7	2.1	1.9	1.8	2.0	1.8	1.8	2.4	2.9	0.9	4.6	1.4	4.6	4.5	4 7 8 4	4 9	3.1	2.8	3.3	3.1	0.7	2.4	3.0	3.7	2.5	3.9	4.2	3.9	1.7	4 c	1.6	2.8	3.2	3.5	3.9
204-corr	²⁰⁸ Pb / ²³² Th		0.000912	0.000905	0.000861	0.000924	0.000897	0.000893	0.000896	0.000824	0.000892	0.000926	0.000863	0.000855	0.000884 0.000894	0.001043	0.001089	0.001072	0.001059	0.001076	0.001097	0.001085	0.000973	0.000940	0.000990	0.000946	0.000987 0.000950	666000.0	0.000911	0.000920	0.000932	0.000924	0.000973	0.000938	0.000992	0.000000	0.000992	0.000941	0.000957	0.001010	0.000904	0.000944	0.001026	CC6000.0	16000000	0.000968	0.000954	0.000919	0.000908	0.000885
	f208 from 207 (%)		5	m d	0 9) (f	. L	13	~	4	16	4	4	ς, γ	4 12	22	18	17	16	10	16	15	14	19	1	15	6 21	6	15	×	16	2	7	Ξ	s u	0 9	15	54	10	4	8	~	10 ĭ	ο <u>i</u>	Ū a	n vr	, v	~	8	29
	1σ (%)		2.48	2.43	07.7 07.7	2.17	2.99	2.23	2.96	3.78	2.24	2.61	3.58	2.82	2.17 4.60	2.12	2.51	2.25	2.08	2.17	2.10	2.10	1.5	12	0.8	3.6	0.9 3.4	4.3	35	1.4 1.6	4 7 7	2.8	2.6	2.8	3.0	4.7 7	23	3.0	3.9	2.5	3.7	42	3.7	07	0.0	3 6	2.6	2.9	3.1	5.1
	²⁰⁸ Pb / ²³² Th		0.000945	0.000956	0000000	026000.0	0.001012	0.001039	0.000979	0.000880	0.001086	0.000981	0.000933	0.000910	0.000960 0.001022	0.001359	0.001317	0.001303	0.001253	0.001194	0.001315	0.001282	0.001164	0.001269	0.001023	0.001153	0.001070 0.001240	0.001121	0.001128	0.001088	0.001018	0.001046	0.001065	0.001049	0.001110	0.001070	0.001163	866000.0	0.001115	0.001076	0.001059	0.001088	0.001129	0.001000	001100.0	0.001015	0.001026	0.001022	0.001023	0.001353
	1σ (%)		2.3	2.4	C7 7	2.6	2.1	1.6	2.0	2.3	1.2	3.0	2.9	2.9	2.9 1.9	12	1.2	12	1.5	13	1.2	1.2	2.2	2.2	2.5	33	2.6 2.0	3.7	35	50 G V V	5 6 7 4	2.9	2.9	3.2		4.7 7 1	1.8	2.7	2.3	2.6	3.1	3.1	3.0	7.5	0.0	0.4 4	33	3.5	3.5	1.2
	⁰⁷ Pb/ ²⁰⁶ Pb		0.084	0.087	0.09/ 0.088	0.139	0.166	0.272	0.220	0.139	0.411	0.172	0.191	0.195	0.183 0.370	0.803	0.803	0.824	0.812	0.782	0.795	0.800	0.195	0.248	0.201	0.170	0.169 0.132	0.244	0.296	0.205	0.197	0.148	0.162	0.237	0.191	160.0	0.359	0.171	0.213	0.139	0.211	0.196	0.240	0.200	0.205	0.119	0.147	0.230	0.197	0.516
	lσ (%) ²		17	ra 3	0 Y	18	16	13	18	17	Ξ	17	28	18	13 21	e	ю	7	3	3	7	ŝ	13	11	8	19	14	20	8	12	51	15	17	18	16	9 =	9	15	12	16	15	15	6] !	1	<u>t</u> 5	1 7	18	19	18	9
	²⁰⁸ Pb/ ²⁰⁴ Pb 1		1263	117	0011	030	382	277	422	591	214	655	661	607	628 445	160	209	205	231	345	218	234	235	149	1211	214	497 160	322	200	250	233	330	448	339	364	405 417	263	629	272	632	263	292	389	499	101	824	511	384	343	112
	Th/U		16	4	14	;;;	17	23	27	24	37	32	34	52	40 41	32	22	1580	1313	1620	1351	868	=	14	208	8	3 22	18	15	20	<u> </u>	14	17	20	55 0	0 11	26	32	18	19	18	19	19	<u>8</u> 6	77 6	15	23	25	20	26
	Th (ppm)		5825	4437	4831	5336	3688	5005	5091	6320	7415	3205	3602	4969	3780 4304	296	301	21097	18352	52673	25562	16767	1591	1383	19676	650	2725 1076	926	782	969	643	1676	1764	1358	1579	0099	2748	3259	1940	2711	1305	1381	1129	1818	1540	1838	1927	1330	1206	2877
	, (mqq) U		367	316	356	161	222	219	189	262	199	101	106	95	96 105	6	14	13	14	33	19	19	148	100	95	80	124 316	50	51	48	10	118	106	67	62	2007	104	103	107	145	72	74	09 (00 72	6 Q	126	85	53	60	111
	Analysis ID	auern Window	ORT1@01	ORT1@02	ORT 1@05	ORT1@05	ORT1@06	ORT1@07	ORT1@08	ORT1@09	ORT1@10	ORT1@11	ORT1@12	ORT1@13	ORT1@14 ORT1@15	EUKL2@01	EUKL2@02	EUKL2@03	EUKL2@04	EUKL2@05	EUKL2@06	EUKL2@07	HOAR1@27	HOAR1@28	HOAR1@29	HOAR1@30	HOAR1@31 HOAR1@32	HOAR1@01	HOAR1 @02	HOAR1@03	HOAR1@05	HOAR1@06	HOAR1@07	HOAR1@08	HOARI @09	HOAR1@10	HOAR1@12	HOAR1@13	HOAR1@14	HOAR1@16	HOAR1@17	HOAR1@18	HOARI@19	HUAKI@20	HUAKI @21	HOAR1@23	HOAR1@24	HOAR1@25	HOAR1@26	HOARI@15
	Groups	Eastern Ta																					A					в																						

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.28	3.4	0.001004	1.51	20.85	7.3	0.001032	10	1.4	0.001116	8.6	0.066	95	513	2	728	468	SAND1@28	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.4	0.001089	0.45	21.94	2.1	0.001086	з	1.4	0.001117	8.6	0.140	55	1385	26	7711	302	SAND1@26	
Tanya Unpos The (transmit state) T		Ξ	0.001090	0.36	21.94	1.6	0.001086	_	1.1	0.001107	10.3	0.107	67	2074	26	7743	302	SAND1@25	
Tanya Mayadia Urgania The (trans) The (trans) <ththe (tra<="" td=""><td></td><td>1.2</td><td>0.001036</td><td>0.39</td><td>20.82</td><td>1.9</td><td>0.001031</td><td>2</td><td>1.2</td><td>0.001054</td><td>10.4</td><td>0.098</td><td>67</td><td>1758</td><td>22</td><td>6472</td><td>289</td><td>SAND1@24</td><td></td></ththe>		1.2	0.001036	0.39	20.82	1.9	0.001031	2	1.2	0.001054	10.4	0.098	67	1758	22	6472	289	SAND1@24	
Protect U (prepri Th (prepri<		1.4	0.001030	0.46	20.43	2.3	0.001011	1	1.4	0.001045	10.8	0.096	55	1186	23	6564	285	SAND1@22	
Janya Maya B Upper The prob The prob Jarry Mark Jarry Mark <td></td> <td>1.3</td> <td>0.001039</td> <td>0.33</td> <td>20.85</td> <td>1.6</td> <td>0.001032</td> <td>1</td> <td>1.3</td> <td>0.001049</td> <td>8.6</td> <td>0.087</td> <td>55</td> <td>2354</td> <td>43</td> <td>7714</td> <td>181</td> <td>SAND1@21</td> <td></td>		1.3	0.001039	0.33	20.85	1.6	0.001032	1	1.3	0.001049	8.6	0.087	55	2354	43	7714	181	SAND1@21	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2.6	0.000879	0.50	17.35	2.9	0.000859	10	2.6	0.000972	2.9	0.277	15	332	27	6655	251	SAND1@08	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2.6	0.000883	0.52	16.74	3.1	0.000829	12	2.6	0.001006	2.6	0.274	12	212	21	5768	272	SAND1@07	
Tany Upper Th (ppe) Th (U Web, Zerb, Zerb		2.8	0.000959	0.77	18.64	4.2	0.000923	15	2.7	0.001123	4.0	0.328	20	216	10	5846	601	SAND1@06	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2.9	0.000938	0.76	18.10	4.2	0.000896	15	2.8	0.001106	3.8	0.331	19	203	10	5757	580	SAND1@05	
		2.7	0.000958	0.80	18.35	4.4	0.000908	17	2.6	0.001150	4.0	0.441	19	184	17	5540	323	SAND1@04	
		3.3	0.000843	0.90	17.38	5.2	0.000860	24	3.1	0.001104	3.9	0.430	21	175	14	3570	252	SAND1@02	
Tany Aubsid Upper The provide transmission The provide transmissi		4.1	0.000877	0.92	15.56	5.9	0.000770	21	4.0	0.001114	3.8	0.337	17	125	12	3167	259	SAND1@01	A
Tany Muşisi.D Uppn Th. (ppn)		1.1	0.001002	/	20.67	/	0.001023	2	1.1	0.001023	7.2	0.072	0	/	15	4051	263	MOKR1@19	
		2.7	0.000851	0.53	17.35	3.0	0.000859	10	2.7	0.000949	3.2	0.303	18	380	27	8214	303	MOKR1@18	
Jamp Aukysia Di Uppm The (ppm) The (pp		2.6	0.000986	0.50	19.70	2.6	0.000975	4	2.6	0.001031	2.6	0.323	13	717	113	16023	141	MOKR1@17	
Taruy Aubysi, D Uppn) Th (ppn) Th (ppn) <tht< td=""><td></td><td>2.6</td><td>0.000899</td><td>0.45</td><td>17.46</td><td>2.6</td><td>0.000864</td><td>S</td><td>2.6</td><td>0.000943</td><td>2.6</td><td>0.190</td><td>12</td><td>462</td><td>32</td><td>16572</td><td>517</td><td>MOKR1@16</td><td></td></tht<>		2.6	0.000899	0.45	17.46	2.6	0.000864	S	2.6	0.000943	2.6	0.190	12	462	32	16572	517	MOKR1@16	
Tany Aukysis ID Uppm) Th (ppm) Th (ppm) <tht< td=""><td></td><td>2.6</td><td>0.000906</td><td>0.45</td><td>17.57</td><td>2.5</td><td>0.000869</td><td>4</td><td>2.6</td><td>0.000948</td><td>2.5</td><td>0.191</td><td>Ξ</td><td>468</td><td>38</td><td>16751</td><td>446</td><td>MOKR1@15</td><td></td></tht<>		2.6	0.000906	0.45	17.57	2.5	0.000869	4	2.6	0.000948	2.5	0.191	Ξ	468	38	16751	446	MOKR1@15	
Tarapa Analysis ID Urpmi Th (pmi) <		2.6	0.000908	0.45	17.95	2.5	0.000889	4	2.6	0.000949	2.4	0.200	12	608	47	17133	363	MOKR1@14	
Targe August D Urpmi Th (ppm) T		2.6	0.000967	0.47	19.03	2.5	0.000942	s	2.6	0.001014	2.3	0.343	10	541	128	16222	127	MOKR1@13	
Damps Analysis ID U (ppm) Th (ppm)	_	2.6	0.000932	0.47	17.88	2.6	0.000885	6	2.6	0.000993	2.6	0.242	12	355	45	10746	239	MOKR1@06	
Price Aulysis LD U (ppm) Th (ppm) <	_	2.6	0.000913	0.47	17.81	2.6	0.000882	7	2.6	0.000978	2.6	0.299	12	391	61	11017	182	MOKR1@05	
Jamps Julysis ID U (ppm) Th (U ²⁰⁶ hp / ²⁰⁴ hp / ²⁰⁶ hp / ²⁰⁴ hp / ²⁰⁶ hp / ²⁰² hp / ²⁰⁷ hp / ²⁰⁶ hp / ²⁰² hp / ²⁰⁷ hp / ²⁰⁶ hp / ²⁰² hp / ²⁰⁷ hp / ²⁰⁶ hp / ²⁰² hp / ²⁰² hp / ²⁰⁷ hp / ²⁰⁶ hp / ²⁰² hp / ²⁰⁷ hp / ²⁰⁶ hp / ²⁰² hp / ²⁰⁷ hp / ²⁰⁶ hp / ²⁰² hp / ²⁰⁷ hp / ²⁰⁶ hp / ²⁰² hp / ²⁰⁷ hp / ²⁰⁶ hp / ²⁰² hp / ²⁰⁷ hp / ²⁰⁶ hp / ²⁰² hp / ²⁰⁷ hp / ²⁰⁶ hp / ²⁰² hp / ²⁰⁷ hp / ²⁰⁶ hp / ²⁰² hp / ²⁰⁷ hp / ²⁰⁶ hp / ²⁰² hp / ²⁰⁷ hp / ²⁰⁶ hp /	_	2.7	0.000960	0.50	19.05	2.6	0.000943	s	2.7	0.001007	2.6	0.296	12	570	95	15315	162	MOKR1@04	
Brandys Analysis ID U (ppm) Th (ppm)		2.6	0.000977	0.49	19.29	2.6	0.000955	s з	2.6	0.001011	2.7	0.307	12	694	134	20039	149	MOKR1@03	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2.6	0.000970	0.49	19.23	2.5	0.000952	3	2.6	0.001001	2.7	0.283	12	789	128	21412	167	MOKR1@02	
Broup Analysis ID U (ppm) Th (ppm) Th (1) ²⁰⁶ ph / ²⁰⁴ ph / ²⁰⁶ ph / ²⁰² Th Ir (sp) ²⁰⁶ ph / ²⁰		2.6	0.000959	0.46	18.68	2.5	0.000924	3	2.6	0.000991	2.3	0.324	6	573	178	23439	132	MOKR1@01	в
Groups Analysis ID U (ppm) Th (ppm) Th /U ²⁰⁶ pb / ²⁰⁷ pb / ²⁰⁶ pb / ²⁰⁷ pb / ²⁰⁶ pb / ²⁰⁷ pb / ²⁰⁶ pb / ²²² Th Ie (%) ²⁰⁸ pb / ²²² Th Ie (%) ²⁰⁶ pb / ²²² Th Ie (%) ²⁰⁶ pb / ²²² Th Ie (%) ²⁰⁸ pb / ²²¹ Th Ie (%)		1.1	0.001015	0.33	20.54	1.6	0.001017	-	1.0	0.001030	7.6	0.056	95	2982	7	4946	683	MOKR1@31	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.4	0.000893	0.51	17.74	2.9	0.000878	3	1.2	0.000922	7.1	0.062	55	802	6	4284	889	MOKR1@30	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.2	0.001025	0.55	20.42	2.7	0.001011	3	1.0	0.001059	6.5	0.066	55	846	7	3095	469	MOKR1@29	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1.2	0.000997	0.39	19.93	1.9	0.000987	1	1.1	0.001011	9.2	0.067	67	1611	13	5188	395	MOKR1@28	
Broups Analysis ID U (ppm) Th (ppm) Th (ppm) Th (u) 200 pb 200 pb 200 pb 200 pb 200 pb 222 Th Lor (%) 200 pb 220 (%) 200 pb 200 pb /</td <td></td> <td>1.4</td> <td>0.000969</td> <td>0.69</td> <td>19.35</td> <td>3.6</td> <td>0.000958</td> <td>S</td> <td>1.3</td> <td>0.001021</td> <td>8.3</td> <td>0.108</td> <td>55</td> <td>626</td> <td>10</td> <td>3072</td> <td>295</td> <td>MOKR1@27</td> <td></td>		1.4	0.000969	0.69	19.35	3.6	0.000958	S	1.3	0.001021	8.3	0.108	55	626	10	3072	295	MOKR1@27	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.3	0.001034	0.53	20.37	2.6	0.001008	4	1.3	0.001072	6.7	0.101	39	646	19	4084	220	MOKR1@26	
		1.6	0.001011	0.46	20.51	2.2	0.001015	з	1.5	0.001041	7.7	0.087	67	1546	12	4029	336	MOKR1@25	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1.5	0.001042	0.35	20.97	1.7	0.001038	-	1.5	0.001049	6.1	0.057	67	3668	15	7589	507	MOKR1@24	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.6	0.001011	0.94	21.18	4.4	0.001049	×	1.3	0.001093	6.6	0.104	47	483	7	2318	341	MOKR1@23	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.7	0.001119	0.46	22.52	2.1	0.001115	_	1.6	0.001130	11.4	0.070	95	2865	14	5545	410	MOKR1@22	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		=	0.001124	0.50	22.05	23	0.001091	_	1.0	0.001134	10.2	0.063	55	1029	=	5279	473	MOKR1@21	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.4	0.000714	0.94	12.92	7.2	0.000639	S	1.0	0.000754	10.0	0.062	47	255	S	2417	442	MOKR1@20	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.6	0.000899	0.59	17.51	3.4	0.000867	13	2.6	0.001029	3.1	0.224	16	245	10	7328	702	MOKR1@12	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3.3	0.000859	1.25	19.71	6.4	0.000976	26	2.9	0.001168	3.2	0.138	21	148	2	2971	1852	MOKR1@11	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3.8	0.000890	0.73	17.74	4.1	0.000878	22	3.7	0.001143	2.0	0.134	13	166	4	2999	814	MOKR1@10	
204 corr 204 corr 204 corr spot ages 207 corr spot ages 207 corr 207 iroups Analysis ID U (ppm) Th (ppm) Th /U ²⁰⁸ Pb / ²⁰⁷ Pb / ²⁰⁶ Pb / ²⁰² Th I σ (%) ²⁰⁸ Pb / ²³² Th ²⁰⁸ Pb / ²³² Th I σ (%)		2.7	0.000879	0.52	17.08	3.1	0.000845	12	2.6	0.000993	2.3	0.128	14	260	6	5949	916	MOKR1@09	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.8	0.000869	0.55	17.13	3.2	0.000848	13	2.7	0.000997	2.8	0.228	15	259	15	5762	393	MOKR1@08	
$\frac{204-\text{corr}}{200} \text{ Analysis ID } \text{ U(ppm) Th (ppm) Th / U } \frac{208 \text{ Pb} / 204 \text{ Pb } 1\sigma (\%) }{207 \text{ Pb} / 207 \text{ Pb} / 206 \text{ Pb } 1\sigma (\%) } \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{207 (\%)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{207 (\%)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) } \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} \frac{208 \text{ Pb} / 232 \text{ Th } 1\sigma (\%) }{4 \text{ ge} (Ma)} $		3.3	0.000915	0.64	17.69	3.6	0.000876	18	3.2	0.001121	2.1	0.228	=	172	13	3840	307	MOKR1@07	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		Tauern Window	Eastern
$\frac{204 \text{-corr}}{204 \text{-corr}} = \frac{204 \text{-corr}}{208 \text{-corr}} = \frac{204 \text{-corr}}{204 \text{-corr}} = \frac{204 \text{-corr}}{204 \text{-corr}} = \frac{204 \text{-corr}}{204 \text{-corr}} = \frac{204 \text{-corr}}{208 \text{-corr}} = \frac{204 \text{-corr}} = \frac{204 \text{-corr}}{208 \text{-corr}} = 204 \text{-c$	Age				Age (Ma)			207 (%)											
204-corr 204-corr pot ages 207-corr 207-	²⁰⁸ Pb/ ²	lσ (%)	²⁰⁸ Pb / ²³² Th	lσ (abs.)	²⁰⁸ Pb / ²³² Th	lσ (%)	²⁰⁸ Pb / ²³² Th	f208 from	1σ (%) 1	²⁰⁸ Pb / ²³² Th	1σ (%)	²⁰⁷ Рb / ²⁰⁶ Рb	$1\sigma~(\%)$	$^{208}{ m Pb}$ / $^{204}{ m Pb}$	Th/U	Th (ppm)	U (ppm)	Analysis ID	roups
	207-	-	207-coi	t ages	204-corr spot	7	204-coi												

													204-corr		204-corr sp	ot ages	207-con	-	207-corr spc	tages
Groups	Analysis ID	U (ppm)	Th (ppm)	U/dT	$^{208}\mathrm{Pb}/^{204}\mathrm{Pb}$	lσ (%)	²⁰⁷ Pb/ ²⁰⁶ P	b lo (%	5) ²⁰⁸ PI	6/ ²³² Th 1c	σ (%) f	208 from	²⁰⁸ Pb / ²³² Th	1σ (%)	²⁰⁸ Pb / ²³² Th Age (Ma)	lσ (abs.)	$\left \begin{array}{c} 208 Pb / 2^{32} Th \end{array} \right $	1σ (%)	²⁰⁸ Pb / ²³² Th Age (Ma)	lσ (abs.)
Eastern	Tauern Window																			
в	SAND1@09	483	2027	4	137	14	0.17	6 2	5	0.001145	4.2	28	0.000822	4.9	16.61	0.81	0.000820	4.4	16.56	0.72
	SAND1@10	646	2420	4	109	14	0.17	6 2	7	0.001136	3.3	26	0.000732	5.5	14.80	0.81	0.000842	3.5	17.01	0.60
	SAND1@12	729	3802	5	203	16	0.15	0	~	0.001027	2.6	16	0.000831	3.8	16.79	0.63	0.000858	2.7	17.34	0.47
	SAND1@13	628	2842	5	170	14	0.13	6 2	3	0.001072	3.0	19	0.000839	3.9	16.95	0.67	0.000873	3.0	17.63	0.54
	SAND1@14	996	3518	4	124	16	0.19	4 3.	-	0.001118	2.6	23	0.000771	5.2	15.57	0.81	0.000862	2.8	17.41	0.48
	SAND1@18	278	1247	4	67	14	0.30	6	6	0.001372	5.0	43	0.000578	8.4	11.67	0.97	0.000783	5.5	15.81	0.88
	SAND1@19	277	811	ŝ	70	16	0.32		0	0.001620	5.1	55	0.000731	9.2	14.77	1.36	0.000725	6.5	14.66	0.96
	SANDI@11	659	2325	4	92	16	0.21	7.3.	1	9.001572	8.4	35	0.000909	8.5	18.36	1.56	0.001021	8.6	20.62	1.78
	SANDI@15	189	964	5	49	11	0.30	2	4	0.001476	6.1	49	0.000322	8.3	6.51	0.54	0.000751	6.7	15.17	1.01
	SANDI@16	228	109	<i>ლ</i> (59	15	0.30	2 0	~ ~	0.001752	6.7	62	0.000612	10.1	12.36	1.25	0.000664	8.7	13.41	1.17
	SANDI@17	202	401	61 1	40	15	0.31	2 2	ь.	0.002061	8.4	73	0.000324	12.4	05.0	0.81	0.00059	13.0	11.30	1.47
	SAND1@20	233	376	61 -	54	21	0.30	5 : :3	0,	9.002238	7.9	74	0.000741	12.4	14.98	1.86	0.000578	13.8	11.68	1.61
	SANDI@29	493	448	_	112	67	0.02	6 11.	-	9.001114	2.4	6	0.000729	23.3	14.72	3.43	0.001014	6.8	20.49	1.39
	SANDI@30	640	398	_	186	95	0.06	0 11.	ς π	0.001180	3.8	14	0.000935	20.0	18.88	3.78	0.001019	9.3	20.59	1.91
	SANDI@31	636	404	I	95	67	0.06	10 10	0	0.001085	3.4	21	0.001505	38.9	30.39	11.80	0.000856	10.2	17.30	1.76
	SANDI@23	299	5895	20		0	0.11	2 10.	5	9.000878	1.2	ŝ	0.000878	~	17.73	_	0.000855	1.2	17.27	0.21
	SANDI@27	284	629	7		0	0.06	9 7.	2	9.001130	1.0	6	0.001130	`	22.84	-	0.001027	2.8	20.74	0.58
	SANDI@32	573	501	Ι	33	96	0.01	7 17.	8	9.000118	15.8	89	~	`	-0.43	-0.49	0.000013	251	0.26	0.66
	SANDI@33	616	304	0	-	0	0.03	5 18.	9	9.000222	13.7	184	0.000222	`	4.49	-	-	-76	-3.76	2.86
	SAND1@35	1160	169	I		0	0.05	7 12.	0	9.001323	2.2	8	0.001323	`	26.73	-	0.001215	5.7	24.54	1.39
	SANDI@36	935	512	1	-	0	0.06	7 II.	3	9.001293	1.9	20	0.001293	`	26.11	/	0.001037	8.8	20.95	1.84
A	REIS1@27	166	541	3	188	25	0.08	8	1	0.000926	2.32	13	0.000762	5.7	15.39	0.88	0.000806	2.7	16.28	0.44
	REIS1@28	288	1516	5	601	30	0.07	7 3.	8	0.000836	2.25	9	0.000783	2.8	15.81	0.45	0.000788	2.3	15.93	0.37
	REIS1@29	185	697	4	530	42	0.0	3 4.	9	0.000853	2.24	Ξ	0.000791	3.7	15.99	0.59	0.000760	2.5	15.36	0.39
	REIS1@31	141	763	5	226	42	0.12	.1 3.	8	776000.C	2.60	20	0.000810	7.6	16.37	1.24	0.000779	4.2	15.74	0.66
	REIS1@32	306	2964	10	260	26	0.05	9.3.	9	0.000893	2.48	15	0.000760	4.4	15.36	0.68	0.000759	2.8	15.33	0.42
	REIS1@33	762	737	-	874	24	0.05	0	7	0.000877	2.56	5	0.000839	2.7	16.94	0.45	0.000863	2.6	17.44	0.45
	REIS1@35	195	618	ε	290	32	0.08	6 -	с. С	0.000966	2.95	10	0.000865	5.2	17.48	0.90	0.000865	3.2	17.48	0.56
	REISI@36	153	668	4	222	27	0.12	8 i 4 i	0	0.000963	2.87	18	0.000796	5.3	16.08	0.86	0.000794	3.2	16.05	0.52
	REISI@23	236	324	- •	326	47	0.05	9 9 9	0	0.000821	2.56	× I	0.000771	6.7	15.57	1.04	0.000756	8 I 8	15.27	0.58
	KEISI@17	437	/38	. 7	515	55	0.0	0.0	ь. С	0.000903	2.26		0.000852	5 4 t	17.21	0.20	0.000842	2.7	10.71	0.45
	KEISI@19	285 195	404	- •	518	ξ; [0.0	7 : 7 :	.7.0	2.56000.0	7.09	<u>ุ</u> ย :	0.000819	4.	10.04	0./8	0.000/93	2.0 0.0	10.03	0.01
	REIS1@20	353	562	7	1500	67	0.06	3.		0.000894	2.24	Ξ	0.000870	2.8	17.59	0.49	0.000798	2.9	16.13	0.46
	REIS1@21	288	433	2	336	36	0.06	0 3.	4	0.000981	2.54	10	0.000868	4.7	17.54	0.82	0.000881	3.6	17.81	0.63
В	REIS1@18	328	486	-	467	42	0.06	.1 3.	3	0.000802	2.96	18	0.000736	4.4	14.87	0.66	0.000657	4.1	13.27	0.55
	REIS1@24	218	398	7	689	67	0.06	4	6	0.000791	3.13	14	0.000747	4.8	15.08	0.72	0.000679	4.1	13.71	0.56
	REIS1@25	189	225	-	321	55	0.06	1 5.	0	0.000851	3.74	17	0.000748	7.4	15.12	1.11	0.000705	6.1	14.25	0.87
	REIS1@30	297	4 1		877	4 7	0.08		0,0	0.000749	3.54	10	0.000712	4.1	14.38	0.59	0.000676	4.6	13.66	0.63
	REISI @ 34	560	505		437	4/	40.0	4 : 2 0	е, с	0.000773	3.93	4 5	0.000738	6.0	14.90	0.89	0.000666	6.2	13.45	0.84
	KEISI @ 22	881	380	ο,	677	32	0.0	1	~ ·	6/6000	7/7	3 :	0.000814	5.X	10.42	ce.u 22 :	0.000/30	34.0	14.88	c1.c
	KEISI @ 20	707	141	-	199	4/	0.07	5 4.	5	0.000867	3.41	41	0.000/81	10.7	61.01	1.09	80,000,0	11.0	10.20	1.19

Figure 2. (a) Two generations of late fissures visible in a road outcrop located between monazite locality ($46^{\circ}59.436'$ N, $011^{\circ}39.240'$ E) and Pfitscherjoch. Steeply oriented fissures (C_2 : ~ 090/65) are older and deformed (green ellipses), and seem related to a flatter lineation (L_2 : ~ 250/30, green arrows) visible on some of the foliation planes. Younger and flatter oriented fissures (C_3 : ~ 085/30) are straight (blue ellipses) and seem related to a steeper lineation (L_3 : 270/70, blue arrows). These observations indicate that a fissure can be deformed during its existence. The length of the hammer handle is 60 cm. (**b**) Enlargement of panel (**a**). (**c**) Schematic illustration of the three fissure generations observed in this study (C_1 , C_2 and C_3), together with respective orientation, foliation (S_1 , S_2 and S_3) and lineation (L_1 , L_2 and L_3). The first fissure generation (C_3) is related to E–W extension, the second fissure generation (C_2) is linked to strike-slip movements and the third fissure generation (C_3) is related to the oblique-slip movements.

lated to flat foliation (S_1) and E–W-stretching lineation (L_1) ; these are oriented perpendicular to the main fold axes (and lineation) of the TW and are associated with E–W extension (e.g. Gnos et al., 2015; Rosenberg et al., 2018; Schneider et al., 2013). (ii) Younger subvertical fissures (C_2 , Fig. 2c) are associated with subvertical E–W-oriented foliation (S_2) and flat to inclined lineation (L_2), and are oriented perpendicular to strike-slip faults (mainly in the western part of the TW; Fig. 2c). At Pfitscherjoch, the shape of C_2 fissures, indicating overprinting by sinistral sense of shear, is in agreement with the larger-scale sinistral shearing of the GSZ shear zone. (iii) A third generation of fissures (C_3 , Fig. 2c) is locally observed, for example, in the Pfitscherjoch locality (Fig. 2a and b) and is at a high angle with C_1 and C_2 fissures. This third fissure generation observed in the Pfitscherjoch locality is associated with a subvertical E–W-striking foliation (S_3). Stretching lineation related to the BNF activity is subparallel to C_3 lineation; however, its foliation is striking N–S (Fig. 2c). We suggest that C_3 fissures are related to oblique-slip movements, in line with the observed E–W-striking foliation and not the BNF activity.

4.2 Monazite dating and composition

The monazite grains selected for in situ Th-Pb dating are millimetre sized and, when BSE zoning is visible, they show two distinct textures: regular and patchy (Figs. 3, 4 and 5; Table 4). The term "regular" refers to crystals showing growth zonation, whereas a patchy texture is interpreted as a replacement by secondary dissolution–reprecipitation processes (e.g. Ayers et al., 1999; Bergemann et al., 2018, 2019,

Table 4. Summary of weighted mean ages of monazite growth domains and spot age ranges of each grain from the TW.

Sample domain	ID no.	Figure	Table	Zoning of the grains	Weighted mean domain 208 Pb / 232 Th ages (Ma, $\pm 1\sigma$)	MSWD	Number of analyses	Spot 208 Pb / 232 Th age range of entire grain (Ma, $\pm 1\sigma$)	Reference
Western Tauern V	Window								
INNB1	1	3a	3	Regular	-	-	-	$11.5 \pm 0.2 10.4 \pm 0.2$	This study
ZEI1 – A	2	3b	3	Regular	10.0 ± 0.2	1.8	20	$10.8 \pm 0.3 7.2 \pm 0.2$	This study
SCHR1 – A SCHR1 – B	3	3c	3	Regular	20.9 ± 0.6 20.3 ± 0.2	1.7 0.98	6 16	$21.9 \pm 0.5 - 19.3 \pm 0.5$	This study
SCHRI-C					19.7 ± 0.4	1.00	6	44.0.1.0.0.0.1.0.0	
MAYR4	3	30	3	Regular	-	-	-	$11.8 \pm 0.2 - 8.9 \pm 0.2$	This study
PFIT1 – A PFIT1 – B	5	3e	3	Patchy core	17.3 ± 0.3 13.2 ± 0.3	1.2 0.38	9 5	$17.8 \pm 0.4 - 12.9 \pm 0.3$	This study
BURG2	6	3f	3	Regular	-	-	-	$17.1\pm0.412.1\pm0.3$	This study
PLAN1 – A	7	3g	3	Patchy core	11.9 ± 0.2	2.2	37	$12.6 \pm 0.3 7.8 \pm 0.2$	This study
Central Tauern W	Vindow								
SCHEI1 – A SCHEI1 – B SCHEI1 – C	8	4a	3	Regular	$\begin{array}{c} 18.3 \pm 1.1 \\ 17.4 \pm 0.4 \\ 16.6 \pm 0.2 \end{array}$	2.0 1.5 1.9	4 5 23	$18.9 \pm 0.5 15.9 \pm 0.4$	This study
HOPF2 – B HOPF2 – C	9	4b	3	Regular	12.2 ± 0.4 12.2 ± 0.5	2.6 2.9	8 6	$13.7 \pm 0.4 - 11.0 \pm 0.3$	This study
GART1 – A	10	4c	3	Regular	16.3 ± 0.2	0.69	10	$16.9 \pm 0.3 - 14.5 \pm 0.4$	This study
NOWA3 – B NOWA3 – C	11	4d	3	Regular	15.8 ± 0.5 14.9 ± 1.1	0.27 2.4	5 5	$17.0 \pm 0.2 - 13.8 \pm 0.8$	This study
GART3 – B	12	4e	3	Regular	15.0 ± 0.5	2.3	11	$16.1 \pm 0.4 - 12.0 \pm 0.4$	This study
STEI2	13	4f	3	Regular/patchy tail	17.2 ± 0.2	0.24	20	$17.5 \pm 0.4 - 16.8 \pm 0.4$	This study
KNOR1 – A	14	4g	3	Regular	10.8 ± 0.3	1.02	5	$11.6 \pm 0.4 - 10.8 \pm 0.3$	This study
KNOR1 – B KNOR1 – C		C		C	10.6 ± 0.3 10.4 ± 0.2	1.6 1.4	8 8		·
Eastern Tauern W	Vindow								
KAIS6 – A	15	5a	3	Patchy border	21.2 ± 0.5	0.64	6	$22.1 \pm 0.6 {-}17.6 \pm 0.6$	This study
KAIS6 – B					20.9 ± 0.2 20.6 ± 0.5	0.53	24		
KAIS6 – D					18.8 ± 0.5	1.5	10		
SALZ18 – A	16a	5b	3	Regular	18.3 ± 0.4	2.6	14	$19.5 \pm 0.5 {-}15.8 \pm 0.4$	This study
T3	16b		_	Regular	18.1 ± 0.4	0.51	4	$18.5 \pm 0.4 14.8 \pm 0.4$	Gnos et al. (2015)
					17.2 ± 0.5	3.4	10		
					16.0 ± 0.3 15.5 ± 0.2	0.51	8 24		
LOHN4 – A	17	5c	3	Patchy core	21.1 ± 0.2	1.4	50	22.9+0.6-17.3+0.6	This study
LOHN4 – B				,	18.4 ± 0.6	1.3	7		
ORT1	18	5d	3	Regular	18.4 ± 0.3	1.07	13	$19.0\pm 0.617.0\pm 0.7$	This study
EUKL2	19a	5e	3	Regular	21.7 ± 0.4	0.56	7	$22.3 \pm 0.5 21.2 \pm 0.5$	This study
T2	19b		-	Patchy	15.1 ± 0.5	0.26	4	$15.4 \pm 0.4 15.0 \pm 0.7$	Gnos et al. (2015)
HOAR1 – A	20	5f	3	Patchy	20.4 ± 0.2	0.80	6	$21.2\pm 0.719.0\pm 0.9$	This study
HOAR1 – B					19.9 ± 0.3	0.95	25		
T1	21		-	Regular	19.0 ± 0.5 17.6 ± 0.6	0.51	5	$19.2 \pm 0.5 14.3 \pm 0.5$	Gnos et al. (2015)
					17.0 ± 0.0 16.3 ± 0.6	3.0	12		
					15.0 ± 0.5	1.7	8		
T4	22		-	Patchy	15.6 ± 0.7	9.1	21	$18.3 \pm 1.1 13.1 \pm 0.8$	Gnos et al. (2015)
MOKR1 – B	23	5g	3	Regular	18.8 ± 0.5	2.9	12	$22.6 \pm 0.4 14.4 \pm 0.2$	This study
SAND1 – B	24	5h	3	Regular	17.0 ± 0.8	1.8	7	$22.0 \pm 0.3 14.7 \pm 1.0$	This study
REIS1 – A REIS1 – B	25	5i	3	Regular	16.2 ± 0.5 13.6 ± 0.6	2.9 0.25	13 5	$17.8 \pm 0.6 13.5 \pm 0.8$	This study

2020; Gnos et al., 2015). Thorium and uranium (U) contents of the dated fissure monazites display a large variability, ranging from ~ 200 to 63 000 ppm Th and ~ 2 to 2000 ppm U, with variations in Th/U ratio from 1 up to \sim 7000 (Figs. 3, 4 and 5; Table 3). ²³²Th-²⁰⁸Pb ages presented on the righthand panel of Figs. 3, 4 and 5 are arranged according to the order established in Table 3. A detailed description of each monazite grain is provided in the Supplement. Average ages are reported for groups of dates on texturally and/or chemically similar domains. In order to ensure that a group of dates from a domain is internally consistent, rare outliers have been excluded to bring the mean square weighted deviation (MSWD) within acceptable values (MSWD < 3; Spencer et al., 2016). In a few cases, the dates for specific monazite domains have a scatter above analytical uncertainty (e.g. grains 6, 9 and 24), which probably reflects the complex formation process of fissure monazite.

The investigated grains from the western part of the western TW subdome come from the Venediger Duplex, with the exception of sample 6, which comes from the Glockner nappe system (Fig. 1; Table 1). Samples 2, 4 and 6 were collected near the major Brenner normal fault, which delimits the TW to the west, and samples 1, 3, 5 and 7 were collected in the vicinity of sinistral strike-slip faults (Fig. 1). Average growth domain ages range from 20.9 ± 0.6 to 10.0 ± 0.2 Ma (samples 3 and 2), with the youngest ages recorded in the western TW (Figs. 1, 3 and 6a; Tables 3 and 4).

The central part of the TW displays growth domain ages between 18.3 ± 1.1 and 10.4 ± 0.2 (samples 8 and 14; Figs. 1 and 4; Tables 3 and 4), but the majority of the dated crystals in this area record ages around 17 Ma (Fig. 6b). Samples 8, 9 and 10 were collected between the eastern and western termination of the ASZ and the SEMP fault (Fig. 1). Another three samples (11, 12 and 13; Table 1) were collected in the northern prolongation of the ASZ, and a seventh monazite (grain 14) was sampled near the southern border of the eastern part of the western subdome (Fig. 1).

The oldest ages are principally recorded in the eastern part of the TW at around 21 Ma (Fig. 6c). Average ages of growth domains range from 21.7 ± 0.4 to 13.6 ± 0.6 Ma (samples 19a and 25; Figs. 1, 4 and 6c; Tables 3 and 4). The samples were mainly collected at the western border of the eastern subdome, in the Venediger Duplex or near the boundary with the Glockner–Modereck nappe systems (Fig. 1). Sample 25 was taken at some distance from the other samples, near the southeastern border of the eastern subdome (Fig. 1).

5 Discussion

5.1 Fissure monazite ages

The oldest monazite ages of 21.7 ± 0.4 to 19.9 ± 0.3 Ma (found in samples 19a and 20; Figs. 1, 6c and 7a and d)

are common in the eastern TW but can also be found in the western area (Fig. 7a, c and d, red symbols). This in line with regional fault activity recorded at ~ 21 Ma based on Pleuger et al. (2012) (Fig. 8a) which corresponds to the main indentation phase (Favaro et al., 2017). We interpret these as a first monazite crystallization event during E-W extension in association with the dome formation (N-S shortening) when the existing clefts reached P-T conditions at which fissure monazite starts to grow (phase 1, red symbols in Fig. 7). When comparing an assumed fissure formation temperature of 450 °C (typically obtained in quartz fluid inclusion studies on early alpine fissures (e.g. Mullis, 1996) with thermochronological data of the eastern TW (compiled in Wölfler et al., 2012), the onset of fissure formation, predating primary monazite crystallization, is estimated at around 25 Ma. Based on a comparison with thermochronological data, monazite crystallization recorded between 19 and 15 Ma was estimated to have occurred at \sim 200–300 °C in the eastern TW (Gnos et al., 2015). New monazite ages from this study in the eastern TW are up to \sim 22 Ma (sample 19 in Fig. 1), suggesting that early monazite crystallization in the area may have occurred at higher temperatures of 350-400°C.

While early fissure formation is related to E-W extension (leading to flat foliation and E-W mineral lineations; Fig. 2c), we suggest that monazite formation also occurred along the sinistral strike-slip to oblique-slip movements (vertical foliation and flat to inclined lineation; Fig. 2), particularly developed in the central and western parts of the TW (e.g. Rosenberg et al., 2018; Schneider et al., 2013). These shear zones developed as a result of bending of the E-Woriented upright folds around a vertical axis (leading edge of the Dolomite indenter) (Fig. 1). This occurred when N-S shortening could no longer be accommodated by folding and doming within the TW. Associated with these movements is the formation of a younger generation of fissures (see Pfitscherjoch example above), the peak activity of which is recorded at \sim 17 Ma (phase 2, green symbols in Fig. 7). This fissure generation is associated with a steep foliation and a flat lineation (Fig. 2) but subparallel in orientation to the earlier fissure formation. The monazite ages at \sim 17 Ma found in the western and central TW (Figs. 1, 6 and 7; samples 5, 8, 13; Table 4) are associated with sinistral fault zones, as in the Pfitscherjoch region or near the eastern termination of the ASZ and AhSZ faults (see above). Unfortunately, we do not have structural information on the westernmost and easternmost analysed samples (6 and 25; Figs. 1, 6 and 7), but they can be speculated to also have formed in association with a strike-slip shear zone or the BNF and KNF in the case of samples 6 and 25, respectively. At larger scale, these movements seem to have been associated with the development of the sinistral Giudicarie fault (GF, located at the southwestern corner of the TW), offsetting the Periadriatic fault (PF; Fig. 8b, e.g. Pleuger et al., 2012). Ages of \sim 17 Ma are also recorded in the eastern part of the TW,

Figure 3. Chemical, textural and geochronological information of monazite grains from the western TW. On BSE images, colour-filled circles correspond to ion probe spot locations. Note that the square-shape shading in grain 4 is due to an artefact of composing BSE images with diverse contrast.

Figure 4. Chemical, textural and geochronological information of monazite grains from the central TW. On BSE images, colour-filled circles correspond to ion probe spot locations. Note that the square-shape shading in grains 10 and 11 is due to an artefact of composing BSE images with diverse contrast.

Figure 5.

Figure 5. Chemical, textural and geochronological information of monazite grains from the eastern TW. On BSE images, colour-filled circles correspond to ion probe spot locations. Note that the square-shape shading in grains 15, 17, 18 and 20 is due to an artefact of composing BSE images with diverse contrast.

Figure 6. Cross sections of (a) the western part of the western subdome, (b) the central part of the western subdome and (c) the western end of the eastern subdome, modified after (Schmid et al., 2013). See Fig. 1 for locations and legend. Sample locations are indicated by yellow stars and identified by sample numbers listed in Table 1. Monazite crystallization ages are present in the lower part of the figure and are linked to each sample by light-grey dashed lines. Weighted mean ages from this study and from Gnos et al. (2015) are presented by yellow diamonds and yellow circles, respectively, and blue bars correspond to the range of single spot dates.

likely linked to the KNF and Mölltal fault (MöF) activity (samples 16, 21, 24 and 25; Fig. 7a and d; e.g. Favaro et al., 2017). In grains located in the western part of the eastern subdome, in the prolongation of the MöF (e.g. Kurz and Neubauer, 1996) (Fig. 1), numerous monazite growth domains yield ages between 15.6 ± 0.7 and 15.0 ± 0.5 Ma (bracketed by samples 22 and 21 from Gnos et al., 2015; Figs. 1, 6c, 7a and d; green circles in Fig. 7d; Table 4).

These ages date the latest known activity of this shear zone to ~ 15 Ma. Whereas younger ages, associated with reactivation of fault zones are widespread in the central and western TW, tectonic movements seem to cease in the eastern TW after this time (Fig. 8c).

The youngest monazite growth domain ages, principally recorded in the western subdome, range from 13.2 ± 0.3 to 10.0 ± 0.2 Ma (samples 5 and 2; Table 4), indicating steps

Figure 7. (a) Map of the TW from Fig. 1 with sample locations coloured as function of deformation episodes (coloured stars). See Fig. 1 for legend. **(b)** DD' NE–SW cross section across the BNF, **(c)** AA' NW–SE cross section perpendicular to the axial plane of the western subdome and **(d)** EE' longitudinal cross section parallel to the main axial plane of the TW metamorphic dome, modified after Bertrand et al. (2017). In the upper part, coloured and numbered stars correspond to sample locations and are linked to corresponding Th-Pb monazite ages by dashed vertical lines. Sample numbers refer to Table 1. In the lower part, monazite weighted mean ages from this study and from Gnos et al. (2015) are labelled by coloured diamond and circles, respectively, and the range of single spot dates is depicted by blue bars. The colour code used for diamonds and circles follows deformation episodes explained in the discussion. Note that most error bars are smaller than the size of the diamonds and circles. Zircon and apatite fission track ages are from the Bertrand et al. (2017) compilation; light- and dark-grey dots with error bars are displayed for comparison. Square brackets shown to the right delimit the main periods of monazite growth discussed in the text: (1) early record of N–S shortening and associated E–W extension, (2) contemporaneous N–S shortening and strike slip, (3) reactivation of strike slip to oblique slip.

of reactivation of the different sinistral strike-slip to obliqueslip movements along different faults (phase 3 and blue symbols in Fig. 7). Based on our monazite crystallization data, the oldest activities of this younger phase are recorded near the GSZ (sample 5) and in the prolongation of the AhSZ (samples 7 and 9). The youngest activities are recorded in association with the ASZ, OSZ and TSZ in Fig. 7a–c (samples 1, 2 and 4), and in the central TW in an area located south of the main fault systems (sample 14; Fig. 7a). In addition to faults activity at ~ 12 Ma (Fig. 8), coeval strike-slip activity has also been documented in many areas of the central and western Alps (e.g. Bergemann et al., 2017, 2019; Berger et al., 2013; Gasquet et al., 2010; Grand'Homme et al., 2016a; Pleuger et al., 2012; Ricchi et al., 2019).

In summary, in the western TW, monazite ages (Fig. 1) constrain the activities of the ASZ (18–12 Ma, samples 8 and 9), AhSZ (17–12 Ma, samples 13 and 7), TSZ/OSZ (11.5–10 Ma, samples 1 and 2; older ages of sample 3 are probably related to extensional unroofing) and GSZ (17–13 Ma). In the eastern part, the MöF is active between 19 and 15 Ma.

5.2 Comparison with shear zone dating

A number of attempts to date shear zone activity in the TW using Ar-Ar, Rb-Sr and Sm-Nd techniques have been made in the past, which were, however, based on mineral separation techniques without a clear structural control on the dated grains (e.g. Blanckenburg et al., 1989; Glodny et al., 2008; Pollington and Baxter, 2010, 2011; Urbanek et al., 2002). An exception to this is the ⁴⁰Ar / ³⁹Ar study of Schneider et al. (2013) on syn-kinematic phengite and K-feldspar which will be used in the following as a comparison (Table 2). Fissure monazite ages largely corroborate this work, similarly showing the longevity of different shear zones in the TW. The ages confirm that even though most of the dated monazite samples are only located in the damage zone in the vicinity of the core of the shear zones, fluid-filled fissures provide a sensitive system where tectonic activity triggers fluidenhanced dissolution-precipitation reactions at lower greenschist to sub-greenschist facies conditions.

While Schneider et al. (2013) obtained crystallization age ranges of 33–15 Ma for the ASZ, 24–12 Ma for the TSZ and 20–7 Ma for the GSZ (Table 2), our data confirm fluid activity, and thus possible tectonic activity, at 18–12, 11.5– 10 and 17–13 Ma, respectively (Fig. 7). However, the oldest dates from Schneider et al. (2013) might also be interpreted as older grains that have been aligned in the new foliation (Fig. 8). The data presented here indicate that all of the shear zones where potentially active at least until \sim 13–12 Ma, and the Tuxer and/or Olperer shear zones even until \sim 7 Ma, as suggested by younger dates observed in grain 2 (Figs. 3b, 6a and 7, Tables 3 and 4). However, the fissure monazite data do not date the initiation of the GSZ (Selverstone et al., 1991) nor the earliest activity of the TSZ (greenschist to amphibolite facies; Selverstone et al., 1984, 1991) or the ASZ

Tectonic map of the Alps modified after Pleuger et al. (2012)

Figure 8. Tectonic map of the Alps based on Pleuger et al. (2012) showing active Cenozoic faults at ~ 21 (in red), 17 (in green) and 12 Ma (in blue), respectively. Note that after 17 Ma the Giudicarie fault (GF) becomes active and hence the Periadriatic fault (PF) and the Mölltal fault (MöF, dextral fault at the southeastern corner of the TW) become inactive. Sinistral strike-slip faulting starts at ~ 19 Ma and is affecting the western and central parts of the TW until at least 7 Ma. Future active faults are depicted in grey and inactive faults in black.

Figure 9. Th as function of U content obtained for all the monazite grains analysed in this study. Samples indicated by an asterisk are from Gnos et al. (2015). Fissure monazite grains associated with hematite (oxidizing conditions) are labelled in red, whereas grains hosted in graphite-bearing rocks (reducing conditions) are labelled in blue. Samples with intermediate composition and/or for which we have no information on the presence of hematite or graphite in the fissure environment are labelled in grey.

(greenschist facies; Cole et al., 2007), since their formation already started at amphibolite facies conditions. As Alpine fissures only form under greenschist facies conditions, the oldest monazite crystallization ages are younger than the data obtained by Schneider et al. (2013). This indicates that shear zone activity started earlier than the fissure monazite record. As the monazite age range of the younger fault activity is comparable to the data of Schneider et al. (2013) but is not the same for individual shear zones, it seems likely that all shear zones of the western TW were active as recently as 8– 7 Ma.

5.3 Comparison with fission track data

There is a wealth of zircon fission track (ZFT) data that can assist in describing the exhumation and low-grade tectonic activity in the TW (Bertrand, 2014; Bertrand et al., 2017; Dunkl et al., 2003; Fügenschuh et al., 1997; Mancktelow et al., 2001; Most, 2003; Pomella et al., 2011; Steenken et al., 2002; Stöckhert et al., 1999; Viola et al., 2001; Wölfler et al., 2008) and apatite fission track (AFT) data (Bertrand, 2014; Bertrand et al., 2017; Coyle, 1994; Di Fiore, 2013;

Foeken et al., 2007; Fügenschuh et al., 1997; Grundmann and Morteani, 1985; Hejl, 1997; Mancktelow et al., 2001; Most, 2003; Pomella et al., 2011; Staufenberg, 1987; Steenken et al., 2002; Viola et al., 2001; Wölfler et al., 2008, 2012).

Three cross sections, DD' (perpendicular to the BNF), AA' (perpendicular to the western limb of the western subdome) and EE' (parallel to the main axial plane of the TW), are presented in Fig. 7, redrawn after Bertrand et al. (2017) and Schmid et al. (2013). Zircon and apatite fission track data compiled by Bertrand et al. (2017) are displayed in the lower part of Fig. 7b-d and compared to fissure monazite ages. As described in Bertrand et al. (2017) (first model), fission track data along the AA' cross section (Fig. 7c) nicely display a dome-like shape, with younger ages recorded near the subdome axial plane, where cooling was slower. By contrast, along the EE' longitudinal cross section (Fig. 7d), ZFT and AFT are younger on the western and eastern borders of the TW where the two major extensional faults, the BNF and KNF, are respectively located. Perpendicular to the BNF (DD' cross section, Fig. 7b), the fission tracks record cooling ages younging from the footwall toward the plane of the normal fault (from 10 to 4 Ma for AFT; second model of Bertrand et al., 2017). Along the EE' cross section, the youngest monazite ages (15–10 Ma) lie between zircon and apatite fission track data (grey and blue symbols), whereas the older ages (>17 Ma) do not follow the cooling trend and are equal to or older than the ZFT data. This means that at least the fissure monazites recording older ages crystal-lized somewhere above ZFT closure temperatures of ~ 240–280 °C (Bernet, 2009; Bernet and Garver, 2005; Reiners, 2005; Yamada et al., 1995) (Fig. 7d).

5.4 Monazite Th/U as monitor of oxidizing and reducing conditions

Extreme low and high Th/U ratios described in fissure monazite by Gnos et al. (2015) (T1, T2 and T3 samples in Fig. 9) are also observed in some grains from this study (red and blue labels in Fig. 9). Hydrothermal monazite from the TW associated with hematite in fissure typically displays very high Th/U ratios of around 1200 (Fig. 9, red labels; Table 1), whereas grains obtained from graphite-bearing host rocks show very low Th/U ratios around 8 (Fig. 9, blue labels; Table 1). This attests for oxidizing and reducing fluid conditions in the fissure environment, respectively.

The Th/U in monazite grains PFIT1 and MOKR1 would instead record a dynamic oxidation environment due to variable fluid conditions. In PFIT1 monazite, the Th/U decreases from core to rim, whereas within MOKR1 the opposite evolution is observed (Fig. 9). Thus, in the first case, the fissure environment evolves toward reducing conditions, whereas in the second case there is an evolution towards more oxidizing conditions. Many of the other grains indicate intermediate oxidizing conditions and they could not be assigned to one of the two categories defined above, as the presence of either hematite or graphite is uncertain (Fig. 9; grey labels).

6 Conclusions

Th-Pb ages of fissure monazite provide an extended record of exhumation of the TW during the Miocene. The investigated monazites crystallized at temperatures <400 °C in the presence of hydrothermal fluids that circulated in open fissures formed through tectonic movements. The Th-Pb ages recorded by fissure monazites are in general agreement with previously published geochronological data and range between 21.7 ± 0.4 and 10.0 ± 0.2 Ma. Spot dates suggests that monazite crystallization in the metamorphic and structural TW dome occurred over a period of $\sim 16 \,\text{Myr}$. The combination of structural and geochronological information allows relating monazite growth to tectonic movements that affected the TW. The three major growth episodes identified in this study, by dating monazite growth domains, are interpreted to be associated with N-S shortening associated with the E-W extension (22-20 Ma), contemporaneous N-S shortening and sinistral strike-slip movements (19-15 Ma)

and reactivation of strike-slip/normal faulting (14–10 Ma). Overall, fissure monazite age recording indicates that in the TW Cenozoic faults show increased activity at ~ 21 , ~ 17 and ~ 12 Ma, probably due to reorganization of plate movements occurring at those times. Comparison of Th-Pb fissure monazite crystallization ages with existing crystallization and cooling ages (e.g. AFT, ZFT, white mica from fault zones) shows that the latest stages of monazite crystallization occurred at temperatures between apatite and zircon fission track "closure" temperatures. This enlarged dataset also supports previous observations on fissure monazite chemistry displaying extremely high Th/U ratios (~ 1200) under oxidizing conditions in association with hematite.

Data availability. The data used in this study are available in Tables 3 and 4.

Supplement. The supplement related to this article is available online at: https://doi.org/10.5194/se-11-437-2020-supplement.

Author contributions. Fissure monazite samples were organized by EG and FW. Monazite samples for dating were selected by ER, CAB, EG and AB according to tectonic settings and fault activity of the study area. ER prepared the manuscript during her PhD project under the supervision of EG, with contributions from all coauthors. Sample preparation and BSE imaging were performed by ER and CAB. Data acquisition and reduction at the SwissSIMS and NordSIMS facility was, respectively, carried out by ER and CAB under the supervision of DR and MJW.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. We thank Sepp Brugger, Kurt Novak, Franz Gartner, Peter Hellweger, Adolf Meyer, Sebastian Planken-Steiner, Johann Rappold, Josef Rathgeb, Alexandre Salzmann, Maria Schaffhauser, Andreas Steiner, and Ermin Welzl for providing samples for this study. Urs Klötzli and Jan Pleuger are thanked for their helpful comments.

Financial support. This research has been supported by the Swiss National Science Foundation (grant no. 200020-165513). The NordSIMS facility received funding from the Swedish Research Council (infrastructure grant no. 2014-06375) and the Swedish Museum of Natural History; this is NordSIMS publication no. 636.

Review statement. This paper was edited by Bernhard Grasemann and reviewed by Jan Pleuger and Urs Klötzli.

465

References

- Aleinikoff, J. N., Schenck, W. S., Plank, M. O., Srogi, L. A., Fanning, C. M., Kamo, S. L., and Bosbyshell, H.: Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite, Bull. Geol. Soc. Am., 118, 39–64, https://doi.org/10.1130/B25659.1, 2006.
- Ayers, J. C., Miller, C., Gorisch, B., and Milleman, J.: Textural development of monazite during high-grade metamorphism: Hydrothermal growth kinetics, with implications for U,Th-Pb geochronology, Am. Mineral., 84, 1766–1780, https://doi.org/10.2138/am-1999-11-1206, 1999.
- Bergemann, C. A., Gnos, E., Berger, A., Whitehouse, M., Mullis, J., Wehrens, P., Pettke, T., and Janots, E.: Th-Pb ion probe dating of zoned hydrothermal monazite and its implications for repeated shear zone activity: An example from the Central Alps, Switzerland, Tectonics, 36, 671–689, https://doi.org/10.1002/2016TC004407, 2017.
- Bergemann, C. A., Gnos, E., Berger, A., Whitehouse, M. J., Mullis, J., Walter, F., and Bojar, H. P.: Constraining longterm fault activity in the brittle domain through in situ dating of hydrothermal monazite, Terra Nov., 30, 440–446, https://doi.org/10.1111/ter.12360, 2018.
- Bergemann, C. A., Gnos, E., and Whitehouse, M. J.: Insights into the tectonic history of the Western Alps through dating of fissure monazite in the Mont Blanc and Aiguilles Rouges Massifs, Tectonophysics, 750, 203–212, https://doi.org/10.1016/j.tecto.2018.11.013, 2019.
- Bergemann, C. A., Gnos, E., Berger, A., Janots, E., and Whitehouse, M. J.: Dating tectonic activity in the Lepontine Dome and Rhone-Simplon Fault regions through hydrothermal monazite-(Ce), Solid Earth, 11, 199–222, https://doi.org/10.5194/se-11-199-2020, 2020.
- Berger, A., Gnos, E., Janots, E., Whitehouse, M., Soom, M., Frei, R., and Waight, T. E.: Dating brittle tectonic movements with cleft monazite: Fluid-rock interaction and formation of REE minerals, Tectonics, 32, 1176–1189, https://doi.org/10.1002/tect.20071, 2013.
- Bernet, M.: A field-based estimate of the zircon fissiontrack closure temperature, Chem. Geol., 259, 181–189, https://doi.org/10.1016/j.chemgeo.2008.10.043, 2009.
- Bernet, M. and Garver, J. I.: Fission-track analysis of detrital zircon, Rev. Mineral. Geochem., 58, 205–237, 2005.
- Bertrand, A.: Exhuming the core of collisional orogens, the Tauern Window (Eastern-Alps), A geochronological, modelling and structural study, PhD tesis, Freie Univ. Berlin, 2014.
- Bertrand, A., Rosenberg, C., and Garcia, S.: Fault slip analysis and late exhumation of the Tauern Window, Eastern Alps, Tectonophysics, 649, 1–17, https://doi.org/10.1016/j.tecto.2015.01.002, 2015.
- Bertrand, A., Rosenberg, C., Rabaute, A., Herman, F., and Fügenschuh, B.: Exhumation mechanisms of the Tauern Window (Eastern Alps) inferred from apatite and zircon fission track thermochronology, Tectonics, 36, 207–228, https://doi.org/10.1002/2016TC004133, 2017.
- Blanckenburg, F. v., Villa, I. M., Baur, H., Morteani, G., and Steiger, R. H.: Time calibration of a PT-path from the Western Tauern Window, Eastern Alps: the problem of

closure temperatures, Contrib. Mineral. Petrol., 101, 1–11, https://doi.org/10.1007/BF00387196, 1989.

- Cherniak, D. J., Watson, E. B., Grove, M., and Harrison, T. M.: Pb diffusion in monazite: A combined RBS/SIMS study, Geochim. Cosmochim. Ac., 68, 829–840, https://doi.org/10.1016/j.gca.2003.07.012, 2004.
- Cole, J., Hacker, B., Ratschbacher, L., Dolan, J., Seward, G., Frost, E., and Frank, W.: Localized ductile shear below the seismogenic zone: Structural analysis of an exhumed strikeslip fault, Austrian Alps, J. Geophys. Res.-Sol. Ea., 112, 1–15, https://doi.org/10.1029/2007JB004975, 2007.
- Coyle, D. A.: The application of apatite fission-track analysis to problem in tectonics, PhD thesis, La Trobe Univ. Bundoora, Victoria, Australia, 1994.
- Di Fiore, G.: Evoluzione Morfotettonica delle aree alpine "Sempione" e "Brennero" attraverso studi termocronologici di bassa temperatura, PhD thesis, Università di Bologna, 2013.
- Dunkl, I., Frisch, W., and Grundmann, G.: Zircon fission-track thermochronology of the south-eastern part of the TW and the adjacent Austroalpine margin, Eastern Alps, Eclogae Geol. Helv., 96, 209–217, 2003.
- Favaro, S., Handy, M. R., Scharf, A., and Schuster, R.: Changing patterns of exhumation and denudation in front of an advancing crustal indenter, Tauern Window (Eastern Alps), Tectonics, 36, 1053–1071, https://doi.org/10.1002/2016TC004448, 2017.
- Fitz-Diaz, E., Cottle, J. M., Vidal-Reyes, M. I., and van der Pluijm, B.: In situ Th/Pb dating of monazite in fibrous veins: Direct dating of veins and deformation in the shallow upper crust of the Mexican Orogen, J. Struct. Geol., 124, 136–142, https://doi.org/10.1016/j.jsg.2019.04.004, 2019.
- Foeken, J. P. T., Persano, C., Stuart, F. M., and ter Voorde, M.: Role of topography in isotherm perturbation: Apatite (U–Th)/He and fission track results from the Malta tunnel, Tauern Window, Austria, Tectonics, 26, https://doi.org/10.1029/2006TC002049, 2007.
- Fügenschuh, B., Seward, D., and Mancktelow, N.: Exhumation in a convergent orogen: the western Tauern Window, Terra Nov., 9, 213–217, https://doi.org/10.1111/j.1365-3121.1997.tb00015.x, 1997.
- Gardés, E., Jaoul, O., Montel, J. M., Seydoux-Guillaume, A. M., and Wirth, R.: Pb diffusion in monazite: An experimental study of Pb²⁺ + Th⁴⁺ <=>2Nd³⁺ interdiffusion, Geochim. Cosmochim. Ac., 70, 2325–2336, https://doi.org/10.1016/j.gca.2006.01.018, 2006.
- Gardés, E., Montel, J. M., Seydoux-Guillaume, A. M., and Wirth, R.: Pb diffusion in monazite: New constraints from the experimental study of $Pb^{2+} <=>Ca^{2+}$ interdiffusion, Geochim. Cosmochim. Ac., 71, 4036–4043, https://doi.org/10.1016/j.gca.2007.06.036, 2007.
- Gasquet, D., Bertrand, J. M., Paquette, J. L., Lehmann, J., Ratzov, G., Ascenção De Guedes, R. A., Tiepolo, M., Boullier, A. M., Scaillet, S., and Nomade, S.: Miocene to Messinian deformation and hydrothermal activity in a pre-Alpine basement massif of the French western Alps: New U-Th-Pb and argon ages from the Lauzière massif, Bull. Soc. Geol. Fr., 181, 227–241, https://doi.org/10.2113/gssgfbull.181.3.227, 2010.
- Glodny, J., Ring, U., and Kühn, A.: Coeval high-pressure metamorphism, thrusting, strike-slip, and extensional shear-

ing in the Tauern Window, Eastern Alps, Tectonics, 27, https://doi.org/10.1029/2007TC002193, 2008.

- Gnos, E., Janots, E., Berger, A., Whitehouse, M., Walter, F., Pettke, T., and Bergemann, C. A.: Age of cleft monazites in the eastern Tauern Window: constraints on crystallization conditions of hydrothermal monazite, Swiss J. Geosci., 108, 55–74, https://doi.org/10.1007/s00015-015-0178-z, 2015.
- Grand'Homme, A., Janots, E., Bosse, V., Seydoux-Guillaume, A. M., and Ascenção De Guedes, R. A.: Interpretation of U-Th-Pb in-situ ages of hydrothermal monazite-(Ce) and xenotime-(Y): evidence from a large-scale regional study in clefts from the western alps, Mineral. Petrol., 110, 787–807, https://doi.org/10.1007/s00710-016-0451-5, 2016a.
- Grand'Homme, A., Janots, E., Seydoux-Guillaume, A. M., Guillaume, D., Bosse, V., and Magnin, V.: Partial resetting of the U-Th-Pb systems in experimentally altered monazite: Nanoscale evidence of incomplete replacement, Geology, 44, 431–434, https://doi.org/10.1130/G37770.1, 2016b.
- Grand'Homme, A., Janots, E., Seydoux-Guillaume, A. M., Guillaume, D., Magnin, V., Hövelmann, J., Höschen, C., and Boiron, M. C.: Mass transport and fractionation during monazite alteration by anisotropic replacement, Chem. Geol., 484, 51–68, https://doi.org/10.1016/j.chemgeo.2017.10.008, 2018.
- Grundmann, G. and Morteani, G.: The young uplift and thermal history of the central Eastern Alps (Austria/Italy), evidence from apatite fission track ages, Jahrb. Geol. Bundesanst, 128, 197–216, 1985.
- Hejl, E.: "Cold spots" during the Cenozoic evolution of the Eastern Alps: Thermochronological interpretation of apatite fission-track data, Tectonophysics, 272, 159–173, https://doi.org/10.1016/S0040-1951(96)00256-9, 1997.
- Janots, E., Berger, A., Gnos, E., Whitehouse, M., Lewin, E., and Pettke, T.: Constraints on fluid evolution during metamorphism from U–Th–Pb systematics in Alpine hydrothermal monazite, Chem. Geol., 326, 61–71, 2012.
- Janots, E., Grand'Homme, A., Bernet, M., Guillaume, D., Gnos, E., Boiron, M.-C., Rossi, M., Seydoux-Guillaume, A.-M., and De Ascenção Guedes, R.: Geochronological and thermometric evidence of unusually hot fluids in an Alpine fissure of Lauzière granite (Belledonne, Western Alps), Solid Earth, 10, 211–223, https://doi.org/10.5194/se-10-211-2019, 2019.
- Kurz, W. and Neubauer, F.: Deformation partitioning during updoming of the Sonnblick area in the Tauern Window (Eastern Alps, Austria), J. Struct. Geol., 18, 1327–1337, https://doi.org/10.1016/S0191-8141(96)00057-0, 1996.
- Ludwig, K. R.: User's manual for a geochronological toolkit for Microsoft Excel (Isoplot/Ex version 3.0), Berkeley Geochronol. Cent. Spec. Publ., 4, 1–70, 2003.
- Luth, S. W. and Willingshofer, E.: Mapping of the post-collisional cooling history of the Eastern Alps, Swiss J. Geosci., 101, 207– 223, https://doi.org/10.1007/s00015-008-1294-9, 2008.
- Mancktelow, N. S., Stöckli, D. F., Grollimund, B., Müller, W., Fügenschuh, B., Viola, G., Seward, D., and Villa, I. M.: The DAV and Pediatriatic fault systems in the Eastern Alps South of the Tauern window, Int. J. Earth Sci., 90, 593–622, https://doi.org/10.1007/s005310000190, 2001.
- Most, P.: Late Alpine cooling histories of tectonic blocks along the central part of the Transalp-Traverse (Inntal-Gadertal): Con-

straints from geochronology, PhD thesis, University of Tübingen, p. 97, 2003.

- Mullis, J.: P-T-t path of quartz formation in extensional veins of the Central Alps, Schweiz. Miner. Petrogr. Mitt, 76, 159–164, https://doi.org/10.5169/seals-57694, 1996.
- Mullis, J., Dubessy, J., Poty, B., and O'Neil, J.: Fluid regimes during late stages of a continental collision: physical, chemical, and stable isotope measurements of fluid inclusions in fissure quartz from a geotraverse through the Central Alps, Switzerland, Geochim. Cosmochim. Ac., 58, 2239–2267, 1994.
- Pleuger, J., Mancktelow, N., Zwingmann, H., and Manser, M.: K-Ar dating of synkinematic clay gouges from Neoalpine faults of the Central, Western and Eastern Alps, Tectonophysics, 550, 1–16, https://doi.org/10.1016/j.tecto.2012.05.001, 2012.
- Pollington, A. D. and Baxter, E. F.: High resolution Sm-Nd garnet geochronology reveals the uneven pace of tectonometamorphic processes, Earth Planet. Sc. Lett., 293, 63–71, https://doi.org/10.1016/j.epsl.2010.02.019, 2010.
- Pollington, A. D. and Baxter, E. F.: High precision microsampling and preparation of zoned garnet porphyroblasts for Sm-Nd geochronology, Chem. Geol., 281, 270–282, https://doi.org/10.1016/j.chemgeo.2010.12.014, 2011.
- Pomella, H., Klötzli, U., Scholger, R., Stipp, M., and Fügenschuh, B.: The Northern Giudicarie and the Meran-Mauls fault (Alps, Northern Italy) in the light of new paleomagnetic and geochronological data from boudinaged Eo-/Oligocene tonalites, Int. J. Earth Sci., 100, 1827–1850, https://doi.org/10.1007/s00531-010-0612-4, 2011.
- Putnis, A.: Mineral Replacement Reactions, Rev. Miner. Geochem., 70, 87–124, https://doi.org/10.2138/rmg.2009.70.3, 2009.
- Reiners, P. W.: Zircon (U–Th)/He Thermochronometry, in: Reviews in Mineralogy and Geochemistry, vol. 58, 151–179, 2005.
- Ricchi, E., Bergemann, C. A., Gnos, E., Berger, A., Rubatto, D., and Whitehouse, M. J.: Constraining deformation phases in the Aar Massif and the Gotthard Nappe (Switzerland) using Th-Pb crystallization ages of fissure monazite-(Ce), Lithos, 342/343, 223– 238, https://doi.org/10.1016/j.lithos.2019.04.014, 2019.
- Rosenberg, C. L. and Berger, A.: On the causes and modes of exhumation and lateral growth of the Alps, Tectonics, 28, https://doi.org/10.1029/2008TC002442, 2009.
- Rosenberg, C. L. and Garcia, S.: Estimating displacement along the Brenner Fault and orogen-parallel extension in the Eastern Alps, Int. J. Earth Sci., 100, 1129–1145, https://doi.org/10.1007/s00531-011-0645-3, 2011.
- Rosenberg, C. L. and Schneider, S.: The western termination of the SEMP Fault (eastern Alps) and its bearing on the exhumation of the Tauern Window, Geol. Soc. Lond. Spec. Publ., 298, 197–218, 2008.
- Rosenberg, C. L., Schneider, S., Scharf, A., Bertrand, A., Hammerschmidt, K., Rabaute, A., and Brun, J. P.: Relating collisional kinematics to exhumation processes in the Eastern Alps, Earth-Sci. Rev., 176, 311–344, https://doi.org/10.1016/j.earscirev.2017.10.013, 2018.
- Scharf, A., Handy, M. R., Favaro, S., Schmid, S. M., and Bertrand, A.: Modes of orogen-parallel stretching and extensional exhumation in response to microplate indentation and roll-back subduction (Tauern Window, Eastern Alps), Int. J. Earth Sci., 102, 1627–1654, https://doi.org/10.1007/s00531-013-0894-4, 2013.

- Schmid, S. M., Fügenschuh, B., Kissling, E., and Schuster, R.: Tectonic map and overall architecture of the Alpine orogen, Eclogae Geol. Helv., 97, 93–117, https://doi.org/10.1007/s00015-004-1113-x, 2004.
- Schmid, S. M., Scharf, A., Handy, M. R., and Rosenberg, C. L.: The Tauern Window (Eastern Alps, Austria): a new tectonic map, with cross-sections and a tectonometamorphic synthesis, Swiss J. Geosci., 106, 1–32, https://doi.org/10.1007/s00015-013-0123-y, 2013.
- Schneider, S., Hammerschmidt, K., and Rosenberg, C. L.: Dating the longevity of ductile shear zones: Insight from ⁴⁰Ar/³⁹Ar in situ analyses, Earth Planet. Sc. Lett., 369–370, 43–58, https://doi.org/10.1016/j.epsl.2013.03.002, 2013.
- Selverstone, J.: Evidence for east-west crustal extension in the Eastern Alps: Implications for the unroofing history of the Tauern Window, Tectonics, 7, 87–105, 1988.
- Selverstone, J., Spear, F. S., Franz, G., and Morteani, G.: Highpressure metamorphism in the SW tauern window, Austria: P-T paths from hornblende-kyanite-staurolite schists, J. Petrol., 25, 501–531, https://doi.org/10.1093/petrology/25.2.501, 1984.
- Selverstone, J., Morteani, G., and Staude J.-M: Fluid channelling during ductile shearing: transformation of granodiorite into aluminous schist in the Tauern Window, Eastern Alps, J. Metamorph. Geol., 9, 419–431, 1991.
- Seydoux-Guillaume, A. M., Montel, J. M., Bingen, B., Bosse, V., de Parseval, P., Paquette, J. L., Janots, E., and Wirth, R.: Low-temperature alteration of monazite: Fluid mediated coupled dissolution-precipitation, irradiation damage, and disturbance of the U-Pb and Th-Pb chronometers, Chem. Geol., 330/331, 140– 158, https://doi.org/10.1016/j.chemgeo.2012.07.031, 2012.
- Sharp, Z. D., Masson, H., and Lucchini, R.: Stable isotope geochemistry and formation mechanisms of quartz veins; extreme paleoaltitudes of the Central Alps in the Neogene, Am. J. Sci., 305, 187–219, 2005.
- Spencer, C. J., Kirkland, C. L., and Taylor, R. J. M.: Geoscience Frontiers Strategies towards statistically robust interpretations of in situ U e Pb zircon geochronology, Geosci. Front., 7, 581–589, https://doi.org/10.1016/j.gsf.2015.11.006, 2016.

- Stacey, J. S. and Kramers, J. D.: Approximation of terrestrial lead isotope evolution by a two-staged model, Earth Planet. Sc. Lett., 26, 207–221, 1975.
- Staufenberg, H.: Apatite fission-track evidence for postmetamorphic uplift and cooling history of the Eastern Tauern Window and the surrounding Austroalpine (Central Eastern Alps, Austria), Jahrb. Geol. Bundesanst, 130, 571–586, 1987.
- Steenken, A., Siegesmund, S., Heinrichs, T., and Fügenschuh, B.: Cooling and exhumation of the Rieserferner Pluton (Eastern Alps, Italy/Austria), Int. J. Earth Sci., 91, 799–817, https://doi.org/10.1007/s00531-002-0260-4, 2002.
- Stöckhert, B., Brix, M. R., Kleinschrodt, R., Hurford, A. J., and Wirth, R.: Thermochronometry and microstructures of quartza comparison with experimental flow laws and predictions on the temperature of the brittle-plastic transition, J. Struct. Geol., 21, 351–369, https://doi.org/10.1016/S0191-8141(98)00114-X, 1999.
- Urbanek, C., Frank, W., Grasemann, B., and Decker, K.: Eoalpine versus Tertiary deformation: dating of heterogeneously partitioned strain (Tauern Window, Austria), in Abstract volume, edited by: PanGeo Austria, 183–184, 2002.
- Viola, G., Mancktelow, N. S., and Seward, D.: Late oligoceneneogene evolution of Europe-Adria collision: New structural and geochronological evidence from the Giudicarie fault system (Italian Eastern Alps), Tectonics, 20, 999–1020, https://doi.org/10.1029/2001TC900021, 2001.
- Wölfler, A., Dekant, C., Danišík, M., Kurz, W., Dunkl, I., Putiš, M., and Frisch, W.: Late stage differential exhumation of crustal blocks in the central Eastern Alps: Evidence from fission track and (U-Th)/He thermochronology, Terra Nov., 20, 378–384, https://doi.org/10.1111/j.1365-3121.2008.00831.x, 2008.
- Wölfler, A., Stüwe, K., Danišík, M., and Evans, N. J.: Low temperature thermochronology in the Eastern Alps: Implications for structural and topographic evolution, Tectonophysics, 541, 1–18, https://doi.org/10.1016/j.tecto.2012.03.016, 2012.
- Yamada, R., Tagami, T., Nishimura, S., and Ito, H.: Annealing kinetics of fission tracks in zircon?: an experimental study, Chem. Geol., 122, 249–258, 1995.