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Abstract. Understanding the properties of cracked rocks
is of great importance in scenarios involving CO, geolog-
ical sequestration, nuclear waste disposal, geothermal en-
ergy, and hydrocarbon exploration and production. Develop-
ing noninvasive detecting and monitoring methods for such
geological formations is crucial. Many studies show that seis-
mic waves exhibit strong dispersion and attenuation across
a broad frequency range due to fluid flow at the pore scale
known as squirt flow. Nevertheless, how and to what extent
squirt flow affects seismic waves is still a matter of investiga-
tion. To fully understand its angle- and frequency-dependent
behavior for specific geometries, appropriate numerical sim-
ulations are needed. We perform a three-dimensional numer-
ical study of the fluid—solid deformation at the pore scale
based on coupled Lamé—Navier and Navier—Stokes linear
quasistatic equations. We show that seismic wave veloci-
ties exhibit strong azimuth-, angle- and frequency-dependent
behavior due to squirt flow between interconnected cracks.
Furthermore, the overall anisotropy of a medium mainly in-
creases due to squirt flow, but in some specific planes the
anisotropy can locally decrease. We analyze the Thomsen-
type anisotropic parameters and adopt another scalar param-
eter which can be used to measure the anisotropy strength
of a model with any elastic symmetry. This work signifi-
cantly clarifies the impact of squirt flow on seismic wave
anisotropy in three dimensions and can potentially be used to
improve the geophysical monitoring and surveying of fluid-
filled cracked porous zones in the subsurface.

1 Introduction

Wave propagation is controlled by the effective rock prop-
erties. Wave velocity and attenuation can be estimated
from seismic data in scenarios such as seismic exploration,
seismology, borehole measurements and tomography. Rock
physics could then be used to estimate different rock prop-
erties, such as mineral composition, elastic moduli, the pres-
ence of a fluid, and pore space connectivity (and hence per-
meability) from seismic measurements. Thus, investigation
of how cracks and fluids affect seismic properties has many
practical applications. In activities including nuclear waste
disposal, CO; geological sequestration, hydrocarbon explo-
ration and production, geothermal energy production, and
seismotectonics, a quantification of the fluid content, poros-
ity and permeability of rocks are of great interest. All these
activities can benefit from rock physics studies, and that is
why cracked rocks have been under intensive studies during
the last decades.

Cracks and grain-scale discontinuities are the key rock pa-
rameters which control effective elastic and hydraulic proper-
ties of such rocks. Many studies show that seismic waves ex-
hibit significant dispersion and attenuation in cracked porous
rocks due to pore-scale fluid flow (O’Connell and Budian-
sky, 1977; Dvorkin et al., 1995; Gurevich et al., 2010; Miiller
et al., 2010). Furthermore, cracks cause significant seismic
wave anisotropy (Schoenberg and Sayers, 1995; Sayers and
Kachanov, 1995; Sayers, 2002; Chapman, 2003; Maultzsch
et al., 2003; Tsvankin and Grechka, 2011).
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Fluid flow due to a passing wave may happen at differ-
ent scales: at the wavelength scale, at the mesoscopic scale
and at the pore scale (Miiller et al., 2010). Biot’s theory
(Biot, 1962) describes the so-called global flow at the wave-
length scale, but its overall effect on a passing wave at seis-
mic frequencies is usually much smaller than that of fluid
flow at the mesoscopic and pore scales (Pride et al., 2004).
The mesoscopic scale is that much larger than the pore-scale
but smaller than the wavelength. At this scale, studies are
performed in the framework of Biot theory, assuming het-
erogeneous rock properties. One can define fractures as dis-
continuities at the mesoscopic scale and cracks as discon-
tinuities at the pore scale. There are several analytical and
numerical studies on the effect of wave-induced fluid flow
between mesoscopic fractures and a porous rock background
and between interconnected fractures using Biot’s equations
(Brajanovski et al., 2005; Rubino et al., 2013; Quintal et al.,
2014; Masson and Pride, 2014; Grab et al., 2017; Hunziker
et al., 2018; Caspari et al., 2019) as well as on the compari-
son between the numerical and analytical results (Guo et al.,
2017, 2018). Experimental studies of synthetic rock samples
showed the impact of fluid-saturated fractures on seismic ve-
locities (Amalokwu et al., 2016; Tillotson et al., 2012, 2014).
The resulting frequency-dependent anisotropy was analyzed
by Carcione et al. (2013), Rubino et al. (2017) and Barbosa
etal. (2017). The last two also considered fracture-to-fracture
flow, in addition to fracture-to-background flow.

At the pore scale, a passing wave induces fluid pressure
gradients which occur between interconnected cracks, as
well as between cracks and stiffer pores. Such pressure gra-
dients force fluid to move between different cracks and pores
until the pore pressure equilibrates throughout the connected
pore space. This phenomenon, known as squirt flow (Mavko
and Nur, 1975), causes strong energy dissipation due to the
viscosity of the fluid and the associated viscous friction. Sev-
eral experimental studies confirmed the importance of squirt
flow at different frequency ranges (Mayr and Burkhardt,
2006; Best et al., 2007; Adelinet et al., 2010; Mikhaltsevitch
et al., 2015; Pimienta et al., 2015; Subramaniyan et al., 2015;
Chapman et al., 2019). There are several analytical solutions
for squirt flow (O’Connell and Budiansky, 1977; Dvorkin
et al.,, 1995; Chapman et al., 2002; Guéguen and Sarout,
2009, 2011; Gurevich et al., 2010), which are based on sim-
plified pore geometries and many physical assumptions.

Dispersion and attenuation caused by squirt flow can be
simulated numerically by solving the coupled fluid—solid de-
formation at the pore scale using Lamé—Navier and Navier—
Stokes equations with appropriate boundary conditions and
then calculating effective frequency-dependent viscoelastic
properties. During the last decades, many studies used nu-
merical methods to solve mechanical problems (Andri et al.,
2013a, b; Saxena and Mavko, 2016). Recently, some nu-
merical studies appeared in the geophysical literature aim-
ing to solve the coupled fluid—solid deformation and hence
studying dispersion and attenuation caused by squirt flow
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(Zhang et al., 2010; Zhang and Toksoz, 2012; Quintal et al.,
2016, 2019; Das et al., 2019; Alkhimenkov et al., 2020). Das
et al. (2019) numerically simulated a fully coupled fluid-
solid interaction at the pore scale for digital rock samples.
They modeled the pore fluids as Newtonian fluids using
the Navier—Stokes equation with appropriate coupling be-
tween both the solid and liquid phases, accounting for iner-
tial effects. Quintal et al. (2016, 2019) simplified the Navier—
Stokes equations by neglecting the inertial term and hence
used the linearized quasistatic Navier—Stokes equation.

We numerically simulate squirt flow in three dimensions
and calculate frequency-dependent effective stiffness mod-
uli using the finite-element method to solve the quasistatic
Lamé-Navier equations coupled to the linearized quasistatic
Navier—Stokes equations (Quintal et al., 2016, 2019; Alkhi-
menkov et al., 2020). We apply an oscillatory deformation
to certain boundaries of the numerical model, and, assuming
that the wavelength is much larger than the size of individ-
ual cracks, we calculate the volume-average stress and strain
fields and the resulting effective stiffness moduli. Then,
we calculate the associated azimuth-, angle- and frequency-
dependent seismic velocities by solving the Christoffel equa-
tion. The main goal of this study is to analyze seismic
anisotropy due to squirt flow in three dimensions since the
previous numerical studies of seismic anisotropy were per-
formed only in two dimensions and in the framework of
Biot’s theory (Rubino et al., 2017; Barbosa et al., 2017).

This paper is organized as follows. First, we briefly de-
scribe the numerical methodology. Then, we describe the nu-
merical model and show the numerical results — frequency-
dependent effective stiffness moduli. After, by solving the
Christoffel equation, we evaluate the angle-, azimuth- and
frequency dependent velocities of the model. Lastly, we
quantify the anisotropy strength of the models analyzing the
conventional Thomsen-type anisotropy parameters and also
by adopting another scalar parameter.

2 Numerical methodology

We consider that at the pore scale, a rock is composed of
a solid material (grains) and a fluid-saturated pore space
(cracks). The numerical methodology is described by Quin-
tal et al. (2016, 2019) and Alkhimenkov et al. (2020), and
here we briefly outline the main equations. The solid phase
is described as a linear isotropic elastic material for which
the conservation of momentum is (e.g., Landau and Lifshitz,
1959b and Nemat-Nasser and Hori, 2013)

V.o =0, (1)

where “V-” denotes the divergence operator acting on the
stress tensor o . The infinitesimal stress—strain relation for an
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elastic material can be written as

2 1 T
o=(K — §M)tr(§ ((V@u) +(V®u) )) I

1 T
+2u <§ (Veu) +(Veu) )), @

where I, is the second-order identity tensor, tr is the trace
operator, “®” defines the tensor product, the superscript “T”
corresponds to the transpose operator, u is the displacement
vector, and K and p are respectively the bulk and shear mod-
uli.

The fluid phase is described by the quasistatic linearized
compressible Navier-Stokes momentum equation (Landau
and Lifshitz, 1959a):

1
—Vp+nViv+ 31V (V-0 =0, 3)

where v is the particle velocity, p is the fluid pressure and 7 is
the shear viscosity. Equation (3) is valid for the laminar flow
of a Newtonian fluid. In the finite-element numerical solver,
Egs. (2)-(3) are combined in the space—frequency domain

2
oij =\edjj +2ue;j +iw (2?761‘]'—377651‘]'), @)

where ¢;; represents the components of the strain tensor
€j=0.5 (u,-,j +uj,,~), e is the trace of the strain tensor, A
and p are the Lame parameters, u; is the displacement in the
ith direction, §;; is the Kronecker delta, i is the imaginary
unit, and  is the angular frequency. In the domain repre-
senting a solid material, Eq. (4) reduces to Eq. (2) by set-
ting the shear viscosity 7 to zero. In the domain representing
compressible viscous fluid, Eq. (3) is recovered by setting the
shear modulus w to zero. The solid and fluid displacements
are described by the same variable, and thus they are natu-
rally coupled at the boundaries between subdomains (Quintal
et al., 2016, 2019). In the simulations, the energy dissipation
is caused only by fluid pressure diffusion, since inertial terms
are neglected.

The COMSOL Multiphysics partial differential equa-
tion module is used for implementing Eqs. (1) and (4)
(displacement-stress formulation) in a weak form. Our nu-
merical results can be fully reproduced by using any open-
access software which includes mesh generation and finite-
element implementation with a corresponding solver for a
linear system of equations. The whole spatial domain is dis-
cretized using an unstructured mesh with tetrahedral ele-
ments. A direct PARDISO solver (Schenk and Girtner, 2004)
is used for solving the linear system of equations. Direct re-
laxation tests are performed to compute all components of
the stiffness matrix (in Voigt notation) ¢;;. The basic idea
of the direct relaxation tests is that a displacement bound-
ary condition of the form u = 1078 x exp(iwt) is applied to
a certain external wall of the model and in a certain direc-
tion, while at other walls of the model the displacements
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are set to zero or let free to change. In the direct tests that
we perform, only one component of the stiffness matrix c;;
can be directly calculated after one numerical simulation. A
detailed description of the boundary conditions is given in
Alkhimenkov et al. (2020). The initial conditions for dis-
placements are set to zero. The resulting stress and strains are
averaged over the spatial domain for each frequency. Then,
the complex-valued c;; (w) components (diagonal) are calcu-
lated for each frequency (in Voigt notation, no index summa-
tion):

cii(w) @) ®)
where (-) represents the volume averaging over the sam-
ple volume. For calculating the P-wave modulus (ii =
11,22, 33), a harmonic displacement on the i direction is ap-
plied perpendicularly to a wall of the model. At the other
walls of the model, the normal component of the displace-
ment is set to zero. For calculating shear components of
the stiffness matrix (ii = 44,55, 66), the boundary condi-
tions applied are those of a simple shear test. For the c12(w),
c13(w) and cp3(w) components (off-diagonal), mixed direct
tests are needed, and the corresponding boundary conditions
are given in Appendix A. The corresponding inverse quality
factor is (O’connell and Budiansky, 1978)

1 Im (cij(w))

= . 6
Qij(@)  Re(cij(w)) ©

Note that usually the inverse quality factor is used as a
measure of attenuation (O’connell and Budiansky, 1978).
In this study, we show the inverse quality factor for each
component of the stiffness tensor, even though the ratio
Im (cjj(w)) /Re (cij(w)) does not represent attenuation of
any corresponding wave mode for some components.

3 Numerical model

Two 3D numerical models are constructed, which consist of
a pore space embedded into an elastic solid grain material
(Fig. 1). The solid grain material is represented by a cuboid
whose size is (0.24 x 0.24 x 0.24) m>. The pore space consists
of two perpendicular cracks represented by thin cylinders of
0.002 m thickness, 0.1 m radius (i.e., the aspect ratio is thick-
ness divided by diameter — 0.01) and fully saturated with a
liquid. In the first model, the two cracks are disconnected,
while, in the second model, the two cracks are connected
(cross sections in Fig. 1). The employed liquid properties are
those of glycerol, and the grain material has properties of
quartz (Table 1).

A fine, regular mesh is used inside the crack to accurately
account for dissipation, while in the grain material the mesh
is coarser (Fig. 2). The total number of elements is 3.3 x 100.
The simulation is performed for 12 different frequencies
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Table 1. Material properties of the numerical model.

Material property  Quartz  Glycerol Air
Bulk modulus K 36GPa 4.3GPa 1.01 x 10~4GPa
Shear modulus 4 44GPa - -

Shear viscosity n =~ — 1.414Pas™!  1.695x 1075 Pas™!

from 10! to 10%3 Hz for each of the nine components of the
stiffness matrix (cq1, ¢22, €33, €12, €13, €23, C44, C55, C66). For
each frequency, the solver uses approximately 0.95 TB (ter-
abytes) of RAM memory and takes approximately 2.5h on
32 Intel dual-socket E5-2683 v4 2.1 GHz (1024 GB RAM)
cores.

One crack embedded into an isotropic background induces
a transverse isotropy (five independent components of the
stiffness tensor, e.g., Mavko et al., 2009). If the crack is par-
allel to the x—y plane, then the symmetry is vertical and the
medium exhibits vertical transverse isotropy — VTI symme-
try. If the crack is parallel to the x—z plane, then the symme-
try is horizontal and the medium exhibits horizontal trans-
verse isotropy — HTI symmetry. If two cracks, perpendicular
to each other, are embedded into an isotropic material and the
crack compliances are different, then the medium exhibits or-
thorhombic symmetry (nine independent components of the
stiffness tensor). If the crack compliances are the same, then
the medium symmetry is tetragonal (six independent com-
ponents of the stiffness tensor); some authors attribute this
geometry to a special case of orthorhombic symmetry (e.g.,
Bakulin et al., 2000b), while tetragonal and orthorhombic
symmetry classes are different. On the other hand, one can
argue that an orthorhombic medium (created by two perpen-
dicular sets of cracks) degenerates into a tetragonal medium
if the crack compliances are the same.

The symmetry of the saturated numerical model with con-
nected cracks is tetragonal (Fig. 1), because the crack com-
pliances are the same. Thus, there are only six independent
components of the stiffness tensor. We will see that the sym-
metry of the saturated numerical model with disconnected
cracks is orthorhombic, because one crack is stiffer than the
other one due to its separation into two parts. However, the
difference between cz; and c33 stiffness components is less
then 0.3 %, thus the divergence from the tetragonal symmetry
is negligible, and therefore this model is considered tetrago-
nal as well.

4 Results

4.1 Dry stiffness moduli

Let us first consider the geometry shown in Fig. 1 with a pore
space filled with air (i.e., dry). We perform nine relaxation

tests to calculate the full stiffness tensor for each of the two
models with connected and disconnected cracks. The result-
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ing effective stiffness moduli for the model with connected
cracks are (in Voigt notation)

9353 465 465 0 0 0
465 6391 546 0 0 0
Con | 465 546 6391 0 0 0
i 0 0 0 3162 0 o |@GPa. (7)
0 0 0 0 3516 0
0 0 0 0 0 35.16

For the model with disconnected cracks, the effective stiff-
ness moduli are (in Voigt notation)

9355 492 460 0 0 0
492 6921 440 0 0 0

« | 460 440 6406 0 0 0

=" 0 0 3195 0 0 |@GPa.  (8)
0 0 0 0 3516 0
0 0 0 0 0 3696

The effective stiffness moduli of the two models are differ-
ent. Zero values are written if the value is below 0.0002 GPa
(i.e., up to numerical precision). The ch.O" stiffness matrix
precisely belongs to the tetragonal symmetry class, while the
c?is stiffness matrix has all diagonal components different
from each other; thus, it represents the orthorhombic sym-

metry class. The largest difference between ¢ and ¢Pi

ij ij
is in the c¢y» component; i.e., Acyy = C2D2is — c%’" = 5.3GPa.
That is a significant difference and it is only due to the verti-
cal crack separation. There are two different features which
must be clearly separated. (1) The effect of crack intersection
without changing the crack geometry on the effective elas-
tic properties. In this case, the crack intersection is achieved
by changing the spatial position of the cracks. Grechka and
Kachanov (2006) studied numerically the effect of crack in-
tersection without changing the crack geometry. They con-
cluded that crack intersection has a very little impact on the
effective elastic moduli. (2) The effect of the crack parti-
tion into two “halves” on the effective elastic properties. In
this case, the partitioned crack has a long, thin contact area
across the whole diameter (Fig. 1). It is well known that
the contact areas inside a crack significantly reduce crack
compliance (Trofimov et al., 2017; Kachanov and Sevos-
tianov, 2018; Markov et al., 2019; Lissa et al., 2019). Com-
paring Eqgs. (7) and (8), we also observe that the thin contact
area significantly reduces the crack compliance: the effective
dry moduli of the model with disconnected cracks are much
higher compared to the model with connected cracks. An in-
tuitive explanation is the following: if crack surfaces have not
been changed by changing the spatial position of the cracks
in the volume, the effect of crack intersection is negligible
(Grechka and Kachanov, 2006); if the crack surfaces have
been changed — as we did in the present study by partition-
ing the vertical crack into two pieces (and introducing a thin
additional contact area) — the effective elastic moduli would
become much stiffer compared to the model where the crack
surfaces have not been changed.
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0.1 m

Connected

Figure 1. Sketch illustrating two flat cylinders representing two cracks. The blue region represents the pore space saturated with a fluid and
the transparent gray area corresponds to the solid grain material. In the first model, the two cracks are disconnected as illustrated by the upper
right sketch. In the second model, the two cracks are connected as illustrated by the lower right sketch.

x103m

0

Figure 2. Sketch illustrating the element’s size distribution for the model with connected cracks. The element’s size in the crack is 5 x
1075 —1x 1073 m, and in the surrounding grain material it is 2.4 x 1073 —1.6 x 1072 m. The element’s size distribution for the model with

disconnected cracks is the same.

4.2 Fluid pressure fields
Here and later on we deal only with a liquid-saturated pore

space. The liquid has properties of glycerol (Table 1). A di-
rect P-wave modulus test is performed to calculate disper-
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sion and attenuation for the ¢33 component. (A harmonic dis-
placement is applied to the top wall of the model in the z di-
rection, while the normal component of the displacement is
set to zero on all the other walls.) Figure 3 shows snapshots of
the fluid pressure P in the cracks at three different frequen-
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cies, in the vertical middle slice of the model (the y—z plane,
red frame in Fig. 1a). For the model with connected cracks, at
low frequencies, there is enough time for pressure equilibra-
tion between the cracks; thus, the pore pressure is uniform
throughout the pore space (Fig. 3, LF (connected)). This is
called the relaxed state. At intermediate frequencies, there is
a large pressure gradient in the cracks, which corresponds to
the maximum attenuation due to squirt flow between cracks
(Fig. 3, Fc (connected)). At high frequencies, there is no time
for fluid to move; hence, there is no fluid pressure equilibra-
tion between the vertical and horizontal cracks (Fig. 3, HF
(connected)). This is called the unrelaxed state. Therefore, at
high frequencies, the connected cracks behave as hydrauli-
cally isolated and the fluid highly stiffens the crack.

In the model with disconnected cracks, the fluid pressure
in the cracks is the same in all three regimes, which corre-
sponds to the unrelaxed state in the model with connected
cracks. The unrelaxed state can be interpreted as the elastic
limit because there is no fluid flow between the cracks, and
the effective properties of the two models (connected and dis-
connected cracks) are the same, as will be shown in the next
subsection.

4.3 Dispersion and attenuation
4.3.1 Elastic moduli

Figure 4 shows the numerical results for the complex-
valued frequency-dependent components of the stiffness ma-
trix ¢;;j () (in Voigt notation) for the models with connected
and disconnected cracks filled with glycerol. In the model
with connected cracks, the real part of the ¢;; component and
the corresponding inverse quality factor (Eq. 6) curves show
strong frequency-dependent behavior of the ¢7, ¢33 and ¢23
components (Fig. 4a and c). The inverse quality factor and
dispersion of the c2; and ¢33 components coincide because
the geometrical properties of the two cracks are the same
(Fig. 4a) and the model is symmetric. The c;; component is
nondispersive and exhibits zero attenuation. The dispersion
of the c44, c55 and ceq components is negligible and these
components also exhibit negligible attenuation (Fig. 4b). The
c12 and c13 components are nondispersive, the ¢33 compo-
nent exhibits strong negative dispersion and a negative in-
verse quality factor peak is shifted towards high frequencies
compared to that of the co> and ¢33 components. A similar
phenomenon has been reported by Guo et al. (2017) in the
context of two-dimensional simulations. The ¢»3 component
does not correspond to a wave mode alone; it is always used
together with ¢ and/or ¢33 components. Therefore, no wave
will gain energy. This negative inverse quality factor sign for
the c»3 component was also verified using Kramers—Kronig
relations. In other words, different components of the stiff-
ness tensor might have positive or negative values of the ratio
Im(cp3)/Re(cr3) but, when we calculate the velocity and the
inverse quality factor of a wave, the cumulative effect of all
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¢;j components must be physical and no negative attenuation
will be observed.

Note that the width of the inverse quality factor peak (at
half amplitude) for the components ¢y and ¢33 has a 1.5 or-
der of magnitude (Fig. 4a and 4c). It means that attenuation
and dispersion due to squirt flow play a significant role over
a broad frequency range even for cracks with a single aspect
ratio.

In the model with disconnected cracks, all components of
the stiffness tensor ¢;; (w) (Fig. 4a and 4c) are constant across
the whole frequency range and exhibit zero inverse quality
factor. Furthermore, all components are approximately equal
to the high-frequency values of the model with connected
cracks. This is expected in the unrelaxed state because the
connected cracks behave as hydraulically isolated with re-
spect to fluid flow. A very small discrepancy between the
two models at high frequencies is associated with the ver-
tical crack partition (two thin regions of pore space replaced
with stiffer grain material).

4.3.2 P- and S-wave velocities

Figure 5 shows the P-wave (primary wave) phase velocity as
a function of the phase angle of the numerical model with
connected and disconnected cracks (Fig. 1), where the zero
phase angle corresponds to the vertical wave propagation
(along z axis). The P- and S-wave phase velocities are calcu-
lated by solving the Christoffel equation, which represents an
eigenvalue problem relating the stiffness components c;;, the
phase velocities of plane waves that propagate in the medium
and the polarization of the waves (Fedorov, 1968; Tsvankin,
2012). Considering the plane Y-Z, the P-wave velocity is the
same for phase angles of 0 and 90°; it changes with frequency
only for phase angles between 0 and 90° and is maximal
in the high-frequency limit at phase angle of 6 = 90(£90)°
(Fig. 5a). Furthermore, in the high-frequency limit the P-
wave phase velocity coincides for the models with connected
and disconnected cracks. As frequency decreases, the P-wave
velocity decreases, and at 10* Hz the P-wave velocity is al-
most angle independent (yellow curve, Fig. 5a). It is inter-
esting that this “local” isotropy corresponds to the maximum
attenuation of the ¢y and ¢33 components (Fig. 4). As fre-
quency further decreases, the P-wave velocity decreases and
stays nearly unchanged for the frequencies below 103 Hz.
In the X-Z plane, the P-wave phase velocity is the same
for the models with connected and disconnected cracks in
the high-frequency limit (Fig. 5b). For the model with con-
nected cracks, as frequency decreases, the P-wave velocity
decreases, reaching its minimum at low frequencies (10'—
103 Hz).
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LF (connected) Fc (connected)

861

Pg(Pa)

x10°
3.5

2.5

HF (connected)

15

vk LF (disconnected)

Fc (disconnected)

HF (disconnected) 0

Figure 3. Snapshots of the fluid pressure Pf in the cracks at three different frequencies: LF — the low-frequency limit (corresponds to
10! Hz, relaxed state), Fc — intermediate frequency snapshot (corresponds to 10* Hz, close to the characteristic frequency) and HF — the

high-frequency limit (corresponds to 1095 Hz, unrelaxed state).

Figures 6-7 show the quasi-shear (SV) and the pure shear
(SH) phase velocities as functions of the phase angle of the
numerical models with connected and disconnected cracks
(Fig. 1). The SV wave velocity is strongly frequency depen-
dent in both the X—Z and Y—Z planes. The SH wave exhibits
some frequency-dependent behavior in the X—Z plane and
is angle and frequency independent in the Y—Z plane. It is
interesting that the SV waves in two different planes have
different velocities at 0 and 90° phase angles, which is due
to their different wave polarization. The SV wave in the Y-Z
plane has the same polarization as the SH wave in the X—-Z
plane; their velocities are equivalent at the 0 and 90° phase
angles. The same conclusion is valid for the SV wave in the
X-Z plane and the SH wave in the Y—-Z plane. A slight dis-
crepancy (around 0.5 %) between the SV wave velocities for
the disconnected crack model (Fig. 6, dashed red line) and
the high-frequency velocity for the connected crack model
(Fig. 6, green line) at phase angles of 0, 90 and 180° is due
to the crack separation.

Due to the symmetry of the model, the behaviors of the P-,
SV-, SH-wave phase velocities in the X—Z and X-Y planes
are identical; thus, the results in the X-Y plane are not shown
here.

4.4 Quantitative analysis of the frequency-dependent
anisotropy

First, we quantify the Thomsen-type anisotropic parameters
(Thomsen, 1986) for orthorhombic media (Tsvankin, 1997,
Bakulin et al., 2000a). Then, we quantify the universal elas-
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tic anisotropy index (Ranganathan and Ostoja-Starzewski,
2008) and the two parameters which define the anisotropy
strength in bulk and shear modes. All these anisotropy mea-
sures highlight different frequency-dependent features of the
models. Our results shown in Fig. 4 (frequency-dependent
elastic moduli) are used as input to quantify these anisotropy
measures.

4.4.1 Thomsen-type parameters

Thomsen-type anisotropic parameters (e, §, y) describe the
P-wave anisotropy — €, the shape of the P-wave phase veloc-
ity at different phase angles — § and the S-wave anisotropy
— y: each set of three parameters corresponds to one plane.
Thus, for our model symmetry, there are two different planes
— Y-Z and X-Z (because the X—Z plane is equivalent to
the X-Y plane). In this study, we refer to Thomsen param-
eters €], 8], |y| € [0,0.1] as to weak elastic anisotropy (| - |
corresponds to the absolute value), |€|, |8], |y ]| € [0.1,0.15]
as moderate elastic anisotropy and |/, |6], |y | € [0.15, +00]
as strong elastic anisotropy. The choice of these intervals is
based on the divergence between the exact and approximate
(by using Thomsen parameters) equations for the P-wave
phase velocities in cracked media.

Figure 8 shows the Thomsen-type anisotropy parameters
in the Y-Z and X-Z planes (formulas are given in Ap-
pendix B). In the high-frequency limit, all anisotropy pa-
rameters are the same for both models with connected and
disconnected cracks. Furthermore, for the model with dis-
connected cracks, all anisotropy parameters are frequency
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Figure 4. Numerical results for the connected (C) and disconnected (D) crack models: real part of the c;; components versus frequency (a-
¢), dimensionless inverse quality factor of the ¢;; components versus frequency (d—f). Each symbol corresponds to the test result of one
numerical simulation and lines correspond to linear interpolation between discrete numerical results.

independent, because the stiffness tensor is frequency in-
dependent. For the model with connected cracks, several
anisotropy parameters are frequency dependent due to squirt
flow.

In the Y-Z plane, parameters €% and y¥? are zero
for both models. The parameter 8'Z is frequency depen-
dent and controls the shape of the P-wave phase velocity
between 0 and 90°. In the high-frequency limit, §¥% ex-
hibits the maximum negative value which corresponds to
strong elastic anisotropy. As frequency decreases, 8¥Z also
decreases reaching a zero value around 10* Hz, and then
8YZ increases reaching its positive maximum at low fre-
quencies, which corresponds to weak elastic anisotropy; the
positive maximum is approximately one-third of the abso-
lute value of its negative maximum. It is interesting that
8YZ changes sign from negative to positive, which is in-
deed observed in the P-wave velocity behavior (Fig. 5a) as
P-wave velocity changes polarity with frequency. This was
also observed by Barbosa et al. (2017) in the framework of
Biot’s theory. This polarity change has a fully mechanical na-
ture. In the high-frequency limit, cracks behave as hydrauli-
cally isolated and fluid highly stiffens the normal compli-
ance of the cracks (not tangential). As frequency decreases,
fluid started to flow from more compliant to stiffer cracks
as a response to the applied displacement boundary condi-
tion. 8% = 0 corresponds to zero anisotropy; the numerator
of 877 is [c23(w) + cas(@)]* — [€33(w) — caa(w)]* (see Ap-
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pendix B). Therefore, for zero anisotropy, c23(w) 4 caa(w)
must be equal to c¢33(w) — caqa(w). The function caa(w) is
constant across the whole frequency range, c23(w) is strictly
decreasing with frequency and c33(w) is strictly increasing
with frequency (Fig. 4). At a certain frequency (here it is at
~ 10* Hz), the ¢33 and cp3 components are in such a com-
bination that c23(10%) + c44(10%) & ¢33(10%) — c44(10%), s0
8Y% =0, and the P-wave velocity in the Y—Z plane behaves
as in a fully isotropic media.

In the X—Z plane, €X% and 6%# are frequency depen-
dent in the model with connected cracks. eXZ exhibits mod-
erate elastic anisotropy at low frequencies, while §XZ ex-
hibits moderate elastic anisotropy at high frequencies. Other
parameters are frequency independent and exhibit certain
nonzero values from weak to moderate elastic anisotropy.

4.4.2 The universal elastic anisotropy index

The universal elastic anisotropy index AY (Ranganathan
and Ostoja-Starzewski, 2008) is widely used to measure the
anisotropy strength in crystallography, engineering and ma-
terials science. This parameter is designed to evaluate the
anisotropy strength of crystals having any elastic symmetry
class (Ranganathan and Ostoja-Starzewski, 2008). Since AY
is a scalar, it gives a simple and fast identification of the over-
all anisotropy strength of a model. AY =0 corresponds to
zero anisotropy of a model, while the discrepancy of AY from
zero defines the anisotropy strength and accounts for both the
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shear and the bulk contributions simultaneously. In analogy
to the universal elastic anisotropy index, two other parame-
ters are adopted which define the anisotropy strength in bulk
APk and in shear AShe As far as we are concerned, these
parameters have not been widely used in earth sciences: only
a few studies were found. Almqvist and Mainprice (2017)
applied the universal elastic anisotropy index and two simi-
lar parameters for bulk and shear to study seismic properties
and anisotropy of the continental crust. Kube and De Jong
(2016), Duffy (2018) and Vieira et al. (2019) applied AY to
quantify the elastic anisotropy of polycrystals. A brief review
of these anisotropic measures and all necessary equations for
their calculation are provided in Appendix C.

Figure 9 shows the universal elastic anisotropy index AY
and the anisotropy measures in bulk A"X(w) and shear
Ashear For the model with disconnected cracks, AY is con-
stant and frequency independent (Fig. 9, black line). Because
AY has a certain small value (about 0.058), the model with
disconnected cracks exhibits a certain small anisotropy. For
the model with connected cracks, AY in the high-frequency
limit is almost the same as for the model with disconnected
cracks (Fig. 9, red line). (The nature of the discrepancy
is related to the region containing the crack intersection.)
For the model with connected cracks, the overall anisotropy
slightly decreases towards lower frequencies until 103 Hz,
reaching its minimum of 0.048 (Fig. 9, red line). This lo-
cal minimum indeed corresponds to the cy3 attenuation peak
(Fig. 4c). Then, still towards lower frequencies, AY(w) in-
creases reaching its maximum of 0.083 at frequencies be-
low 103 Hz (Fig. 9, red line). Thus, the overall anisotropy
of the model mainly increases due to squirt flow between
the cracks, so the crack connectivity increases the overall
anisotropy of the model towards low frequencies.

The anisotropy measure in bulk AP is constant and fre-
quency independent for the models with connected and dis-
connected cracks (Fig. 9b). It means that fluid flow does not
affect bulk properties of the model or the anisotropy strength
in bulk. On the other hand, the anisotr