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Abstract. We present a series of new open-source deep-
learning algorithms to accelerate Bayesian full-waveform
point source inversion of microseismic events. Inferring
the joint posterior probability distribution of moment ten-
sor components and source location is key for rigorous un-
certainty quantification. However, the inference process re-
quires forward modelling of microseismic traces for each set
of parameters explored by the sampling algorithm, which
makes the inference very computationally intensive. In this
paper we focus on accelerating this process by training deep-
learning models to learn the mapping between source loca-
tion and seismic traces for a given 3D heterogeneous velocity
model and a fixed isotropic moment tensor for the sources.
These trained emulators replace the expensive solution of the
elastic wave equation in the inference process.

We compare our results with a previous study that used
emulators based on Gaussian processes to invert microseis-
mic events. For fairness of comparison, we train our emu-
lators on the same microseismic traces and using the same
geophysical setting. We show that all of our models pro-
vide more accurate predictions, ∼ 100 times faster predic-
tions than the method based on Gaussian processes, and a
O(105) speed-up factor over a pseudo-spectral method for
waveform generation. For example, a 2 s long synthetic trace
can be generated in ∼ 10 ms on a common laptop processor,
instead of ∼ 1 h using a pseudo-spectral method on a high-
profile graphics processing unit card. We also show that our
inference results are in excellent agreement with those ob-
tained from traditional location methods based on travel time

estimates. The speed, accuracy, and scalability of our open-
source deep-learning models pave the way for extensions of
these emulators to generic source mechanisms and applica-
tion to joint Bayesian inversion of moment tensor compo-
nents and source location using full waveforms.

1 Introduction

The monitoring of microseismic events is crucial to under-
stand induced seismicity and to help quantify seismic hazards
caused by human activity (Mukuhira et al., 2016). Accurate
event locations are key to mapping fracture zones and fail-
ure planes, ultimately enhancing our understanding of rup-
ture dynamics (e.g. Baig and Urbancic, 2010).

Seismic inversion for earthquake location has traditionally
been based on the minimization of a misfit function between
theoretical and observed travel times (see, e.g. Wuestefeld
et al., 2018, for a review of different methods applied to
microseismic events). These optimization-based methods are
essentially refinements of the original iterative linearized al-
gorithm proposed by Geiger (1912), focusing on improving
the misfit function or the optimization technique (see, e.g. Li
et al., 2020, for a comprehensive review). Since the 1990s,
non-linear earthquake location techniques have been devel-
oped using, e.g. the genetic algorithm (Kennett and Sam-
bridge, 1992; Šílenỳ, 1998), Monte Carlo algorithms (Sam-
bridge and Mosegaard, 2002; Lomax et al., 2009), and grid
searches (e.g. Nelson and Vidale, 1990; Lomax et al., 2009;
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Vasco et al., 2019). The majority of these methods uses ar-
rival times and require phase picking. Recently, waveform-
based methods have emerged, such as waveform stacking
(e.g. Pesicek et al., 2014) or time reverse imaging (e.g.
Gajewski and Tessmer, 2005), which not only consider ar-
rival times but also use other information from the wave-
forms. Full waveform inversion methods, which are based
on the comparison between simulated full synthetic wave-
forms and observations, are also being increasingly used to
enhance the determination of event locations (Kaderli et al.,
2015; Behura, 2015; Cesca and Grigoli, 2015; Wang, 2016;
Shekar and Sethi, 2019).

Bayesian inference has been successfully used to locate
earthquakes and to estimate moment tensors (e.g. Taran-
tola, 2005; Wéber, 2006; Lomax et al., 2009; Mustać and
Tkalčić, 2016). Within the Bayesian framework, the ultimate
goal is to provide estimates of the posterior distribution of
the model parameters (see, e.g. Xuan and Sava, 2010, for
an application to microseismic activity). Bayesian source in-
versions use techniques such as Markov chain Monte Carlo
(MCMC) to sample the parameters’ posterior distribution
(see, e.g. Craiu and Rosenthal, 2014, for a review of differ-
ent sampling algorithms). They allow the rigorous inclusion
and propagation of different uncertainties, such as those aris-
ing from the assumed velocity model for the seismic domain
that is being studied (see, e.g. Pugh et al., 2016b). So far
Bayesian source inversions for locations and moment ten-
sors have been typically performed using travel time mea-
surements (Lomax et al., 2009) or amplitude and polarity
data (Pugh et al., 2016a, b; Pugh and White, 2018). Here we
carry out Bayesian source location inversions of microseis-
mic events using the full waveform information.

Ideally, the inversion could be carried out jointly for the
moment tensor components and the location of the micro-
seismic event (Rodriguez et al., 2012; O’Toole, 2013; Käufl
et al., 2013; Stähler and Sigloch, 2014; Li et al., 2016; Pugh
et al., 2016b; Pugh and White, 2018; Willacy et al., 2019).
However, when using full waveforms this is extremely com-
putationally intensive. While performing MCMC sampling,
the forward model needs to be simulated at each point in
parameter space where the likelihood function is evaluated.
The number of such evaluations scales exponentially with the
number of parameters (an example of the curse of dimen-
sionality; see, e.g. MacKay, 2003). Since the solution of the
elastic wave equation for forward modelling microseismic
traces in complex media is computationally very expensive,
this means that even for small parameter spaces sampling the
posterior distribution becomes extremely challenging or even
unattainable. For example, given the geophysical model with
microseismic activity considered in Das et al. (2017), i.e. a
3D heterogeneous velocity model on a 1 km× 1 km× 3 km
grid, the generation of a single seismic trace with a pseudo-
spectral method (Treeby et al., 2014) for a given source re-
quires O(1) h of graphics processing unit (GPU) time with a
Nvidia P100 GPU. Using typical MCMC methods, this op-

eration may need to be repeated for tens or hundreds of thou-
sands of points in parameter space to ensure convergence of
the sampling algorithm.

To overcome this issue, Das et al. (2018, referred to as D18
hereafter) developed a machine learning framework (also re-
ferred to as metamodel, surrogate model, or emulator) for
fast generation of synthetic seismic traces, given their loca-
tions in a marine domain, a specified 3D heterogeneous ve-
locity model, and a fixed isotropic moment tensor for all the
sources. Gaussian processes (GPs, Rasmussen and Williams,
2005) were trained as surrogate models that could be em-
ployed for Bayesian inference of microseismic event location
(with fixed isotropic moment tensor) to replace the expensive
solution of the elastic wave equation for each set of source
coordinates explored in parameter space. Other recent stud-
ies have also used deep-learning approaches for fast approx-
imate computations of synthetic seismograms (e.g. Moseley
et al., 2018, 2020b) and for earthquake detection and loca-
tion (e.g. Perol et al., 2018). The very nature of all of these
supervised learning methods, including the one presented in
our paper, represents a purely data-driven approach to the
use of machine learning in geophysics. While very power-
ful, these methods are all potentially prone to lack of gener-
alization beyond the training data considered. In contrast to
this approach, physics-informed machine learning (e.g. Ar-
ridge et al., 2019; Karpatne et al., 2017; Raissi et al., 2019)
aims to train algorithms to solve the physical equations un-
derlying the model, as recently applied to seismology, e.g.
in Song et al. (2021); Moseley et al. (2020a); Waheed et al.
(2020, 2021). These machine learning methods represent a
very promising avenue as an application of machine learning
that is not purely data-driven and therefore blind to the un-
derlying physics of the system. Physics-informed and super-
vised learning approaches may indeed provide complemen-
tary information and be used as independent cross-checks on
the same problem, complementing each method’s strengths
and weaknesses.

In this paper, we build on the method developed in D18 by
training multiple generative models, based on deep-learning
algorithms, to learn to predict the seismic traces correspond-
ing to a given source location for fixed moment tensor com-
ponents. Similar to D18, we consider an isotropic moment
tensor for our sources; a follow-up paper (Piras et al., 2021)
extends the methodologies proposed here to different source
mechanisms (compensated linear vector dipole and double
couple; see Sect. 4 for a discussion). Once trained, our gen-
erative models can replace the forward modelling of the seis-
mograms at each likelihood evaluation in the posterior infer-
ence analysis. We show that the newly proposed generative
models are more accurate than the results of D18. In addition,
the emulators we develop are faster by a factor of O(102),
less computationally demanding, and easier to store than the
D18 surrogate model. We also demonstrate how our new em-
ulators make it possible in practice to perform Bayesian in-
ference of a microseismic source location. We validate our
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results by carrying out a comparison of our results with a
common non-linear location method based on travel time es-
timates (Lomax et al., 2000).

In Sect. 2, we present our generative models and the gen-
eral emulation framework. We first describe the preprocess-
ing operations operated on the seismograms to facilitate the
training of our new generative models, which are subse-
quently outlined in detail together with general notes on their
training, validation and testing. In Sect. 3 we apply the em-
ulation framework to the same test case studied by D18, and
we compare the results achieved by the different methodolo-
gies. We also use our best performing model to show that we
can accelerate accurate Bayesian inference of a simulated mi-
croseismic event and compare the estimated source location
with that retrieved by a standard non-linear location method.
Finally, we conclude in Sect. 4 with a discussion of our main
findings and their future applications.

2 Generative models

In this section we describe the deep generative models that
we train as emulators of the seismic traces given their source
location. Our final goal is to develop fast algorithms that can
learn the mapping between source location and seismic traces
recorded by receivers in a geophysical domain.

We start in Sect. 2.1 describing the preprocessing operated
on the seismic traces for feature selection and dimensional-
ity reduction. We then describe the algorithms for emulation
of the preprocessed seismic traces in Sect. 2.2. These meth-
ods are machine learning algorithms that can, in principle,
be applied to seismograms recorded in any geophysical sce-
nario; in fact, these algorithms have been applied to areas
beyond geophysics (see, e.g. Auld et al., 2007, 2008, for ap-
plications to cosmology). While we initially present our em-
ulators without referring to any particular geophysical sce-
nario, for concreteness we also present a choice of the meth-
ods’ hyperparameters (e.g. the number of layers and nodes
of the neural networks employed) based on their application
to the test case later described in Sect. 3. We report these
specific hyperparameter choices to provide an example of a
practical successful implementation of the machine learning
algorithms, but we stress again that the generative models
presented in Sect. 2.2 are applicable to any geophysical sce-
nario, provided enough representative training samples and
a velocity model are available. They may, however, require
different hyperparameter choices, depending on the specific
domain considered. As discussed in more detail in Sect. 3.2,
this hyperparameter tuning is not computationally expensive
because our models are very easy to train.

Training, validation, and testing procedures for our gen-
erative models are described in Sect. 2.3, with emphasis on
the metrics used to compare the accuracies of the different
algorithms. We note that the number of training, validation,
and testing samples required for each method may vary ac-

cording to the specific geophysical domain considered; for
example, larger geophysical domains may require a larger
number of training samples, reflecting the increased variabil-
ity in the seismic traces. Once again, in Sect. 2.3 we discuss
a training procedure that has produced successful results on
the test case considered in Sect. 3. Applications to different
geophysical scenarios may need slightly different tuning of
the hyperparameters involved in the training procedure, but
the general technique shown in 2.3 can be easily adapted to
incorporate these changes.

2.1 Preprocessing

In order to train fast emulators to replace the simulation of
microseismic traces for a given source location we need to
generate representative examples of the seismograms to be
learnt, given a fixed velocity model for the geophysical sce-
nario considered. The complexity of the forward modelling
of seismic traces by means of, e.g. pseudo-spectral methods
(see, e.g. Faccioli et al., 1997), implies that only a relatively
small number of training samples can realistically be gener-
ated. In turn this means that the emulation of seismic traces
by means of even just a simple neural network (which will be
described in Sect. 2.2.1) will only lead to overfitting the train-
ing set. This issue can be relieved by applying some form of
preprocessing to the data in order to reduce the number of
relevant features that have to be learnt by the emulators. In
addition, a compression method can be employed to even fur-
ther reduce the dimensionality of the mapping, on the condi-
tion that the performed compression is efficient in preserving
the information carried by the original signal.

To preprocess our seismograms we first identify the maxi-
mum positive amplitudeAi and the corresponding time index
ti in each seismogram, labelled by index i = 1, . . .,Ntrain, in
our training set of Ntrain= 2000 samples (the same used by
D18). We then isolate one random seismic event in our train-
ing set and store the value of its maximum positive ampli-
tude A∗ and its corresponding time index t∗. We normalize
all of our training seismograms to the amplitude of this ref-
erence peak and shift them so that their peak location cor-
responds to the reference peak location (see Fig. 1), replac-
ing the missing time components with zeros. Operating this
preprocessing leaves us with two additional parameters for
each seismic trace: a normalizing factor Ai ≡ Ai/A∗ and a
time shift t i ≡ ti − t∗. This preprocessing is encouraged by
the structure of the signal, which is localized in the form of
spikes preceded by absence of signal, corresponding to the
sudden arrival of the P wave at the sensor location. The am-
plitudesAi and time indices ti depend mainly on the distance
of the seismic source from the sensor. By rescaling all train-
ing seismograms to the reference amplitude A∗ and time in-
dex t∗ we allow the deep-learning algorithm to “concentrate”
on learning the rest of the signal, which instead depends on
the properties of the heterogeneous medium encountered by
the wave while propagating to the sensor. We verified that all
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Figure 1. Example of preprocessing applied to the seismograms.
We consider one random reference seismogram, shown in black
in (a) and (b). Given another generic seismogram (red line in a),
we rescale it to have its positive maximum peak amplitude and time
location matching those of the reference seismogram. The result is
a seismogram, like the one shown in red in (b), whose main dif-
ference with the reference seismogram is given by the additional
fluctuations surrounding the main peak. The generative methods we
develop learn to predict these fluctuations given the source location
and the main peak, whereas two GPs learn the amplitude and time
shift coefficients to rescale the predicted seismograms back to their
natural amplitude and peak location. Throughout the paper, the seis-
mograms’ amplitude is measured in arbitrary units of pressure.

numerical conclusions of our analysis do not depend signifi-
cantly on the specific choice of the reference seismogram. In
particular, parameter contours (cf. Sect. 3.2.2) obtained with
emulators trained on seismic traces preprocessed using dif-
ferent random reference seismograms show deviations much
smaller than 0.05σ . Therefore, in our analysis we choose the
reference seismogram completely at random, as this choice
does not have any effect on the final algorithm performance.

A consequence of this type of preprocessing is that, in or-
der to recover the original seismograms, one also needs to
learn the coefficients Ai and t i . We model each of them with
a Gaussian process (GP, Rasmussen and Williams, 2005) that
maps the input source coordinates (xi,yi,zi,di) to the output
amplitude (Ai and time shift t i). We include the distances di
from the receiver in the set of coordinates, as we performed
several tests with and without including the distances and
found that including them helps the GP learn the mapping
between inputs and outputs.

When performing GP regression given a generic function
f (θ) of parameters θ , we assume

f (θ)∼N
(
0,K(θ,θ ′;ψ)

)
, (1)

where the kernel K(θ,θ ′;ψ) represents the covariance be-
tween two points in parameter space and may depend on ad-
ditional hyperparameters, collectively denoted as ψ . In our
case A and t are modelled as functions of the coordinates
(x,y,z,d) using a GP each. For the geophysical domain
studied in Sect. 3, a Matérn kernel K in its automatic rele-
vance discovery (ARD) version (Neal, 1996; Rasmussen and
Williams, 2005), defined as

KARD-Matérn−3/2
(
θ,θ ′;ψ

)
= σ 2

f

(
1+
√

3r̃
)

exp
(
−
√

3r̃
)
, (2)

where

r̃ =

√√√√ n∑
m=1

(θm− θ
′
m)

2

σ 2
m

, (3)

outperforms other common kernels such as radial basis func-
tions (Rasmussen and Williams, 2005), producing correla-
tion coefficients between target and predicted (A,t) in the
testing set greater than 0.99. The hyperparameters of the
Matérn ARD kernel are a signal standard deviation σf and
a characteristic length scale σm for each input feature m=
1, . . .,n (the source location, in our case). We optimize these
parameters while training our GPs, which we implement us-
ing the software GPY. Figure 2 presents the general emula-
tion framework, showing in particular how the t and A pro-
duced by the trained GPs described above combine with the
emulated preprocessed seismogram to produce the final em-
ulation output.

2.2 Machine learning algorithms

Here we present in detail the algorithms we developed for
emulation of the seismic traces. Given a set of coordinates
x,y,z,d , each method outputs a seismogram preprocessed
following the procedure described in Sect. 2.1. This means
that for each method, we also need to train two GPs to
learn the mapping between source location and the coeffi-
cients (A,t), as described in Sect. 2.1. In Fig. 3 we provide
a schematic summarizing the mapping between source coor-
dinates and seismograms for each emulation framework de-
scribed below. The specific architectures and hyperparame-
ters represented in Fig. 3 are those optimized for the applica-
tion described in Sect. 3.

2.2.1 Direct neural network mapping between source
location and seismograms (“NN direct”)

The first method we propose is a simple direct mapping be-
tween source location and preprocessed seismograms, with-
out any intermediate data compression. The mapping is
learnt by a fully connected neural network, which consists
of a stack of layers, each made of a certain number of neu-
rons. Each layer maps the input of the previous layer θin to
an output θout via

θout =A(w θin+ b), (4)

Solid Earth, 12, 1683–1705, 2021 https://doi.org/10.5194/se-12-1683-2021



A. Spurio Mancini et al.: Deep-learning emulation of seismic events 1687

Figure 2. Schematic of the generic framework for seismograms emulation developed in this work. Two Gaussian processes (GP) are trained
to learn the preprocessing parameters t and A, described in Sect. 2.1. One out of seven algorithms (described schematically in Fig. 3 and in
detail in Sect. 2.2) is chosen to generate a preprocessed seismogram. Finally, the combination of this learnt preprocessed seismogram and the
learnt t and A gives the output seismogram corresponding to the coordinates (x,y,z,d) (we augment the spatial coordinates (x,y,z) with
the distance d from the receiver, since we noticed that it improves the accuracy of the trained models).

where w and b are called the network weights and bias, re-
spectively, and A is the activation function, which is intro-
duced in order to be able to model non-linear mappings. The
output of each layer becomes the input to the following layer,
and the number of neurons in each layer determines the shape
of w and b. Training the neural network consists of opti-
mizing the weights and biases to minimize a specific loss
function which quantifies the deviation of the predicted out-
put from the target training sample. The optimization is per-
formed by back-propagating the gradient of the loss function
with respect to the networks parameters (Rumelhart et al.,
1988).

For the specific application considered in Sect. 3, after ex-
perimenting with different architectures and activation func-
tions, we find our best results are achieved with a neural net-
work made of three hidden layers, with 64, 128, and 256 hid-
den units each, and a Leaky ReLU (Maas, 2013) activation
function for each hidden layer, except the last one where we
maintain a linear activation. This architecture leads to 2D
correlation coefficients R2D (cf. Eq. 12) on the testing set
∼ 5 % higher than all other architectures we tried. The Leaky
ReLU activation function for an input x is defined as follows:

f (x)=

{
x ifx > 0

αx otherwise
, (5)

where we set the hyperparameter α = 0.2, and we use a
learning rate of 10−3. The Leaky rectified linear unit acti-
vation function (ReLU) is a variant of the ReLU, which im-
proves on a limitation of the ReLU activation function, some-
times referred to as “dying ReLU”, whereby large weight up-
dates mean that the summed input to the activation function

is always negative, regardless of the input to the network (Xu
et al., 2015). This means that a node with this problem will
forever output an activation value of 0. We verified experi-
mentally that Leaky ReLU indeed performs better than ReLU
and other common activation functions, leading to 2D corre-
lation coefficients R2D (cf. Eq. 12) on the test seismic traces
typically ∼ 10 % higher than those obtained with other acti-
vation functions. We choose the mean squared error (MSE)
as our loss function:

MSE=
1
Nt

Nt∑
m=1

(
S̃m− Sm

)2
, (6)

between predicted and original seismograms S̃ and S. Fig-
ure 3a summarizes the emulation framework with direct NN
between source coordinates and preprocessed seismograms.

2.2.2 Principal component analysis compression and
neural network (“PCA+NN”)

The second method proposed makes use of a signal compres-
sion stage prior to the emulation step. We first perform prin-
cipal component analysis (PCA) of the preprocessed seis-
mograms in the training set. PCA is a technique for dimen-
sionality reduction performed by eigenvalue decomposition
of the data covariance matrix. This identifies the principal
vectors, maximizing the variance of the data when projected
onto those vectors. The projections of each data point onto
the principal axes are the “principal components” of the sig-
nal. By retaining only a limited number of these components,
discarding the ones that carry less variance, one achieves di-
mensionality reduction. For example, in our application to
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Figure 3. Schematic of the seven proposed algorithms to learn the mapping between coordinates (x,y,z,d) and preprocessed seismograms.
A neural network (NN) is used in method (a), connecting directly source location to preprocessed seismograms. In methods (b) and (c) the
preprocessed seismograms of the training set are compressed in principal component analysis (PCA) coefficients, which are then learnt by
a NN and Gaussian processes (GPs), respectively. In method (d) and (e) the seismograms are compressed in central features of an autoen-
coder (AE), which are then learnt by a NN and a GP, respectively. Finally, a conditional variational autoencoder (CVAE) and Wasserstein
generative adversarial networks – gradient penalty (WGAN-GP) are used in method (f) and (g), respectively, to learn the mapping between
source location and preprocessed seismograms. In the schematic, the number of GPs and the architectures of the NNs (including the number
of nodes for each layer, represented by blocks of different size, and the linear or non-linear activation functions represented by arrows) are
the ones used for the application to the geophysical domain described in Sect. 3.
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the test case described in Sect. 3, we retain only the first
NPCA= 20 principal components, as we find that in this case
the 2D correlation coefficient between original and recon-
structed seismograms is R2D∼ 0.95. We can then model the
seismograms as linear combinations of the PCA basis func-
tions fi ,

S(x,y,z,d)=

NPCA∑
i=1

ci(x,y,z,d)fi, (7)

where the coefficients ci(x,y,z,d) are unknown non-linear
functions of the source coordinates. We train a NN to learn
this mapping. In other words, contrary to the direct map-
ping between coordinates and seismogram components, we
train a NN to learn to predict the PCA basis coefficients ci
given a set of coordinates. Figure 3b summarizes the emu-
lation framework in this case. We find that a neural network
architecture similar to the one employed in the direct map-
ping approach, with three layers and Leaky ReLU activation
function, also performs well for this task, leading to R2D co-
efficients greater than 0.9. The number of nodes in each hid-
den layer is reduced to 50, and we still minimize the MSE
between predicted and original PCA coefficients.

2.2.3 Principal component analysis compression and
Gaussian process regression (“PCA+GP”)

Once PCA has been performed on the training set, as an al-
ternative to a neural network one can train multiple GPs to
learn the mapping between the source coordinates and the
PCA coefficients. We train one GP for each PCA component.
Figure 3c summarizes the emulation framework for this ap-
proach.

2.2.4 Autoencoder compression and neural network
(“AE+NN”)

An autoencoder (AE) is a neural network with equal number
of neurons in the input and output layers, trained to reproduce
the input in the output (Hinton and Salakhutdinov, 2006). An
autoencoder is typically made of an encoder followed by a
decoder. The encoder network maps the input signal into a
central layer (latent space), usually with fewer neurons with
respect to the input to achieve dimensionality reduction. The
decoder network receives as an input the output layer of the
encoder and learns to map these compressed features back to
the original input signals of the encoder. Together, encoder
and decoder form a “funnel-like” structure for the AE net-
work, as shown in Fig. 4. In seismology, autoencoders have
been studied by Valentine and Trampert (2012), who used
them to compress seismic traces, and they are generally used
as a non-linear alternative to PCA.

Once the AE has been trained, the new input signals can
be compressed into the central features of the AE. Our aim
is to learn the mapping between the source coordinates and

these features. For example, this can be achieved with an ad-
ditional neural network. Once this NN is trained, it can be
used to generate new encoded features of the AE from new
coordinates, decoding new features into preprocessed seis-
mograms. This procedure is summarized in Fig. 3d.

In our test case of Sect. 3, we find that a fully connected ar-
chitecture with 501, 256, 128, 64, and 5 nodes for each layer
in the encoder (from the input to the latent space, and sym-
metric decoder) with Leaky ReLU activation function pro-
duces the best results in compressing the seismograms (lead-
ing to higher 2D correlation coefficients on the testing set,
cf. Eq. 12). Hence, we encode our seismograms in zdim= 5
central features; using a higher number of central features
does not lead to significant improvements in the reconstruc-
tion performance, as discussed in Sect. 3.2. We also experi-
mented with a convolutional architecture but noticed that it
did not yield better accuracy, while also slowing down the
training considerably.

2.2.5 Autoencoder compression and Gaussian process
regression (“AE+GP”)

Similar to what we did with the PCA+GP method described
in Sect. 2.2.3, one can train GPs to predict the encoded fea-
tures given source coordinates. The predicted encoded fea-
tures are then decoded by the trained decoder to generate
new preprocessed seismograms. The scheme is summarized
in Fig. 3e.

2.2.6 Conditional variational autoencoder (“CVAE”)

In general, the encoded features in the latent space of an au-
toencoder have no specific structure, as the only requirement
is for the reconstructed data points to be similar to the input
points. However, it is possible to enforce a desired distribu-
tion over the latent space, which is driven by our prelimi-
nary knowledge of the problem and is therefore called a prior
distribution. This is one of the advantages of variational au-
toencoders (VAEs, Kingma and Welling, 2013). In this case,
the model becomes fully probabilistic, and the loss function
to maximize consists of the ELBO (evidence lower bound),
which is defined as follows:

ELBO= Ez

[
logpφ(x|z)

]
−DKL (qθ (z|x)||p(z)) , (8)

where x indicates the seismograms, z the encoded features,
and Ez the expectation value over z∼ qθ (z|x). Additionally,
p(z) refers to the prior distribution we wish to impose in la-
tent space, qθ (z|x) to the encoder distribution, and pφ(x|z)
to the decoder distribution; θ and φ indicate the learnable pa-
rameters of the encoder and of the decoder, respectively. Fi-
nally, DKL refers to the Kullback–Leibler divergence (Kull-
back, 1959), which is a measure of distance between distri-
butions; see Appendix B for further details.

In simple terms, when maximizing the objective in Eq. (8)
with respect to θ and φ, we demand the encoded distribu-

https://doi.org/10.5194/se-12-1683-2021 Solid Earth, 12, 1683–1705, 2021



1690 A. Spurio Mancini et al.: Deep-learning emulation of seismic events

Figure 4. Typical architecture of an autoencoder. A bottleneck architecture allows for the compression of the input signal into a central
layer through the “encoder” part of the network (in red). The central layer is characterized by fewer nodes than the input one, thus leading
to dimensionality reduction on condition that the “decoder” part (in blue) can efficiently reconstruct the input signal (to a good degree of
accuracy) starting from the central encoded features. In this schematic we highlight that training of the autoencoder is performed by feeding
a seismogram to the encoder, and then comparing the output of the decoder with the same input seismogram. Once the autoencoder has
been trained, the encoder can be removed, and the decoder can be used as a generative model for the seismograms, inputting some encoded
features.

tion to match the prior p(z) as close as possible, while re-
quiring that the decoded data points resemble the input data.
For a full derivation of the ELBO and further details about
VAEs, see, e.g. Kingma and Welling (2013); Doersch (2016);
Odaibo (2019), and references therein.

VAEs can be used both as a compression algorithm and a
generative method. Since we want to map source coordinates
to seismograms, we choose to employ a supervised version of
VAEs, called conditional variational autoencoders (CVAEs,
Sohn et al., 2015), which proposes maximizing this slightly
altered loss function:

L(θ,φ;x,c)= Ez

[
logpφ(x|z,c)

]
−DKL (qθ (z|x,c)||p(z|c)) , (9)

where c refers to the coordinates associated to the seismo-
grams x, and the expectation value is over z∼ qθ (z|x,c).

In our analysis, we set a latent space size of zdim = 5.
Moreover, we choose the encoding qθ (z|x,c) to be a mul-
tivariate normal distribution with mean given by the encoder
and covariance matrix 6 = 0.0012Izdim . We choose a mul-
tivariate normal distribution with zero mean and the same
covariance matrix 6 as our prior p(z|c), and we employ a
deterministic pφ(x|z,c) as our decoding distribution. We es-
timate the expectation value in Eq. (9) using a Monte Carlo
approximation, and we calculate the KL divergence in closed
form as both qθ (z|x,c) and p(z|c) are multivariate normal
distributions; see Appendix B for the full derivation. The

choice of 6 is made in order to limit the spread of points in
latent space, such that we can approximate the desired deter-
ministic mapping with the probabilistic model offered by the
CVAE. Once trained, we can feed a set of coordinates c and
a vector z∼ p(z|c) to the decoder to obtain a seismogram;
with our setup, we verified that using a sample z∼ p(z|c) or
the mean value z= 0 has no significant impact on the final
performance of the model. Figure 3f summarizes the emu-
lation framework making use of the CVAE trained decoder,
while the architecture of the full CVAE, with hyperparame-
ters optimized for application to the test case of Sect. 3, is
shown in detail in Fig. 5.

2.2.7 Wasserstein generative adversarial
networks − gradient penalty (“WGAN-GP”)

One of the main lines of research in generative models is
based on generative adversarial networks (GANs, Goodfel-
low et al., 2014). In this framework, two neural networks,
called generator (G) and discriminator (D), are trained si-
multaneously with two different goals. While G maps noise
to candidate fake samples which resemble the training data
to fool the discriminator, D is trained to distinguish between
these fake samples and the real data points.

More formally, we can define a value function as follows:

V (D,G)= Ex
[
logD(x)

]
+Ez

[
log(1−D(G(z)))

]
, (10)
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Figure 5. Schematic of the architecture of the conditional variational autoencoder used in this work. A “funnel-like” structure analogous to
the simple autoencoder described in Fig. 4 is used, with the central features being sampled from multivariate Gaussian distributions N (µ,6)
with mean µ and covariance 6, as described in Sect. 2.2.6, after concatenating the coordinates (x,y,z,d) to the last layer of the encoder
(circled in red). The concatenation is repeated in the latent space represented by the multivariate Gaussian distributed encoded features.
In a similar fashion to the simple autoencoder case, the decoder part (in blue) of the conditional variational autoencoder can be used as a
generative model, after training the full network to reproduce the input seismograms in output.

where x refers to the training data sampled from the data
distribution pdata(x), and z to a noise variable sampled from
some prior p(z). The discriminator is thus trained to maxi-
mize V (D), while the generator aims at minimizing V (D);
the two networks play a minimax game until a Nash equi-
librium is (hopefully) reached (Goodfellow et al., 2014; Che
et al., 2016; Oliehoek et al., 2018).

In practice, despite generating sharp images, GANs have
proved to be quite unstable at training time. Moreover, it has
been shown how vanilla GANs are prone to mode collapse,
where the generator only focuses on a few modes of the data
distribution and yields new samples with low diversity (see,
e.g. Metz et al., 2016; Che et al., 2016).

Many alternatives to vanilla GANs have been proposed to
address these issues. We focus here on Wasserstein GANs –
gradient penalty (WGAN-GP; Arjovsky et al., 2017; Gul-
rajani et al., 2017). To avoid confusion, we stress that
the acronym “GP” is used to indicate a Gaussian pro-
cess throughout the paper, while it refers to the “gradient
penalty” variant of the WGAN algorithm only when quoted
as “WGAN-GP”. In short, we still consider two networks, a
generatorG and a critic C, which are trained to minimize the
following objective:

min
G

max
C

Ex,c
[
logC(x,c)

]
−Ez,c

[
log(1−C(G(z,c)))

]
+ −λEx̂,c

[(
||∇x̂C(x̂,c)||2− 1

)2]
,

(11)

where c refers to the coordinates, x̂ is a linear combination
of the real and generated data, λ≥ 0 is a penalty coefficient
for the regularization term, and ||∇x̂ ||2 refers to the L2 norm
of the critic’s gradient with respect to x̂. See Appendix C for
further details. Figure 3c summarizes the emulation frame-
work making use of the generator of the WGAN-GP, whose
full architecture is described in detail in Fig. 6.

In our experiments, we chose λ= 10, and trained the critic
ncrit= 100 times for every generator weight update. Both our
generator and discriminator are made of fully connected lay-
ers with various numbers of hidden neurons. We set the di-
mension of the latent zdim = 64, and p(z)∼ U(−1,1). Note
that the choice of how to include the conditional informa-
tion in the architecture is not unique, and we experimented
with different combinations without significant differences.
Once the algorithm has been trained, a new seismogram is
obtained by feeding the generator with a latent vector and a
set of coordinates.

Finally, note that, in this case only, we standardized the
data x after the rescaling described in Sect. 2.1. We calcu-
lated the mean µ and the standard deviation σ over all seis-
mograms x and trained our model on x′ = x−µ

σ
.

2.3 Training, validation, and testing procedure

We describe here the methodology followed to train our mod-
els and test their accuracy. We remark that the training and
testing of any machine learning algorithm should be per-
formed on a case-by-case basis, in order to match the ac-
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Figure 6. Schematic of the Wasserstein generative adversarial network – gradient penalty described in Sect. 2.2.7. The network is composed
of a generator part (in blue) and a critic part (in red). Once the full network has been trained, the generator can be removed to be used as a
generative model.

curacy requirements dictated by the specific problem con-
sidered (in this case, the emulation of seismic traces given
a certain velocity model). For concreteness, we present here
the details of training and testing our models for application
to the test case in Sect. 3.

All our models are trained on the same 2000 simulated
events used in D18. For optimization and testing purposes,
we divide the remaining 2000 samples (from the pool of 4000
events generated in total by D18) into a validation set and a
testing set of 1000 events each. Differently from D18, in this
paper we use a validation set to tune the hyperparameters of
our deep-learning models. To provide an unbiased estimate
of the performance of the final tuned models, we quote our
definitive results evaluating the accuracy of each model on
the testing set, which is never “seen” by the model at any
point in the training or optimization procedures.

Similar to D18, our accuracy performance is quantified in
terms of the R2D coefficient, a standard statistic commonly
used in time series analysis to quantify the correlation be-
tween two signals. Given a batch of the true seismograms G
and the corresponding emulated ones P, the R2D coefficient
is defined as

R2D =

∑
i

∑
j

(
Gij −G

)(
Pij −P

)√(∑
i

∑
j

(
Gij −G

)2)(∑
i

∑
j

(
Pij −P

)2) , (12)

G=
1
Ns

1
Nt

∑
i

∑
j

Gij , P =
1
Ns

1
Nt

∑
i

∑
j

Pij ,

where G and P are the mean over all i = 1, . . .,Ns samples
and j = 1, . . .,Nt time components of the ground truth Gij
and predicted seismograms Pij . Given its normalization, the

R2D coefficient ranges between values of −1, denoting per-
fect anti-correlation, and +1, indicating perfect correlation;
a vanishing correlation coefficient denotes absence of corre-
lation.

When training our NNs, all implemented in TENSOR-
FLOW(Abadi et al., 2015), we monitor the value of the val-
idation loss to choose the total number of epochs, waiting
100 epochs after the loss stopped decreasing and restoring
the model with the lowest validation loss value. In other
words, we early stop (Yao et al., 2007) based on the vali-
dation loss with a patience equal to 100 epochs. Moreover,
we optimize our algorithms calculating the final R2D coeffi-
cient, as defined in Eq. (12), over different combinations of
the hyperparameters, choosing the values that yield the high-
est R2D. The optimization procedure is performed using the
adaptive learning rate method Adam (Kingma and Ba, 2014)
with default parameters. The optimization of the network hy-
perparameters is entirely performed on the validation set; the
testing set is left unseen by the networks until the very last
stage of the analysis, when it is used to calculate the results
quoted in Table 1.

3 Application

Since one of our goals is to compare our new emulation
methods with the one previously developed in D18, we train
and test them on the same geophysical scenario considered
there. To train and test our algorithms we use the same micro-
seismic traces that were forward modelled in D18 for training
and testing purposes.
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Table 1. The 2D correlation coefficient R2D (as defined in Eq. 12), training time, single likelihood evaluation time, and total size of the
model for all our models and the model of Das et al. (2018, D18). The capital letter in round brackets refers to the schematic in Fig. 3. Note
that training time refers to the total time to preprocess, train, and postprocess data. All of our experiments were run on an Intel® Core™
i7-8750H CPU @ 2.20 GHz, which can be found on an average-performing laptop. Results for D18 are taken from Table 2 and Fig. 14 in
D18 and have been run in parallel on an HPC cluster, with the only exception of the likelihood evaluation time, which we performed on our
machine. The reported values of R2D and times are the mean and standard deviation of three runs. All of our proposed models perform better
than the one shown in D18, while taking considerably less time and requiring less disk space and hardware performance.

Model R2D Training time (s) Evaluation time (ms) Size (MB)

NN direct (A) 0.9500± 0.0006 270± 12 9.9± 0.6 2.32
PCA+NN (B) 0.9443± 0.0006 180± 1 8.6± 0.2 0.71
PCA+GP (C) 0.9433± 0.0006 1463± 27 97.9± 2.6 1.52
AE+NN (D) 0.9496± 0.0021 228± 12 9.3± 1.0 4.46
AE+GP (E) 0.9472± 0.0029 488± 23 25.4± 1.4 4.59
CVAE (F) 0.9477± 0.0005 302± 7 9.3± 0.5 4.37
WGAN-GP (G) 0.9214± 0.0048 1069± 59 9.9± 0.3 4.07
D18 ∼ 0.89 29232 621.0± 8.8 5.12

3.1 Simulation setup

We briefly recap here the characteristics of the simulated
geophysical domain and microseismic traces, referring to
D18 for further details. We consider a geophysical frame-
work where we record seismic traces in a marine environ-
ment. Sensors are placed at the seabed to record both pres-
sure and three-component particle velocity of the propagat-
ing medium. As was the case in D18, we assume that our
recorded seismic traces are generated by explosive isotropic
sources. For isotropic sources, considering only the pressure
wave and ignoring the particle velocity is sufficient to de-
termine the location of the event in the studied domain, as
shown in D18. We consider the seismic traces to be noiseless
when building the emulator, while some noise is added to the
simulated recorded seismogram when inferring the coordi-
nates’ posterior distribution, as we will show in Sect. 3.2.

Forward simulations of seismic traces are obtained by
solving the elastic wave equation given a 3D heterogenous
velocity and density model for the propagating medium,
shown in Fig. 7. The model specifies values of the propa-
gation velocities for P and S waves (Vp,Vs), as well as the
density ρ of the propagating medium, discretized on a 3D
grid of voxels. The solution of the elastic wave equation is
a computationally challenging task, which can be acceler-
ated using GPUs (Das et al., 2017). This is implemented in
the software K-WAVE (Treeby et al., 2014), a pseudospectral
method employed by D18 to generate their training and test-
ing samples, which we also use in our analysis. The GPU
software allows for the computation of the acoustic pressure
measured at specified receiver locations. A total of 4000 mi-
croseismic traces are generated in total with a NVIDIA P100
GPU, given their random locations within a predefined do-
main and a specified form for their moment tensor. The value
of the diagonal components of the moment tensor is set equal
to 1 MPa, following Collettini and Barchi (2002). The coor-

dinates (x,y,z) of the simulated sources are sampled using
Latin hypercube sampling on a 3D grid of 81× 81× 301 grid
points, corresponding to a real geological model (the same
used in D18) of dimensions 1 km× 1 km× 3 km. The tem-
poral sampling interval for the solution of the elastic wave
equation is 0.8 ms, which ensures stability of the numeri-
cal solver. The synthetic traces have a total duration of 2 s
each. After generation, all seismograms are downsampled
to a sampling interval of 4 ms to reduce computational stor-
age. This way, each seismic trace is ultimately a time series
composed of Nt = 501 time components. Note that, as ex-
plained previously, similarly to D18, we augment each of our
(x,y,z) coordinate set with their distance from the receiver
d =

√
x2+ y2+ z2, as we noted that this helps the training of

the generative models, in particular the Gaussian processes
defined in Sect. 2.1. This is due to the fact that the ampli-
tude Ai and time shift t i coefficients for each seismic trace
are strongly dependent on the distance of the source from the
receiver.

3.2 Comparison with Das et al. (2018)

In this section we summarize our main findings. We start in
Sect. 3.2.1 by describing the accuracy performance of all our
new methods and compare them with that achieved by D18.
In Sect. 3.2.2 we then move to our inference results, describ-
ing how we simulated a microseismic measurement and used
our generative models to accelerate Bayesian inference of the
event coordinates, again comparing against the results ob-
tained applying the method described in D18.

3.2.1 Performance of the generative models

In Table 1 we report summary statistics for the performance
of our generative models. Our goal is to critically compare
the different methods, highlighting their strengths and weak-
nesses, so that the reader can decide to adopt the one that
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Figure 7. Density, P-wave velocity, and S-wave velocity models of the simulated domain used in this work. The models are specified as 3D
grids of voxels. They show a layered structure with strong variability along the vertical axis. However, a smaller degree of variability is also
present across the horizontal plane; hence, the models are effectively 3D models that cannot be accurately simulated as a 1D layered model.

fits best their primary interests and available resources. To
perform this comparison, similarly to D18, we consider an
experimental setup with only one central receiver at planar
coordinates (x= 0.5 km, y= 0.5 km) in the detection plane
z= 2.43 km (see Fig. 9). In the following paragraphs we will
then consider a more complicated geometrical setup for the
detection of microseismic events.

Considerations of accuracy in terms of reconstructed seis-
mograms are important for applications to posterior infer-
ence analysis, to avoid biases and/or misestimates of the un-
certainty associated to the inferred parameters. In our case
achieving higher accuracy is crucial to guarantee unbiased
and accurate estimation of the microseismic source location.
For this reason, in Table 1 we cite the R2D statistic defined in
Eq. (12) as a means to quantify the accuracy of our meth-
ods, similarly to what was done in D18. The R2D coeffi-
cient is evaluated on the testing set, after training and vali-
dation of each method, according to the procedure described
in Sect. 2.3.

All of our new methods provide a R2D statistic higher
than the one reported by D18 on their testing set. We note
that in D18 the testing set was composed of 2000 events,
whereas here we split those 2000 events in a validation and
testing set of 1000 samples each. However, we checked that
all of our numerical conclusions are unchanged consider-
ing a larger testing set composed of the same 2000 events
used by D18. We also checked that training the D18 emula-
tor (augmented with the two GPs for the (A,t) coefficients)
on the seismograms preprocessed following Sect. 2.1 leads
to values of R2D worse than those obtained applying the D18
method without preprocessing. Hence, for our comparison
we decided to leave the D18 method unchanged from its
original version, i.e. without performing the preprocessing
of Sect. 2.1 prior to training.

The NN direct model, described in Sect. 2.2.1, provides
the highest R2D value among our proposed methods. This
is due to the combination of two factors: the relatively sim-

ple structure of the seismograms, given the isotropic nature
of their moment tensor, and the preprocessing operated on
the training seismograms. On the one hand, isotropic sources
are characterized by strong and very localized P-wave peaks,
which clearly dominate over the rest of the signal. This
simplifies the form of the signal with respect to, e.g. pure
compensated linear vector dipole (CLVD) and double-couple
(DC) events, characterized by more complicated signal struc-
ture (Vavryčuk, 2015; Das et al., 2017). On the other hand,
even with the relatively simple structure of the isotropic seis-
mograms, the training of a NN to map coordinates to seismic
traces is extremely challenging due to the reduced number of
training samples available. It is for this reason that we oper-
ated the preprocessing on the training seismograms described
in Sect. 2.1. This has the advantage of extracting information
regarding the source-sensor distance, encoded mainly in the
location and amplitude of the P-wave peak of each seismic
trace. By isolating these features into the parameters (A, t),
we simplify the task for our NN or any other method learning
the mapping between source coordinates and seismograms.
This approach relies on being able to train methods that learn
efficiently the mapping between coordinates and (A, t) co-
efficients. Fortunately, this mapping is not too complicated,
depending mainly on the distance of the source from the sen-
sor, and this is quite simple to learn for the GPs described in
Sect. 2.1, which, as we verified experimentally, show higher
accuracy than NNs in learning the (A, t) coefficients.

Figure 8 shows the reconstruction accuracy of three mod-
els among the ones considered in Table 1, namely the D18
method and the two models proposed in this paper that yield
the lowest and highest R2D coefficients (the WGAN-GP and
NN direct methods, respectively). We evaluate the predic-
tions of these three models for three random coordinates
among those of the testing set and check how the predic-
tions compare with the original seismograms. We notice how
in some cases the D18 method fails to produce accurate pre-
dictions (as in the case of the seismogram shown in the sec-
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Figure 8. Comparison of the reconstruction accuracy of different emulation methods on three random seismograms from the testing set
(dashed black lines), whose coordinates are reported on top of each panel. The seismograms record the vertical component of motion at the
receiver placed on the point with coordinates (0.5 km, 0.5 km, 2.43 km). The horizontal axis is zoomed around the location of the P-wave
peak. In addition to the D18 method (in blue), we show the performance of the methods achieving lowest and highest accuracy as reported
in Table 1: the WGAN-GP model (pink) and the NN direct model (red), respectively.

ond and third column in Fig. 8). The WGAN-GP and NN
direct methods instead manage to yield more accurate predic-
tions in these cases, in particular regarding the location and
amplitude of the P-wave peak, crucial for localization pur-
poses. From Fig. 8 we can appreciate how even the WGAN-
GP method, whose accuracy is the worst among the methods
proposed in this paper (cf. Table 1), reconstructs the seismo-
grams in the second and third column better than the D18
method.

Speed considerations are also important when evaluating
the performance of the models. In general, applications of
deep learning to Bayesian analysis may often be possible
only making use of high-performance computing (HPC) in-
frastructure. If this is not available, applications to real pa-
rameter estimation frameworks may be fatally compromised.
Therefore, it is important to notice that all our proposed mod-
els can be efficiently run on a simple laptop, without the need
of any HPC platform. If HPC infrastructure is available, our

models can be sped up even further. In particular, running all
generative models on GPUs would lead to a speed-up of at
least an order of magnitude (Wang et al., 2019).

Importantly, however, even without this HPC acceleration
we find that all our models are ∼ 1–2 orders of magnitude
faster to train and to evaluate than the method described
in D18. We stress here that the advantage of our models
in terms of speed relies not only on requiring considerably
less time to train but also (and arguably more importantly)
in predicting a seismogram much faster than with the D18
method. This point is essential for applications to parameter
inference, e.g. through MCMC techniques, where a forward
model needs to be computed at each likelihood evaluation.
A single evaluation time for our models is reduced by up to
2 orders of magnitude with respect to that of D18, which in
turns means that Bayesian inference of microseismic sources
will be similarly faster (see Sect. 3.2.2). Our emulators run
on a common laptop CPU provide a O(105) speed-up com-
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Figure 9. (a) Simulated noisy seismic traces recorded by the sensors at the seabed, with configuration shown in (b). These recorded seis-
mograms represent the data vector for our simulated posterior distribution inference. (b) Simulated receiver geometry in the detection plane
z= 2.43 km. The dots indicate the sensor locations, with colours matching those of the recorded seismic traces in (a). The central receiver
with coordinates (0.5 km, 0.5 km, 2.43 km) is the one that we consider (similarly to D18) when we quantify the performance of our trained
generative models in Table 1. We then include the other receivers when we demonstrate the effectiveness of our models in carrying out
Bayesian inference of the coordinates of a simulated seismic event with coordinates (0.375 km, 0.3 km, 1.57 km), whose projection on the
detection plane is marked with an orange cross.

pared to direct simulation of the seismic trace with a pseudo-
spectral method run on a GPU. The training time required
by each method is also significantly lower than in D18. We
note that this last property makes the training of our models
much less demanding in terms of computational resources.
We also note that the creation of a training dataset, with a
few thousand seismograms generated by solution of the elas-
tic wave equation, is a computational overhead cost that we
share with the analysis of D18, and therefore its generation
time is not reported here for any of the methods in Table 1,
including D18 (see Sect. 4 for a discussion on how to reduce
this overhead simulation time in future work).

Among our proposed methods, the fastest to evaluate is
the PCA+NN method described in Sect. 2.2.2. This was ex-
pected, as this model is composed of a relatively small NN
and a reconstruction through the predicted PCA coefficients.
Both operations essentially boil down to matrix multiplica-
tions, which can be executed with highly optimized software
libraries. We also notice that the methods requiring GP pre-
dictions (PCA+GP and AE+GP in Table 1) are the ones that
perform worse in terms of evaluation and training speed.
Again, this was expected as it is due to the nature of GP
regression itself. Contrary to NNs, GPs are non-parametric
methods that need to take into account the entire training
dataset each time they make a prediction. At inference time
they need to keep in memory the whole training set and the
computational cost of prediction scales (cubically) with the
number of training samples (Liu et al., 2018). This also af-
fects the D18 method, in an even more exacerbated form
since the number of GPs involved in that method is higher.

Related to the difference between GP and NN regression
are the storage size requirements of the different methods.
Models employing NNs are less demanding than GPs in
terms of memory requirements, mainly because they do not
need to keep memory of the training data. Within NN archi-
tectures, the simpler ones are, intuitively, the lightest to store.
PCA+NN is again the best performing method in this regard,
winning in particular over AE+NN since the latter requires
the storage of weights and biases for two NNs.

3.2.2 Inference results

Now that we have quantified the performance of our gener-
ative models, we want to apply them to the Bayesian infer-
ence of a microseismic event location. For this purpose, we
simulate the detection of a microseismic event and wish to
infer the posterior distribution of its coordinates. The poste-
rior distribution of a set of parameters θ for a given model or
hypothesis H and a data set D is given by Bayes’ theorem
(e.g. MacKay, 2003)

Pr(θ |D,H)=
Pr(D|θ,H)Pr(θ |H)

Pr(D|H)
. (13)

The posterior distribution Pr(θ |D,H) is the product of
the likelihood function Pr(D|θ,H) and the prior distribu-
tion Pr(θ |H) on the parameters, normalized by the evidence
Pr(D|H), usually ignored in parameter estimation problems
since it is independent of the parameters θ . In this work
we employ the algorithm MULTINEST (Feroz et al., 2009)
for multi-modal nested sampling (Skilling, 2006), as im-
plemented in the software PYMULTINEST (Buchner et al.,
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2014), to sample the posterior distribution of our model pa-
rameters (i.e. the source coordinates).

We simulate the observation of a microseismic isotropic
event by generating a noiseless trace given specified coor-
dinates (x,y,z)= (0.375 km, 0.3 km, 1.57 km). Our goal is
to derive posterior distribution contours on the coordinates
x,y,z, which represent our parameters. Following D18, we
add random Gaussian noise to each component of the noise-
less trace, with standard deviation σ = 250 in the same ar-
bitrary units as the seismograms’ amplitude. The resulting
seismic trace, measured at multiple receivers, is shown in
Fig. 9a. Similarly to D18, we assume a Gaussian likelihood.
We stress here that the particular shape considered for the
noise modelling and the likelihood function are not restric-
tive: our methodologies are easily applicable to more com-
plicated noise models or likelihood forms, while we chose to
use the same investigated by D18 for a direct and fair com-
parison.

Instead of repeating the analysis for each proposed gener-
ative model, we decide to use the one that has been shown
in Table 1 to achieve greater accuracy, i.e. the direct neu-
ral network mapping between coordinates and seismograms
described in Sect. 2.2.1. We simulate an experimental setup
with multiple receivers on the detection plane z= 2.43 km,
shown in Fig. 9b. D18 reported a maximum likelihood calcu-
lation for up to 23 receivers placed on the same plane. Here,
our aim is to test the performance of our models at inference
time, while we do not wish to carry out a detailed analy-
sis for optimization of the receivers geometry. In particular,
we wish to compare the D18 emulator with ours at inference
time. Thus, we do not consider all 23 receivers considered
by D18. While we find that considering only one receiver
is obviously not enough to achieve significant constraints on
the coordinates, after experimenting with different configu-
rations and number of receivers we find that considering four
receivers, placed in the upper diagonal part of the detection
plane, as shown in Fig. 9, already leads to significant con-
straints on the event coordinates, with 1σ marginalized er-
rors O (0.001) km. This is true if we consider our NN di-
rect method, whose accuracy is higher than the one of D18.
Indeed, repeating the inference analysis with the D18 em-
ulator, given the same receiver configuration, leads to con-
straints ∼ 3 times less tight on the coordinates and at a con-
siderable increase in computation time: 66 h of computation
using 24 central processing units (CPUs), compared to the
1.7 h required by the NN direct on a single CPU. The fact
that such tighter constraints can be achieved with our em-
ulator, even if making use of the information coming from
only four receivers, is due to the increased accuracy of our
method, evident from the R2D values reported in Table 1.

Figure 10 shows the posterior contour plots for the four-
receiver configuration described above, obtained with our
NN direct generative model and the emulator of D18. The nu-
merical results are summarized in Table 2, reporting the prior
ranges and mean and marginalized 68 % credibility interval

Figure 10. Comparison of the marginalized 68 % and 95 % credi-
bility contours obtained with the D18 method (in blue) and our pro-
posed NN direct generative model (in red) described in Sect. 2.2.1,
considering a seismic trace measured by the four receivers shown in
Fig. 9. The dashed lines black indicate the source’s true coordinates
at (x,y,z)= (0.375 km, 0.3 km, 1.57 km).

on the coordinates. We notice that the x and y coordinates are
less constrained than the z coordinate. This is due to the lay-
ered structure of the density and velocity model (cf. Fig. 7),
with much more variability along z than along the horizontal
directions. A full comparison between the D18 and NN di-
rect methods would require us to perform the inference pro-
cess using data from all 23 receivers. However, we found that
implementing the D18 method with all 23 receivers involves
significant computational complication, even when making
use of highly parallelized HPC implementations. We remark
that the D18 method fails with few detectors and is compu-
tationally expensive with many, while the NN direct method
proposed in this paper works well with just four detectors
and can be expected to work very well, and at lower cost,
with many.

3.3 Comparison with arrival-time-based non-linear
location

In order to check the accuracy of our emulators, we perform
a comparison of the inference results that we obtain with
our surrogate model with the results obtained from a non-
linear probabilistic location method. The widely used algo-
rithm NONLINLOC (Lomax et al., 2000) allows the determi-
nation of source locations based on arrival time data using
a probabilistic approach. It implements the equal differential
time formulation (EDT; Zhou, 1994; Font et al., 2004; Lo-
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Table 2. Prior range and mean and marginalized 68 % credibility intervals on the coordinates (x,y,z) for the D18 method, our proposed NN
direct model described in Sect. 2.2.1, and the EDT time arrival inversion described in Sect. 3.3.

Coord. Prior range [km] Ground truth [km] D18 [km] NN direct [km] EDT [km]

x [0,1] 0.3750 0.2175+0.5325
−0.12375 0.3770+0.0025

−0.0025 0.383+0.022
−0.022

y [0,1] 0.3 0.2+0.525
−0.125 0.305+0.0026

−0.0026 0.32+0.022
−0.022

z [0,2.43] 1.57 0.33+0.64
−0.28 1.57+0.0012

−0.0012 1.57+0.015
−0.015

max, 2005), which uses relative arrival time between stations
to remove the origin time from the parameter space. In this
work we consider the origin time to be at t = 0, and we do
not include it in our parameter space, so we do not strictly
need the EDT formulation. However, we stick to it to pro-
duce results easily comparable with standard procedures. In
the notation of Lomax et al. (2009) and the EDT formulation,
the likelihood of the observed arrival times takes the follow-
ing form:∑
a,b

1√
σ 2
a + σ

2
b

· exp

(
−

([
T 0
a − T

0
b

]
−
[
T T 0

a − T T
0
b

])2
σ 2
a + σ

2
b

)N , (14)

where the indices a, b run over the receivers, T 0
a and T 0

b are
observed arrival times, T T 0

a and T T 0
b are theoretical esti-

mates for the travel times, the uncertainties σa , σb combine
errors in the arrival time theoretical calculations and obser-
vations, and N is the total number of observations (N = 1
in our test case). The NONLINLOC software uses this like-
lihood function to sample the posterior distribution of the
model parameters (i.e. the coordinates of the recorded seis-
mic event) given specified priors, which we take here to be
uniform in the same ranges considered in Sect. 3.2.2. While
we use this likelihood function for comparison with NON-
LINLOC, we do not sample the posterior distribution using
the sampling algorithms implemented in the software pack-
age. Instead, we build an independent implementation that
uses PYMULTINEST for sampling the posterior distribution,
for comparison with Sect. 3.2.2, noting that the inference re-
sults are independent of the algorithm used for posterior sam-
pling.

The theoretical computations of the arrival times given
specified coordinates (x,y,z) in the simulated 3D domain are
obtained with the algorithm PYKONAL (White et al., 2020),
which implements a fast marching method (Sethian, 1996)
to solve the eikonal equation in Cartesian or spherical coor-
dinates in two or three dimensions.

Our goal is to verify that our methodology provides esti-
mates of the posterior probability distribution for the event
location that are in good agreement with those obtained from
the NONLINLOC method. To obtain this comparison, we
consider the same four receivers shown in Fig. 9b. The sim-
ulated observation is also the same one considered in the
comparison with the D18 method and shown in Fig. 9a. In

Figure 11. Comparison of the marginalized 68 % and 95 % per-
cent credibility contours obtained with the EDT non-linear location
method (in blue) and our proposed NN direct generative model (in
red) described in Sect. 2.2.1, considering a seismic trace measured
by the four receivers shown in Fig. 9. The dashed black lines indi-
cate the source’s true coordinates at (x,y,z)= (0.375 km, 0.3 km,
1.57 km).

particular, the noise properties of the observed waveform for
our method are the same considered in Sect. 3.2.2, i.e. Gaus-
sian noise with standard deviation σ = 250 in the arbitrary
units of pressure used in this work. For the arrival time ob-
servation of the NONLINLOC method, we consider an error
in the manual picking of the arrival time of 0.005 s, following
Smith (2019).

The inference results for the posterior distribution of the
coordinates are reported in Table 2 and shown in Fig. 11,
superimposed with our constraints obtained with the NN di-
rect method. Clearly, with the latter we obtain constraints in
good agreement with the NONLINLOC method, while being
tighter, as expected, since we are using the full waveform
information rather than the arrival time only. However, we
also notice that this comparison is strongly dependent on the
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uncertainty associated with the estimated arrival time in the
NONLINLOC method and the fact that we neglect possible
errors associated with the theoretical predictions for the ray-
traced estimates of the travel times from PYKONAL. For this
reason, we emphasize here that this comparison should not
be regarded as a way to show that our method certainly pro-
vides tighter constraints on the source coordinates, although
this could be expected since we are considering the full wave-
form information as opposed to merely inverting the arrival
times. We leave a proper comparison of the uncertainties as-
sociated with both approaches to future work, but we can
already notice that both methods give results in good agree-
ment.

4 Discussion and conclusions

In this paper we developed new generative models to acceler-
ate Bayesian inference of microseismic event locations. Our
geophysical setup was similar to the one used in Das et al.
(2018, D18) to train an emulator with the aim of speeding
up the source location inference process. This was achieved
by replacing the computationally expensive solution of the
elastic wave equation at each point in the parameter space
explored by, e.g. Markov Chain Monte Carlo (MCMC) tech-
niques for posterior distribution sampling. In both D18 and
this work, emulators were trained to learn the mapping be-
tween source coordinates and seismic traces recorded by the
sensor.

All models developed in this paper were trained on the
same 2000 forward simulated seismograms used by D18
when training their emulator. However, our models are based
on deep-learning architectures and make minimal use of
Gaussian process (GP) regression, which is instead per-
formed multiple times in the method proposed by D18. This
makes all of our models faster to train and evaluate com-
pared to the previous emulator, achieving a speed-up factor
of up to O(102), as well as reducing the storage requirements
of the models. Our trained emulators are capable of produc-
ing synthetic seismic trace for a given velocity model with a
speed-up factor over pseudo-spectral methods of O(105). For
example, it takes∼ 10 ms to compute a 2 s synthetic trace for
a given source model on a common laptop CPU, compared
to ∼ 1 h using the pseudo-spectral method implemented in
the software K-WAVE, which is run on a GPU. Crucially, this
acceleration does not happen at the expense of accuracy; on
the contrary, our models provide improved constraints on the
source coordinates.

We showed this first by calculating the 2D correlation co-
efficient for the seismograms of the test set. The values ob-
tained with all our models were higher than those obtained by
D18, indicating the higher accuracy achieved. Secondly, we
repeated the simulated experiment devised by D18, with sen-
sors placed at the seabed of a 3D marine environment where
our simulated sources were randomly located. We showed

that using information coming from only four receivers sit-
uated on the detection plane we were able to provide accu-
rate and tight constraints on the source coordinates, whereas
the D18 method struggled to provide any significant con-
straint given the same setup and would likely need additional
information from more sensors to achieve comparable con-
straints. As a result of the speed-up obtained at evaluation
time, we were able to perform the inference process on a sin-
gle CPU in ∼ 1.7 h, compared to ∼ 66 h of calculation over
the 24 CPUs required by the D18 method.

We also compared our inference results with those ob-
tained from arrival time inversion, following the method-
ology implemented in the software NONLINLOC (Lomax
et al., 2000). We found that our full waveform constraints
are, as expected, tighter than those obtained from arrival time
inversion; however, we notice that a comparison of the con-
straints obtained with the two methodologies is not straight-
forward, as it depends on various modelling choices, most
importantly the error associated with the arrival time esti-
mate. Therefore, we argue that the comparison carried out in
this paper should rather be regarded as a validation for our
newly proposed method.

A complete Bayesian hierarchical model for source loca-
tion has been developed in the software BAYESLOC (Myers
et al., 2007, 2009). We believe that the implementation of our
emulators in this framework could benefit greatly the speed
of execution of the BAYESLOC software, with potential ap-
plication to, e.g. the study of nuclear explosions as in Myers
et al. (2007, 2009). We also notice that an arguably faster
method for source location exists, which makes use of the
time travel information derived from simulated waveforms
(Vasco et al., 2019). This method is a variation of the grid
search method of Nelson and Vidale (1990), with travel time
calculations obtained from full waveform simulations instead
of the solution of the eikonal equation. We remark that this
method may be preferable to ours in terms of speed, since it
scales with the number of receivers in the recording network,
thanks to the reciprocity relation (e.g. Chapman, 2004) used
in the calculation of the travel time fields, by placing a source
in the receivers location and solving the elastodynamic equa-
tion. However, we also notice that the method of Vasco et al.
(2019) ultimately makes use only of arrival time estimates;
hence, it is possible that our full waveform inversion may
lead to tighter constraints, as seen in Sect. 3.3 (although
the same caveats on the comparison performed there would
equally apply when comparing with the method of Vasco
et al., 2019). We also notice that the method proposed in
Vasco et al. (2019) is not presented within a Bayesian frame-
work, whereas all of our emulators are. This is a key char-
acteristic of the methods developed in our paper, in view of
integration of our generative models within Bayesian frame-
works for joint inversion of moment tensor components and
location.

In conclusion, we provided the community with a collec-
tion of deep generative models that can very efficiently ac-
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celerate Bayesian inference of microseismic sources. The ul-
timate goal here would be to integrate our emulators within
existing methodologies and software for joint location and
moment tensor components inversion, as for example imple-
mented in MTFIT (Pugh and White, 2018). We believe that
the results obtained in this paper sufficiently prove the ac-
curacy of the emulators developed, making them ready for
integration within MTFIT.

The performances of our emulators in terms of accuracy
are all comparable and improved with respect to the D18
method. Speed considerations may therefore be invoked in
the decision process for a particular method. However, we
notice that our framework is valid only for microseismic
events characterized by isotropic moment tensor. Consider-
ing more complicated forms of the moment tensor will likely
require additional complications, first of all considering seis-
mic traces recorded for longer times, since the signal struc-
ture will be in general more complicated. Extensions of this
work to non-isotropic sources, possibly in combination with
other source inversion techniques (e.g. Minson et al., 2013;
Weston et al., 2014; Frietsch et al., 2019; Vasyura-Bathke
et al., 2020) would then allow for an extension of the param-
eter space to be explored, including for example the moment
tensor components for characterization of the source mecha-
nism. Additionally, applications to real analyses will need to
implement more realistic models for the noise than the one
we considered when performing Bayesian inference. We plan
to perform a joint moment tensor and location inversion on
a real field dataset in future work. We note that an accurate
characterization of the noise properties and the extension of
the inversion procedure to moment tensor components will
likely require larger training sets. In this sense, we believe
the development of the generative models presented in this
paper is a crucial step towards this goal. Basing our genera-
tive models on deep-learning architectures, in particular re-
ducing the use of GP regression, makes our newly developed
emulators ideal for scaling to the bigger training sets required
for applications to real data. It is indeed well known that GPs
scale very badly with the dimension of the training dataset
(see, e.g. Liu et al., 2018), whereas deep-learning methods
like ours are designed to scale up efficiently and perform at
their best with large training sets. The issue remains regard-
ing the necessity of producing such large training sets, which
requires considerable computational resources. To face the
demands in this sense for future extensions of this work,
we advocate the use of Bayesian optimization (see, e.g. Fra-
zier, 2018, for a review) to optimize the simulation of train-
ing seismograms. Armed with an increased number of train-
ing samples to better characterize the noise properties of the
seismograms, replacing this new noise model in the analy-
sis should be straightforward, thanks to the modularity and
flexibility of the framework developed in this paper and im-
plemented in our open-source repository.

We note that for a different velocity model our emulators
would need to be retrained on a new set of seismic traces. We

note that this is a limitation shared by other forward mod-
elling approaches (e.g. Moseley et al., 2020a) and inherent to
the fact that in these data-driven approaches one emulates
seismic traces assuming a model. Even if a re-training of
the emulators is needed, the modularity of our framework
implies that the only major change would be in replacing
the old velocity model with a new one and repeating the
training procedure. The user of our open-source software
should only have to minimally modify the implementation
of the deep-learning models. We expect that similar, if not
the same, architectures should perform equally well on ve-
locity models that are slowly evolving over time. For models
with mildly stronger heterogeneity, we anticipate our models
to achieve a similar performance to that shown in this pa-
per. With stronger heterogeneity we anticipate more training
samples to be required, in order to achieve an optimal per-
formance of the emulators. Nevertheless, given the speed-up
of our approach, such new optimizations should be compu-
tationally feasible. We also note that the dependence of our
framework on a specific velocity model may be greatly al-
leviated by employing transfer learning techniques (see, e.g.
Weiss et al., 2016 for a review, and Waheed et al., 2020 for
a recent application in geophysics). In transfer learning, the
training of a machine learning algorithm in a specific domain
is used to efficiently train the algorithm on a different but re-
lated problem. This may be particularly successful in the mi-
croseismic context considered in this paper, where velocity
models for a given geophysical domain are expected to vary
relatively slowly over time.

We expect our methodology for waveform emulation to
be improved by including physics-based information in the
emulation framework, following recent work in physics-
informed neural networks (PINNs; Rudy et al., 2017;
Weinan and Bing, 2017; Raissi et al., 2019; Bar and Sochen,
2019; Li et al., 2020), including recent applications to seis-
mology (e.g. Waheed et al., 2021). This is the route that has
been recently followed by Smith et al. (2020) in the devel-
opment of EIKONET, a deep-learning solution of the eikonal
equation based on PINNs (see also Song et al., 2021; Wa-
heed et al., 2020). It would be interesting to apply a similar
approach to our waveform emulation framework by solving
the elastic wave partial differential equation by back projec-
tion over the network while simultaneously fitting the sim-
ulated waveforms. Such an approach might help remove the
mesh dependence of the full waveform simulations, enhanc-
ing the flexibility of our method. In addition, EIKONET has
been very recently applied to hypocenter inversion (Smith
et al., 2021), which makes the case even stronger for further
exploring the possibility of using PINNs within the context
of waveform emulation, as recently explored in 2D config-
urations in Moseley et al. (2018, 2020b, a) with extremely
promising results.
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Appendix A: Summary of D18 emulator

Here we briefly summarize, for comparison, the surrogate
model developed in D18 for fast emulation of isotropic mi-
croseismic traces, given their source locations on a 3D grid.
We report here the main steps of the procedure, referring to
D18 for all details.

1. We first compress the training seismograms, isolating in
each of them the 100 dominant components in absolute
values and storing their amplitudes and time indices.

2. We then train a GP for each dominant component
and for each index. Thus, in total there will be
100 · 2= 200 GPs to train. Each of the 100 GPs for the
signal part will learn to predict the mapping between
coordinates and one sorted dominant component in the
seismograms; the corresponding GP for the time index
will learn to predict the temporal index associated with
that dominant component.

3. Once the GPs are trained, for each set of coordinates
the 100 predictions for the dominant signal components
and the 100 predictions for their indices will produce a
compressed version of the seismogram, where the (pre-
dicted) subdominant components are set to zero.

Appendix B: Kullback–Leibler divergence

B1 Definition and properties

Given two probability distributions P and Q of a continu-
ous random variable X, one possible way of measuring their
distance is the Kullback–Leibler divergence (KL divergence,
Kullback, 1959), which is defined as follows:

DKL(P ||Q)=

∫
X

p(x) log
p(x)

q(x)
, (B1)

where p and q are the probability densities of P and
Q, respectively. It is easy to show that DKL(P ||Q)≥

0 and that DKL(P ||Q)= 0 P =Q almost everywhere;
this is in line with the idea of DKL(P ||Q) being a way
of measuring the distance between P and Q. However,
we also note that the KL divergence is not symmetric
(DKL(P ||Q) 6=DKL(Q||P)), that it does not satisfy the tri-
angle inequality, and that it is part of a bigger class of diver-
gences called f divergences (see, e.g. Gibbs and Su, 2002;
Sason and Verdú, 2015; Arjovsky et al., 2017, and references
therein).

B2 Calculation of the loss function

In Sect. 2.2.6, we introduced the KL divergence in the loss
function of the conditional variational autoencoder (CVAE).
In that instance, we calculateDKL(qθ (z|x,c)||p(z|c)), where

both qθ (z|x,c) and p(z|c) are multivariate normal distribu-
tions. In particular, we choose qθ (z|x,c)=N(z;µ(x,c),6)
and p(z|c)=N(z;0,6), where 6 is a diagonal matrix with
all entries equal to σ 2

= 0.0012, and µ(x,c) is the output of
the encoder network of the CVAE.

It is easy to show (Kullback, 1959; Rasmussen and
Williams, 2005; Devroye et al., 2018) that the KL divergence
in the case of two multivariate normal distributions reduces
to

DKL (N(µ1,61)||N(µ2,62))=
1
2

log |626
−1
1 |

+
1
2

tr6−1
2

(
(µ1−µ2)(µ1−µ2)

T
+61−62

)
. (B2)

In our case, since 61 =62 =6 and µ2 = 0, we can write
the following equation:

DKL (qθ (z|x,c)||p(z|c))=
1
2

tr6−1
(
µ(x,c)µT (x,c)

)
=

1
2σ 2

zdim∑
i=0

µ2
i (x,c),

(B3)

where zdim = 5 is the chosen dimensionality of the latent
space.

Appendix C: Details of WGAN-GP

In Sect. 2.2.7 we explained how standard generative adver-
sarial networks (GANs) are prone to training instabilities
and mode collapse; therefore, in this work we chose to em-
ploy a variant called Wasserstein GAN – gradient penalty
(WGAN-GP; Arjovsky et al., 2017; Gulrajani et al., 2017).
In this algorithm, two networks, called generator (G) and
critic (C), are trained to minimize the Wasserstein-1 distance
between the data distribution and the generative model distri-
bution, implicitly defined byG(z),z∼ p(z) (Arjovsky et al.,
2017). The Wasserstein-1 distance is also known as the Earth
mover’s distance, as it can intuitively be thought as the min-
imum cost to transport a certain amount of “earth” from one
“pile” to another (see, e.g. Rubner et al., 1998, for more de-
tails). In our implementation, we additionally constrain the
gradient norm of the critic’s output with respect to its input
to be at most one everywhere, such that the critic lies within
the space of 1-Lipschitz functions (Gulrajani et al., 2017).
Finally, we include the coordinate information and use the
Kantorovich–Rubinstein duality (Villani, 2008), to express
our optimization problem as the one shown in Eq. (11).
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Code and data availability. Our deep-learning models will be
available at https://github.com/alessiospuriomancini/seismoML
(last access: 20 July 2021, Spurio Mancini, 2021) upon publication
of this paper, along with the 3D velocity model used to generate
our training data.
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