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Abstract. Theoretical approaches to earthquake instabilities
propose shear-dominated source mechanisms. Here we take
a fresh look at the role of possible volumetric instabilities
preceding a shear instability. We investigate the phenom-
ena that may prepare earthquake instabilities using the cou-
pling of thermo-hydro-mechano-chemical reaction–diffusion
equations in a THMC diffusion matrix. We show that the off-
diagonal cross-diffusivities can give rise to a new class of
waves known as cross-diffusion or quasi-soliton waves. Their
unique property is that for critical conditions cross-diffusion
waves can funnel wave energy into a stationary wave focus
from large to small scale. We show that the rich solution
space of the reaction–cross-diffusion approach to earthquake
instabilities can recover classical Turing instabilities (peri-
odic in space instabilities), Hopf bifurcations (spring-slider-
like earthquake models), and a new class of quasi-soliton
waves. Only the quasi-soliton waves can lead to extreme fo-
cussing of the wave energy into short-wavelength instabili-
ties of short duration. The equivalent extreme event in ocean
waves and optical fibres leads to the appearance of “rogue
waves” and high energy pulses of light in photonics. In the
context of hydromechanical coupling, a rogue wave would
appear as a sudden fluid pressure spike. This spike is likely to
cause unstable slip on a pre-existing (near-critically stressed)

fault acting as a trigger for the ultimate (shear) seismic mo-
ment release.

1 Introduction

Part 1 (Regenauer-Lieb et al., 2021) introduced a (geo-
)wave-mechanics- and physics-based formulation for deci-
phering patterns of multiphase material instabilities from the
molecular scale to any larger scale. Although the paper is for-
mulated for Earth sciences the approach constitutes a generic
theory for any material. In this paper (Part 2) we investigate
whether the approach can be applied to a real-world geolog-
ical system.

Patterns in geological systems are thought to encode in-
formation on reaction–diffusion processes repeating them-
selves over multiple scales such that a magnified view of
the structure looks like a copy of the structure itself called
self-affinity or self-similarity if no affine transformation is
required (Hobbs et al., 2011; Hobbs and Ord, 2015; Aifan-
tis, 2021). The connection between these patterns as dissipa-
tive structures of reaction–diffusion systems (Ball, 2012) and
their role in thermodynamic far-from-equilibrium systems
was originally described by Prigogine and co-workers (Kon-
depudi and Prigogine, 1998). An application of self-diffusing
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reaction–diffusion equations to mineralizing systems has
been proposed recently (Oberst et al., 2018). This contribu-
tion investigates geological applications of the possible rela-
tion to the reaction–cross-diffusion wave phenomenon due to
the new addition of the cross-diffusion term proposed in Part
1 (Regenauer-Lieb et al., 2021). In this contribution we will
show why the addition of the cross-diffusion term may be an
important element for the earthquake source mechanism.

Along the same vein, the paper also attempts to give
a somewhat simpler description of the theory from a
mesoscale perspective, putting Part 1 into the context of
non-local processes summarized in recent developments on
size-dependent continuum mechanics approaches (Shaar and
Ghavanloo, 2021). We identify that these ideas can be amal-
gamated with new concepts in physics and mathematics on
non-local reaction (Rubinstein and Sternberg, 1992) and dif-
fusion (Amdreo-Valle et al., 2010) processes. Such formu-
lations provide a more rigorous framework for the consid-
eration of processes that happen in between scales. These
processes are loosely called the “mesoscale” without precise
definition.

In continuum mechanics non-local processes are found to
be important for introducing internal length scales for local-
ization phenomena (Aifantis, 2021). We emphasize here that
consideration of the non-local cross-diffusion terms is par-
ticularly important to link the feedbacks between different
self-diffusion length scales which are normally not consid-
ered in the coarse-graining homogenization approaches dis-
cussed later.

In order to explain the physics of non-local diffusion
processes, consider an assembly of solid and fluid parti-
cles/molecules in a fully saturated porous medium. The par-
ticles are subject to a thermodynamic force exerted by the
stress supported by the solid matrix and the pressure of the
pore fluid. If we further consider a chemical dissolution–
precipitation process as an example the concentration of
solid and fluid particles/molecules depend on their position
in space and the gradients of their concentrations which with
an equation of state approach can be interpreted as fluid pres-
sure. Cross-diffusion describes the non-local effect of the
convolution of the concentrations of solid and fluid particles.
This convolution occurs because the release of a fluid parti-
cle relies on the dissolution of a solid particle and the growth
of a solid particle needs the precipitation of a fluid particle.
The probability distribution to jump from one location to an-
other is then defined as the non-local diffusion. In the context
of Part 1 these mesoscale or non-local jump conditions may
under certain scenarios be incompatible with the large-scale
thermodynamic forces and violate the equilibrium condition.
Such violation then necessarily leads to the nucleation of ac-
celeration waves radiating the local energetic incompatibili-
ties into the far field. In the discussed example of dissolution-
precipitation reactions a molecular reaction may therefore ra-
diate solid and fluid pressure pulses into the far field and act
as a perturbation to the coupled non-local phenomena at the

Figure 1. Earthquake frequency–magnitude histogram prepared
from the Global Instrumental Earthquake Catalogue, Version 7.0
– released on 9 April 2020 by the ISC-GEM (Di Giacomo et al.,
2018; Storchak et al., 2015, 2013). Global quakes have a fractal
power-law relationship of log(number of earthquakes)= 10.23+
1.06(magnitude) with an R2

= 0.98. The log–log relationship be-
tween numbers of earthquakes and their moment magnitude on all
sizes of completeness of the catalogue suggests a simple underly-
ing reason why the physics of the very small influences the physics
of the very large in a multifractal cascade of instabilities. Sethna
et al. (2001) postulates that this can be explained by the existence
of a critical thermodynamics force above which an earthquake starts
to slip. Accordingly, plate motions self-regulate (Sornette and Pis-
arenko, 2003) to be exactly at this critical point for potential failure
at all scales.

next scale up, thus triggering the full cascade of THMC non-
local reaction–diffusion processes and leading to a multifrac-
tal cascade of instabilities (Turiel et al., 2006; Koronovsky
et al., 2019).

A prime example of how the physics of the very small
appears to influence the physics of the very large is the
earthquake instability (Sornette, 1999; Crampin and Gao,
2013). We therefore use earthquakes as a topic to discuss
the roots of self-affinity underpinning the log-frequency–
log-magnitude relationship (Fig. 1) and many other simi-
lar relationships in nature (examples are shown in Fig. 1 of
Part 1; Regenauer-Lieb et al., 2021). To simplify the equa-
tions and address a frequently overlooked deformation mode
we use the Helmholtz decomposition presented in Part 1
(Regenauer-Lieb et al., 2021) and only discuss examples for
dissipative pressure (P ) waves. The rich dynamics of su-
perposing dissipative pressure (P ) – and shear (S) – waves
will be subject of future research. For simplifying the dis-
cussion we also focus on just considering hydromechanical
(HM) coupling and refer to Part 1 for the generalized THMC
formulation.

This paper develops the working hypothesis that geolog-
ical patterns encode information of dissipative structures in
the form of standing or travelling dissipative waves that can
appear with (Berenstein and Beta, 2012) or without cross-
diffusion terms (Regenauer-Lieb et al., 2013a; Veveakis and
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Regenauer-Lieb, 2015). We develop a continuation of a solid
mechanical cross-diffusion formulation in which slow dam-
age waves (Hu et al., 2020) have been identified as a precur-
sor phenomenon to macroscopic failure of porous materials
under load. Diffusion waves prepare a material for failure as
they lead to internal material damage. Developing detection
methods of these newly predicted slow damage waves may
point to new avenues of forecasting material failure. Addi-
tionally, the failure pattern induced by these waves can im-
print a characteristic bar-code-like signature around the main
failure zone. If it is possible to decipher these patterns as
frozen-in stationary states of reaction–diffusion systems, the
approach may provide new avenues to investigate one of the
most difficult unsolved problems in Earth sciences through
direct geological observations.

Other avenues for detecting these waves could be
through laboratory experiments. Unfortunately, complex
Earth/material dynamic reaction–diffusion processes occur
under extreme temperature and pressure conditions and on
timescales inaccessible to the direct human observer (Kohlst-
edt and Holtzman, 2009). Therefore, reliable empirical ex-
perimental engineering approaches for estimating the risk of
failure of Earth materials under both engineering and plate
tectonic loads are missing (Grigoli et al., 2018). A partic-
ular challenge is to replicate nature’s pattern-forming, self-
organized critical conditions (Fig. 1) at micro-scale in the
lab, as the Earth’s long-range feedbacks are missing.

To solve this problem we use a thermodynamic-based con-
tinuum mechanics approach where we consider conservation
of mass, conservation of linear momentum, conservation of
angular momentum, conservation of energy, and the second
law of thermodynamics as the basic set of coupled partial
differential equations (PDEs). These equations form the ba-
sis of deterministic continuum mechanics while the strong
form of the second law is used as a bridge between statistical
mechanics and continuum approaches (Ostoja-Starzewski,
2008). In this respect the thermal (T ) PDE has a special role
as it is tied to the entropy evolution and thereby encapsulates
the uncertainty quantification for time-dependent processes
through the fluctuation theorem (Evans and Searle, 2002).
For a complete approach, we must look for a mathematical
description that comprises all four coupled partial differen-
tial equations in a holistic way including the important un-
certainty quantification.

The wave-mechanics approach offers just this opportunity
as it encompasses all conservation laws. The wave mechan-
ics approach of Part 1 (Regenauer-Lieb et al., 2021) gives,
in particular, a fundamental physics-based first guess to in-
vestigate these critical domains that are not directly acces-
sible. We thereby identify critical conditions for many im-
portant Earth science problems such as the physics of earth-
quakes, extraction of geothermal energy, safety of nuclear
waste disposal, reservoir engineering for oil and gas, the for-
mation of mineral deposits, induced seismicity, natural haz-
ards, groundwater management, and CO2 sequestration and

utilization. In sections to come, we will formulate a simple
non-local reaction–diffusion formulation for HM coupling,
illustrate the potential first application of the theory and de-
pict its relation to other similar approaches in different disci-
plines.

2 Coarse-graining techniques in the light of the
earthquake problem

The decoupling of dynamic processes on vastly different
length scales and timescales is one of the most powerful
methods of upscaling techniques. The objective, thereby, is
to reduce the level of complexity by coarse-graining (Sethna,
2006b; Hanasoge et al., 2017) a complex thermodynamic
system to a larger system, such that the dynamics of the
lower scale can be homogenized into an effective material
property for the larger scale (see Fig. 2). The dynamical sys-
tem maps onto itself in a self-affine fashion so that the dy-
namic behaviour under external loads is the same irrespec-
tive of the scale considered. This so-called coarse-graining
approach leads to time-evolution of the thermodynamically
averaged larger systems that have significantly simpler time-
evolution equations. The dynamic processes at lower scale
are assumed to have relaxed to a quasi-steady state (local
thermodynamic equilibrium) and contribute to the larger sys-
tem through what is described in statistical physics by an or-
der parameter characterizing the scale-invariant free energy
of the statistical volume considered (Sethna, 2006a). This sit-
uation can lead to a cascade-like hierarchy of singularities
described by a series of local power laws.

The system would then be expected to feature a multiscale
combination of local power laws of thermo-hydro-mechano-
chemical (THMC) reaction–diffusion equations leading to
multifractal distributions, where different scales have differ-
ent fractal properties (Stanley and Meakin, 1988). This mul-
tifractality relies on a random multiplicative process of each
underlying physical element and a coupling of the critical
point phenomena into the universality relationships of the
THMC-coupled processes. The combination of a thermally
activated rupture with a long memory stress relaxation was
proposed as a possible mechanism to explain the multifractal
scaling of the Californian earthquake catalogue (Sornette and
Ouillon, 2005). The multifractality hypothesis of the Califor-
nian dataset has been reinvestigated in a more recent multi-
scale analysis of the micro-, meso-, and macro-scale subse-
quences showing that the macro-scale spectrum indeed has
the strongest multifractality of the three scales, thus strongly
supporting the hierarchy of scales (Fan and Lin, 2017). This
finding calls for a true multiscale formulation for earthquake
physics, where the largest-scale geodynamic driver is cou-
pled to the smallest-scale singularity in a multiphysics hier-
archical cascade of instabilities. In sections to come we will
illustrate how the non-local cross-diffusion terms provide the
missing glue between the scales. We will discuss analytical
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Figure 2. Coarse-graining approaches in continuum and fluid dynamics. The microscale has the richest information and highest degrees of
freedom. Coarse graining reduces the complex dynamics to time-evolution equations with a less detailed level of description. In the continuum
scale only reduced variables are retained. In the case of the Navier–Stokes equation for fluid dynamics, these are pressure and velocity. The
wave mechanics approach presented here is a meso-scale approach that opens the path for an analytical reduction of variables rather than
a computational coarse-graining method based on averages. Examples for three different methods are shown. The top row illustrates the
simulation of a solid body with a particle flow code (PFC, modified after Durrleman et al., 2006) and the continuum damage model (modified
after Lyakhovsky et al., 2015). An incorporation of Arrhenius-dependent thermal regularization on the continuum damage model can be
found in Hu et al. (2017). The middle row shows a dissipative particle dynamics approach (modified after Español and Warren, 2017) and
the bottom row a lattice Boltzmann homogenization technique (modified after Fitzgerald et al., 2019). Our approach replaces the explicit
simulations by considering the meso-scale processes through consideration of non-local effects of cross-diffusion. These effects enrich the
upscaling of physics-based macro-scale constitutive equations at the continuum scale. The approach is complementary to the numerical
coarse-graining techniques shown in this figure.

solutions showing that cross-diffusion can focus wave energy
from the large scale to small scales in short sharp instabilities
first discovered in hydrodynamics (Peregrine, 1983).

When extrapolating the findings from the Californian
dataset to the global earthquake dataset we infer that the
multifractal, so-called singularity spectrum (Turiel et al.,
2006) contains most – but unfortunately not all – informa-
tion about the physics of earthquakes (Koronovsky et al.,
2019). The continuous spectrum of multiscale exponents
contained in the global singularity spectrum suggests that
there is a mechanism that is capable of coupling the var-
ious THMC reaction–diffusion equations. Individual cou-
pling mechanisms have been discussed such as a creep acti-
vation mechanism (Sornette and Ouillon, 2005), shear heat-
ing (Ogawa, 1987; Regenauer-Lieb and Yuen, 1998; Braeck
and Podladchikov, 2007), thermally induced fluid pressur-
ization (Vardoulakis, 2001; Rice, 2006) and a mixed process
between frictional slip failure and the shear fracture of intact
rock (Ohnaka, 2003). A generic physics-based formulation
for investigating multifractality of the earthquake mechanism

that does not single out individual processes is still lack-
ing. Part 1 (Regenauer-Lieb et al., 2021) has presented such
a generic framework and here we illustrate its application
to the hydromechanically coupled reaction–cross-diffusion
which may be used as a simple first approach to earthquake
instabilities (Crampin and Gao, 2015).

A possible candidate for cross-scale communication could
be the propagation of cross-diffusional waves which can tie
several or all THMC reaction processes together in a convo-
lution operation as discussed in Part 1 (Regenauer-Lieb et al.,
2021). The time-domain convolution operation of THMC
waves can be seen in the frequency domain as a filter for
the dominant earthquake coupling mechanism, sharpening
or smoothing certain waves controlled by cross-diffusion. In
this sense, the earthquake physics problem may, therefore,
be condensed to the problem of how to couple instabilities
across scales such that a dominant wave can lead to a self-
affine macro-scale instability mechanism which we propose
to be an extreme form of a sharpening filter in the language
of signal processing. In the physics field, this phenomenon

Solid Earth, 12, 1829–1849, 2021 https://doi.org/10.5194/se-12-1829-2021



K. Regenauer-Lieb et al.: Cross-diffusion waves 1833

is known as a rogue wave (Eberhard et al., 2017). To verify
the rogue-wave hypothesis as a potential earthquake trigger
mechanism, we need to discuss the interplay of the vastly
different timescales and length scales of the THMC reaction–
diffusion processes.

The characteristic timescales and length scales of the ther-
modynamic THMC processes can be evaluated by calculat-
ing the relaxation time of a random perturbation from the
THMC reaction term Ri

′. Please refer to Table 1 in Part 1
(Regenauer-Lieb et al., 2021) for a definition of the THMC
reaction terms. Characteristic timescales and length scales
emerge from quasi-steady-state (time-independent) solu-
tions of the diffusive (relaxation) response of the reaction–
diffusion system characterized by the equation

∂Ci

∂t
=∇ · (ζ i

′
∇Ci)+Ri

′, (1)

whereCi stands for the diffusing species/processes (e.g. tem-
perature, fluid or mechanical pressure, chemical species) and
ζ ′ for the respective diffusivity with the subscript i denoting
the THMC processes. Linearizing the diffusion equation we
obtain
∂Ci

∂t
= ζi∇

2Ci +Ri . (2)

The timescale or the relaxation process is now entirely
characterized by the self-diffusion coefficients ζT ,H,M,C and
the reaction rates Ri . Please refer to the Part 1 (Regenauer-
Lieb et al., 2021) for a definition of self-diffusion and cross-
diffusion coefficients.

For the benefit of the reader wishing to recap the well-
known facts about the topic of reaction–self-diffusion waves
including their astonishing behaviour of revealing THMC
material properties through their propagation velocity, we
summarize in the Appendix an example of an autocatalytic
reaction and its role in the nucleation of reaction–self-
diffusion waves. The reader familiar with the literature on
reaction–diffusion waves may wish to continue straight into
the following application of the equation to characteristic
earthquakes.

The results summarized in the Appendix were based on
the generalization of a first-order autocatalytic reaction. Very
few practical examples will be first order, and we need to
consider the generalized case of a reaction that depends on
the concentrations of a second-order reaction of one compo-
nent or any number of additional reactions and their equiv-
alent THMC processes. When considering more than one
reaction the concentration of second- or higher-order reac-
tions depends on the concentration of a second- or higher-
order number of species. This will add additional dynam-
ics to the system response. In the case of two reactions the
system can display a perfectly regular oscillator. A situation
where two reaction–self-diffusion equations are coupled will
be discussed next. In the example discussed the two reaction
terms are a pressure source term from a chemical dissolution
reaction and a temperature source term from shear heating.

2.1 Application of two reaction–self-diffusion
equations to characteristic earthquakes

Characteristic earthquakes with some typical regularity in
their recurrence have been a matter of special interest in
seismology. Prominent examples of earthquakes with char-
acteristic recurrence periods are the Parkfield earthquake
sequence (Wiemer and Wyss, 1997) and also the episodic
tremor and slip (ETS) events recorded in Japan, Cascadia,
and Hikurangi subduction systems (Gomberg, 2010). Such
events are typically modelled by spring-slider models based
on empirical friction data (Ohtani et al., 2019). However, at-
tempts have also been made to explain the friction evolution
by the dehydration reaction of serpentinite explaining the
phenomenon of ETS events by coupling two reaction–self-
diffusion equations resulting in a perfectly periodic thermo-
chemical TC oscillator model (Poulet et al., 2014b) shown in
Fig. 3.

The approach relies on the tight coupling of the tem-
perature reaction–self-diffusion equation with a chemical
reaction–self-diffusion equation (Alevizos et al., 2014; Ve-
veakis et al., 2014) which can lead for a highly non-
linear source term to excitation waves with a characteristic
perfectly periodic oscillatory response in the temperature-
pressure plot (Fig. 3). The authors also show an example
where, by considering an additional oscillator, a transition
to chaos can be modelled (Poulet et al., 2014b). The basic
element of the model is a chemical decomposition function
of the type AB�A+B. This dissolution–decomposition re-
action is different to the autocatalytic reaction discussed in
the Appendix. The non-linear element which is necessary
to trigger excitation waves is not stemming from the lin-
ear chemical dehydration reaction but introduced through
shear heating feedback during power-law creep. Shear heat-
ing in turn drives the thermally induced dissolution. Poulet
et al. (2014b) numerically investigated the potential candi-
date source mechanism of a thermally induced dissolution
reaction of serpentinite in the fault zone originally proposed
by Obara (2002). In that model solid serpentinite (phaseAB)
decomposes into a solid phase A (Antigorite) and a fluid
phase B (water) upon application of a heat source from shear
heating.

It is encouraging that a simple chemical reaction model of
the normally fine-grained serpentine crystal at say millime-
tre scale can be used to model an ETS instability at plate
scale, say around 100–1000 km scale. Communication of in-
formation over 8 to 9 orders of magnitude may hence be
possible under special circumstances bearing in mind that
initial material or environmental heterogeneities at multiple
scales will tend to complicate the picture. We therefore pro-
pose that progress can be made by investigating the multi-
scale physics of the THMC reaction–diffusion system in the
Earth in further detail. In addition to the timing and displace-
ment information obtained from GPS and seismic stations,
the spatial information related to the diffusion term could be
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Figure 3. The characteristic period of the Cascadia ETS sequence interpreted with a reaction–diffusion oscillator model (Poulet et al., 2014b).
(a) The phase diagram between A and B corresponds to the slow creep of the serpentinite slowly raising the temperature to the critical level
for the onset of the dehydration reaction. The segment between B and C corresponds to the dehydration reaction that coincides with the
tremor and slips event. The following segment between C and A is the diffusion-dominated field. (b) The corresponding normalized strain
rate with the sharp peak corresponding to the tremor event.

investigated to verify the model. A key observable would be
the propagating wavefront that would be expected from the
above discussion on reaction–diffusion timescales as illus-
trated in the Appendix (Fig. A1).

In the case of the serpentinite decomposition reaction, the
diffusive wavefront would propagate normal to the main fault
plane as the chemical decomposition reaction involves sig-
nificant volume reduction which would lead to a contraction
of the central fault plane and a characteristic width of the
fault plane. This process zone is not exposed in active sub-
duction systems but can be found in geological exposures
of fossil faults. An excellent example is the Glarus thrust
which has been modelled by the same perfectly periodic two
reaction–self-diffusion equation oscillator approach using a
carbonate decomposition reaction (Poulet et al., 2014a). The
model includes self-diffusion and therefore the expected spa-
tial response can be tested as well. The model is shown to
be capable of reproducing the process zone around the cen-
tral fault plane which is documented in many fault zones
(Chester et al., 2013). Another textbook example is the
Punchbowl Fault in California, where a series of deforma-
tion mechanisms were described (Schulz and Evans, 2000).
We would like to emphasize at this point that chemical dehy-
dration reaction–diffusion processes are only a special case
of THMC feedback. A number of other recently proposed
feedback processes need to be investigated for completeness,
e.g. shear heating and phase changes triggered on asperity
contacts (Hayward et al., 2016; Aharonov and Scholz, 2019).

2.2 Consideration of cross-diffusion

Before introducing the concept of cross-diffusion, we might
consider what is lacking for investigating the earthquake
source mechanism by the reaction–self-diffusion equation
without the cross-diffusion term. If indeed the reaction–
self-diffusion equation were sufficient to describe the earth-
quake source mechanism the approach would allow a sig-
nificant simplification through the coarse-graining approach.
The exponential rate of approaching the self-oscillating

wavefront of the Fisher–Kolmogorov–Petrovsky–Piskunov
(FKPP) wave discussed in the Appendix (Fig. A1) could be
used as a simplification and any non-local effects could be
ignored. The above example of the reaction–self-diffusion
equation for ETS sequences explains the earthquake source
mechanism by a similar mechanism to the one proposed
for landslides (Vardoulakis, 2001). If indeed the fluid re-
lease due to chemical dissolution were a universal mecha-
nism that leads directly to earthquakes, coarse-graining ap-
proaches may be able to use the FKPP wave velocity limit to
allow a characterization of the important physics of the dehy-
dration mechanism. At coarse-grained level the wave veloc-
ity would just be defined through the limit velocity derived in
the Appendix (Eq. A3) and may be detected from the seismic
records of the episodic tremors. This offers a significant sim-
plification as the approach would not only allow a non-linear
effect of a local reactive source term (thermal pressurization)
to be turned into a propagating waveform that propagates at
constant speed but would also ensure that the wave velocity
is governed by the dissipative material properties irrespective
of the initial conditions. Excitation waves supported by local
reactions will by themselves recover a characteristic wave
field dictated by the reaction–diffusion rate constants.

The reaction–self-diffusion model for the ETS sequences
effectively singles out a chemical dissolution process which,
as emphasized above, is proposed to operate over all scales.
The multifractal nature of earthquakes discussed earlier
shows that this is not the general case. What is therefore
missing is a means to couple the propagating multiscale and
multiphysics waves of different THMC processes. The prob-
lem can be addressed by a statistical mechanics approach to
the coarse-graining problem. In Fig. 2 we proposed that the
missing element for considering mesoscopic complexity in
a physics-based earthquake model is a meso-scale approach
that captures the link between the vast differences in the dif-
fusional length scale (listed in Table A1 in the Appendix) of
THMC processes. In Part 1 (Regenauer-Lieb et al., 2021) we
proposed that a meso-scale approach can be developed by de-
composing the large-scale reaction term Ri into a meso-scale

Solid Earth, 12, 1829–1849, 2021 https://doi.org/10.5194/se-12-1829-2021



K. Regenauer-Lieb et al.: Cross-diffusion waves 1835

reaction term which requires a meso-scale cross-diffusion
term for mass (momentum, energy) balance. This is because
the aforementioned cross-scale coupling introduces meso-
scale source/sink terms in the individual conservation laws
identified by rT, rH, rM and rC, respectively. The conserva-
tion laws must, therefore, be extended to close the equations
and allow a multitude of THMC processes to occur simulta-
neously, which introduces cross-diffusion fluxes. We there-
fore postulate here that these terms are the critical ingredients
that provide the capacity to fire off waves that are controlled
by cross-diffusion at different THMC length scales and thus
explain the observed multifractal nature of earthquakes.

The synchronizing effect of cross-diffusion is well stud-
ied for the simple FitzHugh–Nagumo relaxation electrical
oscillator, where the self-diffusion terms are replaced by lin-
ear cross-diffusion terms (Biktashev and Tsyganov, 2016).
The electrical nerve impulses that drive a regular heart beat
are an example. Antonioletti et al. (2017) describe how the
characteristic recovery of the reaction–cross-diffusion exci-
tation waveform after a random perturbation can be used,
for instance, for defibrillation strategies (a small electri-
cal stimulus applied through a pacemaker) for treatment of
life-threatening heart arrhythmia. In this sense, earthquake
physics might profit from an understanding of the partial
differential equations developed in mathematical biology,
epidemiology (wave-like propagation of viruses), and other
biomedical applications for which numerical open-source
tools are available. One such tool is the “heart beat box”
(Antonioletti et al., 2017), which uses a mathematical for-
mulation of the human heart in terms of a FitzHugh–Nagumo
cross-diffusion formulation.

Similar cross-coupling terms are also used in other fields
of physics, where the explicit cross-diffusion formulation re-
sponse of the system to wave perturbations is tested by a
complex-valued wave function. The complex-valued func-
tion embeds cross-diffusion as it expresses the bi-directional
response of each diffusively coupled system through a mutu-
ally cross-coupled diffusion problem. The generalization to a
multi-component system with N -coupled components (note
no summation convention assumed here) is also known as an
order parameter fluctuation analysis. The analysis uses the
response functions of Fourier component variational pertur-
bations (Balluffi et al., 2005) in the sense that

i
∂ψ(k, t)

∂t
=−R(k)D̃ij∇

2A(k, t) , (3)

where iψ(k, t) denotes the complex position-space wave
function, and A(k, t) denotes the amplitudes associated with
each Fourier mode. The amplification factor R(k) depends
on the Fourier mode k and the direction of the amplifica-
tion controlled by the diffusivities D̃ij . Assuming iψ(k, t)=
u(k, t)+ iv(k, t), we recover the cross-diffusion type rela-
tionship of Eq. (24) in Part 1 (Regenauer-Lieb et al., 2021),
where the probability amplitude of the u wave depends on
the cross-diffusional coupling to the v wave. Vice versa, the

probability amplitude of the v wave depends on the cross-
diffusion of u:

∂u(k, t)

∂t
=−D̃ij∇

2v(k, t), (4a)

∂v(k, t)

∂t
= D̃ji∇

2u(k, t). (4b)

This bi-directional relationship between u and v waves
has provided a robust approach to investigate kinetics of or-
der parameters, phase transitions, and fluctuations (Sethna,
2006b). We will use this transformation later to show how
our cross-diffusion formulation converts into the non-linear
Schrödinger equation for a specific set of parameters. We
will also show how an explicit consideration of the cross-
diffusion terms can trigger a new class of waves which has
not yet been described for the Earth system.

In what follows we first add the important reaction term to
this approach to provide a link to the generalized approach
in Part 1 (Regenauer-Lieb et al., 2021), then present labora-
tory examples of diffusion waves, followed by an extension
of the HM coupled cross-diffusion model (Hu et al., 2020)
into a specific non-local formulation that may be relevant
for studying the physics of earthquakes (Crampin and Gao,
2015). We conclude with a presentation on how this set of
equations may lead to or trigger a catastrophic instability.

2.3 Cross-diffusion and its role in coupling of
instabilities across scales

We can now extend the reaction self-diffusion equation
for full space–time coupling for multiple reaction–diffusion
equations and re-introduce reactions. An exemplary convolu-
tion of the mesoscopic oscillators is the self-similar Gaussian
wavelet in space and time, which is also the Green’s function
of the local equilibrium statistical mechanics approach. In the
linear case, any number of wavelets can be superposed, and
a Fourier transform is an ideal procedure to capture the ef-
fect of multiple oscillators and local heterogeneities on the
macro-system. In Part 1 (Regenauer-Lieb et al., 2021) we
proposed to generalize the cross-diffusion approach, which is
well known in chemistry (Manning, 1970), to more general
THMC terms defining cross-diffusion as the phenomenon
where a gradient of one generalized thermodynamic force of
species Cj drives another generalized thermodynamic flux of
speciesCi , described by (using explicit summation instead of
Einstein convention)

DCi
Dt
= D̃ii∇

2Ci +
∑
j 6=i

D̃ij∇
2Cj + ri . (5)

The species j is identified as the cross-diffusion species other
than the species i. Introducing a fully populated (N×N ) dif-
fusion matrix D̃ij (Eq. 5) can also be written as

DCi

Dt
= D̃ij∇

2Ci + r i , (6)

https://doi.org/10.5194/se-12-1829-2021 Solid Earth, 12, 1829–1849, 2021



1836 K. Regenauer-Lieb et al.: Cross-diffusion waves

whereby the classical (self-)diffusive length scale of each

THMC process is defined by
√

4D̃ii t . The cross-diffusion
approach introduces also a new meso-scale coupling length
scale that can provide a link between the large-scale self-
diffusion length scales of the THMC processes. In Part 1
(Regenauer-Lieb et al., 2021) we have shown that the cross-

diffusion length scale
√

4D̃ij t is defined by the kinetic ma-
terial properties which can be evaluated by measuring the
velocity of cross-diffusion waves in analogy to the gener-
alization of Eq. (A3) for the FKPP wave. This leads to the
equation for the wave speed in Eq. (A3) defined by the gen-
eralized Damköhler number and the cross-diffusion length

scale
√

4D̃ij t . Using the alternative mechanical formulation
the cross-diffusional wave speed turns out to be (Coleman
and Gurtin, 1965)

vcross =

√
C

ρ
. (7)

where ρ is the instantaneous density and C is the eigenvalue
of the material stiffness tensor also known as the acoustic ten-
sor discussed in Part 1 (Regenauer-Lieb et al., 2021). The sta-
bility criterion of the diffusion problem is fully characterized
by the diffusion matrix D̃ij with the diagonal elements D̃ii
describing the normal self-diffusion and the off-diagonal ele-
ments the cross-diffusion processes enabling coupling across
scales. For consistency with the second law, all eigenvalues
of the diffusion matrix must be real and positive, and hence
the determinant of the diffusion matrix Det(D̃ij ) > 0 as well
as the trace of the diffusion matrix must be larger than zero.
Complex eigenvalues of D̃ij result in oscillatory relaxation
of any small perturbation to the equilibrium state, even in the
absence of reaction (Vanag and Epstein, 2009).

For a given sufficiently non-linear reactive source term that
supports nucleation of excitation waves any local thermody-
namic incompatibility that leads to complex eigenvalues of
D̃ij radiates energy in oscillatory instabilities by so-called
acceleration waves (Regenauer-Lieb et al., 2021), relaxing to
the equilibrium state (Vanag and Epstein, 2009) to recover
the second law of thermodynamics at large scale. This state-
ment is at the heart of the nucleation of the cross-diffusional
wave phenomenon. We will show in the following sections
that the above-described cross-diffusion formulation (Vanag
and Epstein, 2009) can be extended to develop a generic mul-
tiphysics and multiscale THMC coupling approach to earth-
quake instabilities. This formulation implies a coupled cas-
cade of THMC feedbacks over multiple diffusional length
scales honouring the reciprocal multiscale interplay of ther-
modynamic forces and fluxes.

By extending the diagonal diffusion matrix through the
cross-diffusion coefficients in Eq. (6), a cross-diffusion wave
phenomenon is revealed as shown in Part 1 (Regenauer-Lieb
et al., 2021). For the simple case of hydro-mechanical (HM)
coupling, we have recently reported that the upscaled vol-

umetric chemical strains can result in a hydromechanically
coupled cross-diffusional pressure wave phenomenon (Hu
et al., 2020). The important element of cross-diffusion terms
for earthquake physics is their capability to link one thermo-
dynamic force with a thermodynamic flux at a different scale,
thus synchronizing the dynamics over vastly different diffu-
sional timescales and length scales. This important aspect of
earthquake physics was previously overlooked. The approach
not only explains the multifractal nature of earthquakes but
raises the possibility that dissipative waves can be detected
before earthquake instabilities. Before discussing the poten-
tial earthquake application, we summarize observations from
laboratory experiments and propose a coupled HM reaction–
cross-diffusion equation which may be used as a simplifica-
tion for the fully coupled THMC problem.

3 Laboratory and field observations of diffusion waves

In Part 1 (Regenauer-Lieb et al., 2021) we have discussed
reaction–diffusion waves from an idealized continuum me-
chanics viewpoint, and in this paper we have employed a
non-local coarse-graining approach. However, both view-
points are based on mathematically ideal worlds. For real
laboratory and field applications, the processes are often oc-
cluded to direct observations and need to be derived by data
assimilation methods.

This paper proposes that earthquakes are a THMC convo-
lution of all of instabilities that cause volumetric and shear
strains due to their different micromechanics. In the follow-
ing, we will address the three problems sequentially using
field and laboratory examples before exploring a simple ana-
lytical solution applied to earthquake physics.

3.1 Diffusion waves at mechanical scale

Oscillatory propagating deformation bands are well docu-
mented in deformation experiments of plastic materials such
as steel. Perhaps the most well-studied effect is the devel-
opment of characteristic Portevin–Le Chatelier (PLC) bands
which show rhythmic bands of volumetric strain in metals
deformed under tensile conditions. The banding is attributed
to a damped runaway effect induced by a critical (negative)
strain-rate sensitivity (Zaiser and Hähner, 1997). In PLC the
transition from smooth to oscillatory deformation is under-
stood as a critical point phenomenon, where mesoscopic fluc-
tuations manifest themselves at the macro-scale due to strain-
rate softening. This approach is similar to the spring-slider
model discussed earlier for modelling earthquakes. A recent
discussion of the PLC bands modelled by an alternative non-
local internal length gradient approach is presented in Aifan-
tis (2021).

A comprehensive review of theoretical approaches to
model the phenomenon of an oscillatory material response
of plastic materials with a serrated stress–strain response (or
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jerky flow) can also be found in Zaiser and Hähner (1997).
According to the review, models first have been developed
based on a phenomenological approach proposing that the
effective stress applied at the boundary of the deformed sam-
ple is a non-linear function of the strain rate ε̇ which can be-
come negative. In the following, we will briefly discuss the
metal deformation examples and the physical processes that
are thought to underpin this peculiar constitutive behaviour.
The physics appears to rely on reaction–diffusion processes
that in fact can be described by an excitation wave phe-
nomenon of the FKPP type (Zuev and Barannikova, 2010).
We also present observation of diffusion waves in rock ana-
logues which are perhaps more relevant to the earthquake
application.

3.1.1 Oscillatory deformation bands in plastic
deformation of materials with internal structure

The phenomenological approach where the strength weak-
ens with an increasing strain rate is ill-posed as it leads to a
runaway effect when a small local perturbation in the strain
rate grows without bounds in an ever-increasing manner. Var-
ious approaches have been proposed to address this problem.
In the context of relating the phenomenological approach to
a physics-based model, the most interesting approach is the
one by Estrin and Kubin (1995). The authors proposed to
regularize the ill-posed localized runaway strain by introduc-
ing a pseudo-diffusivity; the function that was proposed as
an extension of Orowan’s equation as

ε̇ = |b|ρmvd+D∇
2ε , (8)

where b is the Burgers vector, |b| is the norm of the Burgers
vector ρm is the dislocation density, vd is the dislocation ve-
locity, andD is a diffusivity of the strain ε. This heuristic ap-
proach was later shown to be the 1-D solution obtained from
the coarse-graining of the time-evolution gradient flow dy-
namics of dislocations which results in a fractional reaction–
diffusion equation (Monneau and Patrizi, 2012). The well-
studied jerky flow phenomenon associated with PLC band
formation is now understood as the result of initially inde-
pendent, statistically distributed non-local-scale dislocation
mills ultimately coalescing and propagating into a macro-
scopic band. The best analysed mechanism for these meso-
scopic fluctuations is dynamic strain ageing which gives rise
to an additional characteristic retardation timescale to dis-
location glide. Dynamic strain ageing operates by diffusing
atoms (solute clouds) that pin dislocations and temporarily
arrest the glide dislocation segments. Therefore, the plastic
strain rate cannot respond instantaneously to changes of the
stress, and a meso-scale diffusion length/timescale emerges
which stabilizes the slip. The key to the oscillatory behaviour
is the opposite strain-rate softening effect, where the effect of
retardation by diffusion is overcome through the increased
mobilization of additional dislocations (increasing the reac-
tion rate) aided by thermal activation, hence increasing the

disorder and thereby the average flow stress (Zaiser and Häh-
ner, 1997). A similar effect of competing reaction–diffusion
processes has been found in many other materials such as
metal alloys (Brechet and Estrin, 1996) and self-oscillating
polymer materials (Masuda et al., 2016).

In an elegant discourse about possible earthquake nu-
cleation mechanisms, Orowan (1960) postulated that earth-
quakes may indeed be triggered by the equivalent effect of
an oscillatory response of creeping rocks at depth in the crust
or mantle. Orowan (1960) drew the analogy of creep failure
of an annealed steel, where the stress oscillates between up-
per and lower yield stress forming oscillatory bands called
“Lüders” bands. Plastic materials, in general, are capable
of arresting such small-scale fluctuations when slip tends to
localize the meso-scale flow localization and strain harden-
ing ensures that the instability mechanism cannot go catas-
trophic. Orowan (1960) appealed therefore to the synchroniz-
ing effect of thermal feedback at depths in the Earth’s mantle,
where self-acceleration of creep is conceivable through an
avalanche-like increase in deformation where shear heating
occurs faster than conduction of heat away from the shear
plane, finally resulting in a localized melting event as an
earthquake instability.

While runaway melting instabilities have indeed been pos-
tulated as a possible source mechanism for extremely deep
earthquakes such as the great 1994 Bolivian earthquake
(Kanamori et al., 1998), the mechanism may be considered
another extreme end-member of earthquake mechanisms in
addition to the one proposed for ETS sequences (Poulet
et al., 2014b). Kanamori and Brodsky (2001) proposed that
there are a great number of other possible earthquakes micro-
instabilities without invoking a melting instability; however,
the critical aspect remains to identify the physics of connect-
ing small and large scales. If we consider THMC feedback
as a source mechanism for earthquakes, we conclude that the
largest-scale coupling effect is again the temperature. This
becomes obvious from inspecting Table 1 in the Appendix,
where the thermal diffusion process defines the largest dif-
fusional length scale. Thermal coupling is so efficient that
a material can be considered macroscopically homogeneous
and at thermostatic equilibrium, while at the mesoscopic
scale it still shows widespread thermal fluctuations. If we
refer again to the PLC effect as an analogy of a thermally
activated material it has been recognized that these statisti-
cally uncorrelated fluctuations may, for certain critical condi-
tions, be coordinated in the shape of a thermal wavefront that
propagates through the material (Zaiser and Hähner, 1997).
These wavefronts are typical acceleration waves illustrated in
Fig. 4 of Part 1 (Regenauer-Lieb et al., 2021). While metals
and rocks at depth are thermally activated materials, we need
to discuss acceleration waves in brittle materials, where the
thermal activation process is less obvious.
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Figure 4. Experimental set-up for crushing a granular strain-rate
weakening medium. (a) The problem is here formulated in analogy
to the Terzaghi consolidation problem, where a pore-filling fluid is
diffusing out of the compacting region and crushed grains (solids)
are replacing the collapsed pores. (b, c) The non-local mesoscale
process sampled by a wave-scale representative elementary volume
(REV). The cross-diffusion of the solid into the fluid phase leads
to an increase in density, and hence an increase in fluid pressure
through the equation of state. The reciprocal cross-diffusion of flu-
ids into the solid skeleton leads likewise to an increase in solid pres-
sure assuming that the deformation of the solid is constrained. The
macro-scale continuum-scale REV for a thermostatic formulation is
defined in Fig. 2.

3.1.2 Compression of rocks and rock analogues in the
laboratory

Crushable granular materials show a similar strain-rate
weakening behaviour to metals. This effect may lead to the
phenomenon of propagating compaction waves in crushed
snow (Barraclough et al., 2017) and puffed rice (Guillard
et al., 2015), where the propagation of compaction waves
is well documented. The generic experimental configuration
is shown in Fig. 4. Travelling compaction waves that reflect
from boundaries or release their energy by acoustic emission
at the top boundary have been recorded by optical and acous-
tic means (Guillard et al., 2015; Barraclough et al., 2017).
The puffed rice experiment is an excellent illustration of dif-
fusion waves that can be easily replicated for demonstration
purposes (Fig. 5). Experiments have also been performed by
partially soaking the puffed rice at the bottom of the exper-
imental set-up (Einav and Guillard, 2018). The interference
of the compaction in unsaturated compaction and capillary-
driven crushing of the puffed rice led to oscillatory catas-
trophic events of global compaction with acoustic emissions
perceptive as loud audible beats termed “rice-quakes” by the
authors (Einav and Guillard, 2018).

An important aspect of the interpretation of the labora-
tory experiments is that, when going from a perspective of
propagating chemical or thermal acceleration wavefronts to
a recording of the mechanical response of the medium, a
coarse-graining step is made. We are, therefore, in most

cases, not able to record the expected individual multiscale
THMC wavefronts but are more likely to record the cu-
mulative, convolved effect of the waveforms that underpin
and support the mechanical deformation that can ultimately
lead to macroscopic failure. From a mechanical perspective,
we encounter two different dynamical regimes: in the first
regime the dynamics of chemical, hydraulic, elastodynamic
mechanical, and thermal wavefronts is still important, and
the system cannot be simplified by a thermostatic assump-
tion. The other regime is where the thermostatic assumption
holds, and the problem can be described by a quasi-static
framework, where the time dependence of the system can be
neglected and the problem reduces to an ideal plastic time-
independent one, only controlled by the kinematic boundary
conditions, e.g. the position of the porous ceramic platen ap-
plying the compression in Fig. 4.

The thermomechanical theory of internal variables (Mau-
gin and Muschik, 1999) is a variance of classical plastic-
ity theory as it allows for additional time-dependent pro-
cesses describing the evolution of local thermostatic equi-
librium states through internal state variables. The introduc-
tion of additional time-dependent processes leads to a rel-
ative difference from the ideal plastic kinematic reference
frame, and the localization band can move with respect to
the static, ideal plastic solution which is fixed concerning the
kinematic boundary conditions in a self-similar way. We can
identify the two theoretical end-member cases by recording
the dependence of the velocity of the optically recorded com-
paction waves on the velocity applied to the boundary of the
experiments. If there is a positive correlation with the ve-
locity applied to the boundary, the thermostatic end-member
applies (Barraclough et al., 2017), whereas if the velocity of
the wave proves to be a material constant and independent of
the boundary velocity, the dynamic solution applies.

4 Application to earthquake physics

Theoretical approaches to the physics of earthquake insta-
bilities originally were conceived as a shear instability on
a frictional sliding surface (Brace and Byerlee, 1966). The
role of pressure on the dynamics of the slider was derived
empirically by laboratory experiments defining a rate-and-
state variable friction law (Dieterich, 1972, 1987; Ruina,
1983; Tse and Rice, 1986; Rice et al., 2001). Instabilities
through shear heating feedback were later considered to play
an important role (Ogawa, 1987; Regenauer-Lieb and Yuen,
1998; Braeck and Podladchikov, 2007). Additionally, a ther-
mally induced fluid pressurization term was found to be
an important component for accelerated creep (Vardoulakis,
2001; Rice, 2006). Another important ingredient of the earth-
quake instability was thought to be the coupling of scales,
where at least two different processes, operating at different
timescales and length scales, interact (Ohnaka, 2003). The
approach presented here summarizes these effects in the dif-
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Figure 5. Recreation of Guillard et al. (2015) experiment with puffed rice. (a) Time–space plot averaged over a horizontal cross section of
the tube showing compaction waves travelling at less than 1 mms−1 up and down the tube. The overlay shows the axial stress–strain curve,
where stress drops correspond to nucleation of new compaction bands at the bottom of the rice pack. (b) Snapshots of the compressed puffed
rice at 0 %, 8 %, 16 %, 24 %, 32 %, 40 %, 48 %, 56 %, 64 %, and 72 % axial strain (from left to right). At the termination of the experiment
the rice pack is reduced to powder.

fusion matrix D̃ij (Eq. 6) and enables upscaling via renormal-
ization group theory (Regenauer-Lieb et al., 2013b; Hana-
soge et al., 2017).

4.1 The effect of cross-diffusion

A fully populated diffusion matrix provides the opportunity
to extend the postulate of coupling different scale processes
in earthquake mechanics (Ohnaka, 2003). For the mathemat-
ical discussion we consider a poromechanical formulation
introduced earlier (Hu et al., 2020) which describes cross-
diffusion between solid and fluid particles as illustrated in
Fig. 4. Of particular interest for the earthquake problem is
whether the hydro-mechanically coupled cross-diffusion can
lead to the formation of a standing wave of significant ampli-
tude as observed in other fields (Berenstein and Beta, 2012).
In order to investigate whether cross-diffusion can lead, for
certain parameters, to a sharp concentration of wave energy
into a single short-lived spike we follow a recent generaliza-
tion of the original formulation of Hu et al. (2020), which
allowed a linear stability analysis as well as a numerical as-
sessment of the parametric space presented elsewhere (Sun
et al., 2021b). The article including the supporting numerical
code is available as a preprint on the Earth and Space Science
Open Archive (ESSOAr).

Before discussing the significance of the results for the
earthquake problems we summarize briefly the rationale for
the choice of the particular reaction–cross-diffusion equa-
tion. The generic type of reaction–cross-diffusion equa-
tion for a fully saturated hydromechanically coupled porous
medium has been introduced by Hu et al. (2020):

∂ps

∂t
=DM

∂2ps

∂x2 + dH
∂2pf

∂x2 +R1, (9a)

∂pf

∂t
= dM

∂2ps

∂x2 +DH
∂2pf

∂x2 +R2, (9b)

where DH and DM are the solid and fluid pressure self-
diffusion coefficients and dH and dM are the correspond-
ing cross-diffusion coefficients. Following the discussion on
non-locality in the diffusion explained in the introduction
we also acknowledge a non-local coupling of the reaction
as shown in the inset in Fig. 4. The specific source term for
fluid pressure is assumed to be a simple linear combination of
the decomposing solid and the fluid pressure production rates
R2 = a21ps + a22pf , with a21 and a22 the respective rate
constants. In geomechanical laboratory experiments the solid
matrix is known to respond to external forces by a non-linear
reaction commonly expressed in a power law which serves as
a source term for generating excitation self-diffusion waves
in the characteristic earthquake example discussed earlier
(Poulet et al., 2014b). Both chemical and mechanical reac-
tion source terms are dissipative kinetic processes, and our
approach can lead to the same laboratory-derived results. The
difference is that the laboratory laws can strictly only be ex-
trapolated for the laboratory conditions, while the physics-
based approach is more generic.

In order to generalize the approach we expand the pres-
sure reaction rateR1 in a power series truncated at third-order
R1 = a11ps+a12pf+a13p

2
s+a14p

3
s . Third- and higher-order

reactions were found to be necessary to sustain excitation
waves. We introduce following dimensionless parameters:
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t̃ = ε̇0t, p̃f = pf /p
′

ref, p̃s =
ps

p′ref
, x̃ =

x

l0
,

D̃M =
DM

l0
2ε̇0

, d̃H =
dH

l0
2ε̇0

, ã11 =
a11

ε̇0
,

ã12 =
a12

ε̇0
, ã13 =

a12p
′

ref
ε̇0

, ã14 =
a12p

′

ref
2

ε̇0
,

d̃M =
dM

l0
2ε̇0

, D̃H =
DH

l0
2ε̇0

, ã21 =
a21

ε̇0
, ã22 =

a22

ε̇0
,

(10)

where ε̇0 denotes the reference strain rate, p′ref the reference
stress and l0 the reference length. As we use the Perzyna
overstress formulation (Perzyna, 1966) the reference strain
rate is the background strain rate post yield, the reference
stress the yield stress and the reference length determines the
size of the material that has yielded. The dimensionless equa-
tion then becomes

∂p̃s

∂t̃
= D̃M

∂2p̃s

∂x̃2 + d̃H
∂2p̃f

∂x̃2

+ ã11p̃s + ã12p̃f + ã13p̃
2
s + ã14p̃

3
s , (11a)

∂p̃f

∂t̃
= d̃M

∂2p̃s

∂x̃2 + D̃H
∂2p̃f

∂x̃2 + ã21p̃s + ã22p̃f . (11b)

4.1.1 Three different fundamental wave solutions and
the long-wavelength cross-diffusion limit

Depending on the parameters chosen the solution space pre-
sented in Sun et al. (2021b) recovers three fundamentally dif-
ferent types of excitation waves which are Turing patterns,
Hopf bifurcations, and quasi-soliton waves.

i. Turing patterns appear because around the bifurcation
point in the reaction–self-diffusion system, linearly un-
stable eigenfunctions exist that grow exponentially with
time. While analytical solutions can be obtained us-
ing the Weierstrass functions the numerical solution is
traditionally difficult. To regularize the problem, finely
tuned non-linear terms need to be introduced in the
reaction–diffusion equation (such as in the non-linear
Schrödinger equation discussed later) or, more conve-
niently, as is done in our approach (Sun et al., 2021b),
linear cross-diffusion-like terms need to be considered
in a coupled system of equations. THMC Turing pat-
terns are indeed the most obvious patterns that have
been postulated in the literature on wave-like Earth in-
stabilities (Ball, 2012). The framework developed here
offers an ideal tool for inversion of the effective self-
diffusion THMC coefficients and their implicit reac-
tion rates. Interpreting geological structures in terms
of these process parameters may allow identification of
principal processes underpinning the earthquake mech-
anism. A first attempt has been made to derive the

self-diffusion coefficients of the Turing-style structures
shown in Fig. 3 of Part 1 (Regenauer-Lieb et al., 2021)
from field observation, but the use of the 1-D approach
has been unsuccessful so far (Elphick et al., 2021).

In terms of earthquake physics Turing patterns presum-
ably only play a minor role as they are slow deforma-
tion features that require long geological times to form
a deformation pattern that is stationary in space and
time. Due to their longevity and periodicity they cannot
focus wave energy into a sharp single transient event.
Their role in earthquake instabilities is to create hetero-
geneities that may be picked up by subsequent failure
mechanisms.

ii. For the suggested reaction–cross-diffusion in Eq. (11)
the broadest parameter space is covered by waves hav-
ing discrete frequency content with logarithmic decay-
ing amplitudes for higher frequencies (Hopf bifurca-
tions). In our simulations (Sun et al., 2021b) these
waves nucleate from small perturbations on the (elastic-
plastic) model boundary and propagate dynamically to
the opposite boundary at distance l0, where their energy
is absorbed. They can obtain a stable orbit (supercrit-
ical Hopf) leading to cumulative damage on the oppo-
site boundary including logarithmically spaced (i.e. nar-
rowing) compaction bands towards the opposite bound-
ary. Hopf bifurcations are perhaps the most prominently
discussed candidates for earthquake source mechanism
in, for example, spring-slider models (Gu et al., 1984).
Our results suggest that supercritical Hopf bifurcations
are likely to prepare a given internal structure for fail-
ure. Such a boundary may be a pre-existing fault which
would correspond to the opposite boundary separat-
ing an elastic domain from a domain yielding un-
der the background strain rate. In the context of the
above-discussed laboratory experiments Hopf bifurca-
tions may also explain the acoustic bursts reported in
the puffed rice compression experiment (Guillard et al.,
2015). However, Hopf bifurcations themselves do not
have the capacity to enhance the amplitude of a given
excitation wave over the initial excitation amplitude as
they do not have the capacity to sample energy from the
environment. The only way to amplify the magnitude of
a Hopf wave is to have two waves collide. In this case
the peak magnitude is simply the sum of the two waves.

iii. The third class of waves that is recovered from Eq. (11)
is the quasi-soliton solution that has been introduced in
Part 1 (Regenauer-Lieb et al., 2021). It is encountered
for very small fluid (or crushed rock) production rates
which should be observed under slow loading condi-
tions such as geodynamic loads. The quasi-soliton wave
reflects from boundaries often changing and reforming
after reflection on boundaries or collision with other
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waves. The quasi-soliton wave has been identified as a
new class of waves (Tsyganov et al., 2007).

For the classification of the quasi-soliton solution of
Eq. (11) we follow a systematic study by Tsyganov and Bik-
tashev (2014), who used the analogous FitzHugh–Nagumo
equation to study the solution space. A typical feature of
quasi-solitons is that wave-packet solutions emerge when
the wave energy is concentrated around a finite wavenum-
ber. When the dispersion is weak, the envelope travels with
a uniform group velocity. Linear cross-diffusion can create
non-linear dispersion, where – depending on the coefficients
– three different wave types have been classified: (1) fixed-
shape propagating waves, (2) envelope waves, (3a) multi-
envelope waves, and (3b) intermediate regimes appearing
as multi-envelope waves propagating as fixed shape most
of the time but undergoing restructuring from time to time
(Tsyganov and Biktashev, 2014).

The collisional behaviour of these classes of cross-
diffusional waves is complicated. When a quasi-soliton wave
hits an interface (including another quasi-soliton wave) the
amplitude of the quasi-soliton changes, and there is a tem-
porary diminution of the amplitude or in extreme cases an
annihilation. In most cases, they recover their original form
gradually. This is another feature that is different from true
solitons which do not change on impact. In two-dimensional
systems, additional complexities arise as they can penetrate,
break apart on collision, or reflect into different directions
(Tsyganov and Biktashev, 2014). Zakharov et al. (2004)
compare quasi-solitons with unstable particles in nuclear
physics. This describes their behaviour on collision but does
not capture their capability to coordinate wave energy into a
standing rogue wave (Regenauer-Lieb et al., 2021). Before
discussing the formation of a rogue wave it is useful to have
a closer look at the cross-diffusion waveforms.

4.1.2 Quasi-soliton waveforms, wavenumber, and
short-wavelength amplitude magnification

THMC quasi-soliton waves discussed in this work stem from
multiscale fluctuations as possible wave sources with the
superposition of multiple waves in a wide frequency spec-
trum. The convolution of these waves results in interest-
ing dispersion patterns that bear similar characteristics to
quasi-solitons encountered in optical systems, where chro-
matic dispersion is strong, leading to anomalous disper-
sion patterns that, unlike solitons, come in discrete portions
(Paschotta, 2008). Quasi-solitons encountered in photonics
have two oscillating tails, one going to the left with a dif-
ferent wavenumber to the one going to the right. If the am-
plitudes of the tails are small, quasi-solitons can be treated
as slowly decaying real solitons which lose their energy by
radiation to form the tail (Zakharov et al., 2004).

Of specific interest for the earthquake problem is the as-
pect of the fate of the accelerations carried by the waves as

discussed in Part 1 (Regenauer-Lieb et al., 2021) for cases
where the wave collides and collapses after the collision. An-
other important aspect is the cross-scale coupling of the full
spectrum of diffusion waves which may be seen as an energy
cascade from extremely short-wavelength chemical quasi-
soliton waves to the longest wavelength which in most cases
is modulated by the thermal and mechanical diffusion length
scale as shown in Table A1 of the Appendix. The spectral
content of THMC wave interactions is extremely rich, and
we have emphasized in Part 1 (Regenauer-Lieb et al., 2021)
that it is perhaps best compared to a convolution sharpening
filter for cases of instabilities, where wave energy focusses
on specific locations.

The wavenumbers of the quasi-soliton waves are con-
trolled by the competition of the diffusion processes de-
termining the diffusion length and number of possible os-
cillations per unit length. The 1-D linear stability analysis
for just two coupled reaction–diffusion equations discussed
in Sun et al. (2021b) illustrates the role of the wavelength
(or its inverse the wavenumber) for the nucleation of quasi-
soliton waves. The linear stability analysis (Sun et al., 2021b)
shows that cross-diffusional waves nucleate if d̃M and d̃H are
nonzero, of opposite sign, and sufficiently large to overcome
the self-diffusion processes in the first term, which is always
positive.

The instability criterion also suggests a critical lower limit
kmin (longest wavelength) for which no quasi-soliton wave
can nucleate as the self-diffusion term becomes dominant.
This minimum wavenumber (longest wavelength) can be
constrained further by the system size. We argue that the
longest wavelength is a fraction of the system size, defined by
long-wavelength solution (Regenauer-Lieb et al., 2013a; Ve-
veakis and Regenauer-Lieb, 2015), where the cross-diffusion
coefficients are adiabatically eliminated. This is the Turing-
style long-wave soliton solution that turns cross-diffusional
waves into a standing wave Korteweg–de Vries-type cnoidal
solution in normal resonance mode.

For investigating the opposite scenario where shorter
wavelength cross-diffusional waves might cascade to a small
dispersion limit of a coordinated short timescale instability
around a dominant small wavelength with a maximum am-
plification factor we look at an idealized solution where we
assume that there is no self-diffusion and the Eq. (11) is only
controlled by cross-diffusion. For further simplification we
normalize both cross-diffusion coefficients to unity. We also
use the compact form of the Kramers–Kronig relationship
and test the solution by a perturbation new complex wave
function ψ = p̃s − ip̃f . In summary we investigate follow-
ing parameters:

ψ = p̃s − ip̃f , D̃M = D̃H = 0, d̃H =−d̃M = 1,

R̃1 = p̃f (p̃s)
2
+
(
p̃f
)3
, R̃2 =−(p̃s)

3
− p̃s

(
p̃f
)2
. (12)
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Figure 6. Numerical calculation of the Peregrine soliton using the approach of Yang (2010) and Ward et al. (2019). The solution is an extreme
end-member short-wavelength and short-timescale compression of wave energy |ψ |2. In the context of the selected parameters the soliton
is understood as a fluid pressure spike likely to cause unstable slip on a pre-existing (near-critically stressed) fault plane that triggers the
ultimate (shear) seismic moment release.

Setting self-diffusion to zero implies that non-local cross-
diffusion processes are happening very fast and trigger large
internal fluxes between solid and fluid. Additionally, the
cross-coupled fluxes are maximized, in a normative sense
by setting the cross-diffusion coefficients to unity and oppo-
site sign. In other words we consider the extreme condition
where the ratio of cross-diffusion over self-diffusion coeffi-
cients tends to infinity. For these parameters our reaction–
cross-diffusion equation becomes the integrable non-linear
Schrödinger equation.

i
∂ψ

∂t
+∇

2ψ +ψ |ψ |2 = 0 (13)

The cross-diffusion equation then is analytically tractable,
and as the solution is relevant for nucleation of earthquakes
we obtain the Peregrine soliton with a simple solution for the
lowest order given by Peregrine (1983) as

ψ(x, t)=

[
1−

4(1+ 2it)
1+ 4xi2+ 4t2

]
eit . (14)

This classical rogue-wave soliton solution features a self-
focussing wave that appears from low background oscilla-
tions for t < 0, suddenly reaches a peak at x = 0 and t = 0,
and vanishes quickly into the background noise. The criti-
cality condition for the Peregrine soliton requires the wave-
length of the background perturbation to be very large, which
has been used as an argument for forecasting Peregrine
solitons simply by the absence or presence of such long-
wavelength perturbations in measurement of wave spectra
(Shrira and Geogjaev, 2010). This criticality condition also

shows that the Peregrine soliton achieves maximum spatial
and temporal compression of wave energy by sampling en-
ergy from the far field. Its peak intensity is ∼ 9 times the
background value. A numerical simulation of the wave is
shown in Fig. 6. The Peregrine soliton solution is the simplest
rogue wave that stems from the physics of cross-diffusion.

The Peregrine soliton is by no means the only rogue-wave
phenomenon that stems from the non-local cross-diffusion
terms in the non-linear Schrödinger equation. A higher-order
cascade mechanism for coupling 7 orders of the length scale
of quasi-solitary waves has for instance been discovered in
the analogous problem of rogue waves in optical fibres (Eber-
hard et al., 2017). This resonant-like scattering mode has
been argued to arise through inelastic collision of cross-
diffusional waves colliding with other or reflected cross-
diffusional waves. Eberhard et al. (2017) numerically in-
vestigated higher non-linear terms in the Schrödinger equa-
tion and found a similar criticality condition to for the sim-
ple Peregrine rogue wave. In the numerical experiments the
emergence of the rogue wave is always preceded by a period
of reduced short-wavelength amplitude described as a “calm
before the storm”. Figure 6 is available as a video in the Sup-
plement.

Since the theoretical discovery of the rogue-wave phe-
nomenon in optics and hydrodynamics there has now been
ample proof of their existence in controlled experiments.
Solli et al. (2007) has provided high-resolution measure-
ments of optical rogue waves with picosecond resolution
and Dudley et al. (2019) have provided a rigorous compar-
ison and review of rogue waves in fibre optics and rogue
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waves in hydrodynamic tank experiments. Although the me-
dia that the waves are travelling through are completely dif-
ferent the basic phenomenon is identical. We propose here
that rogue waves stemming from cross-diffusion terms and
quasi-soliton collisions in hydromechanically coupled me-
dia of the solid Earth provide a source mechanism for earth-
quakes.

5 Discussion and conclusions

We have introduced a new approach to THMC instabilities
using the concept of cross-diffusion. To simplify the appli-
cation, we have so far only focussed on dissipative cross-
diffusional P waves. We may now discuss the inclusion of
cross-diffusional S waves and speculate about the interac-
tion with the P waves. We have shown in Part 1 (Regenauer-
Lieb et al., 2021) that the wave equations can be decomposed
by using the Helmholtz decomposition of the equation of
motion, into P (compressional) and S (shear) quasi-soliton
waves. The analysis suggests that cross-diffusion provides a
crucial link to allow cross-scale coupling of the multiphysics
processes potentially leading to earthquake instabilities. For
critical cross-diffusion coefficients and associated reaction
terms, a bi-directional energy cascade of acceleration cross-
diffusion P waves, from small-scale thermo-chemical (TC)
and chemo-mechanical (CM) dissipative waves to meso-
scale hydro-mechanical (HM) dissipative waves, can be trig-
gered by a geodynamic driving force. This in turn may nu-
cleate shear-quasi-soliton waves in the form of a thermo-
mechanical (TM) shear-wave instability.

We have also presented a derivation of the Peregrine soli-
ton solution as the extreme short-wavelength standing wave
end-member of the cross-diffusion approach. The Peregrine
soliton has been used to explain the iconic Draupner wave
example recorded on 1 January 1995 by a downward looking
laser beam on an oil platform in the North Sea. The excep-
tional nature of these rogue waves bears many similarities
with earthquake events in terms of predictability. A hindcast
analysis of the Draupner wave came to the conclusion that
rogue waves are not predictable with current statistical means
(Cavaleri et al., 2016). Records at a specific location are of-
ten misleading, and the probability of detecting a rogue wave
must be considered both in space and time; they are thought
to be accepted as part of the reality of the ocean at a given
sea state (Cavaleri et al., 2016). Recent work refutes this con-
clusion and raises hopes that a statistical analysis is possible
based on large deviation theory combined with the simplified
non-linear Schrödinger equation solution of the quasi-soliton
waves using random initial data (Dematteis et al., 2019). This
may be useful for earthquake research but it will take some
time, acknowledging that it took nearly 15 years of research
on the Draupner wave to come to this point.

https://doi.org/10.5194/se-12-1829-2021 Solid Earth, 12, 1829–1849, 2021



1844 K. Regenauer-Lieb et al.: Cross-diffusion waves

Appendix A: Reaction-diffusion length scale and
timescale

The yardstick used to measure the length scales of diffu-
sion fronts in reaction–diffusion equations is the diffusional
length scale. Any scale that is significantly larger than the
diffusional length scale is considered to be unaffected by the
diffusion front for a given diffusion time td. We will later
on reinterpret the diffusion length as an uncertainty measure.
The characteristic diffusion length scale for a 1-D problem is

Ld =
√

2ζi td. (A1)

The diffusion length scale Ld allows definition of a normal-
ized Gaussian scale space ensuring that the area under the
Gaussian distribution always remains the same. The Gaus-
sian probability density function (here called a Gaussian
wavelet) is often used in probability theory, where the dif-
fusion length is related to the standard deviation, its square
to the variance, and the function centroid to the mean.

The simple diffusion process without reaction leads to a
decaying and broadening diffusion front of an initial pertur-
bation. When considering an active source term, the solu-
tion turns into a propagating wavefront which was first dis-
covered in 1906 by Robert Luther. An English translation
of the original article appeared in the Journal of Chemical
Education (Luther, 1987). The same phenomenon was re-
discovered 30 years later and is now known as Fisher or
Fisher–Kolmogorov–Petrovsky–Piskunov (FKPP) equation
(Kolmogorov et al., 1937). Fisher originally discussed the
reaction–diffusion equation to calculate the propagation of
a mutant virus in an infinite domain (Fisher, 1937).

The addition of a reactive non-linear source term (e.g.
Ri = kiCi(1−Ci) for the Fisher–Kolmogorov equation) into
the diffusion equation leads to the interesting phenomenon
of the generation of a self-oscillatory excitation wave, where
after Fisher’s work on the topic progress was mainly made
in the Russian literature, triggered by the seminal work of
Kolmogorov et al. (1937) discussed in Fig. A1.

In Russian literature, the term “autowave” was intro-
duced (Ostrovskiı̆, 2015; Molotkov and Vakulenko, 1993;
Zuev and Barannikova, 2010). The self-excitation wave con-
stitutes a fundamental class of waves encountered in all
reaction–diffusion systems in physics, biology, and chem-
istry (Vasil’ev, 1979). The principal difference to classi-
cal wave equations that are based on hyperbolic differen-
tial equations is that the autowave phenomenon arises from a
non-linear source term in parabolic equations.

The reaction–diffusion timescales of a single reaction–
diffusion equation can be expressed by a generalization of
the Damköhler number for chemical reaction–diffusion pro-
cesses to all THMC couplings. The Damköhler number de-
scribes the ratio of the diffusion over the reaction time or the
equivalent ratio of the reaction rate over the considered dif-
fusion rate

Figure A1. Illustration of the propagating wavefront of the Fisher–
Kolmogorov reaction–diffusion equation, which has a non-linear
source term Ri = kiCi(1−Ci). Kolmogorov et al. (1937) showed
that any initial concentration vanishes for large x and evolves to a
travelling wave solution with a minimal velocity v =

√
2ζiki . The

reaction–diffusion exhibits a bistable equilibrium. One stable equi-
librium is achieved when the initial concentration is below the ac-
tivation of a wave and the system is resting and the other is the
travelling-wave solution with a minimal velocity v. We show here
the non-dimensional solution for the example of a tanh initial condi-
tion (black curve) which quickly converges to a travelling waveform
with a non-dimensional speed of 2. Various solution techniques ex-
ist. A convenient method is to turn the partial differential equation
(Eq. 2) into an ordinary differential equation by using Chebyshev
polynomials (Towers and Jovanoski, 2008).

Dai = Ri td =
RiLd

2

2ζi
. (A2)

This ratio thus considers an additional rate of the chemical
reaction. This is illustrated here only for an infinite autocat-
alytic source term in the reaction–diffusion system (Fig. A1).
For a finite autocatalytic reaction the reactive source term
has a growth function which is sigmoid, also called a logistic
function. This means that the reactant initially grows expo-
nentially, similar to the infinite source, followed by linear re-
actant growth and a final zero growth branch. These general
solutions imply different shapes of the self-supporting prop-
agating wave and, depending on the value of the diffusivities,
also a finite lifetime of the wave.

This geologically more relevant situation is described in
Molotkov and Vakulenko (1993). The authors describe gen-
eralized reaction–diffusion systems and find that the wave
behaviour depends on only three parameters. For small wave-
front curvature the autowave is described by the two param-
eters of the infinite source term solution discussed above,
while for the more general case the normal velocity of the
front may contain the front curvature as an additional param-
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Table A1. Typical diffusion length scales for geological THMC processes (Regenauer-Lieb et al., 2013a). Equation (A1) is used to calculate
length scales for a given reaction time. For thermal and chemical processes a geodynamic timescale of 1012 s is chosen. Geodynamic
processes are assumed to cause fluid flow at pore level in less than 100 s. Note that the mechanical diffusion length scale can range over
all timescales and length scales. As an example, the visco-elastic diffusion length scale for elasto-dynamic earthquake events is very short.
However, prior to the catastrophic event stress diffusion can range over all scales and can couple all processes through elasto-visco-plastic
creep processes.

Self-diffusion Diffusivity [m2 s−1] Process time [s] Diffusion length [m]

ζT 10−6 1012 103

ζH 10−5–10−1 102 6× 10−2–6× 100

ζM all all all
ζC 10−19–10−15 1012 6× 10−4–6× 10−2

eter. The additional dependence of the wave function on the
curvature of the concentration field arises because of the fact
that ∂Ci

∂t
is proportional to the curvature of the wavefront.

For regions of the wavefront where the curvature is nega-
tive the concentration must decrease at a rate proportional to
the magnitude of the curvature. Conversely, the concentra-
tion must increase where the wavefront curvature is positive.

Summarizing the above findings, we can now character-
ize the reaction–diffusion thermodynamic system by five key
features: (i) a bistable or multistable (for several reactions)
region has a stable stationary mode and a mode for the nu-
cleation of propagating autowaves above a critical activa-
tion threshold. (ii) In the activated state, the wavefront sep-
arates two regions, a local region characterized by the par-
ticular THMC diffusional length scale Ld affected by the re-
actions Ri , and a large region at > Ld which is outside the
reaction–diffusion wave. (iii) For long timescales, the wave-
field is governed by characteristic self-oscillatory motions
which for bistable systems are described by just three pa-
rameters. For multistable systems chaotic oscillations are ex-
pected (Molotkov and Vakulenko, 1993). For the analysis of
this complicated system we will propose to use perturbation
theory and illustrate the approach through some basic con-
cepts of signal processing. In the bistable system the Fisher–
Kolmogorov wave is a self-propagation dissipative wave at a
characteristic wave speed whose lower limit can be quanti-
fied by the square root of the Damköhler number times the
diffusivity normalized by the characteristic diffusion length
scale Ld. (iv) The propagating wave exponentially scatters
information about its initial condition, and the wavefield only
carries information about the dissipative properties into the
far-field; this is an important differentiation from waves in
the conservative system (e.g. elastic waves), where the wave
at a long-distance still carries information about its initial
conditions. (v) The wave speed thus becomes a fundamen-
tal material constant defined by the rates of the dissipative
THMC processes as

vi = 2
ζ

Ld

√
Dai . (A3)

As the spreading wavefronts are self-supporting and can
propagate upwards in scale, we propose that this mate-
rial velocity not only applies to the above-discussed chemi-
cal reaction–diffusion equations but to all reaction–diffusion
equations of the THMC-coupled system. In this proposition,
the propagating multiscale and multiphysics waves provide
the capacity to link the different THMC length scales and
could explain the multifractal nature of earthquakes. The ap-
proach allows a significant simplification of the earthquake
physics problem as the exponential rate of approaching the
Kolmogorov limit of a self-oscillating wavefront shown in
Fig. A1 for a given scale allows a characterization of the im-
portant physics in terms of the wave velocity. With the au-
towave approach, one can turn any non-linear perturbation of
the local source into a linearly propagating waveform only
governed by the dissipative material properties. Autowaves
will by themselves recover a characteristic wavefield dictated
by the reaction–diffusion rate constants.

This characteristic behaviour is used, for instance, in
medicine, where autowaves are encountered in many fields.
The electrical nerve impulses that drive a regular heart
beat are an example (Antonioletti et al., 2017). The au-
thors describe how the characteristic recovery of the au-
towave waveform after a random perturbation can be used,
for instance, for defibrillation strategies (a small electri-
cal stimulus applied through a pacemaker) for treatment of
life-threatening heart arrhythmia. In this sense, earthquake
physics might profit from an understanding of the partial
differential equations developed in mathematical biology,
epidemiology (wave-like propagation of viruses), and other
biomedical applications for which numerical open-source
tools are available. One such tool is the “heart beat box” (An-
tonioletti et al., 2017) which uses a mathematical formulation
of the human heart in terms of a coupled electro-mechanical
reaction–diffusion equations similar to the coupled reaction–
diffusion equations discussed above.
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Code availability. The code used for this study is available at
https://doi.org/10.17632/9mkcsbk78x.2 (Sun et al., 2021a).

Data availability. A linear stability analysis and a discussion of the
solution domain are available on the open archive in a preprint
under consideration at https://doi.org/10.1002/essoar.10507265.1
(Sun et al., 2021b).

Video supplement. A video animation of the Peregrine soliton solu-
tion is available on https://tinyurl.com/sz783szy (Sun and Manman,
2021), showing the rogue wave phenomenon that seems to appear as
background noise. Note that before emergence of the soliton there
is a slight reduction of background oscillations (calm before the
storm).
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