
Solid Earth, 12, 2235–2254, 2021
https://doi.org/10.5194/se-12-2235-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Investigating the effects of intersection flow localization in
equivalent-continuum-based upscaling of flow
in discrete fracture networks
Maximilian O. Kottwitz1,3, Anton A. Popov1,3, Steffen Abe2, and Boris J. P. Kaus1,3

1Johannes Gutenberg University, Institute of Geosciences, Johann-Joachim-Becher-Weg 21, 55128 Mainz, Germany
2Igem, Institute for Geothermal Resource Management, Berlinstr. 107a, 55411 Bingen, Germany
3Johannes Gutenberg University, M3ODEL – Mainz Institute of Multiscale Modeling,
Staudingerweg 7, 55128 Mainz, Germany

Correspondence: Maxmilian O. Kottwitz (mkottwi@uni-mainz.de)

Received: 7 December 2020 – Discussion started: 8 January 2021
Revised: 8 June 2021 – Accepted: 16 August 2021 – Published: 5 October 2021

Abstract. Predicting effective permeabilities of fractured
rock masses is a crucial component of reservoir modeling.
Its often realized with the discrete fracture network (DFN)
method, whereby single-phase incompressible fluid flow is
modeled in discrete representations of individual fractures
in a network. Depending on the overall number of fractures,
this can result in high computational costs. Equivalent con-
tinuum models (ECMs) provide an alternative approach by
subdividing the fracture network into a grid of continuous
medium cells, over which hydraulic properties are averaged
for fluid flow simulations. While continuum methods have
the advantage of lower computational costs and the possi-
bility of including matrix properties, choosing the right cell
size to discretize the fracture network into an ECM is cru-
cial to provide accurate flow results and conserve anisotropic
flow properties. Whereas several techniques exist to map a
fracture network onto a grid of continuum cells, the com-
plexity related to flow in fracture intersections is often ig-
nored. Here, numerical simulations of Stokes flow in simple
fracture intersections are utilized to analyze their effect on
permeability. It is demonstrated that intersection lineaments
oriented parallel to the principal direction of flow increase
permeability in a process we term intersection flow localiza-
tion (IFL). We propose a new method to generate ECMs that
includes this effect with a directional pipe flow parameteriza-
tion: the fracture-and-pipe model. Our approach is compared
against an ECM method that does not take IFL into account
by performing ECM-based upscaling with a massively paral-
lelized Darcy flow solver capable of representing permeabil-

ity anisotropy for individual grid cells. While IFL results in
an increase in permeability at the local scale of the ECM cell
(fracture scale), its effects on network-scale flow are minor.
We investigated the effects of IFL for test cases with orthog-
onal fracture formations for various scales, fracture lengths,
hydraulic apertures, and fracture densities. Only for global
fracture porosities above 30% does IFL start to increase the
systems permeability. For lower fracture densities, the effects
of IFL are smeared out in the upscaling process. However,
we noticed a strong dependency of ECM-based upscaling on
its grid resolution. Resolution tests suggests that, as long as
the cell size is smaller than the minimal fracture length and
larger than the maximal hydraulic aperture of the considered
fracture network, the resulting effective permeabilities and
anisotropies are resolution-independent. Within that range,
ECMs are applicable to upscale flow in fracture networks.

1 Introduction

Discontinuities in rocks provide major pathways for subsur-
face fluid migration. Thus, fractured reservoirs are frequent
targets for oil, gas, or water production, geothermal energy
recovery, and CO2 sequestration. In addition, the safety of
nuclear waste disposal and subsurface contaminant transport
crucially depends on the presence of fractures. Characteriz-
ing natural fracture networks across scales and modeling the
fluid flow therein to predict their effective permeabilities has
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thus been a long-standing topic of research (e.g., Long et al.,
1982; Dershowitz and Einstein, 1988; Cacas et al., 1990;
Neuman, 2005; de Dreuzy et al., 2012).

Numerical modeling of fluid flow is most accurately based
on the Navier–Stokes equations (Bear, 1972). For a single
phase of incompressible and isoviscous fluid in an isother-
mal system, they simplify to the Stokes equations if laminar
flow conditions are considered (i.e., Reynolds numbers be-
low 1–10). Assuming an impermeable rock matrix, one can
solve for the velocity distribution resulting from prescribed
pressure boundary conditions, allowing for the determina-
tion of the rock effective permeability utilizing Darcy’s law
for flow through porous media (e.g., Andrä et al., 2013b;
Osorno et al., 2015; Eichheimer et al., 2019, 2020; Kot-
twitz et al., 2020). Those so-called direct flow modeling ap-
proaches crucially rely on a digital representation of a rock
that separates pore space from the matrix, which results from
high-resolution X-ray computed tomographies (Andrä et al.,
2013a; Cnudde and Boone, 2013). However, they are lim-
ited in maximum scannable size and respective trade-off
to numerical resolution, making them applicable to small
scales only (nanometers to a couple of centimeters at most).
At larger scales (above a couple of centimeters), so-called
continuum flow approaches serve to model fluid flow, usu-
ally based on the concepts for flow through porous media
proposed by Darcy (Darcy, 1856). Instead of a representa-
tion of the medium’s pore space, they require an initial hy-
draulic representation of the medium. This is given by pre-
scribed effective permeabilities for certain control volumes
within the medium, which upscale hydraulic properties from
smaller scales to observation scales. Thus, the key of this
so-called upscaling problem (e.g., Zhou et al., 2010; Hauge
et al., 2012; Lie, 2019) is to adequately represent the rock
structure with an appropriate model of effective permeabil-
ities, which for fractured rock masses is often cumbersome
due to their structural heterogeneity (Dershowitz and Ein-
stein, 1988; Odling et al., 1999). The main problem is that
acquiring detailed natural fracture data in 3D is intricate,
as seismic imaging techniques suffer from resolution limits
(Cartwright and Huuse, 2005; Malehmir et al., 2017), pre-
venting a multi-scale structural assessment of individual fea-
tures in fracture formations. Hence, outcrop (2D) and bore-
hole (1D) studies are the only possibilities to acquire detailed
natural fracture data, despite their reduced dimensionality
(Lei et al., 2017), and acquiring deterministic knowledge of
all individual structures in a fracture formation is impossi-
ble. Due to this, the discrete fracture network (DFN) method
has been extensively used as a conceptual framework to pro-
vide statistically based approximations of real fracture net-
works for decades (Long et al., 1982; Cacas et al., 1990;
Bogdanov et al., 2003; Darcel et al., 2003; Xu and Dowd,
2010; Davy et al., 2013; Maillot et al., 2016). In this ap-
proach, each fracture in a given network is represented by
a reduced-order object (lines in 2D and disks or rectangles in
3D) with a prescribed location, size, and orientation. Natu-

rally measured structural properties like size and orientation
distributions (Odling et al., 1999; Healy et al., 2017) as well
as fracture density and spacing (Ortega et al., 2006) serve as
a quantitative basis to prescribe their geometrical properties
(e.g., Hyman et al., 2015; Alghalandis, 2017). The hydraulic
response to pressure changes in each individual fracture is
then parameterized with the cubic law (Snow, 1969; With-
erspoon et al., 1980), relating the fracture’s effective perme-
ability to its aperture. In reality, surface roughness, fracture
closure, and fluid–rock interactions (e.g., erosion or crys-
tal growth) cause deviations from the parallel-plate assump-
tion (Brown, 1995; Oron and Berkowitz, 1998; Méheust and
Schmittbuhl, 2000). Semi-empirical functions derived from
numerical simulations in rough-walled fractures with quan-
tified statistics of the aperture field (e.g., Patir and Cheng,
1978; Brown, 1987; Renshaw, 1995; Zimmerman and Bod-
varsson, 1996; Mourzenko et al., 2018) serve as corrections
to the cubic law if the fracture’s internal correlation length
scale is significantly smaller than the size of the consid-
ered fracture (e.g., Méheust and Schmittbuhl, 2003; Kottwitz
et al., 2020).

A large number of numerical methods to compute effec-
tive permeabilities of fractured media have been developed
(see reviews of Jing, 2003; Berre et al., 2019), all relying on
(modified) cubic-law assumptions. Improved discretization
techniques with individual fracture treatment (DFN method),
inclusion of matrix properties in multi-dimensional meshes
(discrete fracture and matrix – DFM – method), and multi-
continuum methods come at the cost of high computational
expenses. Discretizing the fractured media as equivalent
single-continuum blocks significantly reduces the computa-
tional effort at comparable numerical accuracy (Hadgu et al.,
2017).

According to Long et al. (1982) and Oda (1985), fractured
rocks behave similarly to porous media and can be repre-
sented by a positive definite permeability tensor (Chen et al.,
1999) as long as the considered system behaves like a rep-
resentative elementary volume (REV) (Bear, 1972); i.e., its
effective properties (permeability or porosity for example)
are more or less homogenous at the reference scale of the
system. Due to the multi-scale character of fracture systems
(e.g., Bonnet et al., 2001; Davy et al., 2006), determining the
required homogenization scale is difficult, as distinct larger
features may dominate overall flow. Thus, a discrete repre-
sentation of all fractures in a network given by the DFN
method is essential to adequately capture that multi-scale
character. However, La Pointe et al. (1995), Jackson et al.
(2000), Svensson (2001), Leung et al. (2012), and Hadgu
et al. (2017), among others, have shown that representing
a DFN with a grid of equivalent continuum blocks of sizes
lower than the REV yields similar flow results, if resolved
sufficiently, and thus reproduces the overall flow behavior
of the DFN method. This highlights the fact that contin-
uum methods for flow modeling in fractured rocks are not
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restricted to REV scales and can thus be used equivalently to
the DFN method.

Several techniques to generate equivalent continuum mod-
els (ECMs) of DFNs have been developed in 2D (Reeves
et al., 2008; Botros et al., 2008; Rutqvist et al., 2013; Chen
et al., 2015) and 3D (Hadgu et al., 2017; Sweeney et al.,
2020), whereby the so-called Oda method (see Oda, 1985)
is used to formulate permeability tensors of grid cells that
intersect fractures. The permeability tensor is aligned with
the orientation of the intersecting fracture, and the perme-
abilities of the individual fractures are summed up if multi-
ple fractures intersect one cell, yielding a positive definite,
fully anisotropic tensor (e.g., Chen et al., 1999). The ground-
water flow equations for porous media (Bear, 1972), i.e.,
Darcy’s law (Darcy, 1856), are then used to simulate lami-
nar, steady-state, single-phase flow to compute effective per-
meabilities of the medium. A current issue in commonly used
3D flow solvers, such as PFLOTRAN (Lichtner et al., 2015),
is a lack of a fully anisotropic permeability representation at
the local cell level. So-called staircase patterns are the direct
consequence of these simplifications, which introduce artifi-
cially prolonged flow paths, especially in transport simula-
tions, which have to be compensated for (e.g., Reeves et al.,
2008; Botros et al., 2008; Sweeney et al., 2020) when pre-
dicting effective permeabilities of fractured media. On the
other hand, MODFLOW (McDonald and Harbaugh, 1988)
introduced support for local permeability anisotropy but not
within a massively parallelized framework, making it dif-
ficult to conduct large numbers of high-resolution simula-
tions. However, assessing permeabilities in a Monte-Carlo-
like framework (e.g., de Dreuzy et al., 2012) is necessary
to explore the variance of hydraulic system properties in-
duced by stochastically generated input data. Hence, a flow
solver that combines the advantages of local permeability
anisotropy and massive parallelization should be beneficial
for numerical permeability assessments of fracture networks.

Next to these issues, this study focuses on an often ignored
but potentially important aspect in fracture network model-
ing given by the complexity of fracture intersection flow. To
our knowledge, only a few studies have presented 3D flow
simulations within fracture intersections (Zou et al., 2017;
Li et al., 2020), revealing the fact that flow velocities will
increase within the fracture intersections compared to the
fracture itself (shown by increasing Péclet numbers within
the intersections). Theoretically, this effect should increase
if the direction of the applied pressure gradient is aligned
with the orientation of the intersection. As a consequence,
the system’s effective permeability should increase by a cer-
tain amount due to a local permeability increase within the
intersection. To demonstrate that, we systematically con-
duct 3D numerical simulations of Stokes flow within dif-
ferently oriented, planar fracture crossings to analyze the
permeability increase caused by intersection flow localiza-
tion (IFL). Using these results, we extend the current state-
of-the-art methodology for equivalent continuum representa-

tions of DFNs to account for IFL in a quantitative manner
and analyze its impact on effective permeability computa-
tions at fracture and network scales. It is still unclear at which
level of detail the ECM has to be discretized to conserve
the structural complexity of the DFN, as the aforementioned
staircase patterns and artificial connectivity cause resolution
dependencies. Subsequently, resolution tests are performed
on two DFN test cases with a newly developed, massively
parallelized, and high-performance computing (HPC) opti-
mized finite-element Darcy flow solver capable of handling
fully anisotropic permeability tensor cells. By that, we con-
sistently investigate the upscaling capabilities of the ECM
method, which is frequently used for effective permeability
predictions in fractured porous media.

2 Fracture intersection flow modeling

Fluid flow in porous and fractured media is described by the
well-known Navier–Stokes equations (Bear, 1972). It is com-
monly assumed that subsurface flow in fractures ranges in the
laminar regime, i.e., Reynolds numbers below unity (Zim-
merman and Bodvarsson, 1996). Assuming the flowing fluid
to be incompressible and isoviscous and the impact of grav-
ity to be negligible, steady-state flow at constant temperature
is defined by the Stokes momentum balance (Eq. 1) and con-
tinuity (Eq. 2) equations (Bear, 1972):

µ∇2v =∇P, (1)
∇ · v = 0, (2)

with the fluid’s dynamic viscosityµ, pressure P , and velocity
vector v = (vx,vy,vz).∇,∇·, and∇2 denote the gradient, di-
vergence, and Laplace operator for 3D Cartesian coordinates,
respectively.

Here, the 3D staggered-grid, finite-difference code
LaMEM (Kaus et al., 2016) is used to solve the coupled sys-
tem of Eqs. (1) and (2) utilizing PETSc (Balay et al., 2018)
for HPC optimization. Applying different absolute pressures
on two opposing sides of a 3D voxel model representing the
fractured or porous medium (e.g., a or d in Fig. 1), while
setting the other boundaries to no-slip (velocity component
normal to the boundary is zero), enables the prediction of
the medium’s directional permeability. After obtaining the
steady-state solution, the volume integral of the pressure-
gradient-aligned velocity component vz (e.g., Osorno et al.,
2015) is computed according to

v̄ =
1
V

∫
V

|vz|dz, (3)

with domain volume V . Using Darcy’s law for flow through
porous media (Darcy, 1856), which relates the specific dis-
charge Q for a pressure drop 1P along a distance L accord-
ing to

Q=−
kA1P

µL
, (4)
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Figure 1. Panels (a, d) show the binary voxel models (impermeable matrix in transparent gray) for a fracture intersection that is oriented
along and transverse to the flow direction, respectively. The red bottom face is the high-pressure boundary (0.02Pa) and the blue top face the
low-pressure boundary (0.01Pa), forcing the fluid to flow in the z direction. The orientations (arranged as dip direction / dip) for the fracture
pair in (a) are f1 = 100/90, f2 = 190/80 and f1 = 170/90, f2 = 260/10 for the fractures in (d). The length of both cubes is 1cm, and all
fracture apertures are constant (1.25mm). Panels (b, e) visualize flow velocity distribution in the void space. Panels (e, f) highlight velocity
vectors within the intersections at slices indicated with green rectangles in (b, e), respectively.

Figure 2. 2D sketch of the half-hypotenuse assumption in an ideal-
ized rectangular fracture crossing (gray regions indicate rock ma-
trix, white regions fracture pore space). The hydraulic apertures
(ah1 and ah2) of both intersecting fractures are indicated with solid
blue lines. The hypotenuse of the right-angled triangle with the two
hydraulic apertures as legs is given by the black dashed line. The
hydraulic radius rh (indicated by the solid red line) to approximate
the radius of the pipe model is defined as half the length of the hy-
potenuse.

with intrinsic permeability k and cross-sectional area A in
combination with the fact that Q= v̄A, the directional per-
meability kz is calculated by

kz =
µv̄L

1P
. (5)

As demonstrated by Eichheimer et al. (2019), Kottwitz et al.
(2020), and Eichheimer et al. (2020), the numerical resolu-
tion has to be sufficiently high to produce a converged re-
sult. Generating every model at different levels of detail (e.g.,
1283, 2563, 5123, and 10243 voxels) ensures that the most
accurate solution is obtained (as will be shown later by a
comparison of errors to the result at the largest resolution in
Fig. 5b). Figure 1 presents Stokes flow in simple fracture in-
tersections and highlights the IFL effect. If the fracture inter-
section is aligned with the principal flow direction (panels a–
c), the velocity significantly increases within the intersection,
resulting in higher directional permeabilities. In the oppo-
site case, when the fracture intersection connects no-pressure
boundaries (panels d–f) and is thus oriented oblique to the
flow direction, the flow velocity slightly disperses around the
intersection, and the overall impact on the directional perme-
ability is minor.
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3 Permeability parameterization concepts

As the two main structural features (fractures and intersec-
tions) composing a fracture network differ significantly in
terms of their hydraulics (Fig. 1), they require independent
concepts to parameterize their permeabilities for formulat-
ing their effective grid block permeability tensor. For frac-
tures, it is usual practice to use the cubic-law parameteriza-
tion (e.g., Snow, 1969; Long et al., 1982), relating the spe-
cific dischargeQ through a void system between two parallel
plates for a pressure drop 1P along a distance L according
to

Q=−
wa3

m1P

12µL
, (6)

with the fracture width w and distance between the two
plates, i.e., mechanical aperture, am. Comparing this analyt-
ical solution with Darcy’s law (Eq. 4, cross-sectional area
A= wam) leaves the intrinsic permeability of a fracture kf
defined by

kf =
a2

m
12
. (7)

Natural fractures deviate from the assumptions of parallel
plates, which is why am in Eq. (7) is commonly replaced
with a hydraulic aperture ah that corrects the parameteriza-
tion for fracture closure and surface roughness (e.g., Patir
and Cheng, 1978; Brown, 1987; Renshaw, 1995; Zimmer-
man and Bodvarsson, 1996; Kottwitz et al., 2020). Yet, there
is no ready-to-use parameterization concept tailored for frac-
ture intersections. The simulations shown in Fig. 1 suggest
that the flow in the intersection is approximately pipe-like.
Then, the specific discharge Q through a tube of radius rt
and length L is related by the Hagen–Poiseuille flow solu-
tion through a pipe (e.g., Batchelor, 1967) according to

Q=−
πr4

t 1P

8Lµ
. (8)

Again, combining this equation with Darcy’s law (Eq. 4,
cross-sectional area A= πr2) results in the following ex-
pression for the intrinsic permeability of a pipe ki:

ki =
r2

8
. (9)

The apparent pipe radius should then be modified based on
the intersection shape to calculate an equivalent hydraulic ra-
dius rh to compensate for the structural difference. As a first-
order approximation, we use half the size of the hypotenuse
in a right-angled triangle whose legs are given by the two
intersecting apertures (called half-hypotenuse assumption in
the following; see Fig. 2 for details). This delivers sufficiently
good results, as will be demonstrated later (Fig. 6).

4 Equivalent continuum representation of DFNs

The use of the ECM approach instead of the DFN method
to predict the effective permeabilities of fractured media cru-
cially depends on the capability to reflect the anisotropic flow
properties at the scale of the continuum cells. Therefore, it is
essential to integrate the geometry of a DFN into the genera-
tion procedure of the ECM instead of generating the grid cell
conductivities in a stochastic manner (Hadgu et al., 2017).
The accuracy of the ECM permeability prediction then de-
pends on the resolution of the DFN-mapped continuum grid.
Jackson et al. (2000) and Svensson (2001) already demon-
strated that using cell sizes that are larger than the average
fracture spacing of the network introduces artificial connec-
tivity and hence overestimates effective permeabilities. Suffi-
cient resolution of the continuum grid is therefore required to
obtain comparable results with the DFN method (e.g., Botros
et al., 2008; Leung et al., 2012).

To our knowledge, there is no approach to generate an
ECM of a DFN that takes the effect of IFL (Fig. 1) into
account. Thus, we will explain our new approach to gener-
ate continuum representations based on DFN structures – the
fracture-and-pipe model.

Generally, the DFN approach offers a straightforward way
to characterize structurally complex fracture networks. Most
commonly, every fracture is modeled as a geometric primi-
tive (here a disk) with a prescribed length l, center coordi-
nate p0, and unit normal vector n̄ defining its orientation.
Based on this, fracture intersections can be calculated to de-
fine the backbone of the network. Here, fracture intersections
are approximated with a line defined by two points i0 and i1,
whereas the unit vector ī between the two points defines its
orientation. The goal of the ECM method is to generate a 3D
representation of computational cells that contains a symmet-
ric, positive definite permeability tensor that is based on the
fractures and their intersections. For simplicity, we prescribe
a regular grid with constant x–y–z spacing δx instead of oc-
tree refined grids as utilized by Sweeney et al. (2020).

To map each individual fracture to its corresponding grid
cells, we first assume a horizontal disk (normal vector ḡ =

[0,0,1]) at center point pg = (0,0,0) with corresponding
fracture radius r (r = l/2) and represent it with an equally
spaced set of points in the x–y plane Pg, with the condi-
tion ||Pg−pg)|| ≤ r . By that, we obtain a constantly spaced
grid of points representing the fracture in horizontal orien-
tation, provided that the initial equal spacing of the points
δp is a small fraction of the cell size δx to prevent gaps
in the mapped 3D grid. Next, we seek the rotation matrix
Rf that aligns the current normal vector of the x–y plane
ḡ = [0,0,1] with the actual normal vector of the fracture n̄.
Utilizing the Rodrigues rotation formula (Rodrigues, 1840)
around the rotation axis w = (ḡ× n̄)/||(ḡ× n̄)|| (unit vector
orthogonal to ḡ and n̄) yields the rotation matrix Rf accord-
ing to
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Figure 3. Workflow for generating an equivalent continuum model of a DFN. Panel (a) shows the input fracture network of four arbitrarily
oriented fractures (gray) and their intersections (magenta). Panel (b) displays a grid of ellipsoids, each reflecting the shape of the permeability
tensor in the equivalent continuum model in (a) with a resolution of 43 voxels. The size of the ellipses is scaled to the norm of the permeability
tensor of the cell such that larger ellipsoids denote higher permeabilities. The green plane in (b) indicates the location of the 2D slice
displayed in (c). Different green intensities present the norm of the permeability tensor of each cell. Black lines denote fractures in 2D and
yellow ellipses the x and y shape of the permeability tensor of each cell. Note how the shape of the ellipse changes from being planar if
multiple fractures cross a cell.

Rf = I+ ||ḡ× n̄||C+ (1− ḡ · n̄)C2, (10)

with ×, ·, and ||x|| denoting the cross-product, dot product,
and vector norm of x, respectively. I represents the 3× 3
identity matrix and C the cross-product matrix of the rota-
tion axis w = [wx,wy,wz]:

C=

 0 wz wy
wz 0 −wx
−wy wx 0

 . (11)

Following this, Rf is used to rotate the 3× n array of points
representing the fracture plane Pg (n is the number of 3D
points in Pg) around pg and translate all points to the actual
center point p0 to produce a rotated set of points Pr repre-
senting the fracture in its actual 3D position:

Pr = Pg ∗Rf+p0, (12)

where ∗ denotes matrix–matrix multiplication. By ensuring
that the lower left corner coordinate of the rectangular grid’s
bounding box is initially located at (0,0,0) (this may require
a translation of all center points to incorporate all fractures),
we obtain the grid indices (i, j , and k in the x, y, and z di-
rection, respectively) of the fracture by dividing Pr with the

cell size δx and rounding the results. Finally, we compute the
individual anisotropic permeability tensor Kijk for the cells
by using a parameterized fracture permeability value (Eq. 7)
and the rotation matrix Rf according to

Kijk =
Vf

Vc
kf

Rf

1 0 0
0 1 0
0 0 0

R′f

 . (13)

Vc denotes the cell volume (δx3) and Vf the fracture volume
per cell, which is approximated by counting the number of
Pr points per individual cell, then multiplying it with the
squared initial point spacing δp and the hydraulic aperture
ah of the fracture. Obviously, the accuracy of Vf crucially de-
pends on the initial point spacing of Pg – the finer the spac-
ing, the better the approximation of Vf. Figure 4c shows that
the condition δx/δp ≥ 16 delivers sufficiently constant per-
meability values. In the case that multiple fractures transect
the same cell, the permeability tensors are summed, simi-
lar to Chen et al. (1999) or Hadgu et al. (2017). However,
these cells need additional treatment as they incorporate frac-
ture intersections. We follow the same workflow as presented
for individual fractures to map all previously found intersec-
tions to the grid cells and formulate their permeability ten-
sors. A horizontal line of the same length as the intersection
(||i1− i0||), parallel to the x axis, is represented by a con-
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Figure 4. Fracture-intersection-caused changes in permeability tensor characteristics. Panel (a) shows a simple DFN structure of two ar-
bitrarily oriented fractures (gray) intersecting at a line (magenta). The cube length is set to 1m and the system origin is at (0,0,0). The
center point of the first fracture is located at (0.4899|0.5685|0.5110) and its normal vector is given as (−0.3195,0.7894,0.524). The sec-
ond fracture’s center point is located at (0.7604|0.5000|0.5000), whereas its normal vector is given by (−0.9461,0.1715,0.2747). Both
fractures have the same hydraulic aperture of 1× 10−3 m and both fully penetrate the system. The resulting intersection ranges from point
(0.6499|0.3086|1.000) to (0.8003|1.000|0.0505), and its orientation is given by the unit vector (0.1270,0.5839,−0.8018). The hydraulic
pipe radius resulting from the half-hypotenuse assumption is 7.0711× 10−4. Panel (b) visualizes the shape of the permeability tensor for
an ECM model that considers only fracture permeability (gray, inside) and for the presented fracture-and-pipe model (transparent magenta,
outside). The size of both ellipses is scaled with the norm of the resulting permeability tensor to provide comparability. Panel (c) presents
the norm of the permeability tensor Kijk as a function of the ratio between the ECM grid spacing δx and the initial point spacing δp for the
discretization approach described in Sect. 4 (the fracture-and-pipe model) and an approach wherein we did not take the IFL parameteriza-
tion into account (i.e., leaving out Eq. 14 in the discretization procedure, hence the name fracture-only). The dashed black line denotes the
condition δp/δx ≥ 16, which is used to provide a correct approximation of the fracture and intersection volume per cell.

Figure 5. Panel (a) displays the location of all 100 intersection lineaments considered in the flow benchmark. A total of 52 intersection
configurations directly connect inlets and outlets of flow (upper and lower z face), whereas 48 connect non-boundary flow faces. Panel (b)
compares the numerically estimated permeability at highest resolution (10243 voxels) to the ones obtained at lower resolutions by calculating
their error norms ||δk || according to Eq. (15). Gray dots represent the average error norm for all considered intersection configurations at
resolutions lower than 10243 voxels, and the light gray area highlights the range between minimum and maximum error.
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Figure 6. The left panel shows a comparison of directional per-
meabilities obtained from high-resolution Stokes flow simulations
(ks) and counterparts (kecm) analytically derived with the ECM ap-
proach described in the text as a function of the angle γ between
the intersection and the principal flow direction. Magenta dots rep-
resent the mean permeability ratios (10 values per point) for the
ECM approach described in Sect. 4 with the half-hypotenuse pipe
radius parameterization. Gray dots present the mean permeability
ratio for an ECM approach that ignores the effect of intersections.
The right panel shows a box plot of the error norm ||δk || computed
according to Eq. (15) with kecm as kr for all 100 fracture-and-pipe
(magenta) and fracture-only models (gray).

stantly spaced set of points (similar spacing as in the case
of a fracture, i.e., δp). The mean point of the line is again
located at (0,0,0). We then calculate the rotation matrix Ri
(Eq. 10) by using ḡ = [1,0,0] and n̄= (i1− i0)/||i1− i0||.
After identifying the corresponding grid i,j , and k indices as
described above, their permeability tensors are increased by
using a parameterized intersection permeability (Eq. 9):

Kijk =Kijk +
Vi

Vc
ki

Ri

1 0 0
0 0 0
0 0 0

R′i

 . (14)

Vi represents the intersection volume per cell, which is again
approximated by counting the number of Pr points per cell
and multiplying it with point spacing δp and the term πr2

h ,
whereas rh denotes the hydraulic radius of the pipe approx-
imating the intersection. Figure 3 shows the resulting ECM
structure with 43 cells of an arbitrary complex DFN, gener-
ated with the presented approach. For certain fracture sys-
tems (ideally no more than two fractures that fully penetrate
the system, e.g., Fig. 4a), the presented approach can be used
to derive an analytical solution for permeability by setting
δx equal to the system size, resulting in a single permeability
tensor for the whole system. Figure 4 demonstrates that in-
corporating the intersection as a pipe has a significant effect
on the shape and absolute value of the permeability tensor
at intersections, which could cause an overall permeability
increase by almost 1 order of magnitude. However, the ex-
act amount of permeability increase depends on the chosen

hydraulic radius of the pipe, and the impact on the overall
permeability of the network needs to be evaluated.

5 Fracture-scale intersection flow benchmark

To test the half-hypotenuse assumption (see Fig. 2 for de-
tails) as a first-order approximation for the hydraulic ra-
dius of the pipe, we conduct a benchmark study in the
following. The directional permeabilities of simple fracture
crossings with varying orientations calculated from high-
resolutions Stokes flow simulations (e.g., Sect. 2) are com-
pared to their analytically derived ECM single-cell counter-
parts (i.e., δx is equal to the full system size L) using (1)
the half-hypotenuse parameterization for intersection flow
(fracture-and-pipe model) and (2) omitting this intersection
flow parameterization (fracture-only model). For each inter-
section model, two fully persistent fractures with constant
hydraulic apertures of 1.25mm are placed in a cube of length
10mm. Two fractures with a dip angle of 90◦ and dip direc-
tions separated by 90◦ (i.e., 90 and 180◦) are consecutively
rotated counterclockwise by increments of 10◦ around the
center of the cube until a total rotation of 90◦ is reached.
This procedure is repeated nine times, whereas the dip angle
of one of the two fractures is consecutively reduced by incre-
ments of 10◦ for each iteration. The dip angle of the remain-
ing fracture is kept constant (i.e., 90) to maintain connectiv-
ity in the z direction. This results in a total of 100 different
intersection configurations (52 representing direct inlets and
outlets of flow, 48 connecting non-boundary flow faces), pro-
ducing a wide variety of intersection orientations within two
opposing octants in the cube (see Fig. 5a for all generated
intersection lineaments). For each configuration, we produce
a binary voxel model (pore space and matrix) of two cross-
ing parallel-plate fractures (similar to a and d in Fig. 1). Fol-
lowing the approach described in Sect. 2, different pressures
at the bottom and top boundary are applied to numerically
estimate the directional permeability (setting the remaining
boundaries to no-slip yields the vertical permeability com-
ponent of the permeability tensor, kz). We systematically in-
creased the numerical resolutions of the Stokes flow simula-
tions (1283, 2563, 5123, and 10243 voxels) for each intersec-
tion configuration (resulting in a total of 400 HPC flow sim-
ulations) to determine whether the result at the highest level
of detail represents a sufficiently converged solution. This is
done by calculating the L2 error norm ||δk|| according to

||δk|| =

∣∣∣∣kx − k1024

k1024

∣∣∣∣ , (15)

where k1024 represents the directional permeability obtained
at the highest resolution (i.e., 10243 voxels) and kx the direc-
tional permeability from simulations with lower resolution
(i.e., 1283, 2563, 5123 voxels). The resulting average error
norms for all 100 intersection configurations are plotted in
Fig. 5b, which demonstrate the convergence towards the nu-

Solid Earth, 12, 2235–2254, 2021 https://doi.org/10.5194/se-12-2235-2021



M. O. Kottwitz et al.: Investigating the effects of intersection flow localization 2243

merical result at the highest resolution. With an average er-
ror norm of about 0.6% and a maximum error of 2.4% for
simulations with 5123 voxels compared to the simulations at
10243 voxels, we assume that the solution at 10243 voxels
represents a sufficiently accurate solution and can further-
more be used to benchmark the tensors generated with the
ECM approach. Next, we follow the approach of Sect. 4 to
generate a single-cell permeability tensor of each intersection
model using a δp/δx ratio of 16, extract the vertical perme-
ability component of the tensor (kzz), and compare it with the
one resulting from the Stokes flow simulations. The results
(Fig. 6) demonstrate that if the intersection connects the two
pressure boundary faces (intersection-to-flow-direction angle
γ ≤ 40◦), the actual permeability obtained from the Stokes
simulations is reasonably well reproduced with a small un-
derestimation by the fracture-and-pipe model and heavily
underestimated by the fracture-only approach (e.g., Hadgu
et al., 2017). Using the half-hypotenuse assumption suffi-
ciently integrates the effect of IFL at the scale of a contin-
uum cell. If intersections that connect no-pressure boundary
faces are considered (γ > 40◦), both models fail to predict
the accurate directional permeabilities, indicating that the ef-
fect of flow dispersion within the crossing fracture may play
a more important role than previously thought. However, the
cumulative error box plot in Fig. 6 indicates that both meth-
ods give statistically acceptable predictions of the directional
permeabilities (median error of 2.7% for the fracture-and-
pipe model and a median error of 7.9% for the fracture-only
model). Thus, the systematic error observed for γ > 40◦ ap-
pears to be negligible.

6 Intersection flow effects at network scales

In the previous section, we demonstrated the effects of IFL
on the permeability of systems at the scale of a local ECM
cell (i.e., system sizes near the fracture aperture) by com-
paring analytically derived cell permeabilities to the results
of direct flow simulations (Stokes equations). If the intersec-
tion orientation aligns with the applied pressure gradient and
connects inlet and outlet pressure faces, the permeability of
the system is increased (i.e., case b in Fig. 1). To explore the
effects of IFL on the permeability of systems at larger scales
that cannot be fully resolved with current imaging techniques
(i.e., above a few decimeters), we conduct continuum flow
simulations (as described in the Appendix) of several test
cases in which IFL potentially matters. Following the re-
sults of the previous section, this should be the case for frac-
ture formations containing two fracture sets with perpendic-
ular strike and steep dip angles. These so-called cross-joint
patterns can be naturally observed (e.g., Gross, 1993; Ruf
et al., 1998; Li and Ji, 2021) and are thought to mainly result
from local stress field rotations in extensional tectonic set-
tings (Bai et al., 2002; Boersma et al., 2018). Hence, we use
the software ADFNE (Alghalandis, 2017) to generate sev-

eral test DFNs with two orthogonally striking (dip directions
are separated by 90◦) and vertically dipping (dip angle of
90◦) fracture sets with constant fracture sizes for simplicity.
Slight variability in dip angle and direction is introduced by
a Fisher dispersion parameter of 20. By this, we ensured that
the primary orientation of the formed intersections is oriented
parallel to the z direction in the model to provoke the possi-
bly maximal effect of IFL on the network scale. For each test
DFN, we vary the following structural parameters during the
generation process:

– the cubic overall system side lengthL by 1, 10, 100, and
1000m;

– the constant size l of all fractures in the system by 0.25,
0.5, 1, and 2 times the system side length L; and

– the total number of fractures for each set by 10, 50, and
100 times L/2l. The latter rescaling factor is arbitrar-
ily chosen to increase the total number of fractures for
systems with lower fracture sizes.

The following parameters are varied in the prescription of the
hydraulics of each test DFN:

– the scaling parameter β in a sublinear aperture-length
correlation model (e.g., Olson, 2003; Klimczak et al.,
2010) by 10−4, 10−3, and 10−2 – this infers the frac-
tures’ hydraulic apertures ah from their sizes according
to ah = βl

0.5; and

– the isotropic and constant permeability of the rock ma-
trix by 10−17, 10−15, and 10−13 m2.

This results in 432 test DFNs, which are discretized to an
ECM with the two different methods already described in the
previous section to analytically derive local cell permeabil-
ity tensors (i.e., the aforementioned fracture-and-pipe and
fracture-only method as described in Sect. 4). For this, we
start with an ECM grid resolution of 128× 128× 128 nu-
merical cells to prevent artificial connectivity (e.g., Jackson
et al., 2000; Svensson, 2001) for networks with high frac-
ture densities. If this results in nonphysical fracture porosities
above unity at the local cell level, we consecutively reduce
the grid resolutions by powers of 2 up to 4× 4× 4 until all
local cells have fracture porosities below unity. If this con-
dition cannot be achieved (e.g., for small scales with high
fracture densities and high apertures), the model is excluded
from the analysis. Furthermore, models with hydraulic aper-
tures above 1cm were excluded as well, as we assume that
the simplification of laminar flow might not hold anymore.
This results in a total of 381 test DFNs, whose structure we
quantify in a 2D nondimensional parameter system given by
(1) the ratio of the maximum intersection length of the sys-
tem li to the system size L and (2) their global P33 value (i.e.,
global fracture volume divided by total volume according to
Dershowitz and Herda, 1992, and hence referred to as the
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Figure 7. Panel (a) visualizes the geometrical configurations of all 381 test DFNs as a function of their global P33 value and their ratio
between maximum intersection length li and system size L. Colors indicate the model size L. Note that high global fracture porosities are
predominantly achieved for smaller system sizes for the considered test cases. Panels (b–g) show the underlying DFN structure of the models
indicated in (a) with system sizes of 100m. Fractures are approximated with green disks and intersections with magenta lines. Panels (b–d)
have a low prescribed number of fractures (10×L/2l), whereas (e–g) have a high prescribed number of fractures (100L/2l). The ratio of
constant fracture length l and system size L for (b, e) is 0.25, 0.5 for (c, f), and 1 for (d, g).

Figure 8. The figure demonstrates the difference between the verti-
cal component of the permeability tensor1Kzz resulting from con-
tinuum flow simulations of ECMs discretized with the fracture-and-
pipe and fracture-only methods described in the text as a function
of their respective global fracture porosities (i.e., their P33 value).
Colors indicate the constant hydraulic aperture of all fractures in
the respective model. Note that high fracture densities are predomi-
nantly reached for high fracture apertures.

system’s global fracture porosity). Figure 7 demonstrates the
distribution of the generated test DFNs within this 2D param-
eter space and shows the DFN structure of some chosen ex-
amples. For each geometrical DFN configuration displayed,
we compute two (one for each discretization method) effec-

tive permeability tensors with the continuum flow procedure
described in the Appendix. We quantify the absolute differ-
ence of the vertical component in the resulting permeabil-
ity tensors of the fracture-and-pipe (kfp) to the fracture-only
model (kfo) by 1Kzz according to

1Kzz =
|kfp− kfo|

kfp
, (16)

which serves as a measure for the magnitude of IFL effects
on the network scale. Figure 8 demonstrates that the effect of
IFL on network-scale flow depends linearly on global frac-
ture porosity by ||1kzz|| = 0.285P33. However, the generally
very low absolute differences in vertical system permeability
indicate a negligible effect of IFL at network scales. Only
for networks with global fracture porosities in the range of
30 %–40 % could we observe differences of about 10%.

7 Resolution dependency of ECM methods

The resolution dependency of ECM methods to upscale the
permeabilities of fracture networks is a crucial aspect that
has to be considered to provide accurate upscaling results.
Artificial connectivity is one of the main issues that arises
if the resolution of the ECM is insufficient, as demonstrated
by Jackson et al. (2000) and Svensson (2001). Their results
suggest that we can expect accurate upscaling results only
when the resolution of the ECM is sufficiently large to re-
solve the structure of the DFN (i.e., a maximum of two frac-
ture segments and one intersection per cell). As fracture net-
works typically have a multi-scale character with power-law
or lognormal fracture size distributions (e.g., Bonnet et al.,
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Figure 9. Panels (a, b) display the test DFNs with 10000 and
1000 fractures, respectively. Both are generated with the software
ADFNE (Alghalandis, 2017), whereas input parameters are given
in the text. Yellow lines depict the location of the slice shown in
(c, d). Black lines indicate fractures and magenta spheres the loca-
tion of fracture intersections.

2001; Davy et al., 2006), fulfilling that condition may require
very large grid resolutions. Predicting the effective perme-
ability of the DFN by solving the groundwater flow equa-
tions (Darcy’s law) would then require prior upscaling of the
grid cell conductivities (e.g., Zhou et al., 2010; Hauge et al.,
2012), depending on the chosen flow solver and the available
computational resources. However, averaging or flow-based
upscaling approaches may misrepresent network-scale flow
characteristics, depending on the chosen coarse grid reso-
lution. Hence, it is often unclear how the resolution depen-
dency affects the accuracy of effective permeability compu-
tations and whether flow anisotropy is conserved. In the fol-
lowing, we will demonstrate that using ECMs of DFNs with
sufficiently high resolutions can achieve this while avoid-
ing initial upscaling. For this, we compare effective perme-
ability tensors obtained from massively parallelized contin-
uum flow simulations (see Appendix A) for different DFN
scenarios with varying resolutions of their equivalent con-
tinuum counterparts. We generate two test DFNs utilizing
the open-source MATLAB toolbox ADFNE (Alghalandis,
2017). For comparability reasons, we use similar input data
as Hadgu et al. (2017), who separated all fractures into three
orthogonal sets based on the data reported in SKB (2010).
S1 : 90|090, S2 : 90|000, and S3 : 00|360 give the mean dip
angle and dip direction for the three fracture sets, respec-
tively, with a constant Fisher distribution concentration value
of 5 accounting for variability around the mean. Fracture

sizes l are distributed as a power law according to

l =
[(
lα+1
1 − lα+1

0

)
u+ lα+1

0

]1/α+1
, (17)

where l1 is the upper cut-off length (500m) and l0 the lower
cut-off length (15m), u represents a set of uniformly dis-
tributed random numbers in the interval (0,1), and α is the
power-law exponent (here α =−2.5). All fracture centers are
randomly placed in a cube with 500m side lengths (the re-
sulting DFNs are displayed in Fig. 9) with a background ma-
trix permeability of 10−18 m2. A sublinear scaling of aperture
versus length (e.g., Olson, 2003; Klimczak et al., 2010) is
employed to correlate the hydraulic apertures ah of the frac-
tures with their lengths l:

ah = βl
0.5, (18)

with a scaling factor β of 10−4. The only difference between
the two test DFNs is the overall fracture number, which is
10000 for DFN-A (plot a in Fig. 9) and 1000 for DFN-B (b in
Fig. 9), such that we obtain a densely and sparsely fractured
system, respectively. DFN-A thus represents the scenario of
a typical REV network according to Long et al. (1982) and
Oda (1985). DFN-B, on the other hand, reflects a flow sce-
nario closer to the percolation threshold with anisotropic,
non-REV behavior (Maillot et al., 2016).

After calculating all fracture intersections with ADFNE’s
built-in function Intersect (see b and d in Fig. 9 for inter-
section spots in a 2D slice), we use the method presented
in Sect. 4, which incorporates the permeability parameteri-
zation concepts from Sect. 3, to generate several ECMs with
varying grid resolutions. Starting from 43 voxels and increas-
ing by powers of 2 up to 10243 voxels yields nine different
continuum representations for each test DFN (see Fig. 10 for
examples). For each representation, we compute the effec-
tive permeability tensor of the DFN by repeatedly solving
the Darcy equations in three principal flow directions (see
Appendix A for a detailed description). The results are dis-
played in Fig. 11. For both test DFNs, the norm of the re-
sulting effective permeability tensor ranges within the same
order of magnitude. For DFN-A, we obtain a difference of
about 30% from coarse (43 voxels, ||kij || = 5.24× 10−11)
to fine (10243 voxels, ||kij || = 4.03×10−11) grid resolution,
whereas DFN-B shows a larger difference of about 129%
(coarse ||kij || = 5.07× 10−12, fine ||kij || = 2.21× 10−12).
Thus, the resolution dependence of the absolute permeabil-
ity is small for fracture networks with an expected REV be-
havior (DFN-A) and more pronounced if fracture networks
with non-REV behavior (DFN-B) are considered. Interest-
ingly, the individual components of the permeability tensor
converge to constant values above resolutions of 1283 vox-
els for both test cases, indicating that anisotropy magnitude
depends on the level of detail of the ECM grid.

https://doi.org/10.5194/se-12-2235-2021 Solid Earth, 12, 2235–2254, 2021



2246 M. O. Kottwitz et al.: Investigating the effects of intersection flow localization

Figure 10. Panels (a–d) display the norm of the permeability tensor for each cell in an ECM representation of the 10 000 fracture test DFNs
displayed in Fig. 9 (a) for grid resolutions of 323, 643, 1283, and 2563 voxels, respectively. Panels (e, f) visualize the resulting velocity
distribution for an applied pressure gradient in the z direction.

8 Discussion

Including a pipe flow model into the ECM generation pro-
cess improves the representation of permeability anisotropy
therein and can have impacts on overall permeabilities as
well. For example, at the scale of the intersection itself, it
significantly modifies the shape and absolute values of the
permeability tensor (Fig. 4). However, the errors of the inter-
section benchmark (2.7% and 7.9% for the fracture-and-pipe
and fracture-only model, respectively) indicate that, from a
statistical perspective, the effect of IFL on overall perme-
ability is usually a second-order effect. This is because the
fracture-only ECM discretization approach by default ac-
counts for the increased permeability of intersection cells in
an isotropic manner simply by the summation of the individ-
ual fracture contributions per cell. The parameter study from
Sect. 6 shows that incorporating the effects of IFL into an
ECM-based upscaling approach is only necessary for frac-
ture systems that (1) produce a significant amount of frac-
ture intersection (i.e., for fracture systems with two fracture
sets of strongly different directions) and (2) have sufficiently
high global fracture porosities (above 30%), regardless of

scale. Achieving the latter in our test scenarios is strongly
coupled to large fracture apertures (in the order of 1cm; see
Fig. 8) and a ratio between mean intersection and system size
close to or above unity (i.e., intersections fully penetrating
the system). So, if two dominant orthogonal fractures with
large apertures form an intersection that penetrates the whole
system along the direction of flow, the effect of IFL influ-
ences the system’s effective permeability. Due to the non-
linear radius–permeability relation, this may become more
important for fractures with apertures above 1cm. However,
for apertures above 1cm, Reynolds numbers can easily ex-
ceed the critical threshold of unity (e.g., Zimmerman and
Bodvarsson, 1996), which would require nonlinear concepts
to relate fracture and intersection permeability (e.g., Forch-
heimer’s law), as well as Navier–Stokes rather than Stokes
simulations.

If small DFNs with sizes closer to the mean hydraulic ra-
dius of the intersections (e.g., micro-fracture networks of 1m
size that cannot be naturally resolved with current imaging
techniques) are considered for permeability prediction, IFL
could play an important role. Then, however, additional fac-
tors have to be considered as well. For example, de Dreuzy
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Figure 11. Absolute permeability values k for the six main compo-
nents of the computed effective permeability tensor (principal com-
ponents in red, off-diagonal components in black) and the norm of
the permeability tensor in magenta as a function of the grid resolu-
tion in cubic voxels (number of voxels in the x–y–z direction).

et al. (2012) have shown that fracture-scale heterogeneity
affects network-scale connectivity due to flow channeling
caused by closure in the aperture field. This may appear if the
ECM cell size is similar to the internal correlation length of
the fractures (e.g., Méheust and Schmittbuhl, 2003; Kottwitz
et al., 2020), which would ultimately require new concepts
to account for deviations from the average flow behavior
instead of using fracture permeability parameterizations. A
possible solution would be to introduce fracture permeability
fluctuations if the ECM cell size is smaller than the individual
fracture’s correlation length. Unfortunately, the scaling of the
correlation length in fractures is poorly understood, so fur-
ther research is required before integrating these effects. Ad-
ditionally, the pipe parameterization we use as a first-order
approximation for intersection permeability requires refine-
ment to account for irregular shapes, tortuosity, or closure,
representing another interesting question to solve in future
studies.

For flow simulations at reservoir scales (similar to the
test cases considered in Sect. 7), the only computationally
feasible solution is to use parameterization concepts (e.g.,
Sect. 3). For that, we were able to demonstrate that the pre-
sented fracture-and-pipe ECM method is capable of provid-
ing converged effective permeability tensors if the ECM res-
olution, i.e., the ratio of system size to discretization step
size, is sufficiently large. This resolution dependency for 3D
ECMs has not been reported at this level of detail so far

but was expected based on previous works of Jackson et al.
(2000) and Svensson (2001). The main problem is identi-
fied as artificially increased connectivity at lower resolutions,
which occurs if the resolution is larger than either the av-
erage spacing of the fracture network or the minimal frac-
ture length of the DFN, leading to overestimated permeabil-
ities and misinterpreted anisotropy. Here, we use the aver-
age minimal distance of each fracture center to all other frac-
ture centers in the network as a first-order approximation for
fracture spacing. With an average spacing of 13.1± 4.5m,
continuum grid resolutions above roughly 38 cubic voxels
should theoretically start preventing artificial connectivity for
DFN-A. For DFN-B with an approximated average spacing
of 28.9±10.9m, the required resolution to damp that effect is
even lower (about 17 cubic voxels). Both test DFNs have the
same lower cut-off fracture size of 15m, so artificial connec-
tivity should start decreasing above resolutions of about 33
cubic voxels. Looking at Fig. 11, we observe ongoing perme-
ability convergence at these three mentioned resolutions. We
attribute this to the fact that fractures are spaced randomly
in space but sampled with a regular grid. Thus, the distance
between fracture tips and continuum cell edges might be
larger for low resolutions, again causing permeability over-
estimations. Only above a resolution of 128 cubic voxels do
all these effects dampen out, allowing us to declare the so-
lution sufficiently converged with quantitative errors below
10% for tensor norm and individual components. Hence, we
suggest a general upper boundary of a third of the minimal
fracture length l0 as the cell size for an ECM discretization
of a DFN to provide constant results.

Based on analytical solutions of flow in fracture networks
with constant apertures, Svensson (2001) proposed that the
ratio of ECM cell size to hydraulic aperture should not ex-
ceed 2 to provide small flow errors. So far, the ratio of
cell size to the minimal hydraulic aperture in the system
was much larger (about 1260) due to the low scaling fac-
tor β of the sublinear aperture to length correlation (Eq. 18).
To achieve similar discretization ratios of Svensson (2001)
while maintaining a power-law size scaling, we would have
to increase β to 10−1, resulting in minimal and maximal
apertures of 0.39 and 2.14m, respectively. As this would vi-
olate the assumption of laminar flow conditions within the
fractures, we cannot test their hypothesis and rather recom-
mend staying above the maximum hydraulic aperture ah1 of
the system, as otherwise the volume-fraction-based perme-
ability scaling factor in Eqs. (13) and (14) exceeds unity. In
that case, parameterization assumptions might not hold any-
more, preventing the use of continuum flow methods. How-
ever, as demonstrated here, sticking to l0/3> δx > ah1 as a
condition for ECM discretization delivers constant effective
permeabilities and conserves flow anisotropy for the upscal-
ing. Within that discretization range, mapping a DFN onto
an equivalent continuum grid can be used as a geometric up-
scaling procedure for further effective permeability analysis.
Notably, this range strongly depends on the structural char-
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acteristics of the considered DFN, especially on the fracture
size distribution and corresponding aperture correlation func-
tions. For some DFNs this may require cropping the frac-
ture size distributions from below to a few multiples of the
cell size and compensating for the hydraulic contribution of
lower size fractures with a background permeability.

9 Conclusions

This study analyzed the complexity of fracture intersection
flow by conducting Stokes flow simulations in simple frac-
ture crossings. Intersections that are aligned with the pressure
gradient initiating the flow cause an increase in permeability,
as they act similarly to a pipe. This results in intersection
flow localization (IFL); i.e., intersections represent preferred
pathways for the fluids compared to the connected fractures.
We thus extended the state-of-the-art methodology to gen-
erate equivalent continuum models (ECMs) for effective per-
meability computations of discrete fracture networks (DFNs)
to incorporate IFL effects. Those are integrated using a di-
rectional pipe flow parameterization with a hydraulic radius
half the hypotenuse size in a right-angled triangle with side
lengths of both intersecting hydraulic apertures. By assess-
ing the permeabilities of fracture intersections numerically,
we could demonstrate that for system sizes close to the ap-
proximated pipe radius (millimeters to centimeters), the ef-
fect of IFL on permeability can be almost 1 order of magni-
tude. At network scales (meters to kilometers), the impact of
IFL on the system’s effective permeability is generally minor.
Only for fracture systems with high global fracture porosities
(above 30%) do IFL effects become noticeable. Analyzing
the effects of IFL on mass transport through fracture net-
works poses an interesting question for a follow-up study.
For example, Makedonska et al. (2016) have shown that early
breakthrough times of solute transport through kilometer-
scale DFNs are sensitive to local permeability fluctuations.
Thus, local permeability increases induced by IFL could po-
tentially affect transport behavior as well.

Next to the effects of IFL, we investigated the resolution
dependency of current ECM-based upscaling approaches, as
the cell size with which the ECM is discretized represents the
most crucial aspect for the accuracy of ECM-based effective
permeability predictions. Based on a resolution test with two
different DFN scenarios, we suggest that the ECM cell size
should be smaller than a third of the minimal fracture size
and larger than the maximal hydraulic aperture of the sys-
tem to conserve constant permeabilities and full anisotropy
of flow. Within that range, we conclude that ECM meth-
ods equivalently serve as geometric upscaling procedures for
fluid flow problems. It is important to note that the accuracy
of ECM methods to predict flow is always linked to the qual-
ity of the input DFN. Improving the DFN method to better
characterize natural fracture systems, especially in terms of
fracture termination rules and spatial clustering, is still an
ongoing topic of research.
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Appendix A: ECM-based effective permeability
prediction workflow

In the following, we will explain our method to obtain the
effective permeability tensor of continuum cell representa-
tions for fractured porous media. The governing equations
for steady-state single-phase flow equations for an incom-
pressible, isothermal, and isoviscous fluid without sources
and sinks are given in compact form by the following sys-
tem of mass (Eq. A1) and momentum (Eq. A2) conservation
equations:

∇ · q = 0, (A1)
q =−K∇P, (A2)

where ∇ and ∇· denote the gradient and divergence operator
for global 3D Cartesian coordinates, respectively. The spe-
cific discharge (flux) is given by q, pressure by P , and the
positive definite and symmetric hydraulic conductivity ten-
sor by K according to

K=

kxx kyx kzx
kyx kyy kzy
kzx kzy kzz

 ρg
µ
, (A3)

with the principal permeability tensor components kxx , kyy ,
and kzz, the off-diagonal components kyx , kzx , and kzy , fluid
density ρ, gravitational acceleration g, and fluid dynamic
viscosity µ. We employ a 3D finite-element discretization
scheme (e.g., Hughes, 1987; Zienkiewicz and Taylor, 2000;
Belytschko et al., 2000; Lin et al., 2014) for Eqs. (A2) and
(A1) to simulate boundary-driven pressure diffusion through
any input grid consisting of unique permeability tensors. Us-
ing the Galerkin method (e.g., Belytschko et al., 2000; Lin
et al., 2014), we transform Eq. (A1) into an expression for
the nodal residual R according to

R =

∫
V

∇NTK∇NdVP = 0. (A4)

V denotes the domain volume, N the nodal shape function
matrix, and P the nodal pressure. We use eight-node rect-
angular elements (voxels) with linear interpolation functions
(e.g., Zienkiewicz and Taylor, 2000) for volume integral
approximation, whereas element integrals are evaluated by
the Gauss–Legendre quadrature rule (e.g., Belytschko et al.,
2000) over eight integration points with parametric coordi-
nates. Within each element, standard coordinate transforma-
tion is employed to compute shape function derivatives with
respect to global coordinates ∇N:

∇N= J−1
∇LN,J=∇LNx, (A5)

where ∇L denotes gradient operator for local 3D element co-
ordinates, J the Jacobian matrix, and x the 3D global element
coordinates. After imposing initial pressure conditions at the

Figure A1. Pressure boundary conditions for an applied gradient
in the z direction. Here, top and bottom faces experience constant
pressures of 1 and 0Pa, respectively. A linearly interpolated pres-
sure distribution is applied at the remaining four boundary faces, as
indicated by the colored wedges next to the side faces of the model.
Thus, the principal direction of flow is in the z direction, allowing
for the calculation of the terms related to the z component of the
permeability tensor according to Eq. (A9).

boundary nodes, the global residual vector Rg is assembled
from elemental contributions (e.g., Hughes, 1987) according
to Eq. (A4) to solve the linear system of equations,

CgP
new
=Rg, (A6)

for the unknown pressure P new. Cg denotes the global coef-
ficient matrix, which is assembled from the nodal coefficient
matrix C given by

C=
∫
V

∇NTK∇NdV. (A7)

Following this, we evaluate the Darcy velocities at the inte-
gration points u based on the newly solved nodal pressures
by

u=K∇NP new, (A8)

where the velocity vectors on the nodes are averaged from
the neighboring integration points.

Three principal directions of the applied pressure gradi-
ent have to be considered to predict the full tensor of per-
meability. Thus, the flow simulation procedure has to be re-
peated three times such that each principal flow direction (x,
y, and z direction in a Cartesian coordinate system) is cov-
ered. For each iteration, two constant pressure values are ap-
plied at two opposing boundary faces (e.g., lower and up-
per face in a cube for principal flow in the z direction), and
the same linear interpolation between those two values is ap-
plied at the remaining four boundary faces (see Fig. A1 for

https://doi.org/10.5194/se-12-2235-2021 Solid Earth, 12, 2235–2254, 2021
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Figure A2. Benchmark case 1 from Berre et al. (2020). Panel (a) shows the benchmark geometry of an embedded fracture (aperture of
10−2 m) in a matrix with a hydraulic conductivity of 10−6. The hydraulic conductivity in the gray band at the bottom is increased to 10−6.
Constant pressures of 4 and 1 Pa are applied at the inlet band (blue) and outlet band (red), respectively. The diagonal light gray line through
the model indicates the sampling line for the pressures shown in (b). The pressure distribution is plotted as a function of arc length of the gray
line in (a), and the results of different resolutions are compared to the benchmark target field obtained from 17 different numerical methods.
The dark gray region illustrates the area between the 10th and 90th percentiles for the highest refinement level of the benchmarked methods,
whereas the light gray region illustrates the same area for their lowest refinement level.

an example). This ensures the capture of both the diagonal
and off-diagonal terms of the permeability tensor properly,
which are computed by substituting the volume average ū of
all nodal velocity vectors uI (see Eq. 3) into Darcy’s law for
flow through porous media in the form of Eq. (4). Figure A1
displays the situation of a vertically aligned pressure gradient
(1Pz = δP

δz
). The corresponding entries in the permeability

tensor are computed according tokzxkzy
kzz

= µ

1Pz

ūxūy
ūz

 , (A9)

and vice versa for the iterations with pressure gradients in the
x and y direction to obtain the permeability tensor as shown
in Eq. (A3).

The single-continuum discretization scheme used might
appear simplistic compared to more sophisticated mesh rep-
resentations (see Berre et al., 2019). However, the merits of
our approach rather lay (1) in a fully anisotropic permeabil-
ity representation of the individual continuum cells and (2)
massive parallelization and HPC optimization. Utilizing the
parallelization framework of PETSc (Balay et al., 2018) and
their multigrid preconditioned solvers significantly reduces
the computational cost, allowing simulations to be run rou-
tinely with 109 individual grid cells. An increase in grid res-
olution compensates for the benefits of using conforming
meshes or multi-continuum formulations (e.g., Berre et al.,
2019). To test this, we compare our modeling procedure
against benchmark case 1 from Berre et al. (2020), who com-
pare 17 different methods of simulating single-phase flow
in fractured porous media. The initial setup (displayed in a

in Fig. A2) consists of an inclined fracture with a hydraulic
aperture of 10−2 m embedded in a cube of 100m length with
a matrix hydraulic conductivity of 10−6 m2, whereas the hy-
draulic conductivity of a small band of 10m width at the bot-
tom is increased to 10−5 m2. We prescribe these two values
as background permeabilities and use the methodology de-
scribed in Sect. 3 to incorporate fracture permeability accord-
ingly. The boundary conditions are given by small pressure
inlet (4Pa) and outlet (1Pa) bands as indicated in Fig. A2a.
The comparison of the pressure distribution (Fig. A2b) high-
lights the fact that with a resolution of 323 voxels, we can al-
ready obtain a good fit with the benchmark target field. This
thus suggests that our modeling procedure is sufficiently cor-
rect for effective permeability predictions.
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