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Abstract. We investigate the influence of stress conditions
during fracture formation on the geometry and roughness of
fracture surfaces. Rough fracture surfaces have been gen-
erated in numerical simulations of triaxial deformation ex-
periments using the discrete element method and in a small
number of laboratory experiments on limestone and sand-
stone samples. Digital surface models of the rock samples
fractured in the laboratory experiments were produced using
high-resolution photogrammetry. The roughness of the sur-
faces was analyzed in terms of absolute roughness measures
such as an estimated joint roughness coefficient (JRC) and
in terms of its scaling properties. The results show that all
analyzed surfaces are self-affine but with different Hurst ex-
ponents between the numerical models and the real rock sam-
ples. Results from numerical simulations using a wide range
of stress conditions to generate the fracture surfaces show a
weak decrease of the Hurst exponents with increasing con-
fining stress and a larger absolute roughness for transversely
isotropic stress conditions compared to true triaxial condi-
tions. Other than that, our results suggest that stress condi-
tions have little influence on the surface roughness of newly
formed fractures.

1 Introduction

It is well known that surfaces of faults and fractures in rocks
are rough at all scales (Brown and Scholz, 1985; Hobbs,
1993; Power and Durham, 1997; Candela et al., 2012). The
roughness of fracture surfaces is important for a range of ge-
ological processes such as the mechanical behavior of faults
(Okubo and Dietrich, 1984; Griffith et al., 2010; Candela
et al., 2011a, b; Angheluta et al., 2011; Ahmadi et al., 2016)

or the fluid flow in jointed rock or fault zones (Chen et al.,
2000; Watanabe et al., 2008; Bisdom et al., 2016; Briggs
et al., 2017; Jin et al., 2017; Zambrano et al., 2019; Kot-
twitz et al., 2020). However, the processes and parameters
controlling the details of the fracture geometry are not fully
understood yet.

Roughness can be defined as the deviation of a surface
from a plane. The degree of roughness of a surface can be
described in a number of different ways, ranging from vi-
sual, semi-quantitative approaches such as the “joint rough-
ness coefficient” (JRC) (Barton, 1973; Barton and Choubey,
1977) to fully quantitative measures derived directly from the
geometrical properties of the surface such as the root mean
square of the first deviation (slope) along a profileZ2 (Myers,
1962) or the “structure function” (SF) proposed by Sayles
and Thomas (Sayles and Thomas, 1977). It has been shown
that those measures are closely, but not perfectly, correlated
to each other (Tse and Cruden, 1979; Li and Zhang, 2015).
A roughness measure of particular interest due to its possible
use in the parametrization of the fluid flow properties of rock
fractures is the “effective surface area S” proposed by Kot-
twitz et al. (2020), which can be considered as an extension
of the “areal roughness index” defined by El-Soudani (1978)
and therefore a 2-D analog of the “roughness profile index”
defined there (Rp in Li and Zhang, 2015). A statistical anal-
ysis of rough surfaces shows that they can often be described
as self-affine (Turcotte, 1992; Schmittbuhl et al., 1993, 1995;
Bouchaud, 1997; Candela et al., 2009, 2012); i.e., they are
statistically invariant under an affine transformation, but not
under a global dilation (Bouchaud, 1997). In that case, the
roughness can be described by a scaling parameter such as a
fractal dimension or a Hurst exponent (Candela et al., 2009)
in addition to a geometric roughness measure such as the
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root mean square deviation from an average plane at a given
scale. While most of the previously mentioned parameters,
i.e., JRC, Z2, Rp and SF, are measured along profiles across
the surface and are therefore intrinsically direction depen-
dent, the scaling parameters can be calculated either direc-
tionally or direction independent.

Stress boundary conditions are one of the main factors
controlling the shape and structure of faults and fractures in
brittle rocks (Faulkner et al., 2010). While some experimen-
tal studies have investigated the dependence of the roughness
of individual fracture surfaces on the stress conditions un-
der which they were generated (Amitrano and Schmittbuhl,
2002), the use of numerical models makes it much easier to
systematically study this issue for a wide range of stress pa-
rameters, including those which are difficult to access exper-
imentally.

A large number of numerical modeling approaches has
been developed to study the evolution and resulting prop-
erties of rough cracks, from statistical approaches like fiber
bundle models over lattice methods including random fuse
networks (RFNs) and random spring networks (RSNs) to
standard continuum-based approaches like finite element
models (FEMs) (Alava et al., 2006). In this work, we use
numerical simulations based on the discrete element method
(DEM) (Cundall and Strack, 1979; Donze et al., 1994; Mora
and Place, 1994) to systematically study the formation of
fracture surfaces under a wide range of stress conditions and
to quantify their geometric properties. The focus of the in-
vestigation is on the initial geometry of the freshly formed
fracture surfaces, i.e., in the case of shear fractures, before
significant slip takes place. This means that the results will be
mainly applicable to joints and shear fractures with small dis-
placement, both of which are very common structures in brit-
tle rocks. The DEM approach was chosen due to its particular
suitability for the numerical simulation of brittle deformation
processes (Mair and Abe, 2008; Schöpfer et al., 2009, 2011;
Yoon et al., 2012) and the option to run true triaxial defor-
mation experiments where σ1 > σ2 > σ3, which are difficult
to perform in the laboratory. In addition, we compare the re-
sults from the DEM simulations with data obtained from the
photogrammetric analysis of fracture surfaces generated in
triaxial compression experiments in the laboratory.

2 Method

2.1 Discrete element method

To simulate the process of rock fracture under an externally
applied loading, we are using the discrete element method
(Cundall and Strack, 1979; Donze et al., 1994; Mora and
Place, 1994). In this approach, a brittle–elastic material is
modeled as a collection of spherical particles interacting with
their nearest neighbors either by frictional–elastic interac-
tions or by breakable elastic “bonded” interactions. Based

on the force-displacement laws implemented in these inter-
actions the forces and moments acting on each particle can
be calculated. The resulting translational and rotational ac-
celerations of the particles are then used to calculate parti-
cle movements from Newton’s equations. For the breakable
bonded interactions, a failure criterion is evaluated, and if the
failure threshold has been exceeded, the affected bonded in-
teractions are removed and, if the particles involved are still
in contact, replaced by a frictional–elastic interactions.

A range of different implementations exist for each of
the interaction types, differing mainly in the details of the
force-displacement law and, in the case of the bonded in-
teractions, the failure criterion. In this work, we are using
a linear force-displacement law for the normal component
of the frictional–elastic interactions and a Coulomb friction
law for the tangential component as described by Cundall
and Strack (1979). For the bonded interaction, we are using
the bond model by Wang et al. (2006) which takes normal,
shear, bending and torsional deformation into account. The
stiffness and strength of the bonds are parameterized using
the approach of Weatherley (2011) which calculates normal,
shear, bending and torsional stiffness from the elastic param-
eters of an assumed bond material, specifically from Young’s
modulus Eb and Poisson’s ratio νb, considering cylindrical
bonds with a length and diameter controlled by the radii of
the particles they are connecting. A Mohr–Coulomb failure
criterion is used for the bonds based on the strength parame-
ters of the bond material, i.e., cohesion Cb and friction angle
8b.

Because the size of the individual models is important in
this work to obtain high-resolution roughness data from the
simulated fracture surfaces, we are using the parallel DEM
software ESyS-Particle (Abe et al., 2004), which enables the
simulation of sufficiently large models.

2.2 Surface extraction

The extraction of surface data from the numerical models re-
quires two steps: (1) the identification of the individual frag-
ments of the sample after fracturing (Fig. 1b) and (2) the
calculation which groups of the particles contained in each
fragment form an individual fracture surface. The fragments
of the broken sample are extracted by constructing an undi-
rected graph from the structure of the DEM model such that
the particles form the nodes of the graph and the remaining
unbroken bonds form the edges in the graph. The fragments
can then be extracted by calculating the connected compo-
nents of that graph (Abe and Mair, 2005). For each fragment
larger than ≈ 10 % of the original model (Fig. 1c), a ray-
casting method is used to determine which of the particles are
forming the surface of the fragment. In this approach, a set
of parallel lines or “rays” with their origin outside the frag-
ment and a specific direction is defined. The first intersection
between each line and one of the particles is calculated using
the algorithm proposed by Amanatides and Woo (1987). The
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positions of the calculated intersection points then form the
point cloud describing the fragment surface (Fig. 2).

To get a complete coverage of the fragment surface
(Fig. 1e), i.e., to avoid shadowing effects by “overhanging”
parts of the fragment surface, the calculations are performed
for multiple view directions of the rays. The directions from
the mass centers of all neighboring fragments to the mass
center of the fragment and directions deviating from those
by 30◦ are used. To identify individual fracture surfaces two
additional post-processing steps are performed. The initial
outside surfaces of the intact model are removed by identify-
ing each particle which was part of the surface of the model
in the initial particle packing and removing the respective
intersection points from the point cloud. In the final step, a
calculation is performed for each particle contributing an in-
tersection point to the surface point cloud to determine which
other fragment is closest to this particle. This information is
then used to split the point cloud into individual chunks, each
representing an individual fracture surface (Fig. 1f). By per-
forming this step for all fragments in the model, correspond-
ing pairs of surfaces belonging to the same fracture can be
identified.

The 3-D point clouds generated using this method are col-
lections of (x,y,z) coordinates. However, for most further
analysis steps, a representation of the surface as height field
relative to a plane, i.e., as z′(x′,y′) is needed. To obtain such
a representation, a “best-fit” plane for the point cloud is cal-
culated. The location of such a plane is found by calculating
the barycenter b = (x0,y0,z0) of the point cloud, i.e.,

(x0,y0,z0)=
1
n

n∑
i=0
(xi,yi,zi), (1)

and its orientation is determined by the two major eigenvec-
tors e1 and e2 of the covariance matrix C of the point cloud.
The third eigenvector of the covariance matrix then deter-
mines the normal nfp = e3 of the plane. Using this, the in-
plane coordinates (x′,y′) of each point p = (x,y,z) and its
perpendicular distance z′ from the plane can be calculated as

x′ = (p− b) · e1 (2)
y′ = (p− b) · e2 (3)
z′ = (p− b) · e3. (4)

It should be noted that a surface can only be represented cor-
rectly as a height field in this way if there are no parts of
the surface which are “overhanging” with respect to the nor-
mal of the fitted plane, i.e., if there are no points on the sur-
face with identical (x′,y′) but different z′. However, this is
generally the case for the fracture surfaces generated in the
numerical models.

2.3 Roughness characterization

A roughness measure commonly used in the study of the me-
chanical behavior of rock surfaces is the JRC defined ini-
tially as a parameter relating the shape of a rock joint to its
peak shear strength; see Eq. (9) in Barton (1973) or Eq. (2) in
Barton and Choubey (1977). Its relation to the geometry of
the joint surfaces was only qualitatively defined by assigning
JRC values to a set of standard profiles (Barton and Choubey,
1977, Fig. 8). To estimate the JRC of an arbitrary profile from
measured geometrical data, a wide range of empirical for-
mulas have been developed in the literature (Li and Zhang,
2015, Table 2). To calculate the approximate JRC of the frac-
ture surfaces generated in the numerical models and the lab-
oratory experiments for three of the 47 equations presented
there have been chosen. The subscript of the JRC in the equa-
tions below shows the respective number of the equation in
Li and Zhang (2015, Table 2).

JRC1 = 32.2+ 32.47log(Z2) (5)

JRC31 = 558.68
√
Rp− 557.13 (6)

JRC34 = 92.97
√
δ− 5.25, (7)

where Rp is the “roughness profile index”, δ = Rp− 1 the
“profile elongation index” and Z2 the “root mean square of
the first deviation of the profile”, all as defined in Li and
Zhang (2015, Table 1). Rp is therefore calculated as

Rp =

∑N−1
i=1

√
(xi+1− xi)2+ (yi+1− yi)2∑N−1

i=1
√
xi+1− xi

(8)

and

Z2 =

√√√√ 1
N

N−1∑
i=1

(yi+1− yi)
2

xi+1− xi
, (9)

where xi is the abscissa of profile point i, yi its height above
a mean value, and N is the number of sample points. Given
that those parameters are calculated along profiles, the irreg-
ular point clouds generated using the method described in
Sect. 2.2 first need to be mapped to a regular grid.

Self-affine rough surfaces are characterized by the fact that
they are statistically invariant under an affine transformation

(x,y,z)→ (ax,ay,aH z), (10)

where x,y are the “in plane” coordinates of the surface and
z is the “height” of the surface above a given mean plane
(Fig. 3a). The exponent H is the Hurst exponent or “rough-
ness index” (Mandelbrot and Van Ness, 1968; Mandelbrot,
1985; Bouchaud, 1997). A range of different method for the
calculation of the Hurst exponent have been described in the
literature (Renard et al., 2006; Candela et al., 2009), most of
them either based on the evaluation of the power spectrum
of the surface or correlation functions between the heights
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Figure 1. Numerical modeling workflow. (a) DEM specimen used for deformation experiments. Colors show particle size, purple arrows
symbolize confining stress, gray arrows show compression direction. (b) Fragment identification in fractured DEM model. Colors show
fragment size (red – large, blue – small). Red parts (top left and bottom right) show two major fragments, blue/white (i.e., fine-grained)
material along diagonal shows shear zone. (c) Two major fragments extracted from fractured DEM model. Colors show fragment size
(volume). (d) Fragment extracted from DEM model. Rough fracture surface visible. (e) Point cloud surface generated from DEM model.
Outer surfaces of the initial DEM specimen visible right and bottom. (f) Filtered point cloud used for analysis. Non-fracture surfaces and
outlying points removed.

Figure 2. Simplified 2-D sketch of the ray-casting method. The gray
particles are assumed to belong to the same fragment of the de-
formed sample, and the black and gray crosses show the fragment
surface calculated from the line–particle intersections using multi-
ple view directions. Black lines and the black arrow show primary
view direction; light gray lines and arrows show additional view
directions at a 30◦ angle to the primary direction.

of points on the surface depending on their mutual distance.
Because the point clouds describing the surfaces generated
by the approach described in Sect. 2.2 do not form a regular
grid, spectral methods would require an additional interpo-
lation step. Aside from the additional computational effort

Figure 3. Height and distance relations of points in the point cloud
used to calculate the height–height correlation function. (a) Ar-
rangement of points above a fitted mean plane: dashed grid showing
mean plane, black lines symbolizing orthogonal distance between
plane and points, and red/green lines showing relative orientation
between points. (b) Distance (1r) and height difference (1z) be-
tween points.

required, this might also introduce some difficult to quan-
tify errors in the calculation of the Hurst exponent (Kottwitz,
2017).

In this work we therefore use the “height–height correla-
tion function” method as described by Candela et al. (2009).
However, in contrast to the description in Candela et al.
(2009), the function is not calculated from 1-D profile data
but directly from the 2-D surface. The radially averaged
height–height correlation function is calculated as the root
mean square (rms) averaged height difference of all point
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pairs within a given distance range, i.e.,

c(1r)=

√√√√1
n

1r+w/2∑
1r−w/2

1z2, (11)

where 1r =
√
1x2+1y2 is the “in-plane” distance be-

tween the points in the pair, 1z is the height difference be-
tween the points (Fig. 3b), w is the size of the distance bins
over which the height differences are averaged, and n is the
number of particle pairs in the respective distance bin. For the
calculation of the angular dependence of the height–height
correlation function, the direction between the two points of
the pair is calculated as φ = arctan(1y

1x
) and the summation

of the height differences is adjusted from 1-D distance bins
in Eq. (11) to 2-D (distance, direction) bins.

c(1r,φ)=

√√√√√√√1
n

1r+wr/2
φ+wφ/2∑
1r−wr/2
φ−wφ/2

1z2, (12)

where wr is the bin size with respect to the in-plane distance
of the points and wφ is the bin size with respect to the di-
rection from one point of the pair to the other. Due to the
large number of points contained in the surface point clouds,
which is as large np ≈ 500000 in some cases, and the result-
ing computational cost if all of the n2

p/2 particle pairs would
be taken into account, only a random sample of 10 000 points
(i.e., ≈ 5× 107 point pairs) is used for each surface. Tests
have shown that the reduction in the number of particle pairs
evaluated does not impact the results.

Given that for a self-affine surface, the height–height cor-
relation function follows a power law, i.e., c(1r)∝1rH

(Candela et al., 2009), the Hurst exponent H can be calcu-
lated by fitting a linear function to the straight part of the
log–log plot of c(1r) vs.1r . The slope of the linear function
is the Hurst exponent. The Hurst exponent H and the fractal
dimensionD of an object are related asD = 2−H for a 1-D
profile (Mandelbrot, 1985) or, more generally,D = n+1−H ,
where n is the dimension of the object (Yang and Lo, 1997),
i.e., n= 1 for a profile and n= 2 for a surface.

3 Experiments

A set of numerical simulations was performed to generate
fracture surfaces under a wide range of stress conditions
(Fig. 4a) and some natural rock samples were fractured in
laboratory experiments (Fig. 4b and c). Both numerically and
experimentally generated surfaces have been analyzed using
the methods described in Sect. 2.3.

3.1 Numerical models

To generate a set of model fracture surfaces, a large num-
ber of deformation experiments have been simulated. The

Figure 4. Types of fracture surfaces studied in this work: (a) nu-
merical (DEM) model, (b) limestone fragment generated in triaxial
deformation experiment, (c) sandstone fragment generated in uni-
axial deformation experiment.

set of simulations consists of unconfined compression (σ1 >

0, σ2 = σ3 = 0), unconfined tension (σ3 < 0, σ1 = σ2 = 0),
standard triaxial compression (σ1 > 0, σ2 = σ3 > 0) and true
triaxial compression (σ1 > σ2 > σ3 > 0) experiments. In all
compressive models, σ1 is parallel to the y axis, σ2 is parallel
to the x axis, and σ3 is parallel to the z axis, whereas in the
unconfined tensile models σ3, i.e., the extension direction, is
parallel to the y axis, σ1 is parallel to the x axis, and σ2 is
parallel to the z axis.

All models are using box-shaped samples with an as-
pect ratio of 1 : 2 : 1 contained between two servo-controlled
plates in the case of the unconfined compression and ten-
sion experiments or six servo-controlled plates for the stan-
dard triaxial and true triaxial experiments. While deforma-
tion experiments in the laboratory usually use cylindrical
samples, we decided in favor of box-shaped samples because
they make it much easier to apply the two different confin-
ing stresses in the true triaxial tests. In the tension experi-
ments, the plates are connected to the boundary particles of
the sample by unbreakable bonds which only induce a force
parallel to the normal of the plate but not perpendicular to it.
This means the particle are free to move parallel to the load-
ing plate, avoiding heterogeneous deformation (“necking”).
In the compressive experiments, both the axial loading plates
and, in the confined models, the plates along the x and z sur-
faces of the sample interact with the boundary particles by
frictionless elastic interactions.

In the unconfined experiments (σ2 = σ3 = 0), a simple
loading procedure is used, applying a prescribed displace-
ment rate to the plates at the y ends of the model to pro-
duce axial shortening or extension. During an initial phase,
the plate speed is ramped up smoothly according to a cosine
function until the chosen speed is reached and then it is held
constant for the main phase of the experiment. In the con-
fined experiments (σ2 ≥ σ3 > 0), this loading procedure is
preceded by a ramp-up of the stresses applied to the plates at
the x- and z-sides of the sample until σxx = σ2 and σzz = σ3.
For the smooth ramp-up of the applied stresses, the same co-
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sine function is used as for the ramp-up of the axial deforma-
tion rate in order to minimize unnecessary vibrations in the
model. During this phase, a stress is also applied to the load-
ing plates at the y ends of the sample such that σ1 = σ2. Af-
ter a subsequent “rest” phase where the stress on all plates is
held constant for given time to allow the particle movement
introduced by the initial loading to dissipate, the same ax-
ial shortening as in the unconfined compression experiments
is applied. A range of confining stresses from σ2 = σ3 = 0
to σ2 = σ3 = 15 MPa was used for the numerical models in
this work. In order to avoid the effect of abrasion modifying
the roughness of the fracture surfaces after their initial for-
mation, the state of the model immediately after one or more
through-going fractures have formed was used for the extrac-
tion of fracture surfaces described in Sect. 2.2. That is, there
is no, or at least very little, post-failure slip on those surfaces.

A model size of 55× 110× 55 model units was chosen
with a particle sizes ranging from Rmin = 0.2 to Rmax = 1.0,
resulting in ≈ 950 000 particles for those models (Fig. 1a).
This model size was found in initial tests to provide a good
balance between model resolution and computational cost.
For the construction of the initial particle arrangement for the
models, the insertion-based packing algorithm by Place and
Mora (2001) was used. This algorithm generates dense par-
ticle packings having a power-law particle size distribution
with an exponent of approximately −3; i.e., the number of
particles with given radius r is roughly proportional to r−3.

In all deformation experiments, the final loading plate
speed was set to ≈ 17cms−1. This is significantly higher
than in real experiments, but using real lab values
(µms−1. . .mms−1) would lead to impractically long com-
puting times because the time step of the calculations is re-
stricted to values of1t ≤ 3×10−8 s due to numerical stabil-
ity constraints. Tests have shown that the increased velocities
do not significantly influence the model results.

The mechanical properties of the DEM material have been
calibrated to values similar to those of a typical sedimentary
rock. The target values, Young’s modulus E = 30 GPa and
unconfined compressive strength UCS= 80 MPa, are within
the range of sandstone or medium to high porosity limestone
(Zoback, 2007). The failure strength was found to vary by
less than 1 % among samples. These parameters do not pro-
vide a direct match to the mechanical properties of the rocks
used in the laboratory tests (Sect. 3.2), but the important
ratio between failure strength of the material and the con-
fining stress applied in the laboratory experiments lies well
within the range covered by the numerical models (Fig. 5b).
Because the details of the fracture behaviors of individual
samples in DEM models show a well-known dependence on
the initial random particle arrangement (Koyama and Jing,
2007; Abe et al., 2011; Fakhimi and Gharahbagh, 2011), at
least five simulations with different realization of the particle
packing have been performed for each parameter set in order
to quantify this variability.

To improve the coverage of the chosen range of stress
conditions, data from a related study (Ohagen, 2019) were
integrated into the analysis (Fig. 5a). This study was using
an identical model setup, except for slightly smaller models
with dimensions of 40×80×40 model units (≈ 360000 par-
ticles) and 50× 100× 50 model units (≈ 710000 particles)
compared to the roughly 950 000 particles used in most mod-
els in this work.

3.2 Laboratory tests

To compare the roughness of fractures created in the DEM
models with the roughness of real fractures, we conducted a
number of laboratory uniaxial and triaxial deformation ex-
periments. For our study, we used a suite of fine grained,
low porosity Upper Jurassic carbonate rock samples and ad-
ditionally one Lower Triassic sandstone sample, both from
Franconia, Germany. Sample size for the experiments were
55× 110 mm cylinders. The main goal of the experiments
was to produce fractures for given stress conditions which
could then be used for roughness analyses.

The sandstone uniaxial compressive strength (UCS) exper-
iment lead to an typical hourglass fracture pattern, splitting
the sample into a small number of larger fragments, which
could be used for further analyses (Fig. 4c). Unfortunately,
for the UCS and most of the triaxial experiments of the
carbonate rocks, the samples disintegrated into a very large
number of very small fragments, leaving no suitable fracture
surfaces to analyze. See Fig. S1 in the Supplement for a typi-
cal example. This applied in particular to the samples loaded
with small confining pressures. Only in one experiment with
a confining pressure of 30 MPa post-deformation fragments
were large enough for our planned fracture surface analy-
ses (Fig. 4b). From the suitable fragments, we constructed
a digital three-dimensional surface model using photogram-
metric methods. The models were built from more than 100
single pictures of the samples from different perspectives us-
ing a 12-megapixel SLR camera and a 40 mm macro lens.
The photos were taken from a distance of 5 to 10 cm between
front lens and the object, which is close to the minimum fo-
cus distance of the lens used. The models were then clipped
to the fracture plane of interest. The remaining surface ge-
ometry was exported as 3-D point cloud data with approx-
imately 2.2 million data points in total, resulting in a point
density of approximately 28 000 points cm−2 and an average
point distance of 60 µm.

The generated point clouds were then used for roughness
analyses of the fracture surfaces following the approach de-
scribed in Sect. 2.3. Besides the creation of fracture surfaces
the deformation experiments were also used to derive typi-
cal geomechanical properties of the carbonate and sandstone
samples which were used for comparison with the DEM
models. For the carbonate rocks, a UCS of ≈ 285 MPa was
obtained and ≈ 85 MPa for the sandstone sample. For the
limestone, a friction coefficient µ= 0.7 was derived from
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Figure 5. Confining stress range covered by the numerical models, combining the experiments in this work and the data from Ohagen
(2019). (a) Numerical models only, using absolute stress values. (b) Numerical and laboratory experiments, using stress values scaled by the
unconfined compressive strength of the respective material. Hatched segment in top left of the diagrams: parameter space excluded by the
condition σ3 ≤ σ2.

experiments with confining pressures ranging between 0 to
30 MPa. Young’s modulus was measured at E = 48GPa for
the limestone and E = 12.5GPa for the sandstone.

4 Results

4.1 Numerical models

Based on the data produced by a total of 131 numerical sim-
ulations, the geometrical properties of 388 fracture surfaces
have been analyzed. The fracture orientations were as ex-
pected under the stress conditions. The dip angle was typi-
cally within 25–35◦ of σ1, i.e., 55–65◦ assuming σ1 to be ver-
tical. The strike direction of the majority of the fractures was
within ≈ 10◦ of σ2 in the true triaxial models (σ2 6= σ3) and
more or less randomly distributed under transverse isotropic
stress conditions (σ2 = σ3).

In an initial step, the joint roughness coefficients for a
small set of surfaces were approximated using Eqs. (5)–(7).
The results did show that the resulting JRC values were con-
sistently above the range defined by Barton and Choubey
(1977), i.e., larger than 20, and therefore also outside the
range of validity of the approximation equations in Li and
Zhang (2015). Similarly, the geometric parametersRp (Eq. 8)
and Z2 (Eq. 9) from which the estimated JRC values were
calculated, were outside the applicable ranges given there.
While the roughness produced by the numerical models is
therefore outside the range for which the fitting equations
collected by Li and Zhang (2015) were originally intended,
Fig. 1a in their work suggests that Eq. (5) would be the best
option to extend the range of approximate JRCs to the sur-
face geometries observed here because it provides a particu-
larly good fit at large values (i.e., Z2 ≈ 0.35–0.4, JRC≈ 20).

Therefore, Eq. (5) was used to estimate the average JRC for
each of 261 surfaces based on a total of ≈ 24 400 profiles.
The remaining 127 of the 388 surfaces studied were found
to be too small in at least one of the dimensions to allow the
extraction of sufficiently long profiles. For each surface, pro-
files were generated in two orthogonal directions to check
for a possible anisotropy of the surface roughness. The re-
sults did show that the mean estimated JRCs for the profiles
differs by less than 10 % between the two direction, which is
generally less than the standard deviation between the pro-
files within one direction. Plotting the estimated JRC for the
analyzed surfaces against the mean confining stress of the
models (Fig. 6a) shows that there is no clear trend of JRC vs.
confinement, but that models with transversely isotropic con-
finement (σ2 = σ3) generally have higher JRC values than
models fractured under true triaxial conditions, i.e., σ2 6= σ3.
The directly calculated geometric roughness measures, i.e.,
Rp and Z2, show a very similar pattern (Fig. 6b and c).

The perpendicular distance or “height” of the points of the
fracture surfaces above a fitted fit plane is calculated accord-
ing to Eq. (4). Analysis shows that the heights are normally
distributed (Fig. 7) as expected for fracture surfaces (Ponson

et al., 2007), allowing a “rms roughness” hrms =
1
n

√∑
n(z
′2)

to be calculated.
Plotting the rms roughness hrms of all models against the

mean confining stress (Fig. 8) shows that there is no clear
dependence between the two parameters, except for a dif-
ference between transverse isotropic (σ2 = σ3) and true tri-
axial (σ2 6= σ3) stress conditions. In the case of the trans-
verse isotropic confinement, the observed rms roughness
hrms = 2.35± 0.78 model units is higher than in the case
of true triaxial conditions where hrms = 1.63± 0.48 model
units. It can also be observed that the rms roughness of the
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Figure 6. Geometric roughness measures for surfaces generated at different stress conditions in DEM models. Black: True triaxial com-
pression, bed: Standard triaxial compression (transverse isotropic confinement), blue: unconfined extension. (a) Approximated JRC values
calculated based on Eq. (5). (b) “Root mean square of the first deviation” Z2 (Eq. 9). (c) “Profile elongation index” Rp (Eq. 8). Error bars
show standard deviation.

Figure 7. Distribution of heights of a simulated fracture surface above a “best-fit” plane. Data are taken from a model with σ2 = 5MPa and
σ3 = 0MPa. (a) Map view of the surface colored by height above the “best-fit” plane. (b) Probability density of heights and fitted normal
distribution.

models subjected to unconfined extension (blue marker in
Fig. 8) is smaller at hrms = 1.51± 0.44 model units than
that of the models subjected to unconfined compression with
hrms = 2.76± 0.88 model units. This difference, however, is
possibly at least in part an artifact of the different size of
the fracture surfaces between the two model groups. In the
tensile case, the fractures tend to be roughly normal to the
extension direction, i.e., the long axis of the model and their
size is therefore restricted to the small cross section of the
model. In contrast, the fracture surfaces in the compressive
case tend to be oriented such that their normal is at an angle
of≈ 55. . .60◦ to the compression direction and can therefore
grow as large as a plane diagonally across the model, i.e.,
more than twice the size compared to the tensile case. Plot-

ting the height–height correlation function (Eq. 11) of the
surfaces in a log–log plot (Fig. 9) shows a clear linear section
which, for most surfaces analyzed, ranges from1rmin ≈ 1.5–
2 model units, i.e., somewhat more than the maximum parti-
cle size, to about half of the smaller dimension of the surface,
which in most cases means1rmax ≈ 20–30 model units. This
linear section in the log–log plot, representing a power-law
dependence c(1r)∝1rh shows that the surface is indeed
self-affine, at least for the range of scales covered by the lin-
ear section.

In order to verify that the observed self-affine structure of
the fracture surfaces generated in the numerical model is in-
deed a result of the fracture process and not an artifact caused
by the intrinsic roughness of surfaces in the particle model,
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Figure 8. Average rms roughness values for surfaces generated at
different stress conditions: black: true triaxial compression, red:
standard triaxial compression (transverse isotropic confinement),
blue: unconfined extension. Error bars show standard deviation.

Figure 9. Log–log plot of the height–height correlation function of
the two surfaces of a single fracture. Red and black symbols show
the rms height differences calculated for each distance bin for the
two surfaces. The straight lines are fitted to the linear section of the
data in log–log space, showing a power-law dependence.

a number of “quasi-planar” surfaces were generated in the
particle model and their roughness was analyzed. For this
purpose, one of the blocks of packed particles used in the
DEM simulations of the triaxial tests (Fig. 1a) was cut with
an arbitrarily oriented plane; i.e., the particles on one side
of the plane were removed. The remaining fragment of the
block then underwent the same surface extraction and rough-
ness analysis procedures as the fracture surfaces produced in
the deformation experiments. The result (Fig. 10) shows that
the height–height correlation function of the cut surface is
essentially flat from the particle scale up to the model size.
Performing this analysis on multiple cut surfaces did show
that this is independent of the orientation of the cut plane and

Figure 10. Log–log plot of the height–height correlation function of
a fracture surface generated in a numerical deformation experiment
(red diamonds) and a “quasi-planar” surface generated by cutting
the particle packing used in the experiment with a plane (black cir-
cles).

the details of the particle packing. Only the absolute value of
the roughness of the cut surfaces depends somewhat on the
size range of the particles. Calculating the joint roughness
coefficients for the cut surfaces according to Eq. (5) did, as
expected, produce non-zero values of the JRC. However, the
JRC values for the cut surfaces are in the range of 11.5–12,
which is much smaller than the values observed in the frac-
ture surfaces generated in the numerical models (JRC≈ 23–
32, Fig. 6a). It can therefore be assumed that, while there
is some contribution of the intrinsic particle-scale roughness
to the total roughness of the fracture surface, the self-affine
structure of the fracture surfaces as well as the major part of
their total roughness is due to the fracture process and not the
particle structure of the model as such.

Performing the calculations for all 388 fracture surfaces
extracted from the numerical models produced Hurst expo-
nents ranging from 0.2 to 0.6. To investigate possible depen-
dencies on the stress conditions under which the fractures
were created, the average Hurst exponents over all surfaces
generated in each set of simulations with identical boundary
conditions have been calculated. The mean value of H for
the sets varies between 0.3 and 0.45, with the variation be-
tween top and bottom quartile within each set typically in
the range of 0.05. . .0.1. Due to the relatively small number
of data points within each set of models, i.e., between 8 and
28 surfaces, and the observed asymmetry of the error distri-
bution in some instances, quartiles have been calculated and
plotted (Figs. 11 and 12) instead of standard deviations. Plot-
ting the calculated Hurst exponents against the mean confin-
ing stress (σ2+ σ3)/2 (Fig. 11) shows a weak trend towards
lower Hurst exponents with increasing confinement. No de-
pendence of the Hurst exponent on the ratio between the con-
fining stresses σ3/σ2 could be observed (Fig. 12).
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Figure 11. Average and variability of Hurst exponents for surfaces
generated with different average confining stress (σ2+σ3)/2. Black:
triaxial compression models, this work, blue: unconfined extension
models, this work, red and pink: triaxial compression models; data
are from Ohagen (2019). Error bars show top and bottom quartiles.

Figure 12. Average and variability of Hurst exponents for surfaces
generated with different ratio of confining stresses σ2 and σ3. Black:
this work, red: data from Ohagen (2019). Error bars show top and
bottom quartiles.

4.2 Laboratory tests

To characterize the roughness of the fracture surfaces pro-
duced in the laboratory deformation tests, we examined the
photogrammetrically produced point clouds of the single
sample fragments. For each of the limestone and sandstone
samples, one fracture surface was chosen. The maximum
sampling area for the roughness investigation was 14 cm2 for
the sandstone and ≈ 25 cm2 for the limestone sample. The
analyses of the heights distances of the single points of the
point clouds above their fitted mean planes revealed a nor-
mal distribution of the heights. Thus, a calculation of the rms
roughness is justified (Fig. 13). The height–height correlation
functions of these surfaces have a well-defined linear section

in a log–log plot proving a self-affine geometry in a distance
range between ≈ 0.1 and ≈ 1 cm, both for the limestone and
sandstone sample (Figs. S2 and S3 in the Supplement). With
distances larger ≈ 1 cm, a flattening of rms curve can be ob-
served, marking the upper end of the power-law relationship
between the point distance and the rms height difference.
From the linear slope segments of the correlation functions,
similar Hurst exponents could be deduced withH = 0.66 for
the sandstone and H = 0.69 for the limestone when analyz-
ing the maximum sampling area on the respective fracture.

To check whether the size of the investigation area on
the fracture surfaces has an effect on calculated Hurst ex-
ponents, we analyzed the height–height correlation func-
tions and Hurst exponents for a suite of different area sizes
(Fig. 14). For the limestone sample, the mean H value re-
sults in H = 0.73 with a standard deviation of 0.08. The
sandstone sample shows a clearly lower mean H value of
H = 0.6 and a standard deviation of 0.05. A stronger scatter
of Hurst exponents can be observed for the smallest analyzed
sample area size of ≈ 1 cm2, ranging between H = 0.43 and
0.64 for the sandstone surface and between H = 0.67 and
0.85 with two outliers of H ≈ 0.5 for the limestone surfaces.
For these outliers, a closer investigation of the correspond-
ing rms–distance curves shows that two different linear sec-
tions could be derived, one with a higher Hurst exponent for
smaller distances and one lower Hurst exponent for larger
distances.

For both sample surfaces, the JRC was estimated using
the same methods as for the numerical models. The results
show that the estimated JRC is dependent on the sampling
resolution, i.e., the number of sampling points on the pro-
file, specifically that the calculated value of the JRC is in-
creasing with smaller sampling intervals (Fig. 15). This is a
known effect which is caused by the dependence of the un-
derlying geometric parameters Rp and Z2, from which the
estimated JRC is calculated, on the sampling interval used
(Yu and Vayssade, 1991). It is also to be expected based on
the fact that the analyzed surfaces are self-affine. In that case,
the dependence of Rp on the sampling interval is directly de-
scribed by the “compass dimension” (Mandelbrot, 1985) of
the profile. For the fracture surfaces in the numerical models
(Sect. 4.1), a similar analysis of the resolution dependence of
the JRC was not done because of the lower intrinsic resolu-
tion of the point clouds which limits profiles to less than 100
sample points in most cases.

The empirical equations used for the calculation of JRC
from measured geometric parameters are usually derived
based on sampling resolutions between 100 and 400 points
per profile (Tse and Cruden, 1979; Yu and Vayssade, 1991;
Li and Zhang, 2015). Specifically, the equation used in this
work to estimate JRC from Z2 (Eq. 5) was derived by Tse
and Cruden (Tse and Cruden, 1979) using a sample inter-
val of 1.27 mm at a profile length of 25 cm, i.e., slightly less
than 200 points. The surfaces analyzed here have dimensions
of about 7cm× 5cm for the sandstone and approximately
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Figure 13. Distribution of heights for fracture surfaces generated in laboratory deformation experiments. Top: limestone sample deformed at
σ2 = σ3 = 30MPa, bottom: sandstone sample deformed in unconfined compression test. (a) Map view of the limestone surface colored by
height above the “best-fit” plane. (b) Probability density of heights and fitted normal distribution for limestone surface (c) Map view of the
sandstone surface colored by height above the “best-fit” plane. (d) Probability density of heights and fitted normal distribution for sandstone
surface.

Figure 14. Calculated Hurst exponent for different sizes of the mea-
surement area in the natural rock samples. Circles: individual mea-
surements, dashed lines: average of all measurements per sample.

10cm×4.5cm for the limestone. Therefore, a sampling inter-
val of between 0.25 and 0.5 mm will produce a similar num-
ber of sample points along the profiles. Therefore, the best es-
timates for the average JRC of the fracture surfaces produced
in the laboratory experiments are for the sandstone JRC≈ 9–
11 in the direction parallel to shortening direction in the de-
formation experiment and JRC≈ 11–13 perpendicular to it
(Fig. 15). For the limestone, the estimates are JRC≈ 6.5–7.5
in the parallel direction and JRC≈ 16–17 in the perpendicu-
lar direction. In both cases, the JRC shows a clear anisotropy
between the two directions. However, this anisotropy is much
larger in the limestone compared to the sandstone sample.

5 Discussion

The results of the analysis of the simulation data (Sect. 4.1)
shows that the roughness of the fracture surfaces generated
in the numerical models is high compared to natural rock
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Figure 15. Estimated JRC values calculated based on Eq. (5) for
fracture surfaces of the sandstone and limestone specimen. Black:
limestone, red: sandstone. Open symbols: profiles taken parallel to
shortening direction, filled symbols: profiles perpendicular to short-
ening direction. Small horizontal offset between data points in each
group added for better visibility of individual error bars.

fractures usually considered in the geomechanical literature.
In the numerical models, the surfaces show estimated JRC
values larger than 23 and in some case exceeding 30, whereas
the JRC for natural surfaces was originally only defined for
a range up to 20 (Barton, 1973; Barton and Choubey, 1977).
In contrast, the natural rock samples analyzed in this work
(Sect. 4.2) show JRC values between 6 and 17, which is well
within the range defined by Barton (1973).

However, as described in Sect. 4.1, the JRC values for
the numerical model contain a small contribution due to the
intrinsic particle-scale roughness of the model. If we con-
sider that the total roughness of the surface is the sum of
the roughness due to the particle structure of the surfaces and
the roughness due to the actual fracture process, and if we as-
sume that those contributions are not spatially correlated with
each other, it would be possible to correct the calculated JRC
values by removing the effect of the particle-scale roughness.
The parameter Z2 on which the calculation of the JRC is
based (Eq. 5) is calculated from the rms of the first derivative
of profiles along the surface (Eq. 9). Based on the assumption
that the particle-scale roughness and the fracture-generated
roughness are not spatially correlated, this means that the to-
tal Z2 is the rms of the Z2 values of the two parts, and there-
fore the value Z2f of the fracture-generated roughness can
be estimated as Z2f =

√
Z2

2 −Z
2
2p where Z2p is the contribu-

tion of the particle-scale roughness. Using the data described
in Sect. 4.1, values of Z2p ≈ 0.23–0.24 are obtained. This
would result in a correction of the mean JRC values for the
different groups of surfaces shown in Fig. 6a from ≈ 23.7 to
≈ 22.1 for the smallest and from ≈ 32.2 to ≈ 31.8 for the
largest values of the JRC. This shows that the potential cor-

Table 1. Roughness properties for surfaces generated in numerical
simulations of triaxial compression tests at σ2 = 6MPa, σ3 = 0 us-
ing different particle size ranges for the DEM material.

Particle size Hurst exponent JRC JRC
range anisotropy

0.2–1.0 0.414± 0.5 26.1± 1.8 2.0 %
0.15–1.0 0.415± 0.85 25.4± 2.4 3.2 %
0.1–1.0 0.398± 0.96 24.2± 2.3 0.4 %

rections are not significant and, in most cases, well inside the
scatter of the calculated JRC values. In addition, we did run
two small sets of simulations using a wider range of particle
sizes than the “standard” models described in Sect. 3.1, i.e., a
larger ratio between maximum and minimum particle radius
(Rmax : Rmin = 1.0 : 0.15 and Rmax : Rmin = 1.0 : 0.1), to see
if the particle size range had any effect on the surface prop-
erties. These sets consisted of five simulations each, all per-
formed under true triaxial conditions using σ2 = 6MPa and
σ3 = 0. The results did not show a statistically significant dif-
ference in Hurst exponent or JRC compared to the equiv-
alent simulations performed using the particle radius range
Rmax : Rmin = 1.0 : 0.2 (Table 1).

In numerical models, there is a slightly higher anisotropy
in the models with transversely isotropic confinement (σ2 =

σ3) of up to 8 % difference in JRC between the directions,
whereas in the models with σ2 6= σ3 the difference is less
than 3 % in all cases. In the rock samples, which are also
deformed under conditions where σ2 = σ3, the anisotropy is
much higher; i.e., the ratio between the JRC in the two direc-
tions is ≈ 1 : 1.2 in the sandstone and ≈ 1 : 2.3 in the lime-
stone. However, due to small number of fracture surfaces
available for analysis from the laboratory experiments, it is
not clear if this strong anisotropy, and the large difference
between the limestone and the sandstone sample, is a gen-
eral property of fracture surfaces generated under compara-
ble conditions or just an artifact of the specific samples stud-
ied. In general, the strong anisotropy which was observed
in the laboratory experiments, in particular in the limestone,
was not replicated in the numerical models. The reason for
the stronger directional anisotropy in the natural rock sam-
ples is not clear yet. A key difference between the microscale
mechanics of laboratory and numerical experiments is that
the natural rocks can undergo grain size reduction during the
fracture process, whereas this mechanism is not implemented
in the numerical models used in this paper. This might ex-
plain why the numerical models, at least in our experiments,
do not produce the striations observed in the natural rock
samples. A possibility to test this hypothesis in future work
would be to extend the numerical models to use breakable
particle clusters to represent rock grains instead of single
particles. This approach has been shown to yield insights
into the micromechanics of grain size reduction processes,
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for example, in fault gouge (Abe and Mair, 2005; Mair and
Abe, 2008, 2011) and in compression experiments (Thornton
et al., 2004). However, it also significantly increases the re-
quired computational effort for the simulations. A computa-
tionally less expensive option to include grain size reduction
into the numerical models might be to adapt the empirical
particle replacement approach developed by Cleary (2001)
to the specific requirements of the simulation of rock frac-
ture under triaxial loading. However, as Weerasekara et al.
(2013) point out, this approach is strongly dependent on the
availability of good calibration data for the grain fracture un-
der the specific stress and strain rate conditions of the process
modeled. Further insights could also be provided by addi-
tional laboratory experiments, for example, to test if the dif-
ference in anisotropy between numerical and laboratory ex-
periments also exists under true triaxial conditions (σ2 6= σ3).

Smoothing due to abrasion while sliding is, in general, an
important mechanism for the modification of rough surfaces.
In particular, slip along the surface can result in a signifi-
cant reduction of the Hurst exponent for profiles parallel to
the slip direction down to values below 0.5 (Candela et al.,
2012, Table 1b). However, those large reductions appear to
apply mainly to faults with large amounts of slip, i.e., several
meters up to kilometers. In contrast, data from laboratory ex-
periments published in the literature (Amitrano and Schmit-
tbuhl, 2002; Davidesko et al., 2014; Badt et al., 2016) suggest
that this process is unlikely to have a sufficiently large ef-
fect at the small shear offsets in both numerical models and
experimental samples studied here to explain the observed
differences. To investigate if the roughness evolution of the
fracture surfaces with increasing deformation of the sample
plays a role in our numerical model, we did perform a small
number of simulations which did not stop immediately after
the formation of the fractures but instead continued deforma-
tion to a total axial strain of up to 12 %. This is significantly
larger than the strain occurring in the laboratory experiments,
where total axial shortening did not exceed about 2 %. In par-
ticular, the amount of shortening occurring after the peak ax-
ial stress was reached, i.e., after failure, was generally less
than 1 %. The obtained Hurst exponents did show no sig-
nificant trend with increasing strain of the model and off-
set of the shear fracture (Fig. S4 in the Supplement). While
the average of the Hurst exponents from the six surfaces in-
vestigated could be considered as showing a slight increas-
ing trend for axial strains up to 8 % (Fig. S5 in the Supple-
ment), the increase of 0.03 is about an order of magnitude too
small to explain the observed differences between numeri-
cal and experimental surfaces. However, it would be com-
patible with the effect observed by Amitrano and Schmit-
tbuhl (2002). For one of the models, we also calculated the
JRC of the surfaces at various stages of the simulation. The
data show that there is also no significant change of the JRC
for the shear offset considered in this model, which would
be equivalent to ≈ 1cm in the laboratory samples, and un-
der the conditions of this model, i.e., true triaxial stress with

σ2 = 7.5MPa, σ3 = 3MPa (Fig. S6 in the Supplement). This
seems to confirm again that under the small shear offsets rel-
evant for our experiments, there is very little evolution of the
surface roughness, at least as far as it concerns the roughness
parameters calculated here (Hurst exponent, JRC). In partic-
ular, the data would suggest that any effects due to the small,
but the non-zero, shear offset in the laboratory experiments is
much too small to explain the observed differences between
numerical simulations and laboratory experiments.

Based on the results from the numerical models, there ap-
pears to be a trend towards higher roughness for fracture
surfaces generated under transversely isotropic stress condi-
tions, i.e., standard triaxial compression (σ1 > σ2 = σ3) com-
pared to those generated under true triaxial conditions (σ2 6=

σ3). This trend was shown for both geometrical roughness
measures used in the analysis of the data from the numerical
experiments, i.e., the JRC (Fig. 6) and also the rms rough-
ness (Fig. 8). A possible, but at this stage purely speculative,
idea to explain this observation might be that, if we assume
that the through-going fractures, which we analyze, form by
coalescence from smaller, precursory fractures, those precur-
sory fractures have their strike angles constrained to a nar-
row range if σ2 6= σ3, but that there is no such constraint if
σ2 = σ3. If this is the case, then the coalescence of those pre-
cursory fractures might lead to smoother large-scale surfaces
if they all have similar orientations compared to when they
have random strike directions. Unfortunately, the numerical
models used in this work do not have the resolution necessary
to test this hypothesis.

Additionally, a difference in the roughness between the
surfaces on tensile and compressive (i.e., shear) fractures
generated under unconfined conditions has been observed,
with the tensile fractures showing a smaller roughness. This
effect appears to be more pronounced if the roughness is
measured in terms of the JRC compared to the rms rough-
ness. Should these effects be confirmed by further work, and
in particular by comparison with more experimental data, it
could be used to provide additional input data to, for exam-
ple, permeability estimations of fracture networks or geome-
chanical fault stability calculations.

The analysis of the roughness scaling properties of the
surfaces in terms of the height–height correlation function
shows that the fracture surfaces generated in the numerical
models are self-affine with Hurst exponents around 0.3–0.45.
This value is in disagreement with the majority of field and
experimental studies (Bouchaud et al., 1990; Schmittbuhl
et al., 1993, 1995; Bouchaud, 1997) which find a “univer-
sal” Hurst exponentH ≈ 0.8. However, low Hurst exponents
in the range H ≈ 0.4–0.5 have previously also been found in
other numerical models of the generation of rough fractures
such as 3-D random fuse networks (Alava et al., 2006).

The Hurst exponents of the surfaces generated in the nu-
merical models can be corrected for the influence of the
particle-scale roughness in a similar way to the procedure de-
scribed above for the correction of the joint roughness coef-
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Figure 16. Comparison of the height–height correlation functions
of a numerical fracture surface based on raw data (crosses) and
corrected for the influence of the particle-scale roughness (circles).
Lines are power-law fits used to calculate the Hurst exponents for
raw (continuous line, H ≈ 0.49) and corrected data (dashed line
H ≈ 0.53).

ficients. It would require correcting the rms roughness values
in the height–height correlation function for each individual
distance bin and obtaining a power-law fit based on the cor-
rected data points (Fig. 16). However, while these corrections
do lead to slightly higher calculated Hurst exponents, the in-
crease is at most about 0.05 and therefore the effect is far too
small to explain the discrepancy.

The data obtained from the fracture surfaces generated in
triaxial tests on the limestone sample (H ≈ 0.75) are com-
patible with this “universal exponent”. In contrast, the sand-
stone sample shows a lower Hurst exponent (H ≈ 0.6) than
the limestone sample but not as low as the numerical mod-
els. There are experimental data for sandstone in the litera-
ture showing Hurst exponents even lower than our sandstone
sample and in fact close to the results from the numerical
models, i.e., H = 0.47± 0.04, (Boffa et al., 1998) and simi-
lar data from a synthetic, sandstone-like material made from
sintered glass beads (H = 0.40± 0.04, Ponson et al., 2006).
Both those studies investigated tensile (mode-1) fractures.
Boffa et al. (1998) used a direct tension setup with a pre-
notched sample to initiate the fracture at a defined location,
whereas Ponson et al. (2006) used a modified Brazilian test
where a compressive load is applied to two opposite points
on the circumference of the cylindrical sample to generate
a tensile stress in the stress in the central part of the disk
(Jaeger et al., 2007; Fjaer et al., 2008). However, our numer-
ical models do not show a dependence of the Hurst exponent
on the fracture mode (Fig. 11).

Nigon et al. did observe a transition from a Hurst expo-
nent of 0.74 to a lower value of 0.5 below a length scale of
about 0.1 mm in natural joint surfaces in sandstone (Nigon

Figure 17. Relation between joint roughness coefficient and Hurst
exponent of surfaces from numerical models (squares) and the lime-
stone sample (cross). Data points show averages for groups of sur-
faces generated under the same stress conditions. Error bars on the
limestone data shows anisotropy of the JRC. The dashed line shows
the relation proposed by Ficker (2017), Eq. (22).

et al., 2017, Fig. 9). However, this transition scale from a
“jointing induced roughness” to a “grain induced roughness”
is at a scale comparable to the mean grain size in their ma-
terial. The equivalent length scale in our numerical models
would be the mean particle diameter, i.e., below 1 model unit,
which is well below the length range used to fit the scaling
law (Fig. 9). This difference in scales shows that the Hurst-
exponents in our numerical models are completely calculated
above the “transition scale” of Nigon et al. (2017) and there-
fore should belong to the regime described as “jointing in-
duced roughness” by them. This means that the low values of
the Hurst-exponents in the numerical cannot be explained by
the “grain induced roughness” regime of Nigon et al. (2017).

When comparing the data from the numerical models to
the relation between fractal dimension D and JRC proposed
by Ficker (2017), i.e., JRC≈ 50(D− 1), the surfaces show
on average a slightly smaller JRC than would be expected
based on their fractal dimensionD calculated from the Hurst
exponent asD = 2−H (Fig. 17). Interestingly, the data from
the sandstone sample plot even further below the relation by
Ficker (2017). The data from the limestone sample are diffi-
cult to compare due to the large anisotropy of the JRC and
are therefore not plotted in Fig. 17.

It has been suggested by Ponson et al. (2007) that the ob-
served Hurst exponent is an indicator for the failure mode,
H ≈ 0.8 for “damage fracture”, i.e., coalescence from mi-
crocracks and H ≈ 0.4 for “brittle fracture”, i.e., continuous
propagation of the crack. However, we have not been able
to confirm this for our numerical experiments. Looking at
the relative timing of bonds breaking suggests that the frac-
ture surfaces in the DEM models grow by coalescence of mi-
crocracks despite having a Hurst exponent closer to 0.4. For
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examples of the general evolution of the microcrack distribu-
tion, see Figs. S7 and S8 in the Supplement.

The dependence of the variability of the measured Hurst
exponent on the size of the analyzed surface on both lime-
stone and sandstone samples suggests the large scatter ob-
served in the Hurst exponents from the numerical models
could be a resolution issue. The sandstone sample has a max-
imum grain size of about 200 µm. This results in a ratio be-
tween the length and width of the analyzed fracture surface
and the maximum grain size of between 250 : 1 and 350 : 1,
whereas this ratio is only in the range between 30 : 1 and
60 : 1 in the numerical models. The limestone sample is even
more fine grained than the sandstone sample.

Amitrano and Schmittbuhl (2002) find a weak decrease of
the roughness exponent with increasing confinement if no
further shear displacement is imposed on the surfaces after
fracture. This is similar to the trend observed in our numer-
ical simulation data (Fig. 11), although at different absolute
values of the Hurst exponent, which are in the range between
0.3 to 0.45 in our data and between 0.7 to 0.77 in Amitrano
and Schmittbuhl (2002). Also, this stress dependence cannot
be directly compared because of differences in the mechani-
cal properties between the simulated material in our case and
the real granite. Amitrano and Schmittbuhl (2002) do not ex-
plicitly give the unconfined compressive strength (UCS) of
the granite. Extrapolating from their Fig. 3 suggests a value
of around 300 MPa, although a calculation from their internal
cohesion (37 MPa) and friction angle (55± 2◦) gives a value
closer to 240 MPa. Combined with the confining stress used
in their work of σ3 ≈ 20–80 MPa, this suggests that the ratio
between UCS and the confining stress is in a similar range
as in the numerical models used here, where UCS= 80 MPa
and σ3 = 0–15 MPa.

6 Conclusions

Synthetic fracture surfaces have been generated in numerical
simulations of rock deformation experiments using the dis-
crete element method (DEM). Results of a statistical analysis
demonstrate that the generated surfaces are self-affine. Fur-
ther analysis has shown no dependency of roughness mea-
sures such as rms roughness and the joint roughness coeffi-
cient (JRC) on the confining stress. One exception is the ob-
servation that samples fractured under true anisotropic condi-
tions (σ1 > σ2 > σ3) show lower JRC and lower rms rough-
ness than samples fractured under transversal isotropic con-
finement (σ1 > σ2 = σ3), at least for numerical models. For
natural rock samples this effect has not been tested yet. Pho-
togrammetric analysis of shear fracture surfaces on two rock
samples has shown that the choice of sampling area can in-
fluence the roughness data obtained. Results show, for exam-
ple, a variation of ±0.1 in the Hurst exponent between small
sampling areas on the same surface of a rock sample.

Comparing the numerical results with laboratory experi-
ments and additional data obtained from the literature sug-
gests that the trends observed in the numerical parameter
study are valid, but it also shows some discrepancies in the
absolute values of some of the roughness parameters. In par-
ticular, the fracture surfaces generated in the DEM simula-
tions show a higher joint roughness coefficient compared to
natural rock samples and a lower Hurst exponent. The com-
parison also shows a stronger directional anisotropy of the
roughness in the real rock samples compared to the numeri-
cal simulations. The reason for this result is not clear so far
and should be subject to further investigation. One possible
cause might be the occurrence of grain size reduction in real
rocks, which is not implemented in the current numerical
models.
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