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Abstract. Double-difference (DD) seismic data are widely
used to define elasticity distribution in the Earth’s interior
and its variation in time. DD data are often pre-processed
from earthquake recordings through expert opinion, whereby
pairs of earthquakes are selected based on some user-defined
criteria and DD data are computed from the selected pairs.
We develop a novel methodology for preparing DD seismic
data based on a trans-dimensional algorithm, without impos-
ing pre-defined criteria on the selection of event pairs. We
apply it to a seismic database recorded on the flank of Katla
volcano (Iceland), where elasticity variations in time have
been indicated. Our approach quantitatively defines the pres-
ence of changepoints that separate the seismic events in time
windows. Within each time window, the DD data are con-
sistent with the hypothesis of time-invariant elasticity in the
subsurface, and DD data can be safely used in subsequent
analysis. Due to the parsimonious behaviour of the trans-
dimensional algorithm, only changepoints supported by the
data are retrieved. Our results indicate the following: (a) re-
trieved changepoints are consistent with first-order variations
in the data (i.e. most striking changes in the amplitude of DD
data are correctly reproduced in the changepoint distribution
in time); (b) changepoint locations in time correlate neither
with changes in seismicity rate nor with changes in wave-
form similarity (measured through the cross-correlation co-
efficients); and (c) the changepoint distribution in time seems
to be insensitive to variations in the seismic network ge-
ometry during the experiment. Our results demonstrate that
trans-dimensional algorithms can be effectively applied to
pre-processing of geophysical data before the application of

standard routines (e.g. before using them to solve standard
geophysical inverse problems).

1 Introduction

Data preparation is a daily routine in the working life of geo-
scientists. Before using data to get insights into the Earth sys-
tem, geoscientists try to deeply understand their data sets to
avoid introducing, e.g. instrumental issues, redundant data,
unwanted structures such as data density anomalies, and
many others (Yin and Pillet, 2006; Berardino et al., 2002;
Lohman and Simons, 2005). All the activities for prelimi-
nary data analysis can be considered an exploration of the
“data space” (Tarantola, 2005) and are mainly based on ex-
pert opinion. Previous experience drives scientists in select-
ing the most trustable portion of their experiments by clean-
ing data sets before using them for getting new knowledge
about Earth model parameters. There are two main reasons
for moving a step forward from expert opinion. First, the
huge amount of (often multidisciplinary) data accumulated
in geosciences in the last decade requires more and more
data screening and preparation, sometimes involving multi-
disciplinary expertise. Research activities could greatly ben-
efit from a more automated exploration of the data space able
to ease preparatory tasks. Second, expert opinion is a human
activity and is mainly based on dual categories, e.g. good or
bad data, and cannot easily handle a continuous probability
distribution over the data (i.e. expert opinion cannot easily
associate a continuous “confidence” measure with each data
point).
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In recent years, in the framework of Bayesian inference,
exploration of the data space has been introduced in a few
cases to “explore” unknown features of the data sets. For ex-
ample, the so-called hierarchical Bayes’ approach has been
introduced to estimate data uncertainties from the data them-
selves (Malinverno and Briggs, 2004). More complex hier-
archical Bayes’ approaches have been developed to measure
the data correlation as well (e.g. Bodin et al., 2012a; Galetti
et al.,, 2016) or to evaluate an error model (e.g. Dettmer
and Dosso, 2012). The exploration of the data space in all
these studies implies considering some additional unknowns
(e.g. data uncertainties or error correlation length), so-called
hyper-parameters or nuisance parameters, and estimating
them directly from the data. A step forward in the explo-
ration of the data space has been presented by Steininger
et al. (2013) and Xiang et al. (2018), who used a data-space
exploration approach to evaluate the performance of two dif-
ferent error models directly from the data. In such studies,
the number of hyper-parameters considered is not fixed but
can assume two different values (1 or 2) depending on the
error model considered. Another interesting, recent case of
exploration of the data space is represented by the work of
Tilmann et al. (2020), in which the authors used Bayesian
inference to separate the data into two sets: “outliers” and
“regular”. In this case, the data themselves are probabilisti-
cally evaluated to understand their contribution to the final
solution as regular data or outlier data; i.e. the data are clas-
sified into two different families according to their coherence
with the hypothesis of being regular data or not.

In this study, we push the exploration of data space in
a new direction. We develop an algorithm for computing
Bayesian inference specifically for the exploration of the data
space. Exploration of the data space is performed through
a trans-dimensional algorithm (e.g. Malinverno, 2002; Sam-
bridge et al., 2006) so that the number of hyper-parameters is
neither fixed nor limited to 1 or 2. We represent data struc-
ture as partitions of the covariance matrix of uncertainties,
i.e. changepoints that create sub-matrices of the covariance
matrix with homogeneous characteristics, with the number
of partitions not dictated by the user but derived by the data
themselves in a Bayesian sense (i.e. we obtain a posterior
probability distribution, PPD, of the number of partitions).
In this way, similar to Tilmann et al. (2020), portions of data
can be classified and used differently in the subsequent steps
of the analysis.

We apply our algorithm to prepare a widely exploited
type of seismic data set, the seismic double-difference (DD)
data set, that has been used as input in seismic tomography
for defining subsurface elasticity (e.g. Zhang and Thurber,
2003) and its variation in time (e.g. so-called “time-lapse to-
mography”; Calé et al., 2011; Zhang and Zhang, 2015). DD
data need to be reconstructed from specific partitions of the
original data (i.e. seismic events). Subjective choices have a
great impact on the definition of DD data. In particular, such
choices can be used to limit the number of DD data them-
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selves, and the selection, in turn, could introduce biases in the
subsequent definition of the elastic model and its variations
in time. We apply our algorithm to statistically define, in a
more objective way, the distribution of partitions in the DD
data. We show how a more data-driven approach can obviate
expert-driven data selection and can be used as a preliminary
tool for e.g. time-lapse seismic tomography.

1.1 Double-difference data in seismology

Double-difference seismic data are widely used for relocat-
ing seismic events and imaging the subsurface (e.g. Wald-
hauser and Ellsworth, 2000; Roecker et al., 2021). DD data
rely on the assumption of (nearly) co-located events for
which seismic recordings have been obtained from the same
station (Zhang and Thurber, 2003) or for the same pair of
stations (e.g. Guo and Zhang, 2016). The concept of co-
located events relies on expert opinion. It is generally as-
sumed a priori as a maximum distance between hypocentres
in order to consider a pair of events to be included in the
DD data, together with a high value of cross-correlation for
their waveforms. A DD datum is the differential travel time
for the selected pair of events. The same scheme has been
applied to more complex analyses, such as full waveform
inversion (Lin and Huang, 2015). Based on the assumption
of nearly co-located events, the information contained in the
DD datum can be used to refine event locations (e.g. small
events referred to a master event; Waldhauser and Ellsworth,
2000) or the seismic properties of the rocks in the area where
events are clustered (e.g. Zhang and Thurber, 2003). In recent
years, seismic monitoring of subsurface processes has also
been realized through seismic tomography (e.g. Chiarabba
et al., 2020), in particular with the analysis of DD data: rock
weakening due to mining activities (Qian et al., 2018; Ma
et al., 2020; Luxbacher et al., 2008), granite fracturing during
geothermal well stimulation (Calé et al., 2011; Calé and Dor-
bath, 2013), and oil and gas operations (Zhang et al., 2006).
For monitoring purposes, an additional assumption is con-
sidered during DD data preparation: elastic properties of the
media traversed by the seismic waves should not change be-
tween the occurrence of the selected event pairs. This fact
implies the computation of the so-called time-lapse analysis,
wherein pre-defined time windows are considered and static
images of the subsurface (Calé et al., 2011), or differential
elastic models (Qian et al., 2018), are reconstructed for each
time window. In any case, the most relevant issue in time-
lapse tomography remains how to define the time windows,
which artificially separate events and prevent their coupling
to obtain DD data. How many time windows are meaningful
to construct DD data? And what should be their time lengths?
This issue is critical due to the dependence of the number of
DD data on the number of paired events and thus from the
number of time windows, as schematically shown in Fig. 1.
The definition of the set of time windows, on which the
sequence of 3D time-lapse tomographic inversions should
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Figure 1. Schematic example of the standard preparation of DD data in different time windows. Time windows are defined by changepoints
(also called “hard partitions”). Here, for the sake of simplicity, we represent the travel time to station ALF for each seismic event (yellow
stars) as a function of origin time. A DD datum (curved black line) is prepared for each pair of events not separated by a changepoint. (a)
Here, only one changepoint is present, so Np = 18 DD data can be prepared. (b) In the case of two changepoints, only Np = 9 DD data can

be prepared.

be computed, demands expert opinion. There are three main
possibilities in time-lapse tomography: (a) imposing time
windows based on known seismic history (before and after
a known, relevant seismic event: Young and Maxwell, 1992;
Chiarabba et al., 2020), (b) keeping the same length for all
time windows (e.g. 1d; Qian et al., 2018), or (c) trying to
have the same amount of data in all the time windows (e.g.
Patane et al., 2006; Kerr, 2011; Zhang and Zhang, 2015). In
other cases, the lengths of the time windows vary based on
research needs (e.g. Calé et al., 2011). A human-defined set
of time windows might mask the real variations of the physi-
cal properties, in which case the time evolution of the elastic
model found could be not associated with the investigated
geophysical process.

Here, we tackle the issue of defining the number and time
length of the time windows in DD data preparation through
a novel approach. To simplify the experiment, we focus on
closely associated events recorded on a volcanic edifice in
Iceland. Such a cluster of events, which spans no more than
100 m in diameter, is considered a source of repeating events
that are recorded from a seismic station 6 km away for more
than 2 years continuously. In this way, we assume perfectly
co-located events and we can focus on time variations of DD
data. More generally, the novel approach can be applied to
both temporal and spatial associations (i.e. to define both
time windows and spatial length for pairing events and com-
posing DD data).

https://doi.org/10.5194/se-12-2717-2021

1.2 Background on Bayesian inference, Markov chain
Monte Carlo sampling, and trans-dimensional
algorithms

Geophysical inverse problems have been solved for a long
time following direct search or linearized inversion schemes
due to the limited number of computations needed to obtain a
solution. Such solutions have been given in the form of a sin-
gle “final” model presented as representative of the Earth’s
physical properties. Thanks to the computational resources
now available, such approaches are outdated for more sophis-
ticated and CPU-time-consuming workflows, in which mul-
tiple models are evaluated and compared, to obtain a wider
view of the Earth’s physical properties. Algorithms based on
Bayesian inference belong to this second category, for which
the “solution” is no longer a single model but a distribution
of probability on the possible value of the investigated pa-
rameters, following Bayes’ theorem (Bayes, 1763):

_ pmpd|m)

d K
p(m|d) o)

(1)
where p(m | d) represents the information obtained from the
model parameters m through the data d, the so-called pos-
terior probability distribution (PPD) or simply “posterior”.
Such information is obtained combining the prior knowl-
edge of the model: p(m), with the likelihood of the model
given the data, p(d | m). The denominator of the right term
is called “evidence” and represents the probability of the data
in the model space:

p(d) = / p(m)p(d | mydm. @)
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The evidence is a high-dimensional integral that normalizes
the PPD. It is generally difficult to compute, and thus meth-
ods that do not require its computation (such as Markov
chain Monte Carlo, McMC; see below) are widely used in
Bayesian inference.

The likelihood of the data for a given model is necessary
to evaluate and compare different sets of model parameters.
It is generally expressed as

1

1
_,¢ 3
@n|Copiz® ©)

L(m)=p(d|m)=
where ¢ represents the fit between model prediction p; and
the actual value of the ith observation o;, i.e. the residuals
e; = (0; — pi), through the covariance matrix of the uncer-
tainties C,:

p=e'C,le. )

Due to the difficulties in computing the evidence and the
analytic solution of Eq. (1), and thanks to the improved
computational resources, in the last 2 decades the emerging
trend in Bayesian inference has been represented by “sam-
pling methods”, in which the direct computation of Eq. (1)
is replaced by the sampling of the model space accord-
ing to the PPD (Sambridge and Mosegaard, 2002). One of
the most famous sampling methods is called Markov chain
Monte Carlo, for which the chain samples the model space
according to probability rules, such as the Gibbs sampler
or Metropolis rule (Metropolis et al., 1953; Gelman et al.,
1996). Briefly, starting from a given point in the model
space called the current model, a new point of the model
space called the candidate model is proposed and evalu-
ated according to some rules based on the PPD. In partic-
ular, the Metropolis rule coupled to the approach developed
in Mosegaard and Tarantola (1995), which is the workflow
adopted in this study, accepts or rejects moving from a cur-
rent model to a candidate model according to the ratio of their
likelihoods, i.e.

a = L(mcand)/L(meyr). )

This is a simplified version of a more general formulation
of the acceptance probability in Metropolis-based McMC
(Gallagher et al., 2009). It is worth noting that our workflow
does not directly specify the dimensionality of the model
space. In fact, following the recent advancements in the so-
lution of geophysical inverse problems, we do not consider
models with a fixed number of parameters, but we make use
of the so-called trans-dimensional (trans-D) algorithm and
propose candidate models with a different number of dimen-
sions with respect to the current models. This approach is
called trans-D sampling, and it has been widely used for the
solution of geophysical inverse problems in the last decades
(Malinverno, 2002; Sambridge et al., 2006; Bodin et al.,
2012a; Dettmer et al., 2014; Mandolesi et al., 2018; Pog-
giali et al., 2019). Trans-D algorithms have been proven to
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be intrinsically “parsimonious” (Malinverno, 2002), and thus
they preferably sample simpler models with respect to com-
plex ones. This is one of the most important characteristics
of trans-D algorithms, enabling a fully data-driven solution
for the model parameters.

The covariance matrix C, plays an important role in
Eqg. (5). In fact, it (inversely) scales the differences between
the observations and the predictions (vector e) in Eq. (4).
Having larger values in the entries of C, means that dif-
ferences between observations and predictions are less rel-
evant and more candidate models can be accepted during the
McMC sampling through the Metropolis rule. Conversely,
larger values in C, decrease the overalll likelihood due to an
increase in the denominator in Eq. (3). If the entries in C, re-
lated to a certain observation are all larger with respect to the
entries related to other observations, such observations will
have limited importance in the McMC sampling. Defining
an appropriate C, becomes fundamental for correctly driv-
ing the McMC sampling of the PPD.

2 An algorithm for exploration of double-difference
data space

What happens to the DD data set if we create a hard partition
in time, i.e. if we artificially separate some events from the
others? As clearly illustrated in Fig. 1, the number of data Np
in the DD data set varies, decreasing for an increasing num-
ber of hard partitions. From a Bayesian point of view, this
is not admissible because Eqs. (3) and (5) need to consider
the same number of data points in two models to allow their
comparison (see also Tilmann et al., 2020).

Our novel approach to solve this issue relies on the intro-
duction of a family of “hyper-parameters”, which represent
the partitions of the events, and such hyper-parameters are
used for scaling the different entries in the covariance ma-
trix C,. In our approach, the number of hyper-parameters
in the family is not fixed, but it is directly derived from the
data themselves. Hyper-parameters have been introduced in
geophysical inversions for estimating the data uncertainties,
expressed, for example, as the variance of a Gaussian distri-
bution (Malinverno and Briggs, 2004). Hyper-parameters are
generally part of the model vector together with physical pa-
rameters. As stated in Bodin et al. (2012b), estimated hyper-
parameters not only account for measurement uncertainties,
but also include other contributions that build up the uncer-
tainty in the geophysical inversions, such as simplification of
the physics included in the forward solutions or simplified
model parameterization. Hyper-parameters have been used
to estimate uncertainty models (Dettmer and Dosso, 2012;
Galetti et al., 2016) or to discriminate between two differ-
ent families of uncertainty models (Steininger et al., 2013;
Xiang et al., 2018). In this last case, the number of hyper-
parameters belonging to a model vector is not constant but
can be one or two depending on the family. More recently, a
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nuisance parameter has been introduced to evaluate the prob-
ability of each datum to belong to the regular data or to the
outliers (Tilmann et al., 2020).

For the DD case, we introduce a family of hyper-
parameters to estimate which portions of the DD data violate
our initial assumptions. In fact, in our assumptions, double-
difference data are computed from pairs of seismic events
that occurred in the same rock volume, recorded at the same
seismic station. For perfectly co-located events, and in the
absence of any change in the rock seismic velocity field be-
tween the first and the second event, double-difference mea-
surements should have a mean of 0 and should be distributed
following a simple Gaussian error model, which can be a rep-
resented by the (diagonal) covariance matrix C}, with the DD
uncertainties along the diagonal. Here we assume no correla-
tion between uncertainties computed for two different event
pairs (see Appendix B1 for the definition of C} from our
data). In this case, the value of the fit ¢ expressed as

¢=d"C:"'a, (6)

with d the DD data vector, should be close to Np (Np is the
number of DD data, i.e. the length of the DD data vector).

When the value of ¢ significantly deviates from Np,
a modified covariance matrix C,(m) should be adopted,
whereby the portion of the data inconsistent with the hy-
potheses are considered differently from the portions of DD
data that do not violate the hypotheses. The new modified
covariance matrix C,(m) is obtained as

Ce(m) =W~ (m) C; W' (m), )

where the matrix W(m) is a diagonal matrix that depends
on the weight for each DD datum based on the hyper-
parameters. It is noteworthy that if we use Eq. (7) in Eq. (3),
we see that in our case the dependence of the likelihood func-
tion on the model no longer resides in the residuals, as is
generally the case in geophysical inverse problems, but only
in the covariance matrix. However, for a simple case such as
ours, we highlight the fact that this dependence could in prin-
ciple be moved back to the residuals if we allow the physical
assumptions to be variable in time (i.e. if we allow the elastic
model to change in time, which in our assumption cannot).
Following a Bayesian inference approach, we reconstruct
the statistical distribution of the hyper-parameters (i.e. event
partitions) in time through trans-dimensional McMC sam-
pling. The fully novel idea in our algorithm resides in the
trans-dimensional behaviour of our exploration of the data
space. In fact, the number of hyper-parameters in the model
(and thus the number of partitions of C}) is not fixed and can
change along the McMC sampling. At the end of the McMC
sampling, we can compute a PPD of the number of parti-
tions in the problem, which is information fully prescribed
from the data and priors. In Fig. 2, we present a flowchart of
our algorithm indicating the main elements. The algorithm
follows a standard McMC sampling scheme based on the
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Figure 2. Flowchart of the algorithm. The grey-shaded box indi-
cates the element which can be shared on multiple CPUs on a clus-
ter.

Candidate model
becomes the
current model

Metropolis rule. First of all, we need to define the model pa-
rameterization, i.e. how we formalize our family of hyper-
parameters (Sect. 2.1). Thus, an explicit definition of the
prior probability distribution on the parameters which com-
pose the models is needed (Sect. 2.2). Such parameters are
perturbed along the McMC sampling following prescribed
rules which are randomly applied to propose a new candidate
model (Sect. 2.3). Finally, we present the DD data, which
will be used to test our algorithm, and how we obtain them
(Sect. 2.4 and Appendix B).

2.1 Model parameterization

In our algorithm, a model is described by a set of k change-
points that define the partitions of C} and their associated
quantities: that is, m = (k, Ty, my). The k vector T repre-
sents the time occurrence of the k changepoints, whereas
the k vector mj contains the weights associated with each
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changepoint. We assume that a DD datum d;;, associated
with events i and j, retains its original variance rrl.z. if no
changepoint occurs between OT; and OT ;. Otherwise, its im-
portance is modified with weight Wj;(m):

Wi (m) = 107 ™), 8)

where w;; is computed as

k
wij(m)=>» 7, if OT; <T,<OT,, )
p=1

recalling that W is a Np x Np diagonal matrix and W;; rep-
resents the element along the diagonal associated with DD
datum d;;. Following our approach for defining the w;; (m),
specifically the sum of the values associated with the rele-
vant changepoints, we assume that a pair of “distant” events
in time has more probability of being “separated” by one
or more changepoints and thus of having a lower weight
W;; (). This assumption reflects the standard process of DD
data, in which distant (in space and/or time) events are almost
never paired in DD data sets. However, if no changepoints
are present between distant events, our trans-dimensional ap-
proach still works, reducing the number of changepoints to
the minimum. Several synthetic tests, shown in Appendix A,
demonstrate that non-necessary changepoints are removed
from the family due to the parsimoniousness of the trans-
dimensional algorithm, and new ones have limited probabil-
ity of being accepted in the family.

2.2 Prior information

Uniform prior probability distributions are selected for
our inverse problem. Here, the number of changepoints is
bounded between 0 and 100. Changepoints can be distributed
everywhere in time between 2011.5 and 2013.7. To make
the algorithm more efficient, we set a minimum distance be-
tween two changepoints as large as 0.5 d (Malinverno, 2002).
Changepoint weights iy follow a uniform prior probability
distribution between 0.0 and 1.0.

2.3 Candidate selection

Having an efficient workflow for carrying out the McMC
sampling is fundamental for keeping the CPU time within ac-
ceptable limits. From a theoretical point of view, any recipe
can be implemented at the core of the McMC due to the fact
that results (i.e. Eq. 1) do not depend on the McMC details';
i.e. the same prior information and the same data will give the
same PPD, whatever recipe is selected for the McMC sam-
pling. However, inefficient recipes can take too long to ade-
quately sample the PPD, and thus from a practical point of

1 As long as the recipe follows the necessary probabilistic rules
(Sambridge and Mosegaard, 2002; Mosegaard and Sambridge,
2002).
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view, users should spend some time defining a proper recipe.
In our case, to perturb the current model and propose a new
candidate model, we randomly select one of the following
four “moves”.

1. (This move is randomly selected with probability P; =
0.4) The ith changepoint is moved from its time position
T;. There are two equally possible perturbations: the
changepoint time position 7; is randomly selected from
the prior, or the changepoint time position 7; is slightly
perturbed from the original value in the current model
with a micro-McMC approach (see Appendix A2, Pi-
ana Agostinetti and Malinverno, 2010, for the details of
the micro-McMC).

2. (P> =0.4) The weight m; of the ith changepoint is per-
turbed with a micro-McMC approach (Appendix A2,
Piana Agostinetti and Malinverno, 2010).

3. (P3 =0.1) “Birth” of a changepoint: a new changepoint
is added to the current model.

4. (P4 =0.1) “Death” of a changepoint: a changepoint is
removed from the current model.

To increase the acceptance probability (Eq. 5), the can-
didate model is generated randomly by selecting only one
of the possible moves (selected with the prescribed prob-
ability). In this way, the difference between candidate and
current models should be limited and their likelihood values
should be close one to each other. The last two moves rep-
resent the trans-dimensional moves, in which the dimension-
ality of the model is changed from the current model to the
candidate. For move (3), we follow the approach described
in Mosegaard and Tarantola (1995) and we propose a com-
pletely new changepoint with T;1 and ;41 randomly sam-
pled from their prior distributions. For move (4), we sim-
ply randomly select one changepoint and remove it from the
model.

2.4 Data

We test our novel methodology for preparing DD data with a
single-station data set recorded on Katla volcano in Iceland
during a 2-year monitoring experiment. We collected all the
waveforms recorded by one seismic station on the volcano
flank, which is far enough from a source of repeating earth-
quakes (i.e. all waveforms have a high degree of similarity)
to be considered a pointwise seismic source. Details about
the data preparation are given in Appendix B. The DD data
are represented by the vectord =d;; withi=1,...,N. — 1,
j=i+1,...,Ne,and N, the number of events. Starting with
Ne = 1119 events, we obtain Ne x (Ne — 1)/2 DD data. The
total number of DD data is Np = 625521. DD data values
d;; and uncertainties o;;, associated with events i and j, are
reported in Fig. 3. Striking changes in DD values suggest the
presence of clustering of data in time, but the exact number
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and positions of such clusters are not easy to define by visual
inspection. Moreover, some of those changes could be due
to modifications of the seismic network, in principle mapped
in our DD data. In fact, our DD data depend on the origin
time (OT) computed by exploiting all the recordings from
the seismic network. Thus, a change in the seismic network
configuration could influence the quality of seismic network
detections and locations, which in turn could introduce a bias
in our data as a shift in the DD value or an increase in DD
uncertainties. Given the independent processes used to define
each single DD datum, as a first approximation we consider
our final covariance matrix of the uncertainties in the DD
data Cj to be a 625521 x 625521 diagonal matrix, with the
square of the uncertainties presented in Fig. 3b along the di-
agonal, omitting the correlation between uncertainties given
by e.g. biases in OT determination.

3 Finding data-driven time variations of rock elasticity
during Katla’s seismic swarm

We apply our novel methodology for the definition of the
changepoints in DD data to the data set recorded on Katla
volcano in Iceland during a 2-year monitoring experiment.
Based on the observations of the limited dimension of the
cluster with respect to the event—station distance (100 m ver-
sus 6.0 km) and the overall high similarity of the waveforms
(correlation coefficient always larger than 0.9), our algorithm
is able to map out which portions of the data violate our un-
derlying hypotheses: co-located events and a constant elas-
ticity field in time. Separating those two effects with a single
station would be challenging, but here we want to illustrate
in detail how the time occurrence of the changepoints is de-
fined and compare it to other potential approaches for the
definition of changepoints in DD data, namely variations in
seismicity rate and waveform cross-correlation.

As shown in Fig. 1, defining changepoints for DD data us-
ing expert opinion is a dangerous task due to the limitation
in the number of data available for subsequent uses. For ex-
ample, seismologists could be tempted to test if using fewer
data could give better images in a subsequent tomographic
inversion based on pre-defined ideas about the subsurface
structures. In fact, some changes in DD data are obviously
present in the observations (Fig. 3, between event 550 and
1050, for example), but others are more subtle to define.

We compute the data-space exploration by running 100 in-
dependent McMC samplings, for which each chain sampled
2 million changepoint models. We discarded the first million
models and collected one model every 1000 in the subse-
quent million models. Our final pool of models used for re-
constructing the PPD is composed of 100000 models. The
full CPU time for running the algorithm is about 19h on a
100-CPU cluster. The value of chi square decreases in the
first half-million models, together with the logarithmic value
of the normalizing factor in Eq. (3) (Fig. 4a). The number
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of changepoints reaches a stable value around 15 to 20 after
1 million models, confirming the length of the burn-in pe-
riod used (Fig. 4b). The ratio between the number of event
pairs not separated from any changepoint (Ng) and the total
number of DD data (Np) is also stable at around 0.2 after
1 million models, indicating that no relevant changepoint is
added in the second half of the McMC sampling. It is worth
noting that N should approximately indicate the number of
DD data to be used in any subsequent analysis.

Looking at the full details of the PPD reconstructed from
the McMC samplings, we observe the presence of long time
windows completely without any changepoint (e.g. between
2011.7 and 2012.4), demonstrating the parsimoniousness of
the trans-D approach: if changepoints are not supported by
the data they are removed during the sampling and do not
appear in the final PPD (Fig. 5e). Moreover, the most proba-
ble (relevant) changepoint (changepoint number 3 in Fig. Se)
perfectly aligns with one of the most striking changes in the
DD data as shown in Fig. 5a, confirming the goodness of the
approach. The distribution of the weights clearly defines the
partition of the C,(m), in which initial data (i.e. DD data re-
lated to events occurring at the initial stages of the swarm in
2011) slowly release their “connection” to later events and
thus indicate that they should not be included in the subse-
quent analysis. From the histogram of the number of change-
points in each sampled model, we can see how the trans-
D algorithm works: no fewer than 10 and no more than 20
changepoints are generally considered, even if we allow the
number to increase to 100. Combining this information with
the distribution of changepoints in time given in Fig. Se, we
define 11 relevant changepoints (red arrows). We again ac-
knowledge that this number could be a subjective choice;
however, looking at Fig. 5d, we see that changepoints can
be “ranked” in some sense given their mean PPD weights.
For example, changepoints 2, 5, and 9 have clearly associ-
ated lower weights compared to the others and should thus be
considered less relevant. Our methodology does not solve all
issues connected to the preparation of DD data, but, at least,
it can be used to quantify the occurrence of changepoints and
their importance, and such quantification can be exploited in
a later stage depending on the subsequent analysis planned.

We compare the occurrence in time of the resulting 10
changepoints with the cross-correlation coefficients between
each event in the seismic swarm and the largest one (see
Sgattoni et al., 2016a, for details). Both P-wave and S-wave
cross-correlation coefficients display some degree of vari-
ability and some well-defined patterns in the time window
used in this study (Fig. 6), even if we consider the fact that
the smaller values are always larger than 0.9. We observe
that there is no clear correlation between changepoint posi-
tion in time and cross-correlation values. In mid-2011 around
event 300 and early 2012 around event 700, we have two
changepoints for which cross-correlation seems stable for
both P and S waves. At the beginning of 2012, when the
seismic network was redefined, the cross-correlation for S
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Figure 3. DD data presented as a matrix of i—j pairs: (a) values and (b) uncertainties.
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Figure 4. Evolution of some parameters along the McMC sampling.
(a) Chi-square value (blue crosses) and logarithmic value of the nor-
malizing factor in the likelihood function (red dots). (b) Number
of changepoints in the sampled models (blue crosses) and ratio be-
tween the number of unaffected data (i.e. DD data for which the two
events are not separated by any changepoint) and the total number
of DD data, Ng/Np (red dots).

waves changes dramatically, whereas the change in cross-
correlation for P waves is less evident, and no changepoint
is found at all. Our results seem to indicate that variations in
cross-correlation coefficients (for example, computed for re-
peating earthquakes) could indicate unrealistic variations in
elasticity and could be a problematic choice for a monitoring
system of the subsurface.

We also compare the position of the retrieved changepoints
with the seismicity rate, another parameter usually associ-
ated with time variations of the subsurface properties (e.g.
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Dou et al., 2018). In Fig. 7, we report the seismicity rate ev-
ery 2 weeks. The rate of events is highly variable along the
studied time window, with values ranging between a few and
more than 30 events per week. The seismicity rate decreases
in 2012, with some bursts up to 15 events per week in late
2012. As for the cross-correlation coefficients, the position of
the retrieved changepoints does not simply correlate with the
time history of the seismicity rate. We have found change-
points for which the seismicity rate is very high (2011.6)
and very low (e.g. 2013.4). The most probable changepoint
(changepoint number 3) occurs in a period of sustained seis-
micity rate that starts 5-6 weeks before. If our changepoints
indicate variations of subsurface elasticity, the time history
of seismicity rate should be carefully evaluated before using
it for tracking elasticity changes in time. Nevertheless, we
point out that the differences in the time evolution of the two
indicators could be attributed to other geophysical processes,
such as stress variations, which does not strictly imply elas-
ticity variations, and we suggest that an integrated analysis
could be necessary.

4 Discussion

The DD data recorded on Katla volcano and the results pre-
sented here clearly indicate that time variations in elastic
properties occurred between 2011 and 2014 on the southern
flank of the volcanic edifice. Thus, data-driven time windows
can be found using our approach to define when to apply
standard DD analysis for retrieving elasticity variations, with
no need to prepare the DD data following subjective choices
on the paired events. With the algorithm being naturally par-
simonious, there is almost no possibility of having “no DD
data” (i.e. one partition per event). Changepoints are always
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Figure 5. Results of the application of the algorithm to the Katla data set. (a) DD data and position of the most probable changepoints; see
panel (e). Changepoint occurrence in time is indicated by red arrows on top. (b) Mean posterior values for the weights associated with each
DD datum. (¢) Histogram of the number of changepoints in the sampled models. (d) 1D marginal PPD for the values of the changepoints in
time. (e) Histogram of the distribution of changepoints in time. Red arrows and numbers indicate the most probable occurrence in time for a

changepoint.

limited in number, even if, strictly speaking, their number
should be given by the user because, as final output, we have
the full PPD and not just one set of best-fit changepoints.
Defining the exact number of changepoints to use in subse-
quent analysis depends on the analysis itself. Our approach
quantifies the presence and the relevance of the changepoints.
Using such information could be straightforward in some
cases (e.g. if we look for one most probable changepoint
only) or more complex (e.g. if we also wish to appreciate
correlation between changepoints, which can be measured
using the PPD, such as the occurrence of a changepoint in

https://doi.org/10.5194/se-12-2717-2021

time with respect to the occurrence of another changepoint).
It is worth noticing that, in simple cases, our algorithm gener-
ally performs as expert opinion (e.g. in the case of the search
for one most probable changepoint), and this confirms the
overall performance of our methodology. In more complex
cases, the weights associated with the changepoints should
be used to classify the changepoints themselves, and this al-
lows selecting the most relevant changepoints using quanti-
fied information.

The network of seismic stations deployed around Katla
volcano changed in time. This fact has been previously in-
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dicated as a potential “bias” in the analysis of the seismic
data themselves, as the location uncertainties increased after

ties. Although this observation is not totally unexpected since
the two time series are based on different seismological ob-

major network operations (January 2012). Our results point
out that the changepoints found do not correlate with such
a change in the seismic network. Being a statistical analy-
sis, our methodology seems to be insensitive to changes in
the acquisition system. Alternatively, the changes in location
uncertainties may not be large enough to affect our proce-
dure. In both cases, our approach appears to be well-suited
for handling long-lived databases in which changes in the
spatial distribution of observational points are likely to occur
from time to time.

Finally, we investigate how our changepoints relate to
more commonly used indicators of subsurface variations of
elasticity, such as time series of cross-correlation coefficients
and seismicity rate. In both cases, we found poor correlation
between our results and the time series of the two quanti-
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servables, it suggests that care should taken when investigat-
ing time variations of elasticity retrieved from methodolo-
gies based on cross-correlation and re-assessing approaches
based on variations of the seismicity rate as a proxy for “rock
instabilities” (Dou et al., 2018).

5 Conclusions

We developed an algorithm for defining data-driven parti-
tions in a seismic database for a more objective definition of
double-difference data. The algorithm is based on the trans-
dimensional sampling of data structures, represented here as
partitions of the covariance matrix. The algorithm has been
tested in the case of a seismic database acquired in a vol-
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canic setting, where subsurface variations of rock elasticity
have probably occurred over a period of 2 years. Our results
indicate the following:

1. trans-dimensional algorithms can be efficiently used to
map data structures in the case of double-difference
data, namely separating events with a number of
changepoints that define time windows consistent with
the underlying hypothesis (here a constant-in-time elas-
ticity field between station and event cluster);

2. changepoints are quantitatively defined and can thus be
ranked based on their relevance (i.e. weights) and prob-
ability of occurrence at a given time;

3. the results obtained are insensitive to changes in net-
work geometry during the seismic experiment.

The applications of our algorithm are not limited to the
standard preparation of DD data but could be adopted for a
more complex workflow, such as separating time windows
for demeaning of DD data (Roecker et al., 2021). Future de-
velopment and testing will provide additional insights into
the use of trans-dimensional algorithms for the exploration
of the data space. For example, in this specific case, our al-
gorithm can be applied to the joint inversion of both P-wave
and S-wave databases following the approach described in
Piana Agostinetti and Bodin (2018) to reconstruct a set of
changepoints based on P-wave data and a set of change-
points based on S-wave data. Comparing the two sets of
changepoints, “decoupled changepoints” (i.e. changepoints
occurring for one set of waves and not for the other) would
properly map out elasticity variations, resolving the trade-off
(still existent now) between elasticity changes and changes in
event locations. In fact, variations in event location would be
indicated by “coupled changepoints”, i.e. changepoints oc-
curring in both sets (Piana Agostinetti and Bodin, 2018).

Appendix A: Synthetic tests

We perform two simple synthetic tests to illustrate the “par-
simonious” behaviour of our trans-dimensional approach. In
a first test, we make use of synthetic DD data created with-
out imposing any changepoint in the data. Basically, the data
are distributed according to the uncertainty statistics intro-
duced in Eq. (6). Moreover, we also add a random shift to
the origin time (OT) of the events to closely mimic the field
measurements. OT shifts are randomly picked from a uni-
form distribution of +0.02s. Synthetic data used as input
can be seen in Fig. Ala. In the second test, we introduce
three changepoints in the same DD data used in the previous
test. The three changepoints introduce a DD value as large as
40.04 s for some time windows, affecting some of the event
pairs, which is overimposed to the OT shift. Synthetic data
used as input for this second test can be seen in Fig. A2a.
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The time occurrence of the three changepoints is easily rec-
ognized in Fig. A2a; however, the presence of the OT shifts
introduces an additional source of noise, which seems to cre-
ate fake changepoints.

In Fig. Al, we report the result of the first test. The par-
simonious behaviour of our trans-dimensional approach lim-
its the number of changepoints to the minimum (1). Such
a changepoint appears to be at the very beginning of our
time series of DD data (Fig. Ale), with few event pairs af-
fected by its presence. Hence, we suggest that the occur-
rence of changepoints close to the boundary of the time series
should be carefully evaluated due to the limited information
on which their presence is based.

In Fig. A2, we report the result obtained during the second
test. Here, the three changepoints are clearly retrieved in the
middle of our time series (Fig. A2e). However, also in this
case, few additional changepoints are inserted at the begin-
ning and at the end of the time series, reinforcing the sugges-
tion of the first synthetic test to carefully evaluate change-
points which affect a limited number of data (in our case,
changepoints occurring at the very beginning of the time in-
terval considered here).

Appendix B: Data preparation

We use data from a cluster of repeating earthquakes located
on the southern flank of Katla volcano (Iceland; Fig. Bla).
This seismic activity initiated in July 2011 following an un-
rest episode of the volcano (Sgattoni et al., 2017) and contin-
ued for several years with remarkably similar waveform fea-
tures over time. The cluster is located at a very shallow depth
(< 1km) and consists of small-magnitude events (~ —0.5—
1.2 ML) characterized by emergent P waves and unclear S
waves, a narrowband frequency content around 3 Hz at most
stations, and correlation coefficients well above 0.9 at the
nearest stations during the entire sequence. The temporal be-
haviour is also peculiar, with a regular event rate of about
six events per day during warm seasons gradually decreas-
ing to one event every 1-2d during cold seasons (Sgattoni
et al., 2016b). Sgattoni et al. (2016a) obtained relative loca-
tions of 1141 events recorded between July 2011 and July
2013 by designing a method optimized for very small clus-
ters that includes the effects of 3D heterogeneities and tracks
uncertainties throughout the calculation. The number of relo-
cated events depends on a selection of the best events among
a total of > 1800 based on thresholds on the correlation coef-
ficient and number of detected P and S phases. The resulting
size of the cluster is on the order of 25 x 50 x 100 m3 (easting,
northing, depth), with estimated uncertainties on the order of
a few tens of metres (Fig. B1b). Changes in the station net-
work configuration around the cluster occurred due to tech-
nical problems, with the greater loss of data in the second
part of the sequence after January 2012. This coincides with
a clear increase in relative location uncertainties, which also
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Figure A1. Results of the synthetic test wherein “observed” data have been created without changepoints. Figure details are the same as in
Fig. 5. In panel (a) we show the synthetic data used as input to the algorithm.

correlates with a decrease in correlation coefficients, mainly
for S phases. Other temporal changes in waveform correla-
tion were identified by Sgattoni et al. (2016a) in August 2012
and January 2013. In this study we focus on P-wave data
recorded at station ALF (part of the Icelandic Meteorological
Office seismic network), which is located about 6 km away
from the cluster (Fig. Bla) and is the only nearby station
that was continuously operating during the entire time. The
similarity of the waveforms recorded at ALF is remarkable,
with correlation coefficients of the largest events above 0.99
throughout the entire period of study (Fig. Blc). To compute
the DD data set, we use the origin times (OT;) of N = 1119
relocated events from Sgattoni et al. (2016a). We remark that
the increased location uncertainties due to the network ge-
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ometry change in January 2012 may affect the quality of the
locations of the events and, consequently, the determination
of their origin times, which is relevant for computing uncer-
tainties in the DD data (see Sect. B1).

B1 Data uncertainties from full waveform investigation

To apply our novel Bayesian approach, we need to estimate
a covariance matrix of the uncertainties in the DD data. Hav-
ing an origin time OT; for the ith event (given by the location
obtained in Sgattoni et al., 2016a, using the full seismic net-
work), we derive the DD data and their uncertainties directly
by comparing the raw waveforms and finding the absolute
delays between each pair of events. From the absolute de-
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Figure A2. Results of the synthetic test wherein “observed” data have been created with three changepoints. Figure details are the same as
in Fig. 5. In panel (a) we show the synthetic data used as input to the algorithm.

lays of the P arrivals, the subtraction of the time differences
in the OTs of two events gives the DD datum for each pair.
We estimate the absolute time delay between two events fol-
lowing the Bayesian approach described in Piana Agostinetti
and Martini (2019). Briefly, (a) we collected a 20s record
of each event w;(z) with i =1,..., N, centred on the ap-
proximate P-wave arrival time; (b) we stack all the wave-
forms of the events and obtain the so-called beam waveform
b(t) = NLeZiwi (t) (Fig. B2a); (c) from the beam waveform,
we compute the residuals for each event r; (¢) = b(t) — w; (¢)
(Fig. B2b); (d) event residuals define a standard deviation

function o (¢) = Nle,/ iTi ()2 for the 20s record; (e) event

residuals are also autocorrelated to obtain an averaged au-
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tocorrelation function c¢(z). The standard deviation and the
autocorrelation function are used to define a covariance ma-
trix Xe w (the same for all the waveforms; Piana Agostinetti
and Malinverno, 2018) using the equation

Tew=SRS, (B1)

where X y is the covariance matrix of the waveform uncer-
tainties, S is a diagonal matrix containing the standard de-
viation o (¢) computed from the residuals, and R is a sym-
metric Toeplitz matrix whose rows and columns contain the
autocorrelation function c(¢) with t = 0 on the diagonal. In
this way, we reconstruct a full covariance matrix, which
can be used to obtain realistic uncertainty estimates for our
DD data. It is noteworthy that the use of a diagonal covari-
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Figure B1. (a) Map of the southern flank of Katla volcano (Iceland; topography information from the National Land Survey of Iceland).

The caldera rim is outlined by the black dashed line. White area
brown triangles: permanent Icelandic Meteorological Office (IMO)

s are glaciers. The star marks the location of the seismic cluster. Dark
seismic stations. Orange triangles: temporary Uppsala University seismic

stations operating between May 2011 and August 2013. (b) Relative locations (blue points) and uncertainties (£ std; grey lines) from Sgattoni
et al. (2016a) (c¢) Example waveforms of the Z component recorded at station ALF throughout the entire period investigated and correlation

coefficients of the P waves with respect to the master event used for
from Sgattoni et al. (2016a). Panel (c¢) has been modified from Sgat

ance matrix instead of the full X, w covariance matrix would
risk underestimating the uncertainties, biassing the subse-
quent analysis for defining the DD time windows. Having
the uncertainty model for the waveforms for each pair of
waveforms associated with ith and jth events we perform a
Markov chain Monte Carlo sampling (Mosegaard and Taran-
tola, 1995) to reconstruct the PPD of the time shift #; j be-
tween the two waveforms. Following Sgattoni et al. (2016a),
we use a 1 s long time window to compute the likelihood of
the waveforms, centred on the approximate P-wave arrival
time. From the reconstructed PPD, we use the mean pos-
terior value of the time shift 7; j» its standard deviation o; iz
and the origin times OT; to produce the DD data, namely
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the relative locations shown in (b). Panels (a) and (b) have been modified
toni et al. (2016b).

d,'j Iﬂj—(OTj—OTi) andaij =5,'j,Withi =1,...,Ne—1,
j=i+1,...,Ne,and j > i.
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Figure B2. (a) Original waveforms wj;(¢) (grey lines) and their
stack, called “beam waveform” b(¢) (orange line). (b) Residual of
each single waveform r;(¢) (grey lines) with respect to the beam
waveform. As a reference, the residual for the first (last) trace is
shown as a blue (red) line. (¢) Autocorrelation of the single residu-
als (grey line) and averaged value of the autocorrelation c(¢) (orange
line).
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