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Abstract. We propose a multiscale approach for coupling
multi-physics processes across the scales. The physics is
based on discrete phenomena, triggered by local thermo-
hydro-mechano-chemical (THMC) instabilities, that cause
cross-diffusion (quasi-soliton) acceleration waves. These
waves nucleate when the overall stress field is incompati-
ble with accelerations from local feedbacks of generalized
THMC thermodynamic forces that trigger generalized ther-
modynamic fluxes of another kind. Cross-diffusion terms in
the 4×4 THMC diffusion matrix are shown to lead to multi-
ple diffusional P and S wave equations as coupled THMC
solutions. Uncertainties in the location of meso-scale ma-
terial instabilities are captured by a wave-scale correlation
of probability amplitudes. Cross-diffusional waves have un-
usual dispersion patterns and, although they assume a soli-
tary state, do not behave like solitons but show complex inter-
actions when they collide. Their characteristic wavenumber
and constant speed define mesoscopic internal material time–
space relations entirely defined by the coefficients of the
coupled THMC reaction–cross-diffusion equations. A com-
panion paper proposes an application of the theory to earth-
quakes showing that excitation waves triggered by local re-
actions can, through an extreme effect of a cross-diffusional
wave operator, lead to an energy cascade connecting large
and small scales and cause solid-state turbulence.

1 Introduction

The theory presented in this paper grew out of the conference
series dedicated to understanding coupled thermo-hydro-
mechanical-chemical (THMC) in Geosystems (GEOPROC).
The 7th International Conference on Coupled THMC Pro-
cesses was held in 2019 in Utrecht and focussed on earth-
quake and faulting mechanics (as does this special issue).
Integration of mechanical, hydrodynamical, thermal, and
chemical processes covers, however, a much wider field from
the pore to plate-tectonic scale for a wide range of natural and
engineering problems in geological systems discussed in fo-
cus topics at earlier GEOPROC conferences. These problems
include nuclear waste disposal, coal seam gas, enhanced oil
and gas recovery, geothermal energy, mineral deposits, tail-
ing dam collapse, landslides, and many others. The individ-
ual problems may have their own characteristics. However,
the common scientific issue of multiscale feedback of THMC
processes remains the same.

The GEOPROC theme seeks to foster the urgently needed
growth of experimental, numerical, and theoretical studies on
multi-physics (THMC) and multiscale framework studies in
earth sciences. The current practice is to still use engineering
solutions based on empirical material laws to address spe-
cific natural and engineering problems in geological systems
and energy production in geothermal energy, nuclear waste
disposal, reservoir engineering for oil and gas, the formation
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of mineral deposits, induced seismicity, natural hazards, and
CO2 sequestration and utilization. These empirical engineer-
ing approaches are often inadequate, as indicated, for exam-
ple, in the failure to avoid the 5.5 magnitude earthquake in
Pohang, Korea, in November 2017, which was anthropogeni-
cally induced by high-pressure hydraulic injection during the
previous 2 years (Grigoli et al., 2018).

Part of the reasons for the lack of a wider adoption of cou-
pled THMC approaches in the community is a lack of a the-
oretical basis on which to assess the rich solution space that
arises from a coupling of the four (THMC) partial differential
reaction–diffusion equations. While parallel numerical tools
for modelling fully coupled non-linear systems of THMC
equations have become available through pioneering work
in nuclear engineering (Gaston et al., 2009; Permann et al.,
2020), the corresponding theory has not progressed as far.
The application of the powerful nuclear engineering mod-
elling tool has been successfully transferred to geosciences
and applied to geodynamic modelling (Jacquey and Cacace,
2020a, b) and the modelling of the non-volcanic tremor and
slip (NVTS) events in the circum-Pacific subduction zones
(Poulet et al., 2014b) as well as applied to geological faulting
problems (Poulet et al., 2014a). However, a sound theoretical
description and interpretation of the local processes resulting
in the interesting macroscopic phenomena has been lacking.
The companion article (Regenauer-Lieb et al., 2021) aims
at providing a detailed, step-by-step explanation of the new
theory used to rectify this shortcoming preceded by a short
introduction into the theory of excitable waves triggered by
THMC reaction terms.

Before discussing a possible application of the new theory
to the processes of earthquakes and faulting in our compan-
ion article (Regenauer-Lieb et al., 2021), here we present a
transdisciplinary approach to bridging the gap between ob-
servations of instabilities from the molecular scale to the
very large scale. The theory in this paper is written using
approaches familiar to the theoretical and applied mechan-
ics community. The original work is based on the 1960’s
work (Hill, 1962) building the foundation of theoretical ap-
proaches to localization criteria, via the so-called acous-
tic tensor criterion, widely used in the engineering com-
munity (Rudnicki and Rice, 1975). The approach focusses
on standing-wave quasi-static solutions based on vanishing
speeds of acceleration waves which, without consideration of
additional length scales, leads to infinite values of variables
on the localization bands such as infinite strain rate in shear
or infinite pressure (Veveakis and Regenauer-Lieb, 2015) for
volumetric localization bands. Surprisingly, little effort has
been made to explore the rich wave field of the corresponding
travelling-wave solutions, probably because dynamic events
are only of academic interest to the engineering plasticity
community that focusses mainly on developing safety stan-
dards as well as limit analysis and design. A notable excep-
tion is the work of Benallal and Bigoni (2004), who found
that under dynamic conditions, unbounded growth of pertur-

bations can be found in the short-wavelength regime with
divergence growth.

While applied mathematical solutions exist, the prefer-
ence in geosciences is to address the problem of unbounded
growth by explicit consideration of additional physics. A
specific case was shown where the infinite response can be
captured by postulating a carefully chosen chemical reac-
tion (Alevizos et al., 2017). A recent contribution has in-
troduced a complex multi-physics approach to compaction
band formation (Jacquey et al., 2021) by adding a diffusion
mechanism to the carefully chosen reaction term. The solu-
tion space was explored numerically showing standing waves
that can interfere with a propagating wave and also lead to a
pattern with spatial periodicity. Both approaches solve the
ill-posed problem for some cases but a general solution that
uses the physics of internal processes to regularize the prob-
lem was lacking. This calls for an extension to the theoretical
work of Hill (1962), which is presented here.

The dynamic field is of special interest to the researcher
in the area of earthquake and faulting instabilities. The state
of the art in this field is defined by the influential experi-
mental work of Dieterich (1979) including the work on the
application of the rate and state variable friction approach to
earthquakes (Tse and Rice, 1986). The approach based on
these laboratory-derived constitutive equations has reached
a mature stage, and no attempt is made here to compare the
rich field of findings with the present theory. We approach
the problem from an entirely different angle through theoret-
ical investigation of the mathematical solutions of the sys-
tem of coupled partial differential THMC equations that de-
liver wave solutions with short-wavelength instabilities. In
the course of developing the new approach, we describe wave
physics phenomena that have previously not been reported in
the solid earth community but are well known in a range of
different fields from quantum systems to ocean waves (Za-
kharov et al., 2004). It is fair to say that the theory is rather in
its infancy, and special care needs to be taken before consid-
ering a direct application to the aforementioned systems. The
first part therefore presents the theoretical derivation, and the
second part delves into possible applications and proposed
experiments to test the applicability of the theory.

In this paper, we introduce the classical approach of ac-
celeration waves in plasticity theory to the seismology com-
munity by starting with the Helmholtz decomposition of the
seismic wave equation into P and S waves (see Sect. 3.1). We
show how plasticity theory can be integrated into the equa-
tions via Hill’s acceleration waves. This approach leads di-
rectly to the unbounded short-wavelength growth described
by Benallal and Bigoni (2004), which cannot be solved with-
out further assumptions. The innovation proposed in the two
papers is to appeal to the multiscale nature of the THMC
coupled problem. We regularize the problem by embed-
ding an open-system thermodynamic multiscale theory with
unbounded solutions into a closed-system macro-scale ap-
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proach that describes the emergence of standing-wave solu-
tions.

There are two opposite starting points for the deriva-
tion of the approach. Here, we investigate the meso-scale
from the conventional mechanical quasi-steady-state (infinite
timescale) solution of the macro-scale. Although the present
paper uses the macro-scale perspective, i.e. the classical me-
chanical viewpoint for the investigation of the physics of ac-
celeration waves (Hill, 1962), in variance to the classical ap-
proach we acknowledge that both meso-scale processes and
the macro-scale behaviour have an effect on each other. The
companion article (Regenauer-Lieb et al., 2021) describes
the meso-scale view, which is the classical viewpoint of a
chemist. Both viewpoints are objective descriptions of the
coupled THMC problem and should deliver the same out-
come.

In order to define the separation between the meso- and
macro-scale of a coupled THMC problem, we propose that
the scale for each of the THMC processes is defined by
its own characteristic diffusion timescales and length scales
(Regenauer-Lieb et al., 2013b). The THMC diffusion length
scale is thereby related to the timescale of a considered
THMC process as defined by the proportionality to the
square root of the diffusivity multiplied by the process time.
For simple problems progress can be made by studying ther-
modynamic equilibrium states in isolated closed systems.
Likewise closed, coupled, far-from-equilibrium THMC sys-
tems that feature irreversible behaviours can be modelled by
a thermomechanics approach (Collins and Houlsby, 1997),
also called a thermodynamics with internal variables ap-
proach (Maugin and Muschik, 1999) or a hyperplastic ap-
proach (Houlsby and Puzrin, 2007). This theory is, however,
only applicable to faults that have reached a thermal steady
state as implied by a standing-wave solution of acceleration
waves. This approach prevents modelling of dynamic phe-
nomena. Modelling of earthquakes and faulting is hence one
of the most difficult topics to address using a self-consistent
thermodynamic approach.

A particular challenge for deriving dynamic THMC cou-
pled wave solutions is the discrete nature of the cascade of
steady-state solutions defined by the standing-wave solutions
of thermomechanics, which leads to a discrete material be-
haviour as discussed in the next section. Standard probability
theory is therefore not suitable as this assumes a continuum
of wave functions (Cohen, 1988). In order to solve this issue
we use a transfer of knowledge from classical quantum me-
chanics to characterize any system at a larger scale. The in-
formation on multiple internal material timescale and length-
scale processes disperses each at characteristic velocities in
the form of acceleration waves.

The nucleation mechanism of these waves relies on the
meso-scale open-system behaviour where the overall macro-
scale thermodynamic forces can become incompatible with
accelerations from local thermodynamic fluxes. These in-
compatibilities radiate wave energy away from its source in

the form of “cross-diffusion” waves. The emergence of cross-
diffusion waves can be perhaps best understood from a chem-
ical viewpoint (Regenauer-Lieb et al., 2021) where propa-
gating chemical waves have been studied in detail (Vanag
and Epstein, 2009). In chemical systems, cross-diffusion is
defined as the phenomenon in which a gradient in the con-
centration of one species induces a flux of another chem-
ical species. In the present context thermodynamic forces
and fluxes are generalized THMC fluxes defined in Table 1.
Before discussing cross-scale coupling of thermodynamic
forces and fluxes in Sect. 3.3, it is useful to briefly review
insights into the formation of discrete dissipative structures.

2 Dissipative structures

The concept was introduced first in chemical and biologi-
cal systems where morphogenic patterns (Turing, 1952) were
identified as solutions to the underlying reaction–diffusion
equations (see Fig. 1). These discrete patterns were later on
named Turing patterns. A review of Turing patterns in nature
can be found in Ball (2012).

We propose here a generalized approach to cross-diffusion
that is known in bio-physics as taxis (Heilmann et al., 2018).
For example, the pufferfish and the siltstone in Fig. 1 show
similar patterns caused by a fundamental mechanism known
as taxis. This is a process that forces components of a pat-
tern to organize as an ensemble in reaction to changes in
the environment, and so to move towards, or away, from
a perturbation. The process eventually leads to the forma-
tion of a new energetically stable pattern. The fundamen-
tal pattern-forming taxis mechanism can be caused by adhe-
sive (hapto-taxis), hydrodynamic (gyro-taxis), gravitational
(gravi-taxis), light-intensity (photo-taxis), or chemical driv-
ing forces (chemo-taxis), as shown in Fig. 1. Non-biological
patterns are generally formed by THMC reactions, which can
also include electrical and biological drivers. In mathemati-
cal biology, taxis models are used to understand and quantify
a variety of complex problems, ranging from nerve pulse re-
sponses and spreading of diseases (Zemskov et al., 2017) to
predicting the spatio-temporal patterns of predator–prey sys-
tems.

However, except for the seminal early work by Ortol-
eva and co-workers (Dewers and Ortoleva, 1990; Ortoleva,
1993, 1994) developments of taxis models in earth and ma-
terial sciences have lagged. A review of the progress made in
this field as well as a specific case study of rhythmic band-
ing in marls can be found in the recent work of L’Heureux
(2018, 2013). The present work develops the key ideas into
a geomechanical perspective building on an initial approach
proposed for hydro-mechanical coupling (Hu et al., 2020;
Alevizos et al., 2017; Regenauer-Lieb et al., 2016, 2013a;
Veveakis and Regenauer-Lieb, 2015).

By analogy to the mathematically similar biological and
chemical systems, we propose here that earthquake instabil-
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ities are preceded (and followed in the post-seismic stage)
by propagating THMC dissipative waves which could en-
able new detection methods if they can be resolved by sen-
sors. We will discuss such possible precursor phenomena for
earthquakes in the companion article (Regenauer-Lieb et al.,
2021). In chemical systems, propagating waves stemming
from reaction–diffusion processes are very well documented
and the hypothesis here is that this applies generally to all
THMC coupled processes. A review and update of the for-
mulation for chemical systems can be found in Vanag and
Epstein (2009).

While chemical oscillations thus appear to be well under-
stood, the phenomenon of an oscillatory response is less well
established in other THMC systems. However, these sys-
tems show the same transitions from a simple continuum re-
sponse to a highly localized state. The existence of a discrete,
particle-like nature has also been discovered in fluids when
they are driven far from equilibrium. If driven far from equi-
librium by surface forces, fluids clearly show (see Fig. 2) a
highly dissipative, sharp transition from a continuum state
to one of a highly localized, propagating, particle-like state
(Lioubashevski et al., 1996).

For the case of deforming geomaterials, a theory for lo-
calization phenomena, characterized by a sudden transition
from continuum deformation behaviour to a highly localized
state, is well established (Rudnicki and Rice, 1975). Fig-
ure 3 shows a periodic set of localized deformation struc-
tures formed as a result of a compressive tectonic regime.
Similar standing-wave-like features are encountered in many
geological systems (L’Heureux, 2013; Ball, 2012). However,
direct experimental evidence for precursory transient trav-
elling solitary states is largely unknown and has only been
shown recently based on mathematical considerations (Hu
et al., 2020). In the supplementary material of the companion
article (Regenauer-Lieb et al., 2021) we will discuss possi-
ble experimental tests of the precursor phenomena. The lack
of experimental evidence can be explained by the challeng-
ing task of dealing with the large length scale of the geome-
chanical phenomena and the long timescales of observation
required to mimic natural processes in the laboratory (Pater-
son, 2001).

The dynamics of the formation of these mechanical dissi-
pative patterns can therefore only be investigated using ana-
logue materials in the laboratory. Analogue experiments have
been performed in granular, brittle matter compressed uni-
axially (Guillard et al., 2015; Einav and Guillard, 2018).
A propagating compaction wave phenomenon has been ob-
served. Acoustic bursts have been registered when the waves
interact with interfaces leading to the conversion of their
kinetic energy into acoustic emissions. The phenomenon
has been compared to ice-quakes in ice sheets (Einav and
Guillard, 2018). While these experiments allow some in-
sight into the precursor phenomena of stationary compaction
bands, the experiments themselves never reached the sta-
tionary mode. This aspect will be discussed in more de-

tail in the companion article (Regenauer-Lieb et al., 2021),
where experiments that are very close to the stationary mode
are also introduced (Barraclough et al., 2017). The station-
ary mode allows development of a robust thermomechan-
ics theory which offers a modular thermodynamically self-
consistent approach for modelling earth instabilities (Jacquey
and Regenauer-Lieb, 2021).

Experiments with highly porous carbonates have been
performed (Chen et al., 2020). These produced stationary
and non-stationary compaction bands under uniaxial loading.
Unfortunately, these experiments have the opposite problem
in that the exact analysis of the dynamic evolution did not
reach sufficient resolution in space and time to convincingly
detect the wave phenomenon described in the granular brittle
matter. We, therefore, explore in this contribution theoreti-
cal predictions of the dynamic wave propagation based on an
extension of the thermomechanics approach for wave propa-
gation in dissipative materials (Coleman et al., 1965).

We propose here that the dissipative wave phenomenon
is universal for THMC reaction–diffusion systems that are
driven far from equilibrium. The approach allows an inter-
pretation of observations in nature and the laboratory in terms
of propagating particle-like states which emerge as stationary
Turing patterns for long-timescale standing-wave solutions
of a THMC cross-diffusion formulation. In order to recover
the dissipative wave equations, we present in the following
the standard constitutive assumptions for any generic ther-
modynamic fluid or solid mechanical system and describe
how the physics of THMC feedbacks can be implemented to
resolve the phenomenon of propagating dissipative waves in
these systems.

3 Wave equations

3.1 Constitutive assumptions

The fundamental equation of motion is

∇ · σ + f= ρ a, (1)

where σ = σij is the Cauchy stress tensor, ρ is the density, f
is a body force (e.g. gravity), and a is the acceleration. This
equation does not stipulate a constitutive law but with con-
stitutive assumptions it becomes the master equation for the
theory of elastic waves, fluid mechanics and continuum me-
chanics. In elasticity, wave equations directly result from the
equation of motion defining the wave characteristics by us-
ing the Helmholtz decomposition, in terms of shear (S wave)
and compressional (P wave) wave velocities, which is a con-
venient description for the purpose of this paper.

For an isotropic elastic medium, for instance, accelerations
in Eq. (1) are only allowing elastic displacements described
by u. In this case the material can be characterized by just
two velocities: the elastic P-wave velocity vp and the elastic
S-wave velocity vs, and we obtain from Eq. (1) the elastic-
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Figure 1. Dissipative patterns in chemical and biological systems: simulated and real patterns on pufferfish (Sanderson et al., 2006) and
strangely patterned siltstone (Zebra Rock, Ranford formation in the Kununurra district in the East Kimberley region of Western Australia).
Both pattern formations can be modelled by a reaction–diffusion–advection type instability due to chemo-taxis.

Figure 2. Dissipative patterns in fluid systems: water molecules ex-
hibit a discrete quantum-like solitary state when forced by a me-
chanical shaker at a critical condition (here 41 Hz). Periodic finger-
like solitary states travel from right to left at a constant velocity.
Each snapshot shows 20 ms intervals. Unlike classical solitons their
appearance is particle-like. They can pass through each other with
a slight loss of amplitude, or “collide” to create a new state whose
direction of propagation is at an angle to that of the original states or
disintegrate upon collision (image from Lioubashevski et al., 1996
with copyright permission for the American Physical Society arti-
cle “Dissipative Solitary States in Driven Surface Waves”; identifi-
cation number RNP/20/OCT/032299).

wave equation:

∂2u
∂t2
= v2

p∇(∇ ·u)︸ ︷︷ ︸
P wave

− v2
s∇ × (∇ ×u)︸ ︷︷ ︸

S wave

. (2)

Similarly, by allowing the material to deform in a viscous
manner, acceleration can be monitored by a local change
in velocity v, and the Helmholtz decomposition identifies a
scalar P-wave and a vectorial S-wave potential field. The ma-
terial constants are the dynamic shear η and bulk ζ viscosities
to obtain the generalized Navier–Stokes equation:

ρ

(
∂v
∂t
+ v · ∇v

)
=−∇p+2∇2(ηε̇′)+∇(ζ(∇ ·v))+ f, (3)

where

ε̇′ =
1
2

(
∇v+ (∇v)T

)
− ε̇0

is the deviatoric viscous strain rate, with

ε̇0 =
1
3
(∇ · v)I

where I is the identity matrix.
We emphasize here, that although the Helmholtz decom-

position can be performed in a similar way to derive volu-
metric and shear moduli that describe dissipative material be-
haviour, their response to infinitesimal perturbation is gener-
ally to dampen propagating elastic waves. One could, there-
fore, come to the erroneous conclusion that their contribution
to precursory wave phenomena and to macroscopic failure is
an overall suppression of instabilities.

Coleman and Gurtin (1965) have shown that this conclu-
sion is wrong using the concept of materials with fading
memory conceptualized by rational thermodynamics. We are
using a simpler approach and are introducing fading mem-
ory through THMC dissipation processes based on the non-
equilibrium thermodynamics approach of deGroot (1962).
Therein, non-equilibrium conditions are seen as a concate-
nation of thermostatic equilibrium processes. We, therefore,
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Figure 3. (a) Photograph of three generations of shear-enhanced compaction bands and pure compaction bands in silt- and sandstones of
the Miocene Whakataki Formation, south of Castlepoint, North Island, New Zealand. These deformation bands formed during the slow
compression of the Hikurangi subduction wedge (see Elphick et al., 2021, for details). The positive relief of the metre-long bands is caused
by the significant porosity reduction relative to the host rock, which renders them less susceptible to erosion. The dominant microphysical
deformation mechanism for inelastic volume loss is grain crushing (b). The bands were possibly formed by hydro-(chemo-)mechanical
coupling, which can explain the relatively short (diffusive) length scales (Hu et al., 2020). The regular, constant spacing may be indicative
of the standing-wave phenomenon (Regenauer-Lieb et al., 2013a; Veveakis and Regenauer-Lieb, 2015). (b) Scanning-electron micrograph,
recorded with the backscattered electron detector, of a compaction band (region above the white dashed line) and its host rock in fine-grained
sandstone of the Whakataki Formation. Pores appear black (the white arrow marks an example). The compaction band displays a marked
reduction in porosity and contains a much larger proportion of crushed grains than the host rock.

can use the local equilibrium definition of the pressure as
p =− ∂U

∂V
, where U is the internal energy and V the volume,

and explore the emergent dynamics through investigating the
stability of small perturbations from individual equilibrium
states. In the present context pressure is therefore defined as
p = 1

3 tr(σ ) and is negative for compression.
For the elasto-viscoplastic case, we have the equiva-

lent fourth-order elastic-viscoplastic stiffness tensor C char-
acterizing material stiffness and the corresponding elasto-
viscoplastic bulk viscosity ζ to give

ρ

(
∂v
∂t
+ v · ∇v

)
=−∇p+ 2∇(Cε̇′)+ 3∇(ζ ε̇0)+ f. (4)

In this case ε̇′ denotes the deviatoric strain rate which in
the purely elastic case before yield is ε̇′ = ε̇′e, becoming
post-yield the elasto-viscoplastic strain rate defined by ε̇′ =
ε̇′e+ ε̇

′
vp, where the subscripts e and vp refer to the elas-

tic and viscoplastic components. The same approach is used
for decomposing the equivalent elasto-viscoplastic volumet-
ric strain rate ε̇0. While the emergence of elastic P and
S waves for any infinitesimal disturbance is a well-known
physics phenomenon, dissipative processes are commonly
known to dampen elastic waves. Long-range wave propa-
gation in dissipative materials was therefore contested for a
long time (Coleman and Gurtin, 1965). Ideal elastic waves
without damping propagate without loss of energy as they
are based on the conservation of energy. However, the dissi-
pative chemical and biological diffusion waves are known to
propagate as autonomous wave sources, spontaneous oscil-
lations, and quasi-stochastic waves which are synchronized

over the entire space to form dissipative structures (Vasil’ev,
1979).

They are an entirely different class of waves as they are
based on dissipation in active kinetic systems in contrast to
waves in conservative systems. For simplicity, we only dis-
cuss the slow viscoplastic wave phenomenon allowing the
investigation of conservative and dissipative waves as differ-
ent processes. For decoupling elastic and dissipative waves,
we need to assume large differences in the propagation speed
of the waves. This is done by assuming Maxwellian rheol-
ogy, implying a separation of elastic and viscoplastic wave
timescales in the context of an additive strain-rate decompo-
sition of Eqs. (2) and (4). To recover dissipative waves from
the above-discussed Navier–Stokes equation, modified for
the inclusion of elasto-viscoplastic behaviour, we introduce
local thermodynamic THMC feedback processes that change
the instantaneous fourth-order elastic-viscoplastic stiffness
tensor C.

3.2 Acceleration waves and classical theories of
localization

The simplest implementation of the non-equilibrium ap-
proach of deGroot (1962) is the theory of internal vari-
able thermodynamics, which unifies the kinetic descrip-
tion of chemical reaction–diffusion processes and the
above-described elastic-viscoplastic formulation (Maugin
and Muschik, 1999). Perturbations to the local equilibrium
assumption of the non-equilibrium thermodynamic theory
of internal variables can lead to conditions of violation of
smoothness on surfaces in a body, where one or more in-
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ternal variables from the lower scale suffer jump disconti-
nuities, owing to locally reaching a critical dissipation. In a
classical thermodynamic sense, this can be viewed as sud-
denly switching on a micro-engine somewhere in the system
that disturbs the overall stress field. This is the physical rea-
son for the formation of acceleration fronts, where the diffu-
sive length scales are linked to the convective velocity of the
step function on dissipation waves. While fluid- and solid-
wave phenomena occur when the above equation includes
inertial forces, so-called “acceleration waves” (Hill, 1962),
caused by local surfaces of acceleration (see Fig. 4), can also
occur in the creeping flow limit when no acceleration due to
a (gravity) potential is present and f= 0. These acceleration
waves are defined as geometric surfaces (here assumed to be
plane waves) that move relative to the material.

Acceleration waves can be described in two ways. One can
use two coordinate systems, one for the reference state and
one for the current state. A more elegant way is to consider
convective coordinate systems by formulating the constitu-
tive law in terms of stress rate. For this we consider the space
derivative normal to the moving wavefront (see Fig. 4) indi-
cated by ∂

∂s
. Waves are travelling concerning a background

Lagrangian moving material reference frame.
Considering the traction (load per unit area) in the direc-

tion normal to the wavefront as F and choosing the magni-
tude of the velocity of the moving wavefront as c, the jump
condition indicated by the square Iverson brackets can be
advected along c. This leads to Hadamard’s jump condition
where the true traction rate along the advected coordinates is

[
Ḟ
]
=−c

[
∂F
∂s

]
. (5)

Hadamard’s jump condition applies to all internal variables,
and the acceleration across the wavefront is constrained by

[ρv̇]=
[
∂F
∂s

]
. (6)

Combining Eqs. (5) and (6) we obtain

[Ḟ] + c[ρv̇] = 0. (7)

Substituting v̇=−c ∂v
∂s

into Eq. (7) we obtain

[Ḟ] = c2
[
ρ
∂v
∂s

]
. (8)

Hill’s formulation of acceleration waves in Eq. (8) expresses
the energetics of the acceleration waves by the square of
the material velocity c times the mass of the characteristic
segment defined by ∂v

∂s
. This provides a simple formulation

where the energetics of the material is solely described by
Eq. (1) and the meso-scale mass exchange rates on acceler-
ation waves by Eq. (8). The material velocity c, being the
velocity of acceleration waves, becomes a material constant
for the propagation of acceleration waves.

Figure 4. Acceleration waves can originate at a body surface when
the existing internal stress gradient is dynamically incompatible
with accelerations imposed on particles of the surface. A propagat-
ing plane-wave front is shown here for reference, but a plane-wave
is not a necessary restriction. Across these surfaces particle acceler-
ations and spatial gradients of velocity are momentarily discontinu-
ous while the velocity itself is continuous.

Acceleration waves form the basis of localization criteria
in plasticity theory. The criterion for instability is derived
from the equivalent theory in elastodynamics where for an
elastoplastic body the acoustic tensor 0 is defined by

0 = n ·C ·n. (9)

In elastodynamics, the eigenvalues of 0 divided by the mass
density represent the square of the elastic wave propagation
speed in the direction of the unit normal vector n. In elasto-
plasticity, the equivalent dynamic stability criterion is de-
fined by Eq. (8) which in terms of acoustic tensor implies
that

0
∂v
∂s
= ρc2 ∂v

∂s
. (10)

Dynamic system stability can be evaluated through assess-
ing the eigenvalues of the acoustic tensor, thus determining
the speed of the acceleration waves which must be real and
defined by the square root of the instantaneous modulus C
divided by the instantaneous density ρ (Coleman and Gurtin,
1965). Mathematically, Eqs. (2–4) can be represented by the
addition of two functions, a scalar field and the curl of a vec-
tor field. The scalar field without curl or rotation identifies
dissipative compressional P waves and the curl features zero
divergence and corresponds to isochoric sinistral and dextral
dissipative shear S waves.

These waves are interpreted as stationary (standing) waves
when the determinant of the acoustic tensor, and conse-
quently the wave speed is zero:

det(0)= 0, (11)

which is the standard condition for localization in plastic-
ity theory (Vardoulakis and Sulem, 1995). Accordingly, the
formation of localized shear bands out of homogeneous plas-
tic flow is assumed, when the velocity of the wavefront van-
ishes. Hill (1962) was discussing shear acceleration waves

https://doi.org/10.5194/se-12-869-2021 Solid Earth, 12, 869–883, 2021



876 K. Regenauer-Lieb et al.: Cross-diffusion waves

in an ideal linear, time-independent elasto-plastic material
where two families of characteristics (dextral and sinistral
slip lines) feature a jump in strain rate at the wavefront ac-
companied by one in stress rate (but not in stress). This in
turn implies a related jump in stress gradient. Later work ex-
tended the theory to formulate acceleration waves as the basis
of modern criteria for localization in plastic media (Rudnicki
and Rice, 1975; Rice, 1976). In those theories the possibility
of volumetric acceleration waves was, however, neglected,
and volumetric deformation was parameterized by an em-
pirical dilatancy angle. Another shortcoming of the local-
ization criterion for the application to THMC instabilities is
that it is not directly applicable to the rate-dependent elasto-
viscoplastic case. The inclusion of rate effects implies a pos-
itive wave speed different from zero (Duszek-Perzyna and
Perzyna, 1996). The thermomechanics approach (Jacquey
and Regenauer-Lieb, 2021) allows incorporation of a quasi-
static wave speed related to the internal variable that quanti-
fies the rate dependence.

However, to date, no generally accepted localization cri-
teria for the transition from a dynamic to quasi-static rate-
dependent solution of Eq. (4) exists, although stationary
and wave-like propagating localization phenomena for rate-
sensitive materials (Barraclough et al., 2017) are observed in
the laboratory and nature. The method of choice to date is to
use all field equations and perform a numerical stability anal-
ysis. A discussion on an extension to the above-discussed cri-
terion has been presented recently (Pisanò and Prisco, 2016),
and energy-based criteria that successfully model the adia-
batic limit have been revisited many times over the past 30
years (Paesold et al., 2016). The present approach provides
an alternative path to systematically analyse the full system
of field equations.

3.3 THMC acceleration waves

We assume creeping flow in Eq. (4), and there is, therefore,
no effect of inertia (F= 0) but there still can be effects of
“gravitational acceleration”, i.e. creeping flow in a gravity
field. We will show that the meso-scale formalism identifies
an alternate internal force density from within the consid-
ered material volume stemming from a local thermodynamic
THMC force (e.g. ∇p). This internal force integrates over
the accelerations aM of the micro-processes inside the contin-
uum element by multiplying them with the average volume
density. These accelerations stem from dissipative mecha-
nisms (e.g. volume changes by phase transitions, fracture) in-
side the representative volume element (Hu et al., 2020). For
critical conditions, they can cause acceleration waves propa-
gating as creeping waves. Hadamard’s jump conditions need
to be extended for internal THMC variables µ such as tem-
perature, porosity, permeability, viscosity, etc.

Hadamard’s jump conditions state that if time derivatives
(Ḟ, v̇, µ̇) and gradients (∇F,∇v, ∇µ) have jump disconti-
nuities across the wavefront then F,v and µ are continuous

functions of space. The compatibility condition relates jumps
in rates of change of internal variables to jumps in gradients
for all internal variables µ (Duszek-Perzyna and Perzyna,
1996) and implies that the jump in the gradient of pressure
inside the acceleration wave is constrained by

[∇p] = −
1
c
[ṗ]. (12)

Acceleration waves consider a step function (Eq. 5) where
the stress rate is discontinuous along the surface. The stress
is, however, continuous across the wavefront and the stress
self-diffusion coefficient is also constant outside of the wave.
Therefore, for modelling acceleration waves in a homoge-
neous material we can simplify Eq. (1) further and assume
constant bulk and shear viscosity outside the wave and as-
sume continuity of stress across the acceleration wave. Note
that the traction in the direction of the normal vector n
on the acceleration wavefront is F= n · σ . It follows from
Eq. (7) that the jump in stress rate on the acceleration wave
is (Duszek-Perzyna and Perzyna, 1996)

n · [σ̇ ] = −c[ρv̇]. (13)

Substituting the stress rate for the acceleration v̇ from
Eq. (13) and the pressure rate for the gradient of pressure
from Eq. (12) and inserting the jump condition into Eq. (4) it
follows that

1
c

[n · [σ̇ ]]=−
1
c
[ṗ] − [C∇(ε̇′)] − [ζ∇ ε̇0]. (14)

If we define the magnitude of the wave speed in the normal
reference system as w = w ·n, then c = w− v ·n is the local
particle velocity of THMC accelerations in the acceleration
wave relative to the normal material velocity.

Equation (14) allows us to draw some important conclu-
sions for acceleration waves. (1) The first term on the right
shows that the pressure rate divided by the wave velocity or
the equivalent gradient of pressure plays an important role
in acceleration waves. (2) The second term on the right im-
plies that gradients of deviatoric strain rates are related to rate
changes of the stiffness tensor as implied by the jump con-
dition of the internal variable inside the propagating wave.
Recall that the jump condition (Eqs. 5 or 12) advects jumps
in gradients of the internal variable around the propagating
wavefront through a jump in the rate of change of the vari-
able. (3) The last term implies that the same is true for the
volumetric strain rates and the rate of change of bulk viscos-
ity.

4 Multiscale cross-diffusion model

So far we have only discussed the mechanical reaction–
diffusion equation, where the shear and bulk viscosities con-
trol the diffusion of stress. For the multi-physics implemen-
tation, it is convenient to think of diffusion of momentum
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and use the momentum diffusivity (kinematic viscosity) in-
stead of the dynamic viscosity. We, therefore, denominate ζM
as the volumetric diffusion coefficient of pressure (kinematic
viscosity). In the following, we first formulate the reaction–
diffusion equation in a classical way. That is to say that
meso-scale cross-diffusion effects are neglected. We iden-
tify THMC Turing patterns as multiscale energy eigenstates
of the reaction–diffusion equations, thus characterizing Pri-
gogine’s dissipative structures if they emerge.

In these formulations, the viscous (M) mechanical pres-
sure diffusion equation finds its counterparts in the equivalent
thermal (T) Fourier, (H) Darcy, and (C) Fick diffusion laws
where the diffusion coefficients are indicated by the associ-
ated THMC subscript. The corresponding reaction rates are
the local hidden-variable reaction rate RT,RH,RM, and RC,
respectively. It is common practice to ignore the meso-scale
cross-diffusion kinetics introduced in the classical theories of
localization. We emphasize therefore the difference between
large-scale reaction rates Ri and meso-scale reaction rates ri
of the multiscale theory which considers the important effect
of cross-diffusion. The two rates are identical in the infinite
timescale limit as cross-diffusion can be eliminated adiabati-
cally (Biktashev and Tsyganov, 2016).

In the adiabatic limit we obtain similar reaction–diffusion
equations across a vast range of THMC diffusion length
scales as tabulated in Table 1. The reaction rates most often
stem from different micro-processes at lower scale inside the
considered continuum element which introduces cross-scale
diffusion fluxes as shown in the next section.

In order to generalize the approach, we propose that all
reaction–diffusion equations in Table 1 are strongly coupled.
We construct a composite multiscale THMC diffusion wave
operator ĤTHMC from the four reaction–diffusion equations
in Table 1.

ĤTHMC =−ζi

N∑
i=1
∇

2, (15)

where ∇2
=

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 and i refers to the individual
thermodynamic THMC process.

The wave operator ĤTHMC defines the asymptotic dy-
namic state of the coupled system of THMC reaction–
diffusion equations by mapping excitations from reactions
into a new waveform. It therefore selects the wave that we
can expect from the discrete interactions at lower scale (e.g.
atomic or molecular scale reactions in the chemical exam-
ple). If we thus excite waves with the reaction term Ri , the
approach can lead to unbounded instabilities because the sta-
tistical information from the lower-scale interactions, such as
a diffusional length scale that limits unbounded reactions on
the lower scale, is missing. A particular strategy to include
such information is to use non-local reaction–diffusion equa-
tions (Rubinstein and Sternberg, 1992). We therefore argue
that the wave operator must include information from the

lower scale. We propose that this information is contained
in so-called “cross-diffusion coefficients” that are hidden at
macro-scale in the reaction term Ri . This innovation regular-
izes the ill-posed problem for all couplings and was first in-
troduced for HM coupling in Hu et al. (2020). A very impor-
tant aspect is that the inclusion of the cross-diffusion terms
into the reaction–diffusion equation of Table 1 leads to a new
form of soliton-like waves as clearly shown by Tsyganov
et al. (2007) for a mathematically similar system of equa-
tions.

The discussion of these waves and their unusual proper-
ties will be the subject of the remainder of the paper. For
introduction and completeness, however, the arguments for
non-local reaction–diffusion equations with cross-diffusion
terms (Hu et al., 2020) are repeated in the next section and
generalized from poromechanics HM problems to all THMC
processes.

For the following discussion, we also simplify further and
neglect the deviatoric terms in Eq. (14) and retain only the
scalar volumetric terms and reduce the equations to 1-D.
This allows us to investigate the poorly known volumetric
dissipative waves which must exist in addition to the dissi-
pative shear waves discussed by Hill (1962). To introduce
the meso-scale considerations we identify wave-scale reac-
tive source terms rT, rH, rM, rC of the hidden variable rates
RT,RH,RM,RC as the actual terms that trigger acceleration
waves. These meso-scale source terms stem from a jump in
the thermodynamic force (gradient of the variable) into a
jump in the thermodynamic flux (rate of the variable, i.e. tem-
perature, fluid, and solid pressure and concentration). The
important volumetric coupling is overlooked in the classi-
cal localization theory (Rudnicki and Rice, 1975). The wave-
scale source term provides the convected pressure rate built
up by internal accelerations. It relates to the local mass ex-
change processes according to Eq. (8).

5 Cross-diffusion as a multiscale theory for localization

In the following we generalize the discussion of the meso-
scale THMC mass exchange processes using mixture theory
applied to HM coupling as presented in Hu et al. (2020). We
show that the physics of cross-diffusion follows from a re-
active source term at the macro-scale that requests a cross-
diffusion term at the meso-scale for thermodynamic consis-
tency. The full derivation is found in Hu et al. (2020). Here
we summarize the main conclusion from the mixture theory
analysis for convenience.

We consider two mass fractions A and B for mass ex-
change denoted by the ith and j th phase as an example.
We identify ξ̇REV

i as the large-scale representative elemen-
tary volume (REV) for averaging of mass transfer rate from
the phases A to B where VREV, VA, VB denote the REV vol-
ume and the volume of the ith and j th phase, respectively.
ξ̇REV
i defines the REV-scale averaging of the mass exchange
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rate between the phases where the REV-scale source term of
mass is obtained from the other species:

ξ̇REV
i =

1
VREV

∫
VREV

ξ̇ local
j dVREV, (16a)

ξ̇REV
j =

1
VREV

∫
VREV

ξ̇ local
i dVREV, (16b)

where ξ̇ local
i and ξ̇ local

j denotes the mass exchange rate from
the A to B phase and vice-versa. In the meso-scale formalism
we need to consider information from the local-scale pro-
cesses in the THMC diffusion matrix and decompose the pro-
cesses leading to the local mass production ξ̇ local

i and ξ̇ local
j .

In order to specify this further we define the global volume
fraction of the A phase as

φ =
VA

VREV
= 1−

VB

VREV
. (17)

Mass conservation at global scale for the phases A and B
gives

∂[ρAVA]

∂t
+
∂[ρAVAvA]

∂x
= ξ̇AVREV, (18a)

∂[ρBVB]

∂t
+
∂[ρBVBvB]

∂x
= ξ̇BVREV. (18b)

ρA and ρB identify the density of the respective phases, while
vA and vB are their velocities in the direction of x and ξ̇A
and ξ̇B represent the volume averaged mass generation in the
REV. Following an approach presented in Hu et al. (2020)
using the generalized THMC mass exchange processes we
arrive at

∂[ρAφ]

∂t
+
∂[ρAφvA]

∂x︸ ︷︷ ︸
Self-diffusion

+
1

VREV

∫
VREV

∂[ρB(1−φlocal)vB]

∂x
dVREV

︸ ︷︷ ︸
Cross-diffusion

=−
1

VREV

∫
VREV

∂[ρB(1−φlocal)]

∂t
dVREV, (19a)

∂[ρB(1−φ)]
∂t

+
∂[ρB(1−φ)vB]

∂x
dVREV︸ ︷︷ ︸

Self-diffusion

+
1

VREV

∫
VREV

∂[ρAφ
localvA]

∂x
dVREV

︸ ︷︷ ︸
Cross-diffusion

=−
1

VREV

∫
VREV

∂[ρAφ
local
]

∂t
dVREV. (19b)

In a saturated porous medium, a straightforward interpre-
tation of ρA and ρB may be the density of the fluid phase and
that of the solid phase, respectively (Hu et al., 2020). The
interpretation of the incorporation of the effects of chemi-
cal and thermal processes may not be as straightforward for
the observer as they act via Eq. (15) as a linear convolution
operation. If we interpret the time-domain convolution op-
eration of THMC waves in the frequency domain, then the
chemical and thermal waves can be seen as filters for HM
coupling, sharpening or smoothing the waves. The interpre-
tation of THMC waves in terms of a sharpening or smoothing
filter analogue is discussed in detail in the companion article
(Regenauer-Lieb et al., 2021).

To illustrate the point of choosing a particular time–space
scale of observation of THMC waves we first consider the
simple homo-entropic flow assumption and choose a clas-
sical mechanics point of view. Density is then defined as
a function of pressure, temperature, and chemical concen-
trations by the equation of state. The coupling in Eq. (3)
leads to the possible nucleation of hydro-mechanical cross-
diffusion pressure waves (Hu et al., 2020). Considering that
possible thermal processes, ρA, and ρB at the solid–fluid in-
terface may be affected by the local temperature changes,
we identify new time-dependent processes at the solid–fluid
boundary. The process of heat transport sets two new internal
timescales changing the fluid and solid pressure, respectively.
Therefore, the thermal process acts as a “convolution filter”
added to the pressure evolution of each phase. Conversely,
the pressure diffusion process in the solid and fluid phase
triggers two additional timescales in the change of tempera-
ture. Now a 3× 3 thermo-hydro-mechanical cross-diffusion
formulation can be obtained following the same steps of up-
scaling from local to a global scale, and the additional four
timescales correspond to the newly introduced four cross-
diffusion coefficients. One can arrive at a similar conclusion
by considering the interplay between the evolution of pres-
sure distribution and internal chemical reactions.

5.1 Formulation of the THMC cross-diffusion matrix

The concept of cross-diffusion is well known in chemistry.
In a chemical system with just two species A and B, for in-
stance, cross-diffusion is the phenomenon in which a flux
of species A is induced by a gradient of species B (Vanag
and Epstein, 2009). In more general THMC terms, cross-
diffusion is the phenomenon where a gradient of one gen-
eralized thermodynamic force drives another generalized
thermodynamic flux. Staying with the chemical example of
species A and B, we have in 1-D

∂CA
∂t
= ζA

∂2CA
∂x2 +LAB

∂2CB
∂x2 + rB,

∂CB
∂t
= ζB

∂2CB
∂x2 +LBA

∂2CA
∂x2 + rA,

(20)
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Table 1. Generalized thermodynamic fluxes and forces in a THMC coupled system.

Type Force Flux Reaction–diffusion equations

T FT =∇T qT =−
DT
Dt

DT
Dt
= ζT∇

2T +RT
H FH =∇pH qH =−

DpH
Dt

-DpH
Dt
= ζH∇

2pH+ ηε̇
′
−RH

M FM =∇pM qM =−
DpM
Dt

-DpM
Dt
= ζM∇

2pM+∇(Cε̇′)−RM
C FC =∇C qC =−

DC
Dt

DC
Dt
= ζC∇

2C+RC

where rA and rB are the local source terms using the meso-
scopic self-diffusion and cross-diffusion decomposition in
Eq. (3).

Following Eq. (15) we can now generalize (20) to include
the full cascade of internal accelerations through multiscale
coupling. Cross-diffusion allows coupling of accelerations
from one classical REV-scale reaction–diffusion system, de-
fined by the (self-)diffusive length scale

√
ζ(T,H,M,C)t , to an-

other. The time t is initially defined in this paper from a
macroscopic perspective. It is the time for which the macro-
scale applied boundary conditions drives a given series of
THMC processes. The individual THMC processes may re-
act by a feedback loop between the respective physics of
reaction and self-diffusion, often leading to oscillatory be-
haviour through tight coupling of the system dynamics,
thus adding new internal material timescales. The reaction–
diffusion problem is initially fully dynamic, but often af-
ter sufficient time has elapsed, it can reach a quasi-static
macroscopic response resulting from an oscillatory, or a
steady-state equilibrium, between the reactive source term
and its associated self-diffusion process. In this case the in-
ternal material timescale is the time it takes to reach this
macro-scale equilibrium (Regenauer-Lieb et al., 2013b, a).
The cross-diffusion coefficients, introduced in this paper, en-
rich the tightly coupled cross-scale self-diffusion-controlled
reaction–diffusion processes by linking the gradient of a ther-
modynamic force Cj of one THMC process to the flux of
another kind and thus significantly increases the potential
for feedback through additional coupling across scales. The
wave operator ĤTHMC is now expanded through a fully pop-
ulated diffusion matrix that includes self-diffusion (diagonal)
and cross-diffusion (off-diagonal) coefficients as in

DC

Dt
=


ζT LTH LTM LTC
LHT ζH LHM LHC
LMT LMH ζM LMC
LCT LCH LCM ζC

∇2C+ ri . (21)

The cross-diffusion processes formulate the link between
different THMC processes. The cross-diffusion coefficients
thereby introduce new cross-scale coupling length scales
and timescales which are often much smaller than the self-
diffusion scales. This is not always the case (Manning,
1970). Hu et al. (2020) show normal examples where cross-
diffusion length scales are much smaller than the self-
diffusion length scales.

5.1.1 Criterion for nucleation of cross-diffusion waves

A detailed discussion of the criterion for nucleation of
cross-diffusion waves and their waveforms can be found in
Tsyganov and Biktashev (Tsyganov and Biktashev, 2014).
Here, we first summarize the basic method that is well es-
tablished in the fields of mathematical biology and chem-
istry and follow on with a discussion of other communi-
ties, where the phenomenon of cross-diffusion waves is well-
documented under different names.

The criterion for nucleation of cross-diffusion waves re-
lies on assessing the dispersion relation of the eigenvalues
of the characteristic matrix of a perturbed cross-diffusion–
reaction equation (Vanag and Epstein, 2009). The eigenval-
ues are functions of the square of the wavenumber of the
perturbed state and identify the growth rate of the perturba-
tions. This approach for deriving the mathematical criterion
for nucleation of acceleration waves is hence evaluated from
a small plane-wave ε perturbation of Eq. (21) with

C̃(x, t)= C0(1+ ε)eλt+i(kx). (22)

The characteristic matrix of the thus perturbed Eq. (21) al-
lows assessment of the stability of the system. Accordingly,
all eigenvalues of the characteristic matrix must be real and
positive, and hence the determinant of the matrix must be
larger than zero. For determinants smaller than zero, cross-
diffusion waves are expected to propagate as quasi-solitons
(Tsyganov and Biktashev, 2014). A working example for
hydromechanical cross-diffusion waves can be found in Hu
et al. (2020).

6 Soliton versus quasi-soliton solutions

Since cross-diffusion waves in geomaterials are largely un-
explored due to the extreme length scales and timescales en-
countered in a geosystem, an appreciation of their complex
characteristics can be obtained from mathematically similar
systems such as waves in oceans, lasers, and ice. There is
an important difference between solitonic waves and quasi-
solitonic cross-diffusion waves. We follow Zakharov et al.’s
(Zakharov and Kuznetsov, 1998) definition of solitons and
quasi-solitons and identify solutions to the perturbed Eq. (22)
of the type

ψ(x, t)= β(x− vt)ei�t , (23)

https://doi.org/10.5194/se-12-869-2021 Solid Earth, 12, 869–883, 2021



880 K. Regenauer-Lieb et al.: Cross-diffusion waves

as solitons when the wave amplitude |ψ(x, t)| = |β(x−
vt)| propagates without change of form and v and � are
constants. Quasi-solitons appear as multiscale solutions to
Eq. (22) if localized coherent structures defined by true
soliton solutions cannot be formed for any type of non-
linearity. In the context of the cross-diffusion waves for
hydro-poro-mechanical coupling (Hu et al., 2020) real sta-
tionary solitons, which propagate with a constant veloc-
ity without changing their form, are exact solutions of the
Korteweg–de Vries equation (Regenauer-Lieb et al., 2013a;
Veveakis and Regenauer-Lieb, 2015). They depend on the
fluid and solid self-diffusion coefficients only (Veveakis and
Regenauer-Lieb, 2015). Cross-diffusion waves are quasi-
solitons where the two additional cross-diffusion coefficients
cannot be eliminated (Hu et al., 2020). These additional time-
dependent properties lead to interesting dynamics.

The following dynamic properties of quasi-solitons have
been identified (Zakharov et al., 2004): quasi-solitons live
only for a finite time and can be compared to unstable parti-
cles in nuclear physics. Unlike true solitons, quasi-solitons
lose energy through their oscillatory tails which can have
different wavenumbers in the forward and backward direc-
tion of their motion. If the amplitudes of the tails are small,
quasi-solitons can be treated as slowly decaying real solitons
which lose their energy by radiating quasi-monochromatic
waves with wavenumber k0 in the backward direction.

The discrete particle-like behaviour can be explained by
their unusual dispersion relation. Quasi-solitons travel with
a constant group velocity ω′. When their phase velocity
ω(k)/k exhibits a local minimum at a nonzero wavenumber
a gap in the spectrum ω(k) appears. According to Zakharov
et al. (2004), this peculiar discretization of wave energy has
been noticed in many disciplines. Different nomenclatures of
quasi-solitons have been adopted. In the theoretical physics
community, they have been attributed to Cherenkov radia-
tion. In the ice-wave community, they have been called ice
waves with decaying oscillations, and in shallow water the-
ory they have been identified as capillary-gravity waves. If
the amplitudes of the quasi-solitons are small and their ve-
locities are close, they obey the non-linear Schrödinger equa-
tion and their interaction is elastic. However, the stability and
the interaction of large amplitude quasi-solitons are still open
questions that cannot be solved analytically. Quasi-solitons
move with different velocities and can lead to quasi-solitonic
turbulence (Zakharov et al., 2004) when they collide with
each other.

In photonics, optical turbulence in the form of sporadic
bursts of light (Hammani et al., 2010), have been observed
upon the collision of quasi-solitons. In water waves, the same
phenomenon is known as “rogue waves” that seem to appear
from nowhere (Akhmediev et al., 2009). Their physics re-
lies on the unusual multiscale energetics of quasi-solitons
that can pump energy from the environment to provide a
quasi-stationary transport of wave energy from large to small
scales. Earlier, we introduced a simple “convolution filter”

interpretation of THMC coupling. In this sense, the interac-
tion of THMC waves may be seen as an extreme form of
sharpening filter that can generate rogue waves.

The independent choice of a reference system such as dis-
cussed in the convolution filter analogy also applies to the
energy carried by the waves. If we choose for instance an
observer of hydro-mechanical waves, the inverse energy cas-
cade from THMC wave action from small to large scale and
the direct energy cascade from large to small scales (Za-
kharov et al., 2004) allow the identification of rogue waves,
if they occur. The phenomenon of collision, merging, and
the collapse of quasi-solitons may provide a mechanism for
a bi-directional THMC energy cascade that leads to earth-
quakes as a form of solid-state turbulence as discussed in the
application in the companion article (Regenauer-Lieb et al.,
2021).

7 Conclusions

This paper has introduced three important innovations
for modelling THMC instabilities: (i) a multiscale ex-
tension of the theory of thermodynamics of irreversible
processes to include dynamic events by using a meso-
macro-scale model; (ii) a generalization of the theory of
cross-diffusion waves from chemical systems to generalized
THMC thermodynamic-force flux pairs; (iii) a transfer of
knowledge from classical quantum mechanics to character-
ize any system at a larger scale in order to deal with the dis-
creteness of multiscale material behaviour.

i. We have shown that cross-diffusion waves in THMC
systems can be decomposed into cross-diffusional S
and P acceleration waves and have discussed a THMC
multi-physics implementation, where cross-diffusion
waves appear as quasi-soliton waves for critical condi-
tions identified from a perturbed Eq. (21). These waves
radiate energy away from meso-scale sources that are
incompatible with the overall macro-scale stress gra-
dients with a complex, reflection, and interaction be-
haviour into the far field. This finding overcomes the
problem of unbounded solutions encountered in the
classical solid mechanical theory of localization (Be-
nallal and Bigoni, 2004), where acceleration waves are
modelled on the basis of coupled thermomechanics
reaction–diffusion equations without the cross-diffusion
term. The necessity of decomposing the macro-scale re-
active source term into a meso-scale reaction–diffusion
couple was discovered recently by using mixture theory
(Hu et al., 2020).

ii. The multiscale approach can be encapsulated in a con-
cise fully populated self- and cross-diffusion matrix
(Eq. 21). The theory is based on an extension of the
chemical systems to generalized linear thermodynamic
force–flux pairs at the meso-length scale or timescale.
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These are found to nucleate cross-diffusion waves under
critical conditions and replicate non-linear behaviour
for the long temporal or spatial macro-scale. This oc-
curs when cross-diffusion waves converge to standing-
wave solutions when their radiative tails become van-
ishingly small such as in the non-linear Schrödinger
equation or the Korteweg–de Vries equation. The ap-
proach reveals that instabilities based on the shear and
volumetric response of the material at the meso-scale
are fundamentally important and have been overlooked.
We have shown that incompatibilities of meso-scale ac-
celerations with the overall stress field lead to the nu-
cleation of cross-diffusion waves which travel in an
unstable particle-like state with characteristic material
velocities c defined by the competition of meso-scale
reaction–diffusion processes at the propagating wave-
front. The physics of this phenomenon is discussed fur-
ther in Regenauer-Lieb et al. (2021). These velocities
characterize the progress of internal material timescales
for the formation of multiscale space–time dissipative
structures and are characteristic properties for the dy-
namic behaviour of a given material. These internal ma-
terial clocks are here introduced as a multiscale THMC
cascade for coupling the physics of the very small to the
very large.

iii. Cross-diffusion waves have first been discovered for in-
teractions in quantum mechanics such as in photonics
where they show anomalous dispersion patterns that,
unlike solitons, radiate energy in the form of oscilla-
tory (Cherenkov) tails (Zakharov and Kuznetsov, 1998;
Paschotta, 2002). This unusual energy radiation prop-
erty differentiates them from solitons as quasi-solitons.
Since they assume an unstable particle-like state (see
the example in Fig. 2), the reflections and collisions,
when they happen, can lead to a variety of responses
(Biktashev and Tsyganov, 2016; Zakharov et al., 2004;
Lioubashevski et al., 1996). Despite their nucleation
through discrete internal micro-dissipative mechanisms,
cross-diffusional waves also show proper soliton wave-
like behaviour and can penetrate through each other and
reflect from boundaries. However, unlike true solitons,
their amplitude and speed are not controlled by initial
conditions but by material properties (Tsyganov and
Biktashev, 2014). The effect of cross-diffusion is to trig-
ger cross-diffusion waves for critical conditions. They
form by THMC feedback as discrete material instabil-
ities which can be either observed as a local, discrete
failure or as damage waves.

They are found to propagate and reflect from boundaries
in a multiscale energy cascade which in extreme cases can
lead to the formation of a local turbulence phenomenon that
seems to appear from nowhere. The phenomenon of wave
sampling of energy into ultra-localized events is well known
in many disciplines and appears in oceans as “rogue waves”

(Akhmediev et al., 2009) or in laser physics as sudden “light-
bursts” (Solli et al., 2007) where the interesting multiscale
spectral content of quasi-solitons, their unstable collisional
nature, and their capability to focus energy from the large
scale to feed local-scale “rogue waves” (Zakharov et al.,
2004; Akhmediev et al., 2009) is already well documented.
In the companion article (Regenauer-Lieb et al., 2021) we
show that the cross-diffusion formulation also follows from
a small meso-scale perspective, when looking at the large
macro-scale. A particular application will be the discussion
of a potential application to earthquake source mechanisms
both as a precursor and as well as the main and post-seismic
creep event.
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