
Supplement of Solid Earth, 13, 1045–1063, 2022
https://doi.org/10.5194/se-13-1045-2022-supplement
© Author(s) 2022. CC BY 4.0 License.

Supplement of

Thermal non-equilibrium of porous flow in a resting matrix applicable
to melt migration: a parametric study
Laure Chevalier and Harro Schmeling

Correspondence to: Harro Schmeling (schmeling@geophysik.uni-frankfurt.de)

The copyright of individual parts of the supplement might differ from the article licence.

1

1 Analytical solution

Eq. (21) (in the main paper) is a second order differential equation for 𝑇𝑓 − 𝑇𝑠 with constant parameters. Its solution is

composed of the sum of a particular solution and of the solution of the corresponding homogeneous differential equation.

1.1 Particular solution

The right hand side of Eq. (21) is a constant. In this special case with constant parameters, a simple way to find a particular 5

solution consists in assuming that for this solution, 𝑇𝑓 − 𝑇𝑠 is a constant. Its derivative is equal to zero, and the constant value

of 𝑇𝑓 − 𝑇𝑠 is:

𝑇𝑓 − 𝑇𝑠 = 𝑃𝑒𝐺 (S1)

1.2 Homogeneous solution

We now need to find the general solution of the homogeneous equation 10

𝜕2(𝑇𝑓−𝑇𝑠)

𝜕𝑧2 − 𝑃𝑒
𝜕(𝑇𝑓−𝑇𝑠)

𝜕𝑧
− (𝑇𝑓 − 𝑇𝑠) = 0 (S2)

The second order algebraic equation associated with Eq. (S2) is

𝑟2 − 𝑃𝑒 𝑟 − 1 = 0 (S3)

Its determinant and roots are

Δ = 𝑃𝑒2 + 4 , 𝑟1 =
1

2
(𝑃𝑒 − √𝑃𝑒2 + 4), 𝑟2 =

1

2
(𝑃𝑒 + √𝑃𝑒2 + 4) 15

and the complete solution of Eq. (21) is of the form:

𝑇𝑓 − 𝑇𝑠 = 𝛼𝑒𝑟1𝑧 + 𝛽𝑒𝑟2𝑧 + 𝑃𝑒𝐺 (S4)

 We now need to determine 𝛼 and 𝛽 from boundary conditions.

1.3 Constraints from boundary conditions

At z = 0, both 𝑇𝑓 and 𝑇𝑠 values are set constant, to the same value. Therefore we have the condition 𝑇𝑓 − 𝑇𝑠 = 0 at z = 0. We 20

then have the following relationship for 𝛼 and 𝛽:

𝛼 + 𝛽 = −𝑃𝑒𝐺 (S5)

At z = H, both 𝑇𝑓 and 𝑇𝑠 gradients are constant and equal to each other. Thus we have the condition
𝜕(𝑇𝑓−𝑇𝑠)

𝜕𝑧
= 0 at 𝑧 = 𝐻 =

1/𝐺. This gives the following relationship for 𝛼 and 𝛽 :

𝛼𝑟1𝑒𝑟1/𝐺 + 𝛽𝑟2𝑒𝑟2/𝐺 = 0 (S6) 25

From Eq. (S5) and (S6) we get

𝛼 = 𝑃𝑒𝐺
𝑟2

𝑟1𝑒(𝑟1−𝑟2)/𝐺−𝑟2
, 𝛽 = 𝑃𝑒G

𝑟1

𝑟2𝑒(𝑟2−𝑟1)/𝐺−𝑟1
 (S7)

2

2 Limits determination

2.1 Limit 𝑷𝒆 → 𝟎

When Pe tends to 0, Pe2 becomes negligible with respect to 4. We then get 30

𝑟1 → −1, 𝑟2 → 1

and obtain after few manipulations the following limit for (𝑇𝑓 − 𝑇𝑠) using Eq. (22)

 𝑇𝑓 − 𝑇𝑠 = 𝑃𝑒𝐺 (1 −
𝑒−𝑧

1+𝑒−2/𝐺 −
𝑒 𝑧

1+𝑒2/𝐺) = 𝑃𝑒G (1 −
𝑒−𝑧+𝑒2/𝐺−𝑧+𝑒𝑧+𝑒−2/G+z

2+𝑒−2/𝐺+𝑒2/𝐺) = 𝑃𝑒𝐺(1 − 𝑀) (S8)

with

 𝑀 =
cosh (z)+cosh(

2

𝐺
−𝑧)

1+cosh(
2

𝐺
)

 (S9) 35

An example is shown in Fig. S1 demonstrating that this limit is valid for Pe < 1.

2.2 Limit 𝑷𝒆 → ∞

To obtain the limit of Eq. (22) for 𝑃𝑒 → ∞ we write Eq. (22) in terms of 𝐶 = 4 𝑃𝑒2⁄ and determine the limit for 𝐶 → 0. The

terms 𝛼, 𝛽 in Eq. (22) can be linearized with respect to C. Inserting them into Eq. (22) gives

 𝑇𝑓 − 𝑇𝑠 = 𝐺𝑃𝑒 [− (1 −
1

4
𝐶 𝑒−𝑃𝑒(1+

1

2
𝐶)/𝐺) 𝑒−𝑃𝑒

1

4
𝐶𝑧 + (−

1

4
𝐶 (1 −

1

4
𝐶) 𝑒−𝑃𝑒(1+

1

2
𝐶)/𝐺) 𝑒𝑃𝑒(1+

1

4
𝐶)𝑧 + 1] (S10) 40

Allowing still for a finite term (C Pe), in the limit of 𝐶 → 0 Eq. (S10) turns into

 𝑇𝑓 − 𝑇𝑠 = 𝐺
1−𝑒

−
𝑧

𝑃𝑒

1/𝑃𝑒
 (S11)

Substituting x = 1/Pe and applying the rule of L’Hôpital we get

 lim
𝑥→0

(𝑇𝑓 − 𝑇𝑠) = lim
𝑥→0

𝐺𝑧𝑒−𝑧𝑥 = 𝐺𝑧 (S12)

One can see in Fig. (S1) that this limit predicts ΔTmax values in very good agreement with Eq. (22) for Pe > 100. 45

3

Figure S1. Comparison of the analytic solution Eq. (22) with the different limits derived in section 2.1 and 2.2. The black curve

represents the analytic solution, the colored straight lines show the results in the high or low value limits of Eq. (26) to (30), 50

respectively. G=0.1 was assumed.

3 Numerical programs

Here we give the Matlab routines used to calculate fluid to solid temperatures differences to generate figures like Fig.5.

Main program:

% Parent mfile for runing models. For every model it creates a 55
% new directory, in which key temperature results and outputfiles from the

% model solving are written. This code uses the function

% LTNEbasicdtpaper. This function solves non-thermal equilibrium two-phase

% flow (static matrix) and returns the fluid, solid temperatures and the

% temperature difference at top at the end of the run, as well as the 60
% maximum temperature difference at top recorded during the system

% evolution. Input parameters are :

% (Pe,phi0,H,delT,modelname,tmax,outputfactor)

% Pe: Péclet number

4

% phi0: Porosity (fluid volume fraction) 65

% H: Height of the domain

% delT: Initial temperature difference between top and bottom

% modelname: Name of the model

% tmax : Ending time

% outputfactor: Basic outputs come every multpl1*outputfactor steps for the first 70

% 1000*outputfactor time steps, and every multpl2*outputfactor steps

% afterwards. multpl1 and multpl2 have to be defined in the routine

% LTNEbasicdtpaper.m

clearvars 75

close all

nmodel = 1; % number of models to be run. If > 1 a loop has to be inserted

Pe = 1;

phi = 0.1; 80

H = 10;

delT = 1;

model = 'model1';

tmax = 100;

outputfactor = 1; 85

Results = zeros(nmodel,6);

mkdir('model1')

[Tftop,Tstop,dTtop,dTtopmax,kmax]=LTNEbasicdtpaper(Pe,phi,H,delT,model,tmax,outputf90

actor);

Results(1,:) = [1,Tftop,Tstop,dTtop,dTtopmax,kmax];

save(['1' '_' 'values' '.txt'],'Results','-ascii')

 95

Routine which is called by the above program: 100

% Function LTNEbasicdt to be used with a parent mfile in which the model to

% be run is defined. This function solves non-thermal equilibrium two-phase

% flow (static matrix) and returns the fluid, solid temperatures and the

% temperature difference at top at the end of the run, as well as the

% maximum temperature difference at top recorded during the system 105
% evolution. Input parameters are :

% Pe: Péclet number

% phi0: Porosity (fluid volume fraction)

% H: Height of the domain

% delT: Initial temperature difference between top and bottom 110
% modelname: Name of the model

% tmax : Ending time

% outputfactor: Basic outputs come every multpl1*outputfactor steps for the first

5

% 1000*outputfactor time steps, and every multpl2*outputfactor steps

% afterwards. multpl1 and multpl2 have to be defined in this routine 115

function

[Tftop,Tstop,dTtop,dTtopmax,tkmax]=LTNEbasicdtpaper(Pe,phi0,H,delT,modelname,tmax,o

utputfactor)

 120
clf

ncolor=8;

cmap = parula(ncolor);

kcol =1;

dx = 1e-1; % Grid size 125
if H < 10; dx = min(dx,H/100);end

output = 1; %1=outputs, other : no output files

dt = 0.25*min(dx/Pe, dx^2)

 130
% Prepare other parameters

prefixe = strcat('./',modelname,'/',modelname);

x = 0:dx:H;

nx = length(x);

t = dt:dt:tmax; 135
nmax=tmax/dt+1;

tkmax = 0;

Tf = zeros(nx,1); 140
difTtop = [];

%Initial condition

for i = 1:nx

 Tf(i) = delT -x(i)/H; % constant gradient 145
% Tf(i) = 0;

end

Tm=Tf;

Tmnew =Tm;

Tfnew=Tf; 150

%Boundary conditions at start

Tm0 = delT;

Tf0 = delT;

Tm1 = 0; 155
Tf1 = 0;

Tmnew(1) = Tm0;

Tm(1) = Tm0;

 160
Tmnew(nx) = Tm1;

Tm(nx) = Tm1;

Tfnew(1) = Tf0;

6

Tf(1) = Tf0; 165

Tfnew(nx) = Tf1;

Tf(nx) = Tf1;

%figure initial conditions 170

% figure;

%plot(x,Tfnew,'k',x,Tmnew,'k')

hold on

if output == 1 175

 Qsave = [x' Tfnew Tmnew];

 save([prefixe '_' num2str(0) '.txt'],'Qsave','-ascii')

end

dTtopmax=0; 180

kfirst = 0;

for k =2:length(t)

 for i = 2:nx

 % FTCS with upwind

 if i <nx 185

 Tmnew(i)=Tm(i)+dt*((Tm(i+1)-2*Tm(i)+Tm(i-1))/dx^2+...

 phi0*(Tf(i)-Tm(i)));

 Tfnew(i)= Tf(i) + dt*(-Pe*(Tf(i)-Tf(i-1))/dx +...

 (Tf(i+1)-2*Tf(i)+Tf(i-1))/dx^2 - (1-phi0)*(Tf(i)-Tm(i)));

 end 190

 if i == nx

% Top boundatry condition:

% finite flux as in paper

 Tmnew(i) = Tmnew(i-1)-dx/H; %constant flux condition at top (Neumann)

 Tfnew(i) = Tfnew(i-1)-dx/H; 195

% Zero flux

% Tmnew(i) = Tmnew(i-1)-0*dx/H; %constant flux condition at top

(Neumann)

% Tfnew(i) = Tfnew(i-1)-0*dx/H;

% Zero T 200

% Tmnew(i) = 0;

% Tfnew(i) = 0;

% Open with one-sided boundary condition for diffusion

% Tmnew(i)=Tm(i)+dt*((1/A)*(Tm(i)-2*Tm(i-1)+Tm(i-2))/dx^2+...

% (phi0/(1-phi0))*(Tf(i)-Tm(i))); 205

% Tfnew(i)= Tf(i) + dt*(-(Pe/A)*(Tf(i)-Tf(i-1))/dx +...

% (1/A)*(Tf(i)-2*Tf(i-1)+Tf(i-2))/dx^2 - (Tf(i)-Tm(i)));

% open with advection but diffusion switched off

% Tmnew(i)=Tm(i)+dt*((1/A)*(0)/dx^2+...

% (phi0/(1-phi0))*(Tf(i)-Tm(i))); 210

% Tfnew(i)= Tf(i) + dt*(-(Pe/A)*(Tf(i)-Tf(i-1))/dx +...

% (1/A)*(0)/dx^2 - (Tf(i)-Tm(i)));

% Robin

% qtotf = Pe;

% qtotm = 1/H; 215

7

% Tmnew(i) = -(dx*qtotm - Tmnew(i-1));

% Tfnew(i) = (dx*qtotf - Tfnew(i-1))/(dx*Pe-1);

 end

 dTtopmaxlast = dTtopmax;

 dTtopmax = max(dTtopmax,Tfnew(nx)-Tmnew(nx)); 220
 if dTtopmax > dTtopmaxlast ; kmax = k; tkmax=t(k); end

 end

 if Pe > 99; multpl1 = 100; else; multpl1 = 200;end

 if Pe > 99; multpl2 = 4000; else; multpl2 = 2000;end

 if k < (1000*outputfactor+1) 225
 kmod = mod(k,multpl1*outputfactor);

 if kmod == 0

 if kfirst == 0;linw = 2;end

% plot(x,Tfnew,'r',x,Tmnew,'b')

 plo = plot(x,Tfnew-Tmnew,'Color',cmap(kcol,:),'linewidth',linw); 230
 kfirst = 1;

 linw=1;

 kcol=kcol+1;

 if kcol>ncolor;kcol=1;end

 difTtop=[difTtop,Tfnew(nx)-Tmnew(nx)]; 235
 if output ==1

 Qsave = [x' Tfnew Tmnew];

 save([prefixe '_' num2str(k*dt) '.txt'],'Qsave','-ascii')

 end

 t(k) 240
 end

 else

 kmod = mod(k,multpl2*outputfactor);

 if kmod == 0 245
% plot(x,Tfnew,'r',x,Tmnew,'b')

 plo= plot(x,Tfnew-Tmnew,'Color',cmap(kcol,:));

 kcol=kcol+1;

 if kcol>ncolor;kcol=1;end

 250
 difTtop=[difTtop,Tfnew(nx)-Tmnew(nx)];

 if output == 1

 Qsave = [x' Tfnew Tmnew];

 save([prefixe '_' num2str(k*dt) '.txt'],'Qsave','-ascii')

 end 255
 t(k)

 end

 end

 260
 drawnow

 Tf = Tfnew;

 Tm = Tmnew;

end 265

8

xlabel('z')

% ylabel('Tm, Tf')

ylabel('T_f - T_s')

grid on 270

box on

if output == 1

 save([prefixe '_' 'outputdata.txt'],'x','Tfnew','Tmnew','-ascii')

 print('-f1','-dpng',prefixe) 275

end

% close (1)

%Key values returned from function 280

Tftop = Tfnew(nx);

Tstop = Tmnew(nx);

dTtop = Tfnew(nx)-Tmnew(nx);

 285

Main program for analytical solution. It can also be run directly after the numerical time evolution has been plotted by the

above code. Then the analytical and numerical solutions are plotted into the same graph:

% program for drawing dTmax as a function of z for a given set of parameters.

% Parameters : Pe, dT, H (=1/G). Used to plot the analytic solution

% into the previousy plotted temporal evolution of (Tf - Ts) -curves 290

% This program uses the analytical solution for dTmax, and some

% limits, where the analytical solution is not solvable by matlab (large

% exponential exponents for example). The domains where limits have to be

% used instead of the analytical solution must be precised by the user

% (lines marked with %%%%%%%%%). In this version, only the limits for 295

% high Pe were used. Others can be added if needed.

clearvars

% Here the previously plotted figure must be open and the same parameters 300

% have to be given (phi not needed)

hold on

Pe = 1;

dT = 1;

H = 10; 305

z = [0:0.01*H:H];

Pestr = num2str(Pe);

Gstr = num2str(1/H);

 310
for k = 1:length(z)

 if Pe < 30

 dTmax(k) = dTmaxcalc(Pe,dT,H,z(k));

 else

9

 [dTmax0(k),dTmax(k)] = dTmaxcalchighPe(Pe,dT,H,z(k)); 315

 end

end

plot(z,dTmax,'r--','linewidth',2)

xlabel('z') 320

ylabel('dTmax')

box on

ylabel('T_f - T_s')

title(['Pe =' ,Pestr,', G = ',Gstr])

 325

Routines which is called by the above program:

% function for calculating the analytical value of dTmax. Parameters are

% the Péclet number Pe, the inital temperature difference between bottom and

% top dT, the domain size H (distance at which top boundary conditions are 330

% applied) and the distance from bottom z.

function [dTmax]=dTmaxcalc(Pe,dT,H,z)

r1 = (Pe-sqrt(Pe^2+4))/2; 335

r2 = (Pe+sqrt(Pe^2+4))/2;

PeG = Pe*dT/H;

alpha = PeG/(r1/r2*exp((r1-r2)*H) - 1);

beta = PeG/(r2/r1*exp((r2-r1)*H) - 1);

dTmax = alpha*exp(r1*z) + beta*exp(r2*z) + PeG; 340

% function for calculating the limit of dTmax analytical solution (see

% function dTmaxcalc), when Pe tends to infinity (high Pe values).

% dTmaxhighPe2 is mostly another way of writing dTmax analytical function, 345

% that allows easier numerical calculation of dTmax (smaller exponential

% exponents), and can be used for smaller Pe values than dTmaxhighPe.

function [dTmaxhighPe, dTmaxhighPe2]=dTmaxcalchighPe(Pe,dT,H,z)

 350

r1 = (Pe-sqrt(Pe^2+4))/2;

r2 = (Pe+sqrt(Pe^2+4))/2;

dTmaxhighA = Pe*dT/H;

alpha = dTmaxhighA/(r1/r2*exp((r1-r2)*H) - 1);

dTmaxhighPe = dT*z/H; 355

dTmaxhighPe2 = alpha*exp(r1*z) +dTmaxhighA/(r2/r1)*exp(r2*(z-H)+r1*H)+ dTmaxhighA;

