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Abstract. Fluid flow through rock occurs in many geological
settings on different scales, at different temperature condi-
tions and with different flow velocities. Depending on these
conditions the fluid will be in local thermal equilibrium with
the host rock or not. To explore the physical parameters con-
trolling thermal non-equilibrium, the coupled heat equations
for fluid and solid phases are formulated for a fluid migrat-
ing through a resting porous solid by porous flow. By non-
dimensionalizing the equations, two non-dimensional num-
bers can be identified controlling thermal non-equilibrium:
the Péclet number Pe describing the fluid velocity and the
porosity φ. The equations are solved numerically for the fluid
and solid temperature evolution for a simple 1D model setup
with constant flow velocity. This setup defines a third non-
dimensional number, the initial thermal gradient G, which is
the reciprocal of the non-dimensional model heightH . Three
stages are observed: a transient stage followed by a stage
with maximum non-equilibrium fluid-to-solid temperature
difference, 1Tmax, and a stage approaching the steady state.
A simplified time-independent ordinary differential equation
for depth-dependent (Tf− Ts) is derived and solved analyti-
cally. From these solutions simple scaling laws of the form
(Tf− Ts)= f (Pe, G,z) are derived. Due to scaling they do
not depend explicitly on φ anymore. The solutions for1Tmax
and the scaling laws are in good agreement with the nu-
merical solutions. The parameter space PeG is systemati-
cally explored. Three regimes can be identified: (1) at high
Pe (> 1/G) strong thermal non-equilibrium develops inde-
pendently of Pe, (2) at low Pe (< 1/G) non-equilibrium de-
creases proportional to decreasing Pe ·G, and (3) at low Pe
(< 1) and G of the order of 1 the scaling law is 1Tmax ≈ Pe.
The scaling laws are also given in dimensional form. The
dimensional1Tmax depends on the initial temperature gradi-

ent, the flow velocity, the melt fraction, the interfacial bound-
ary layer thickness, and the interfacial area density. The time
scales for reaching thermal non-equilibrium scale with the
advective timescale in the high-Pe regime and with the in-
terfacial diffusion time in the other two low-Pe regimes. Ap-
plying the results to natural magmatic systems such as mid-
ocean ridges can be done by estimating appropriate orders of
Pe and G. Plotting such typical ranges in the Pe–G regime
diagram reveals that (a) interstitial melt flow is in thermal
equilibrium, (b) melt channeling such as revealed by dunite
channels may reach moderate thermal non-equilibrium with
fluid-to-solid temperature differences of up to several tens
of kelvin, and (c) the dike regime is at full thermal non-
equilibrium.

1 Introduction

Fluid flow through rock occurs in many geological settings
on different scales, at different temperature conditions and
with different flow velocities. Depending on these condi-
tions the fluid will be in local thermal equilibrium with the
host rock or not. On a small scale, e.g., grain scale, usu-
ally thermal equilibrium is valid. Examples include melt mi-
gration through a porous matrix in the asthenosphere or in
crustal magmatic systems at super-solidus temperatures (e.g.,
McKenzie, 1984), groundwater or geothermal flows in sedi-
ments or cracked rocks (e.g., Verruijt, 1982; Furbish, 1997;
Woods, 2015), or hydrothermal convection in the oceanic
crust (e.g., Davis et al., 1999; Harris and Chapman, 2004;
Becker and Davies, 2004). On a somewhat larger scale lo-
cal thermal equilibrium may not always be reached. Exam-
ples of such flows include melt migration in the mantle or
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crust at temperatures close to or slightly below the solidus
where melt may be focused and migrates through systems of
veins or channels (Kelemen et al., 1995; Spiegelman et al.,
2001). Within the upper oceanic crust water may also migrate
through systems of vents or channels (Wilcock and Fisher,
2004). At even larger scales and at sub-solidus conditions,
magma rapidly flows through propagating dikes or volcanic
conduits (e.g., Lister and Kerr, 1991; Rubin, 1995; Rivalta
et al., 2015) and is locally at non-equilibrium with the host
rock.

Heat transport associated with most of such flow scenar-
ios is usually described by assuming thermal equilibrium be-
tween the fluid and solid under slow flow conditions (e.g.,
McKenzie, 1984). Alternatively, for more rapid flows such as
melts moving in dikes through a cold elastic or visco-elasto-
plastic ambient rock, the fluids are assumed to be isothermal
(e.g., Maccaferri et al., 2011; Keller et al., 2013). However,
on a local scale of channel or dike width, thermal interaction
between rising hot magma and cold host rock is important
and may lead to effects such as melting of the host rock and
freezing of the magma with important consequences for dike
propagation and the maximum ascent height (e.g., Bruce and
Huppert, 1990; Lister and Kerr, 1991; Rubin, 1995). Clearly,
in such rapid fluid flow scenarios melt is not in thermal equi-
librium with the ambient rock.

Thus, there exists a transitional regime, which, for exam-
ple, may be associated with melt focusing into pathways
where flow is faster and thermal equilibrium might not be
valid anymore. In such a scenario it might be possible that
channelized flow of melt might penetrate deeply into sub-
solidus ambient rock, and thermal non-equilibrium delays
freezing of the ascending melts and promotes initiation of
further dike-like pathways. Indeed, for mid-oceanic ridges
compositional non-equilibrium has proven to be of great
importance for understanding melt migration and transport
evolution (Aharonov et al., 1995; Spiegelman et al., 2001).
Thus, it appears plausible that in cases of sufficiently rapid
fluid flow, e.g., due to channeling or fracturing, thermal
non-equilibrium may also become important. Describing this
non-equilibrium macroscopically, i.e., on a scale larger than
the pores or channels, is the scope of this paper.

While the physics of thermal non-equilibrium in porous
flow is well studied in more technical literature (e.g., Schu-
mann, 1929; Spiga and Spiga, 1981; Kuznetsov, 1994; Amiri
and Vafai, 1994; Minkowycz et al., 1999; Nield and Bejan,
2006; de Lemos, 2016), so far it has attracted only little
attention in the geoscience literature, but see Schmeling et
al. (2018) and Roy (2020). The basic approach in all these
studies is the decomposition of the heat equation for porous
flow into two equations, one for the solid and one for the mi-
grating fluid. The key parameter for thermal non-equilibrium
is a heat exchange term between fluid and solid, which ap-
pears as a sink in the equation for the fluid and as a source in
the equation for the solid. Usually, this heat exchange term
is assumed proportional to the local temperature difference

between fluid and solid (Minkowycz et al., 1999; Amiri and
Vafai, 1994; de Lemos, 2016; Roy, 2020). However, Schmel-
ing et al. (2018) showed that in a more general formulation
the heat exchange term depends on the complete thermal his-
tory of the moving fluid through the possibly also moving
solid. Here we will follow the common assumption and use
the local temperature difference formulation. While Schmel-
ing et al. (2018) showed that the magnitude of thermal non-
equilibrium essentially depends on the flow velocity, or more
precisely on the Péclet number, here we will more generally
explore the parameter space.

While thermal non-equilibrium of an arbitrary porous flow
system depends on many parameters, our approach is to re-
duce the complexity of the system and systematically explore
the non-dimensional parameter space. It will be shown that
only two non-dimensional parameters control thermal non-
equilibrium in porous flow, namely the Péclet number and the
porosity. In our simple 1D model setup with constant flow ve-
locity a third non-dimensional number, the non-dimensional
initial thermal gradient G, is identified, which is equal to
the reciprocal non-dimensional model height H = 1/G. The
non-dimensionalization allows application of the results to
arbitrary magmatic or other systems. The aim is to derive
scaling laws that allow an easy determination of whether
thermal equilibrium or non-equilibrium is to be expected and
quantitatively to estimate the maximum temperature differ-
ence between fluid and matrix. The results will be applied,
the magmatic system of a mid-ocean ridge setting.

2 Governing equations and model setup

2.1 Heat conservation equations

We start with considering a general two-phase matrix–fluid
system with variable properties and solid and fluid ve-
locities and subsequently apply simplifications. The two
phases are incompressible, and we assume local thermal non-
equilibrium conditions; i.e., the two phases exchange heat.
The equations for conservation of energy of this system are
given by de Lemos (2016), for example. Assuming constant
pressure, the conservation of energy of the fluid phase is
given by

cp,f

(
∂ (φρfTf)

∂t
+∇ · (φρfvfTf)

)
=∇ · (φλf∇Tf)−Qfs. (1)

For the definition of all quantities, see Table 1. Equation (1)
can be rearranged into

cp,f

(
Tf
∂ (φρf)

∂t
+φρf

∂Tf

∂t
+ Tf∇ · (φρfvf)+φρfvf · ∇Tf

)
=∇ · (φλf∇Tf)−Qfs. (2)

Mass conservation for the fluid phase is given by

∂ (ρfφ)

∂t
+∇ · (ρfφvf)= 0. (3)
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Inserting Eq. (3) into Eq. (2), conservation of energy for the
fluid phase becomes

cp,fρfφ

(
∂Tf

∂t
+ vf · ∇Tf

)
=∇ · (φλf∇Tf)−Qfs. (4)

In a similar way, the conservation of energy of the solid phase
is given by

cp,sρs (1−φ)
(
∂Ts

∂t
+ vs · ∇Ts

)
=∇ · ((1−φ)λs∇Ts)+Qfs, (5)

which, assuming that vs = 0, is further simplified:

cp,sρs (1−φ)
∂Ts

∂t
=∇ · ((1−φ)λs∇Ts)+Qfs. (6)

The term Qfs in the fluid and solid heat conservation equa-
tions is the interfacial heat exchange term between the two
phases (fluid and solid). In general, it depends on the local
thermal history of the two phases and the history of the heat
exchange (Schmeling et al., 2018). In a simplification it can
be written as a combination of the interfacial area density
S with the dimension [m−1], the interfacial boundary layer
thickness δ, the effective thermal conductivity λeff, and the
temperatures of the two phases:

Qfs =
Sλeff

δ
(Tf− Ts). (7)

In general, the term δ is time dependent. Schmeling et
al. (2018), however, provide evidence that taking an appro-
priate constant value for δ (depending on fluid velocity) gives
a good approximation ofQfs and allows for reasonable mod-
eling of temperature evolution with time. In most of the fol-
lowing parametric study, we use this simplification for δ by
assuming it is constant with time.

2.2 Scaling and non-dimensionalization

Non-dimensionalization is useful for interpreting models in-
volving a large number of parameters. It usually helps reduce
the number of parameters and identifies non-dimensional pa-
rameters that control the evolution of the system. We write
the two energy conservation equations in a non-dimensional
form, using

T =1T0T
′, t = t0t

′, v = vf0v
′,

(x,y,z)= L ·
(
x′,y′,z′

)
, (8)

where1T0 is the macroscopic scaling temperature difference
of the system, i.e., the initial temperature difference between
top and bottom; x,y, and z are distance; vf0 is the scaling
fluid velocity; L is the scaling length

L=

√
φ0 (1−φ0)δ

S
, (9)

with φ0 as a scaling porosity; and t0 is the scaling time based
on the diffusion time over the length L,

t0 = L
2/κ0 (10)

(see Table 1 for definitions). Primed quantities are non-
dimensional.

Introducing the fluid-filled pore width df and the solid
width ds, which may be the grain size or distance between
fluid channels, the interfacial area density S scales with

S =
cφ0

df
(11)

for melt channels, tubes, pockets for all melt fractions, and
melt films at small melt fractions, while S scales with

S =
cs (1−φ0)

ds
(12)

for melt channels, films, and suspensions at all melt fractions.
Here c is a geometrical constant of the order of 2 for melt
channels, 4 for melt tubes, 6 for melt pockets, and 2 for melt
films at small melt fractions. It should be emphasized that
Eqs. (11) and (12) are different ways of calculating the same
S. The geometrical constant cs is of the order of 2 for melt
channels and 6 for melt films or suspensions. Thus, the scal-
ing time and scaling length can also be written as

t0 =
(1−φ0)dfδ

cκ0
=
φ0dsδ

csκ0
(10a)

and

L=

√
(1−φ0)δdf

c
=

√
φ0δds

cs
. (9a)

Equation (9a) shows that L scales both with the geometric
mean of df and δ at small melt fractions and with the geo-
metric mean of ds and δ at large melt fractions. Thus, L is
a natural length scale associated with thermal equilibrium of
fluid-filled pores. The above scaling laws for S justify us-
ing the term φ0 (1−φ0) in the scaling length L. It should
be noted that we introduce and understand ds as the average
distance between melt-filled pores or channels, which can be
considerably larger than the grain size. Then both δ and ds
and thus L can reach some considerable fraction of the sys-
tem dimension.

We assume that the fluid and solid phases have the same
densities and thermal properties (but relax this assumption
later in Sect. 5.1.3):

cp,f = cp,s = cp,0, ρf = ρs = ρ0,

κf = κs =
λeff

cp,0ρ0
= κ0. (13)

From Eqs. (4), (6), and (7) we get the non-dimensional en-
ergy conservation equations for the fluid and solid phases,
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Table 1. Symbols, their definition, and physical units used in this study.

Symbol Definition Units

cp,f,s,0 Specific heat at constant pressure for the fluid, solid, or reference, respectively J kg−1 K−1

c, cs Geometrical constant for fluid pore space or solid phase, respectively. For melt channels or low
porosity films c = 2 and for tubes c = 4 (Eqs. 11, 12)

–

cth Constant for thermal boundary layer and 2.32 for cooling half space –

ds, df Characteristic length scale of solid or fluid phase, respectively m

f Subscript used for fluid –

g Function describing part of the φ dependence of df and ds (Eq. 35) –

G Initial temperature gradient, taken positive for temperature decreasing with height, mostly non-
dimensional

(T m−1)

H Height of the model, mostly non-dimensional (m)

L Scaling length used for non-dimensionalization (Eq. 9) m

M(z) Function describing the depth dependence of the analytical solution of (Tf− Ts) for small Pe
(Eq. 27)

–

Pe, PeD Péclet number based on fluid velocity (Eq. 16) or based on Darcy velocity (Eq. 33), respectively –

Qfs Interfacial heat exchange rate from fluid to solid J s−1 m−3

r1, r2 Constants of analytical solution (Eq. 23) –

s Subscript used for solid –

S Interfacial area density, i.e., interfacial area per volume m−1

t , tchar Time, characteristic timescales, respectively. “char” indicates the characteristic time for diffusion
or advection over a characteristic length L or H : diffL, diffH, advL, and advH

s

t0 Scaling time (Eq. 10) s

Tf,s Temperature of the fluid or solid, respectively K

1T0, 1Tmax Initial temperature difference between top and bottom used as scaling temperature, and maximum
difference between fluid and solid temperature in space and time, respectively

K

vf,s Velocity of the fluid or solid, respectively m s−1

vf 0 Constant fluid velocity in the model, used for scaling m s−1

vD Volumetric flow rate (Darcy velocity) (= φvf) m s−1

x, y, z Coordinates, distance m

α, β Functions used for analytical solution (Eq. 24) –

δ Interfacial boundary layer thickness m

κf,s,0 Thermal diffusivity of the fluid, solid, or reference, respectively m2 s−1

λf,s Thermal conductivity of the fluid or solid, respectively W m−1 K−1

λeff Effective thermal conductivity at the solid–fluid interface W m−1 K−1

φ,φ0 Porosity or scaling porosity, respectively –

ρf,s,0 Density of the fluid, solid, or reference, respectively kg m−3
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respectively:

φ

(
∂T ′f
∂t ′
+Pev′f · ∇T

′

f

)
=∇ ·

(
φ∇T ′f

)
−φ0 (1−φ0)

(
T ′f − T

′
s
)
, (14)

(1−φ)
∂T ′s
∂t ′

=∇ ·
(
(1−φ)∇T ′s

)
+φ0 (1−φ0)

(
T ′f − T

′
s
)
. (15)

From these equations we notice that the thermal evolution of
the two-phase system is controlled by two non-dimensional
numbers: the scaling porosity φ0 and the Péclet number Pe
defined as

Pe=
vf0L

κ0
. (16)

This number has already proven to be of high significance for
determining whether thermal non-equilibrium is present or
not (Schmeling et al., 2018), and the highest Pe corresponds
to the largest temperature difference between fluid and ma-
trix. In the following we drop the primes, keeping all equa-
tions non-dimensional, if not indicated otherwise.

In the following we consider a homogeneous two-phase
matrix–fluid system in 1D with a porosity constant in space
and time, i.e., φ = φ0. We assume a constant fluid velocity
which will be expressed in terms of Pe, thus we choose the
non-dimensional velocity vf = 1. This simplifies Eqs. (14)
and (15) to

∂Tf

∂t
+Pe

∂Tf

∂z
=
∂2Tf

∂z2 − (1−φ0)(Tf− Ts) (17)

and

∂Ts

∂t
=
∂2Ts

∂z2 +φ0 (Tf− Ts) , (18)

respectively. As we are interested in the evolution of the non-
equilibrium temperature difference between the solid and
fluid, subtraction of Eq. (18) from Eq. (17) gives

∂ (Tf− Ts)

∂t
−
∂2 (Tf− Ts)

∂z2 +Pe
∂Tf

∂z
+ (Tf− Ts)= 0, (19)

which is equivalent to

∂ (Tf− Ts)

∂t
−
∂2 (Tf− Ts)

∂z2 +Pe
∂ (Tf− Ts)

∂z
+ (Tf− Ts)

=−Pe
∂Ts

∂z
. (20)

Note that while the temperatures Tf and Ts explicitly depend
on two non-dimensional numbers Pe and φ0, the temporal
evolution of the temperature difference (Tf− Ts) explicitly
depends only on Pe. However, implicitly it is still a function
of φ0 because Ts on the right-hand side of Eq. (20) depends
on φ0 via Eq. (18). Only for cases or stages with Ts indepen-
dent of φ0 as proposed in Sect. 4 is the temperature difference
(Tf− Ts) a function of only one non-dimensional parameter,
Pe, and not of φ0.

2.3 Model setup

The fluid and solid heat conservation equations are solved
in a 1D domain of height H . Other geometries could also
be easily explored but are not considered here, since we fo-
cus on studying the relative control of the scaling param-
eters on thermal non-equilibrium evolution. At time t < 0,
both solid and fluid are at rest, in equilibrium. Both initial
temperatures decrease linearly from 1 to 0 with z; therefore
a constant temperature gradient of −G=−1/H is present
in both phases (see Fig. 1). As a boundary condition both
phase temperatures are set to 1 (non-dimensional tempera-
ture) at z= 0. At z=H a constant thermal gradient condi-
tion ∂T /∂z=−1/H (non-dimensional) is imposed for both
phases. At z= 0 the advective flux is fixed by the constant
temperature condition (i.e., it is equal to Peφ0) while at
z=H it evolves freely with the fluid temperature (i.e., it
is given by TfPeφ0, all non-dimensional). This top bound-
ary condition needs some justification: the hyperbolic partial
differential Eqs. (17) or (18) require two well-defined bound-
ary conditions each, Dirichlet (fixed temperature), Neumann
(fixed thermal gradient), Robin (linear combination of Neu-
mann and Dirichlet), or Cauchy (fixed temperature and ther-
mal gradient). Applying the Dirichlet condition at the bottom
leaves either a Dirichlet, a Neumann, or a Robin condition to
specify for the top. Different combinations of these bound-
ary conditions can be applied separately for the fluid and
the solid. For example, for the fluid a Neumann condition
with zero or a small temperature gradient may be reasonable,
while for the solid one may consider a Robin boundary con-
dition mimicking a thick conductive lid with an internal con-
stant temperature gradient and a fixed surface temperature.
However, temporal changes of the temperature at the top (for
our system, equal to the bottom of the lid) would lead to un-
physical variations in the constant slope of the temperature
gradient within the imagined lid. This is because the temper-
ature in the lid can only vary on the diffusive timescale of the
lid, which is much longer than all timescales in our model as
long as the lid is thicker than H . In fact, in an open outflow
situation like our system the evolution of the temperature, the
thermal gradient, and the total (advective plus conductive)
heat flux are not known a priori, but depend on the evolution
within the system. In the early stage of model evolution, both
the solid and fluid have a thermal gradient inherited from the
initial condition, which is advected upwards in the fluid. Thus
it seems most appropriate to use the Neumann condition as a
boundary condition for both the solid and fluid. Only at later
stages does this boundary condition impose artifacts in the
temperature field close to the top boundary. The limitations
of this top boundary condition are tested and discussed in
Sect. 5.1.2.

This model setup adds a third non-dimensional scaling pa-
rameter to the system, namely G= 1/H . It defines the ini-
tial non-dimensional temperature gradient or conductive heat
flux, positive for a flux directed upwards. To summarize, the
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Figure 1. Initial and boundary conditions.

temperatures depend on the non-dimensional parameters Pe,
φ0, and G.

2.4 Numerical scheme

The equations are solved by a MATLAB (MATLAB
R2021b) code using a finite difference scheme central in
space for the conduction terms, upwind for the advection
term, and explicit in time. The spatial resolution is dz= 0.1
or, for a few cases in Fig. 3 below, min(0.1,H/100) forH <

10. The time step was chosen as dt = 1
4 min

(
dz/Pe,dz2),

i.e., taking the minimum of the Courant or diffusion cri-
terion. Tests with higher spatial and temporal resolution
have been carried out and did not change the results vis-
ibly. The global heat balance has also been checked: the
maximum relative heat balance error can be defined as

δq =
qtot(z=0)−qtot(z=H)−H

∂Tmean
∂t

(qtot(z=0)+qtot(z=H))/2

∣∣∣∣
max

, where qtot is the total

non-dimensional vertical heat flux (conductive and advec-
tive) and Tmean is the mean temperature of the model. δq
has an error on the order of 1 (due to the upwind scheme)
with respect to the grid size dz; i.e., it is approximately equal
to const · dz, where the constant is of the order of 0.2 (i.e.,
2 %) for high Péclet numbers and drops to 0.1 (1 %) or 0.01
(0.1 %) for Pe∼= 1 or smaller, respectively.

3 Numerical model results

First, some example numerical results are shown in Fig. 2 to
understand the physics and the typical behavior.

3.1 Evolution of temperatures and thermal
non-equilibrium with time

Three different models have been run, all with Pe= 1 and the
following other parameters:

– model 1 – G= 0.1 (H =10), φ = 0.1,

– model 2 – G= 0.01 (H = 100), φ = 0.1, and

– model 3 – G= 0.01 (H = 100), φ = 0.2.

Figure 2. Typical model evolution for Pe= 1, two different melt
fractions φ, and two different non-dimensional temperature gradi-
ents G (i.e., heights H ). (a) Model 1 is with G= 0.1 (H = 10)
and φ = 0.1. Red and blue curves show the fluid and solid tem-
peratures at different non-dimensional times t as indicated by the
legend, respectively. Initial temperatures are almost identical to the
t = 0.5 curves. Steady state is reached at about t = 100; the curves
of the last two times plot on each other. (b) Model 2 with G= 0.01
(H = 100), otherwise as in (a). Steady state is not fully reached.
(c) Conductive (blue and red curves) and advective (magenta curve)
heat fluxes through the solid and fluid, respectively, of model 1.
Line styles indicate the same times as in (a). (d) Same as (c) but for
model 2. (e) Temporal evolution of fluid and solid temperatures, Tf
(red) and Ts (blue), respectively, at the top of model 2 with φ = 0.1
and model 3 with φ = 0.2. G= 0.01 (H = 100) for both models.
(f) Evolution of fluid–solid temperature difference (Tf− Ts) at dif-
ferent distances z in model 2 (φ = 0.1, solid curves) and in model 3
(φ = 0.2, dashed curves). (g) Zoomed-in early temporal evolution
of solid and fluid temperatures of models 2 and 3 shown in (e).
(h) Zoomed-in early temporal evolution of temperature difference
of models 2 and 3 shown in (f).
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Figure 2a and b show Tf and Ts as functions of z at dif-
ferent times as indicated for two initial temperature gradi-
ents, G= 0.1 (H = 10) and G= 0.01 (H = 100). Figure 2c
shows the different contributions to the depth-dependent con-
ductive and advective heat fluxes through the solid and fluid
phases, respectively. Figure 2e shows the evolution of Tf and
Ts with time at the top of the domain, for the same model 2
as in Fig. 2b and for model 3 with a higher melt fraction
φ = 0.2. Figure 2f shows the evolution of (Tf−Ts) at different
distances z of model 2 (φ = 0.1) and of model 3 (φ = 0.2). At
each depth of the system, the fluid and solid temperatures, as
well as the temperature difference and the heat fluxes, evolve
following three stages.

Stage 1. During this transient stage the fluid temperature
increases faster than the solid temperature (Fig. 2a, b, e, f),
and the temperature difference (Fig. 2f, h) increases. Dur-
ing this stage, the fluid temperature increases rapidly at first,
and then the temperature increase slows down. The conduc-
tive heat fluxes in both solid and fluid decrease rapidly and
more slowly later, while the advective heat flux rapidly in-
creases. As for the solid temperature, it first increases slowly
and then faster and faster. At t = 0, the fluid velocity is sud-
denly set to non-zero; thus the fluid temperature starts to de-
viate from equilibrium and increases due to these new condi-
tions. If the solid temperature were maintained constant with
time, the fluid temperature would probably reach a steady-
state profile, depending on boundary conditions, fluid veloc-
ity, and solid temperature. While the fluid temperature in-
creases faster than the solid temperature, the fluid–solid tem-
perature difference, and thus the heat transfer term, increases
too, forcing the solid temperature to progressively increase.
At the end of stage 1 the maximum temperature difference
is approached (Fig. 2h). Because the solid temperature has
not risen significantly at that time (at t = 4 in the example)
compared to the fluid temperature (Fig. 2g), different melt
fractions do not affect the temperature differences during this
stage (Fig. 2h in which all curves merge into one curve). This
observation confirms the expectation from Eq. (20) that the
temperature difference does not depend on melt fraction as
long as the solid temperature is independent of φ, which is
the case as long as Ts stays close to its initial profile.

Stage 2. The fluid and the solid temperatures increase at
similar rates, constant with time (Fig. 2e), and the temper-
ature difference remains constant and at a maximum at the
top (Fig. 2f). Solid–fluid heat transfer is at a maximum dur-
ing this stage. As Ts is no longer constant in time, different
melt fractions lead to different rates of temperature increase
(Fig. 2e) and also to different evolutions of (Tf–Ts) (Fig. 2f
solid curves compared to dashed curves). At higher melt frac-
tion the heat transfer into the solid increases (see last term in
Eq. 18), resulting in a faster increase in the solid tempera-
ture whose gradient flattens earlier. Thus, the end of stage 2
is reached earlier (Fig. 2e).

Stage 3. As the fluid temperature rises closer to the
Tf value at the bottom, its increase slows down, and heat

transfer, and thus temperature difference, decreases. In
model 1 (Fig. 2a), steady state is reached while the fluid and
solid temperatures are still far from 1. This is due to the influ-
ence of boundary conditions, as the heat transferred from the
fluid phase to the solid phase is compensated for by the solid
phase heat loss at the top of the domain. In model 2 (Fig. 2b),
boundary conditions at z=H are applied farther away from
the bottom, therefore allowing for a higher increase in tem-
peratures when reaching the steady state.

At each z we observe that the temperature difference first
increases rapidly to reach a maximum after a short time
(stage 1), hereafter t = 4 (Fig. 2h). The resulting amplitude
of the temperature difference is identical at the different z po-
sitions and for both melt fractions. Then it stays constant at
this maximum value (stage 2) and finally decreases (stage 3)
(Fig. 2f). The higher in the model, the longer the tempera-
ture difference remains at maximum. A higher melt fraction
accelerates the decrease in (Tf− Ts).

The absolute maximum temperature difference in space
and time does not depend on boundary conditions (see also
Sect. 5.1.2 where the influence of boundary conditions is dis-
cussed) or on the z position or on the melt fraction and there-
fore looks to be an interesting observable. It could indeed
be useful for getting a first-order estimate of thermal non-
equilibrium conditions and possible temperature differences
in a magmatic system. In the following sections we study
how this maximum temperature difference evolves when
varying the parameter Pe.

Comparing the heat fluxes of model 1 (G= 0.1) with those
of model 2 (G= 0.01) shows the importance of heat advec-
tion by the fluid phase: in model 1 (Fig. 2c) the conductive
contribution through the solid is of the same order of mag-
nitude as the advective contribution by the fluid because the
initial temperature gradientG and the porosity ϕ are the same
(= 0.1). In model 2 (Fig. 2d), in spite of the same Péclet num-
ber, the smaller initial temperature gradient (G= 0.01) re-
duced the conductive contribution with respect to the advec-
tive contribution by a factor of about 10, and advection domi-
nates. Furthermore, the two models demonstrate that the con-
ductive heat flux contributions may be important with respect
to advective and interphase heat flux for sufficiently large ini-
tial thermal gradient (here 0.1), while it has been neglected
in several earlier investigations (e.g., Schumann, 1929; Spiga
and Spiga, 1981).

3.2 Maximum temperature difference

The maximum temperature difference of a model can be de-
fined as the maximum value reached in space and time (see
Fig. 2f). A series of models have been carried out for the two
different non-dimensional parameters Pe and G= 1/H , and
1Tmax has been determined for each model (Fig. 3). Some
first observations can be made.

– For all Pe values, 1Tmax is proportional to Pe (Fig. 3a)
as long as 1Tmax is somewhat smaller than the abso-
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lutely possible maximum 1, which is asymptotically ap-
proached for high Pe.

– 1Tmax is proportional toG, i.e., to the non-dimensional
temperature gradient for G< 0.1.

– 1Tmax reaches a maximum for large G of the order of
1, i.e., when H reaches 1 or the dimensional H reaches
the length scale L.

– 1Tmax is essentially independent of φ as models with
different φ values almost merge in the same points
shown in Fig. 3. This has been verified by running all
models of Fig. 3 with melt fractions between 0.1 and
0.9 (not shown).

These observations suggest the existence of several domains
in which scaling laws for 1Tmax could be derived, based on
the two scaling parameters. In the next section, we propose
an analytical derivation of 1Tmax values to obtain scaling
laws and confirm the observed proportionalities.

4 Scaling laws derived from analytical solution

In this section a simplified analytical solution for the z-
dependent temperature difference between fluid and solid
will be derived. From this solution the maximum temperature
differences 1Tmax can be obtained, and scaling laws will be
derived.

4.1 Analytical solution of the governing equations

We are interested in an analytical solution of Eq. (20) control-
ling the non-equilibrium temperature difference (Tf− Ts).
We simplify the problem by considering the hypothetical
case in which (Tf− Ts) does not change with time and, more-
over, in which the thermal gradient in the solid phase is fixed
and linear, with ∂Ts/∂z=−G=−1/H (non-dimensional,
with dimensions G=1T0/H). Although different from ini-
tial and steady-state stages described in the 1D models
(Sect. 3.1), this hypothetical case is quite similar to what can
be observed at the very beginning of the second stage de-
scribed in Sect. 3.1 (see Fig. 2f, h). In this second stage, the
evolution of Tf and Ts was observed to be quite similar in-
deed. Besides, at the end of stage 1 (Sect. 3.1), Ts remains
close to initial conditions; therefore a fixed linear gradient of
slope −G=−1/H is justified. Since the maximum temper-
ature difference between the two phases is observed starting
from the end of stage 1 and during stage 2 (Sect. 3.2), it does
not seem unreasonable to consider this hypothetical case for
deriving the maximum temperature difference. Using these
assumptions, Eq. (20) becomes

∂2 (Tf− Ts)

∂z2 −Pe
∂ (Tf− Ts)

∂z
− (Tf− Ts)=−PeG. (21)

While in the general case of Eq. (20) the temperature dif-
ference implicitly depends on φ0, i.e., on the three non-
dimensional parameters Pe, φ0, and G, Eq. (21) no longer
depends on φ0 because we replaced ∂Ts (φ0)/∂z with −G,
which is independent of φ0. Equation (21) is a second-order
ordinary differential equation for (Tf− Ts) whose solution
can be analytically derived as (see Supplement for details)

Tf− Ts = αe
r1z+βer2z+PeG, (22)

where r1 and r2 are the roots of the associated equation of
Eq. (21):

r1 =
1
2

(
Pe−

√
Pe2+ 4

)
, r2 =

1
2

(
Pe+

√
Pe2+ 4

)
. (23)

The parameters α and β are constrained by the boundary con-
ditions (Tf− Ts)= 0 at z= 0 and ∂(Tf−Ts)

∂z
= 0 at z=H :

α = PeG
r2

r1e(r1−r2)/G− r2
,

β = PeG
r1

r2e(r2−r1)/G− r1
. (24)

The third term in Eq. (22) is a particular solution for Eq. (21).

4.2 Comparison with numerical models

From Eq. (22) the maximum value of the depth-dependent
temperature difference (Tf− Ts) can be determined. It is
found that the maximum is always at z=H . This value
will be denoted as 1Tmax and has been calculated for all
parameter combinations used for the numerical models. In
Fig. 3 these analytical solutions are plotted as solid lines to-
gether with the numerical solutions (asterisks). The agree-
ment is very good. For most cases the differences between
the numerical and analytical solutions are well below 1 %;
only when 1Tmax reaches values of about 0.6 and higher
do the differences become > 1 %, up to 6 %. This general
good agreement is another justification for using the time-
independent Eq. (21) to obtain an analytical solution of an
intrinsically time-dependent process as long as we are inter-
ested only in the maximum value of (Tf−Ts). Other reasons
for the observed differences between the analytical and nu-
merical solutions include numerical errors when determin-
ing the particular times when maximum temperature differ-
ences are reached, especially for the models which are in the
regime close to 1Tmax = 1 where the 1Tmax(Pe) curves be-
come non-linear (Fig. 3a).

4.3 Scaling laws for temperature differences at certain
parameter limits

The analytical solution for 1Tmax fits very well with our
model results and therefore looks to be ideal for getting a
better understanding of the relative influences of the two
controlling parameters Pe and G, described in Sect. 2.2 and
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Figure 3. Maximum fluid–solid temperature differences Tf− Ts of numerical models (asterisks) with different parameters, plotted (a) as a
function of the Péclet number Pe for G= 0.1 and φ = 0.1 and (b) as a function of the initial thermal gradient G for Pe= 1 and φ = 0.1. The
solid lines give the analytic solutions. The inset in (a) shows the comparison of the analytic solution Eq. (22) with the different limits derived
in Sect. 2.1 and 2.2. The black curve represents the analytic solution, and the colored straight lines show the results in the high or low value
limits of Eqs. (26) to (30), respectively. A larger version of the inset is given as Fig. S1 in the Supplement. The analytical solution for the full
parameter range Pe–G is given in Fig. 4.

2.3. The Péclet number is already known to be of great im-
portance for thermal equilibrium and non-equilibrium con-
ditions. Inspecting the last term in Eq. (22) we notice that
a high Pe and a high initial thermal gradient should favor
higher temperature differences. This has been demonstrated
in Fig. 3.

Equation (22) is, however, complicated, and the assess-
ment of the relative importance of Pe and G for different
possible regimes is limited. In this section, we study the
evolution of (Tf− Ts), i.e., also 1Tmax, in a few limiting
cases. This enables us to better understand the influence of
each parameter and to derive some scaling laws for different
regimes.

4.3.1 Limit Pe → 0

When Pe tends to 0, we have the condition

Pe� 2. (25)

With this condition Eq. (22) tends to the following limit (see
Supplement):

Tf− Ts = PeG(1−M), (26)

with

M =
cosh(z)+ cosh

(
2
G
− z

)
1+ cosh(2/G)

, (27)

which simplifies for z=H = 1/G to

M =
1

cosh(1/G)
. (28)

This is the limit for Pe→ 0. This limit gives predictions for
1Tmax in very good agreement with Eq. (22) for Pe< 1 (hav-
ing G= 0.1) (see inset in Fig. 3a or Fig. S1 in the Supple-
ment). In the limit G→ 0 and finite Pe< 1/G we get the

limit for M

M→ e−z.

Thus, for both small Pe and small G the temperature differ-
ence (Eq. 26) can be written as

Tf− Ts = PeG
(
1− e−z

)
. (29)

Equation (29) confirms the proportionalities observed in
Fig. 3, namely 1Tmax ∝ Pe (Fig. 3a) and 1Tmax ∝G

(Fig. 1b).

4.3.2 Limit Pe → ∞

To obtain the limit of Eq. (22) for Pe→∞, Eq. (22) can be
linearized with respect to 4/Pe2

� 1. Applying the rule of
L’Hôpital, Eq. (22) tends to the following limit:

Tf− Ts =Gz. (30)

For details, see the Supplement. This limit is also the solution
of Eq. (21) when neglecting the diffusive and heat transfer
terms. As demonstrated in the Supplement, this limit predicts
1Tmax values in very good agreement with Eq. (22) for Pe>
100 (Fig. 3a, inset).

4.3.3 Exploring the domains for the maximum
temperature difference including all limits

Before exploring the full parameter space, we first give a
short overview of expected parameter ranges in magmatic
systems.

In natural magmatic systems such as mid-ocean ridges,
Pe is expected to evolve from very low values of the order
of 10−5 to 10−3 in partially molten regions with distributed
porous flow to higher values of the order of 1 or larger at
depths where channels have merged and further to very high
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values of the order of 105 in dike systems (Schmeling et al.,
2018).

While the melt fraction does not influence 1Tmax (cf.
Eqs. 22, 30), it does influence the long-term temporal be-
havior because Ts is φ0-dependent (see Eq. 20). Therefore,
here follow some words about possible melt fractions. As
melt flow may occur at very small melt fractions (McKenzie,
2000; Landwehr et al., 2001), large φ values are not expected
in natural mantle magmatic systems or in dike systems in the
crust. Values of channel volume fraction generally remain
below a few percent up to tens of percent (in dunite channels
up to 10 %–20 %, Kelemen et al., 1997).

To get an idea about the expected order of magnitude of
the macroscopic thermal gradient G= 1/H of the system,
we have to evaluate the scaling length L used to scale the
dimensional H . L scales with the geometric mean of the
channel width df and the interfacial boundary layer thick-
ness δ (Eqs. 9 with 11). L would evolve non-linearly with
the width of melt pathways, which may increase by several
orders of magnitude as 3D grain junctions eventually merge
to 1D dikes. As will be shown in Sect. 5.3 in more detail the
resulting non-dimensional G ranges between an order of 1
and an order of 10−5.

In Fig. 4 we explore 1Tmax variations using the analyti-
cal solution Eq. (22), in which 1Tmax depends on Pe and G.
Three main regimes can be distinguished.

– Regime 1. For high Pe values, (Tf− Ts) tends to the re-
lationship described in Eq. (30). The temperature dif-
ference increases linearly with distance from the bot-
tom (z= 0), reaching1Tmax = 1 at z=H . In the whole
region the fluid temperature remains constant and at a
maximum of 1 while the solid temperature increases lin-
early with z from 0 to 1. The proportionality of1Tmax to
G disappears because the maximum value of z is equal
to H = 1/G.

– Regime 2. For Pe� 1, or more precisely, for Pe�
1
G

represented by the oblique dashed line in Fig. 4,
(Tf− Ts) varies with distance from the bottom accord-
ing to

(
1− e−z

)
and is proportional to Pe and G. This

means that large temperature gradients favor large tem-
perature differences. In this domain, (Tf− Ts) tends to
the relationship presented in Eq. (29).

– Regime 3. For a large initial temperature gradient G
close to 1 (small H ) and Pe� 1, (Tf− Ts) tends to
the relationship proposed in Eq. (26). In this domain,
(Tf− Ts) is proportional to Pe but no more toG because
M is a function of G gradually canceling the propor-
tionality to G, which is visible in regime 2. The depth
dependence is given by (1−M(z)), which atG= 1 in-
creases non-linearly from about 0 to 0.4 with increasing
z.

Figure 4. Main regimes of the maximum fluid–solid temperature
differences 1Tmax due to thermal non-equilibrium obtained by the
analytical solution (Eq. 22) in the parameter space of the Péclet
number Pe and temperature gradient G. The asymptotic limits are
indicated by the formulas, and M(z) is given by Eq. (27) with
(1−M(G,z)) increasing non-linearly from about 0 to about 0.4
with increasing z forG in the range 0.3 to 3. Regime boundaries are
shown as dashed lines. Typical parameter combinations for mag-
matic settings such as interstitial melts or dikes are indicated by
the orange rectangles which extend further to the left, well below
log10G of −3. Note that two slices through this field at G= 0.1
and at Pe= 1 have already been shown in Fig. 3.

5 Discussion

5.1 Limitations

5.1.1 Comments on the analytic solution

Although the assumptions used to get the analytic solution
(Eq. 22) are very specific, they are reasonable considering the
conditions in the models when 1Tmax is reached, and it fits
the numerical results very well. This is shown in Fig. 5 where
for various combinations of Pe and G the time-dependent
temperature differences (Tf− Ts) are shown as functions of
depth together with the analytical solutions using Eq. (22).
For all examples the position of the maximum temperature
differences lies at z=H . A major simplification used in
Eq. (21) was time independence. Obviously, the resulting
analytical solutions represent stage 2, which is quasi steady
state in contrast to stage 1 when the temperature difference
builds up and stage 3 when the long-term behavior is ap-
proached. We emphasize that this analytical solution is a
very good approximation of the depth-dependent temporal
maximum temperature difference that can be reached in such
porous systems.

5.1.2 Boundary conditions at top and initial conditions

The boundary conditions we chose at the top (z=H ) are
suitable for cases with little temperature evolution (regimes
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Figure 5. Comparison of depth- and time-dependent numerical so-
lutions with the time-independent analytical solutions for different
parameters Pe and G as indicated in the panel titles. In each panel
the curves show (Tf− Ts) profiles for progressive times, and the
colors are cyclically varied with time from blue to yellow, starting
with blue (bold curve). The bold red dashed curve shows the ana-
lytical solution Eq. (22), which represents a very good estimate of
the depth-dependent temporal maximum of the temperature differ-
ence. In each panel the first five curves are plotted at time incre-
ments of 0.5 (0.025 for Pe= 100) and the later curves with 5 (1
for Pe= 100). The total non-dimensional times of each panel are
100 (500 for G= 0.01). Steady state is reached in the models with
G= 0.1. The model with G= 0.01 would need t = 10 000 to reach
steady state. The melt fraction was chosen as φ0 = 0.1.

2 and 3, low Pe) and for early stages for regime 1 but might
be inappropriate for high temperature increases (high Pe –
regime 1) at later stages (see Sect. 4.3.4). In order to quantify
the influence of this choice of boundary conditions on our
results, we compared the evolution of (Tf− Ts) profiles for
three Péclet numbers and two values of G, using four differ-
ent boundary conditions at the top (Fig. 6).

– Constant thermal gradient equal to the initial thermal
gradient in the solid and fluid phases (Neumann condi-
tion). This was the boundary condition used in the mod-
els.

– The thermal gradient is set to 0 at the top (Neumann
condition).

– Both fluid and solid temperatures are set to 0 at the top
(Dirichlet condition).

– Temperature at the top is numerically calculated from
the full Eqs. (17) and (18) using one-sided (upwind) po-
sitions for the first and second derivatives (open bound-
ary).

Mathematically, the open boundary condition is not a rig-
orous boundary condition because both the temperature and
temperature gradient intrinsically depend on the temperature
evolution within the model. Therefore, it cannot be applied
to the analytical solution of Sect. 4.1. Numerically it works
well for our system without producing instabilities or oscil-
lations. Comparing the top and bottom rows of Fig. 6, the
constant temperature gradient condition produces quite sim-
ilar results as the open boundary condition for all Pe and
G values tested during the first and second stages of tempo-
ral evolution (see Sect. 3.1). The agreement becomes worse
for stage 3 when approaching steady state at large Pe val-
ues. Comparing the other two boundary conditions (second
and third rows of Fig. 6) with the constant gradient condition
(top row) shows that the effect of the top boundary during
stages 1 and 2 is still small sufficiently far away from the
top. Only for the small Pe case (left column of Fig. 6) do
the zero gradient and zero temperature conditions strongly
affect the upper half of the domain by diffusion. Yet the max-
imum temperature difference of the constant gradient case is
nearly reached by the other two boundary conditions further
within the domain, not at the top. The special case of high
Pe and small G with zero temperature boundary condition
(third row, fourth column in Fig. 6) shows a strong build-up
of Tf−Ts close to the top when approaching the steady state.
This stems from the large local temperature gradient built up
near the top as a result of transforming the difference in ad-
vective heat in- and output (PeTinflux−PeToutflux = Pe) into
a high conductive outflux (∂T /∂z) at the top. It is unlikely
that such situations occur in natural systems.

We have also tested an open boundary condition for the
fluid and a Robin boundary condition for the solid imagining
a lid on top of our model with a constant temperature gra-
dient and a fixed surface temperature. Choosing the surface
temperature in such a way that the initial thermal gradient
within our system and within the lid are identical, this bound-
ary condition adds a new non-dimensional parameter, the lid
thickness Hlid. Tests show that lid thicknesses larger than H
give results in general agreement with the constant gradient
or open boundary models of Fig. 6. Localized differences
with up to 30 % higher (Tf− Ts) values occur near the top,
but they disappear for Hlid ≥ 10H . Lid thicknesses smaller
than H force the solid temperature at the top to values closer
to 0, while the fluid temperature remains high. This results in
significantly higher (Tf− Ts) values than in Fig. 6 (top row)
close to the top. However, typical natural magmatic systems
are on the Hlid >H side, suggesting that our constant gradi-
ent boundary condition is a good approximation.

In summary, the influence of boundary conditions on fluid
and solid temperature evolution depends mostly on the do-
main size H and on the value of Pe. The larger these two pa-
rameters, the less important the influence of boundary condi-
tions within almost the whole model domain. If one is inter-
ested in the maximum value of Tf−Ts in space and time, the
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Figure 6. Temporal evolution of vertical profiles of (Tf− Ts) for models with different Péclet numbers and different initial temperature
gradients G. In each panel the curves show (Tf− Ts) profiles for progressive times, and the colors are cyclically varied with time from
blue to yellow, starting with blue (bold curve). The first five curves of the Pe< 100 (respectively Pe= 100) models were taken with time
increments of 1 (respectively 0.1) and the later curves with 10 (respectively 1). The total time was 100 in all models with G= 0.1 and 500
in the models withG= 0.01. Steady state is reached in the models withG= 0.1. The models withG= 0.01 would need t = 10 000 to reach
steady state. In each row the top boundary conditions are assumed as indicated at the left.

tests show that this value can safely be picked at z=H when
using the constant temperature gradient boundary condition.

As an initial condition we used a linear temperature pro-
file and initial equilibrium between solid and fluid. A non-
linear initial temperature profile between Tf = Ts = 1 at the
bottom and Tf = Ts = 0 at the top would have spatially vary-
ing temperature gradients with sections with gradients larger
than those assumed in our model. As the temperature gra-
dient strongly influences thermal non-equilibrium (see e.g.,
Eq. 22, which explicitly contains the temperature gradient
G), the above results are expected to be different, and a
stronger thermal non-equilibrium is expected in regions with
higher gradients. Schmeling et al. (2018) used a step func-
tion with Tf = Ts = 1 at z= 0 and Tf = Ts = 0 at z > 0 as
the initial condition, i.e., an extremely non-linear profile near
z= 0. Assuming this initial temperature profile, Fig. 7 shows
the temporal behavior of the temperature difference for se-
lected parameter combinations, equal to the parameters used
in Fig. 5. The analytical solutions for the time-independent
cases (Eq. 22) are also shown. As expected, at early stages the

temperature differences are significantly larger than given by
the analytical solutions by a factor of 2 or more shortly af-
ter the onset of the evolution. At later stages (stage 2 or 3)
the time-dependent solutions approach or pass through the
analytical solutions. Thus, we may state that the analytical
solutions depicted in the regime diagram in Fig. 4 represent
lower bounds of thermal non-equilibrium compared to set-
tings with non-linear initial temperature profiles.

5.1.3 Different densities and thermal properties of the
two phases

While for simplicity we used equal physical properties for
the fluid and solid, in many circumstances they might be
significantly different. Equal properties are good approxi-
mations for magmatic systems where differences of density
and thermal parameters are small (order of 10 %), whereas
porous flows of water or gases through rocks or other tech-
nical settings may be characterized by larger differences. Al-
lowing for different material properties adds four new pa-

Solid Earth, 13, 1045–1063, 2022 https://doi.org/10.5194/se-13-1045-2022



L. Chevalier and H. Schmeling: Thermal non-equilibrium of porous flow and melt migration 1057

Figure 7. Time- and depth-dependent numerical solutions (thin
curves) as in Fig. 5 but for step-function initial conditions: Tf =
Ts = 1 at z= 0 and Tf = Ts = 0 at z > 0 at t = 0. The bold dashed
red curves are the time-independent analytical solutions as in Fig. 5.
In each panel the curves show (Tf− Ts) profiles for progressive
times, and the colors are cyclically varied with time from blue
to yellow, starting with blue (bold curve). In each panel the first
five curves (and later curves, respectively) are plotted at time incre-
ments of (a) 0.5 (5), (b) 1 (10), (c) 0.5 (5), and (d) 0.025 (1). The to-
tal non-dimensional times of each panel are 100 (500 forG= 0.01).
Steady state is reached in the models withG= 0.1. The model with
G= 0.01 would need t = 10 000 to reach steady state. As porosity
φ = 0.1 is assumed.

rameters, namely the ratio of diffusivities, the ratio of densi-
ties, the ratio of heat capacities, and a new effective thermal
conductivity λeff for the interface between the two phases
with different properties. To evaluate how many new non-
dimensional numbers are introduced, we non-dimensionalize
the equations assuming different material properties for the
two phases. We use the fluid properties as scaling quanti-
ties and assume that they are independent of temperature,
pressure, and depth. We modify the scaling length and Pé-
clet number by defining L̃= L√

λ′eff
with λ′eff = λeff/λf and

P̃e= Pe√
λ′eff

. With this scaling, Eqs. (14) and (15) turn into

(for clarity, primes indicate non-dimensional quantities)

φ

(
∂T ′f
∂t ′
+ P̃ev′ · ∇T ′f

)
=∇ · (φ∇T ′f )−φ0 (1−φ0)(T

′

f − T
′

s ) (31)

and

(1−φ)
∂T ′s
∂t ′
=

κ ′s
ρ′sc
′
p,s
∇ · ((1−φ)∇T ′s )

+φ0 (1−φ0)
1

ρ′sc
′
p,s
(T ′f − T

′
s ). (32)

Inspection of these equations shows that two more non-
dimensional numbers are introduced: the ratio of diffusivities
κ ′s and the ratio of the products’ density and heat capacity,
ρ′sc
′
p,s.

As Eqs. (31) and (32) cannot be merged into one time-
independent ordinary differential equation for (Tf− Ts) as in
Sect. 4.1, we numerically tested some cases with P̃e= Pe= 1
and λ′eff = 1 in which the diffusivity ratio and the ratio of
ρ′sc
′
p,s were varied between 0.1 and 10 (see Fig. 8). The

results show that for the fixed combination of Pe= 1 and
λ′eff = 1 the magnitude of thermal non-equilibrium remains
on the same order of magnitude O(0.1) as for equal proper-
ties (Fig. 8). However, the time dependence is significantly
affected: for a high ratio of κ ′s = 10 (i.e., the solid is strongly
conducting) the solid temperature profile remains close to
the constant initial gradient, and the temperature difference
rapidly converges to a steady state similar to the analytical
solution depicted in Fig. 5a. In contrast, for a low κ ′s = 0.1
the solid temperature departs more strongly from the ini-
tial linear gradient, and the solid–fluid temperature difference
slowly drops with time in the long term. Varying the potential
to store heat in the solid, i.e., ρ′sc

′
p,s, Fig. 8e and f show that

a high value slows down the long-term time-dependent vari-
ations, while a small value leads to rapid long-term temporal
variations in (Tf− Ts) and faster convergence to the steady
state, which is similar to the case with equal properties.

It is interesting to apply the results for different physical
properties to a geologically relevant setting, namely water
flowing through sedimentary rocks. Given that the high heat
capacity of water is about 3 times larger than that of rock,
and the density is almost 3 times less, the product ρ′sc

′
p,s is

about 0.78, i.e., of an order of 1. However, the thermal dif-
fusivity of water is significantly smaller than that of rock,
typically by a factor of 16; i.e., κ ′s is about 16. We tested a
few cases (Fig. 9) with Péclet numbers and initial thermal
gradients G (i.e., inverse model heights) (assuming for sim-
plicity λ′eff = 1) equal to the cases depicted in Fig. 5. The
time-dependent profiles behave similarly to those in Fig. 5,
with very similar maxima of the temperature differences (red
dashed curves in Fig. 5) relevant for stage 2. The only impor-
tant difference is that the water–sedimentary rock case more
rapidly approaches the late steady states of stage 3, and these
stages are closer to the maximum red dashed curves. These
results suggest that the absolute values of maximum thermal
non-equilibrium temperature differences shown in the regime
diagram Fig. 4 are also applicable to a water–sedimentary
rock system.

5.2 Timescales

It is interesting to evaluate the timescales for reaching the
maximum non-equilibrium temperature differences and the
steady state. For every numerical model, we recorded the
time needed to reach 90 % of the maximum temperature dif-
ferences between fluid and solid, t90 %, and the time needed
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Figure 8. Time- and depth-dependent profiles of the fluid–solid temperature differences as in Fig. 5. (a) Reference models (as in Fig. 5a)
with Pe= 1, G= 0.1, φ = 0.1, and equal fluid-to-solid properties. (b–f) Profiles as in (a) but with solid-to-fluid property ratios as indicated
in the titles of each panel, and λ′eff = 1. The properties in (b) are typical for water in sedimentary rocks. In every panel but (b) the first five
curves were taken with time increments of 0.5 and the later curves with 5. In (b) the first 5 curves were taken with time increments of 0.4875
and the later curves with 4.875. The total time was 100 in all models. Steady state is reached in all models.

to reach steady state, tsteady. The latter has been deter-
mined as the time at which the maximum difference be-
tween (Tf (z)− Ts(z)) curves at two subsequent time steps
becomes less than 10−81Tmax. These times can be compared
with different timescales that may characterize the evolu-
tion of temperatures in the models. These timescales can be
based on advection over a characteristic distance dchar, giv-
ing tadvd = dchar/vf0, or on diffusion over the characteristic
distance, giving tdiffd = d

2
char/κ0. We tested these timescales

with the two natural length scales of the models. The first
is the scaling length L (equal to 1 non-dimensional), repre-
senting essentially the geometric mean of the channel width
of the pores, df, and the interfacial boundary layer thickness
δ. The second is the model height H . Grouping the mod-
els depending on the regime they belong to (see Sect. 4.3.4
and Fig. 4), we plotted the recorded times t90 % and tsteady
versus the characteristic timescales mentioned above. Good

agreement with the characteristic timescales is indicated by
observed times fitting to the dashed x = y lines (Fig. 10).

In regime 1 (high Pe), t90 % is proportional to tadvH
(Fig. 10a, blue circles). In this regime the high value of Pe
makes the fluid temperature increase fast. It reaches its max-
imum value during the time under which significant fluid–
solid heat transfer builds up and the solid temperature is
still low. This corresponds to the time for traveling the full
distance H . During stages 2 and 3 the solid temperature
increases and the temperature difference decreases before
steady state is reached. The time for reaching steady state
(Fig. 10b, circles) varies roughly linearly with tsteady ∝ tdiffH.
For most cases it is controlled by diffusion through the solid
over distances of the order of H . The case with large H
(circle in Fig. 10b below dashed line) apparently reaches
the steady state earlier, but still later than on a correspond-
ing advective timescale based on H (not shown). Inspect-
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Figure 9. Time- and depth-dependent profiles of the fluid–solid
temperature differences as in Fig. 5, but for fluid-to-solid prop-
erty ratios typical for water flowing through sedimentary rocks, i.e.,
ρ′sc
′
p,s = 0.78, κ ′s = 16, and λ′eff = 1. Pe and G have been chosen

as indicated in the panel titles (as in Fig. 5), and φ = 0.1 was as-
sumed. In each panel the curves show (Tf− Ts) profiles for pro-
gressive times, and the colors are cyclically varied with time from
blue to yellow, starting with blue (bold curve). The first five curves
were taken with time increments of 0.4875 and the later curves with
4.875. The total time was 100 in all models with G= 0.1 and 200
in the models with G= 0.01. Steady state is reached in the models
with G= 0.1. The model with G= 0.01 would need t = 10 000 to
reach steady state.

ing this model shows that during stages 2 and 3 the high Pe
number facilitates approaching thermal equilibrium rapidly
within large parts of the model and reducing the effective
length scale (and characteristic timescale) over which non-
equilibrium is still present.

In regime 2 (low Pe and G< 0.1, i.e., H > 10) the time
for reaching 1Tmax is controlled by interfacial heat transfer
(Fig. 10a, red asterisks) on the length scale L, resulting in
t90 % proportional to t0. The time for reaching steady state is
controlled by the diffusion timescale across the height of the
system (Fig. 10b).

In regime 3 (low Pe and high G (small H )), time for
reaching 1Tmax is similar to or shorter than the diffusion
time based on the model height H (Fig. 10a, black crosses).
The flattening of the curve indicates that non-equilibrium is
reached faster for some models because Pe reaches the order
of 1 and the advective timescale starts to take over. The time
for reaching steady state (Fig. 10b, crosses) varies linearly
with tsteady ∝ tdiffH. Clearly, it is also controlled by diffusion.

5.3 Applications to magmatic systems

We now test the possible occurrence of thermal non-
equilibrium in natural magmatic systems based on the sug-
gested controlling non-dimensional parameters, namely the
Péclet number Pe, the initial thermal gradient G (= 1/H ),
and the melt fraction φ. Typical stages of melt flow for mid-
ocean ridges include three stages:

a. partially molten regions with interstitial melts sitting
at grain corners, grain edges, or grain faces with low
(0.0001 %–6 %) melt fractions (see, e.g., the discussion
in Schmeling, 2006);

b. merging melt channel or vein systems with high-
porosity (> 10 %–20 %) channels identified as dunite
channels after complete melt extraction (Kelemen et al.,
1997);

c. propagating dikes or other volcanic conduits.

Let us assume typical overall melt fractions of 1 % to 20 %
for stages (b) and (c). Schmeling et al. (2018) discussed pos-
sible Péclet numbers for such systems based on a Darcy-
flow-related Péclet number:

PeD =
vDds

κ0
. (33)

As we preferably use the melt pore dimension df in our scal-
ings (Eqs. 9a and 10a), we need to relate it to the solid phase
dimension ds by using

ds = df
g

φ
, g =

{
(1−φ) melt channels
√
φ
(
1−
√
φ
)

melt tubes. (34)

Using Eqs. (34), (9a), and (16), we arrive at the Péclet num-
ber used here.

Pe= PeD
1
g
√
c

√
(1−φ)δ
df

(35)

Schmeling et al. (2018) reviewed and estimated typical pore
or channel spacings ds of 10−3–10−2 m for stage (a), 0.1 m
for early stage (b) increasing to 1–100 m for late stage (b),
and 100–300 m for stage (c) (dikes). Arguing for typi-
cal geometries, spreading rates, and melt extraction rates,
Schmeling et al. (2018) estimated the Darcy velocity to
range between 10−10 and 10−9 m s−1. With these parame-
ters PeD numbers for the three stages can be estimated for
the three stages as

a. 10−7 to 10−5,

b. 10−5 to 10−4 at depths where channel distances are of
the order of 0.1 m and 10−4 to 0.1 at shallower depths
where the channel distances have increased to the order
of 1 to 100 m,
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Figure 10. For evaluating timescales the numerically determined times of models with various parameters Pe and G representing the three
different regimes 1, 2, and 3 (different symbols) are plotted against characteristic scaling times. (a) Times for reaching 90 % of the maximum
temperature difference 1Tmax are plotted against either the advective timescale tadvH based on model height H for regime 1 models or
against the scaling time t0 for regime 2 models, or against the diffusive timescale tdiffH based on the model height H . (b) Times for reaching
steady states are plotted against the characteristic diffusive timescales, tdiffH, based on model height H for all three regimes. Models close
to the dashed line (y = x) are in best agreement with the characteristic times. In (a) regime 2 times are taken dimensionally by multiplying
the observed times and the non-dimensional scaling time t ′0 = 1 by some arbitrary dimensional times t0.

c. > 105 for the dike stage.

To estimate Péclet numbers as defined here (Eq. 35), typical
interfacial thermal boundary layer thicknesses δ are needed.
As the thermal interfacial heat exchange intrinsically is time-
dependent, a good estimate is δ = cth

√
κ0t (in dimensional

form), where cth is a constant for a thermal boundary layer,
equal to 2.32 for a cooling half space (Turcotte and Schu-
bert, 2014). Assuming that the characteristic time can be ex-
pressed by the (dimensional) fluid velocity v0 and system
height H , i.e., by t =H/v0 =Hφ/vD, we may express vD
in terms of the Péclet number PeD. With the resulting t and
δ we arrive at the following Péclet number (H and df are
dimensional or non-dimensional):

Pe= Pe3/4
D

√
cth

c
g−3/4

(
H

df

)1/4√
1−φ. (36)

For mid-ocean ridge settings we assume H to represent
the transition region between the lithosphere and astheno-
sphere with a thickness of the order of 1 to 10 km, and we
use Eq. (34) to insert typical df values. They increase from
10−4 m for interstitial melts (stage a) to 10−3 to 10−1 m
for the channeling stage (b) (see Schmeling et al., 2018) to
> 10 m for the dike stage (c). The resulting Péclet number
(Eq. 36) is of the order of 10−3 to 0.5 for stage a, 10−2 dur-
ing the early stage (b) and 10−2 to 1 during the later stage (b)
appropriate for dunite systems, and 104 to 107 for the dike
stage (c). To estimate typical non-dimensional thermal gra-
dients G′ (or layer thickness H ′), the above estimate for δ
and df can be inserted into the scaling length L (Eq. 9a) to
arrive at a non-dimensional G′ = 1/H ′.

G′ =

(
H

ds

)−3/4

g−1/2φ3/4
√
cth

c
Pe−1/4

D

√
1−φ (37)

With the derived estimates for the three stages, G′ is of the
order of 10−6 to 10−2.7 for stage (a), 10−4–10−2.5 increas-
ing to 10−4–0.6 for stage (b), and 10−5–10−2 for the dike
stage (c). These resulting stages for Pe and G′ are indicated
in the regime diagram (Fig. 4). All three stages extend far
into the domain, with G values smaller than 0.001. Thermal
non-equilibrium of the three stages can be summarized as
follows.

a. Interstitial melts are at full thermal equilibrium.

b. Channeling and veining may result in moderate thermal
non-equilibrium at sufficiently high thermal gradients.

c. After transition to diking full thermal non-equilibrium
is predicted.

A similar exercise can be done for continental magmatic
systems. We skip such an explicit evaluation here but note
that silicic melt viscosities are typically higher than those of
basaltic melts at mid-ocean ridges. Thus, Péclet numbers are
expected to be smaller, but non-dimensional thermal gradi-
ents (Eq. 37) might be larger, resulting in a downward and
rightward shift of the natural stages indicated in Fig. 4.

To make our scaling laws and timescales for reaching max-
imum thermal non-equilibrium more accessible, it is worth
writing them in dimensional form. First, to estimate the Pé-
clet number of a natural system, combining Eqs. (9) and (16)
gives

Pe=
vf0

κ0

√
φ0 (1−φ0)δ

S
, (38)

indicating that for very small or very large melt fractions Pe
becomes very small. One may use Eqs. (11) or (12) to write
Pe also in terms of pore or solid (grain or channel spacing)
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dimensions df or ds, respectively. The scaling laws and char-
acteristic timescales for the three regimes we found (Fig. 4)
are in dimensional form.

– Regime 1. For large Pe values the maximum non-
equilibrium temperature difference is simply equal to
the imposed temperature difference, 1Tmax = 1T0,
and the characteristic time to reach maximum non-
equilibrium is simply tchar =H/vf0, i.e., the total time
of a fluid particle for passing through the system.

– Regimes 2 and 3. For small Péclet numbers (Pe<
H
√
S

√
φ0(1−φ0)δ

) the maximum temperature difference scales
like

1Tmax =
Gvf0φ0 (1−φ0)δ

κ0S

=
vf0φ0 (1−φ0)δ

Hκ0S
1T0, (39)

and the characteristic time for reaching this non-
equilibrium scales with t0, i.e.,

tchar =
φ0 (1−φ0)δ

κ0S
. (40)

These relations can easily be used to assess the poten-
tial of thermal non-equilibrium in systems of fluid flow
through solids with given geometrical properties and
fluid fractions.

In the above discussion we used the terms moderate ther-
mal non-equilibrium, which we may identify with1T ′max of a
few percent to, say, 30 %, while full thermal non-equilibrium
includes higher values up to 100 %. To translate this into
dimensional 1Tmax values, what are typical 1T0 values
for mid-ocean ridges? In our example we defined Has the
thickness of the transition region between lithosphere and
asthenosphere. Such a transition zone may be defined by
the depth region bounded by the asthenospheric tempera-
ture Tasth and, say, 0.8Tasth, i.e., 1T0 = 0.2Tasth ∼= 200 K.
Thus moderate non-equilibrium may be represented by ex-
cess temperatures of the melt with respect to the solid be-
tween, say, 6 and 60 K, while full thermal non-equilibrium
suggests the full 1T0 range of 60 to 200 K or even higher
in the case of dikes extending up into the lithosphere with
temperatures below 0.8Tasth. These typical temperature esti-
mates may have some implications for whether the solid rock
will melt or the melt will freeze. However, this discussion is
beyond the scope of this paper.

6 Conclusions

In conclusion, we showed that in magmatic systems char-
acterized by two-phase flows of melts with respect to solid,
thermal non-equilibrium between melt and solid may arise

and becomes important under certain conditions. The main
conclusions are summarized as follows.

From non-dimensionalization of the governing equations,
three non-dimensional numbers can be identified control-
ling thermal non-equilibrium: the Péclet number Pe, the
melt porosity φ, and the initial non-dimensional tempera-
ture gradient G in the system. The maximum possible non-
equilibrium solid–fluid temperature difference1Tmax is con-
trolled only by two non-dimensional numbers: Pe and G.
Both numerical and analytical solutions show that in a Pe–
G parameter space three regimes can be identified.

– In regime 1 (high Pe(> 1/G)) strong thermal non-
equilibrium develops independently of Pe, and a non-
dimensional scaling law Tf−Ts =Gz has been derived.

– In regime 2 (low Pe(< 1/G) and low G(< 0.3)) non-
equilibrium decreases proportionally to decreasing Pe
and G, and the non-dimensional scaling law reads Tf−

Ts = PeG
(
1− e−z

)
.

– In regime 3 (low Pe(< 1) and G of the order
of 1) non-equilibrium scales with Pe and G and
is depth-dependent. The scaling law is Tf− Ts =

PeG (1−M(z)), where M(z) depends on G.

Further conclusions include the following.

– The timescales for reaching thermal non-equilibrium
scale with the advective timescale in the high-Pe regime
and with the interfacial diffusion time in the other two
low-Pe-number regimes.

– Applying the results to natural magmatic systems such
as mid-ocean ridges can be done by estimating appro-
priate orders of Pe and G. Plotting such typical ranges
in the Pe–G regime diagram reveals that (a) interstitial
melt flow is in thermal equilibrium, (b) melt channel-
ing as revealed by dunite channels, for example, may
reach moderate thermal non-equilibrium, and (c) the
dike regime is at full thermal non-equilibrium.

– In the studied setup G was constant, leading to conser-
vative estimates of thermal non-equilibrium. Any other
depth-dependent initial temperature distributions gener-
ate higher non-equilibrium than reported here.

– The derived scaling laws for thermal non-equilibrium
are valid for equal solid and fluid properties. Assuming
different properties such as for a water–sandstone sys-
tem results in similar maximum non-equilibrium tem-
perature differences, but in significantly different time
evolutions.

While for simplicity the presented approach has been done
essentially for constant model parameters, it can easily be ex-
tended to vertically varying parameters. Thus, tools are pro-
vided for evaluating the transition from thermal equilibrium
to non-equilibrium for anastomosing systems (Hart, 1993).
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