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Abstract. Modelling the pressure in the Earth’s interior is
a common problem in Earth sciences. In this study we pro-
pose a method based on the conservation of the momentum
of a fluid by using a hydrostatic scenario or a uniformly mov-
ing fluid to approximate the pressure. This results in a partial
differential equation (PDE) that can be solved using classi-
cal numerical methods. In hydrostatic cases, the computed
pressure is the lithostatic pressure. In non-hydrostatic cases,
we show that this PDE-based approach better approximates
the total pressure than the classical 1D depth-integrated ap-
proach. To illustrate the performance of this PDE-based for-
mulation we present several hydrostatic and non-hydrostatic
2D models in which we compute the lithostatic pressure or an
approximation of the total pressure, respectively. Moreover,
we also present a 3D rift model that uses that approximated
pressure as a time-dependent boundary condition to simulate
far-field normal stresses. This model shows a high degree of
non-cylindrical deformation, resulting from the stress bound-
ary condition, that is accommodated by strike-slip shear
zones. We compare the result of this numerical model with
a traditional rift model employing free-slip boundary condi-
tions to demonstrate the first-order implications of consid-
ering “open” boundary conditions in 3D thermo-mechanical
rift models.

1 Introduction

In Earth sciences and geodynamic modelling, computing the
pressure can be essential. Specifically, numerous regional
thermo-mechanical studies use the lithostatic pressure or
a reference pressure based on some density structure as a

normal stress boundary condition (e.g. Baes et al., 2018;
Brune, 2014; Brune et al., 2012, 2014, 2017; Chertova et al.,
2012, 2014; Glerum et al., 2018; Ismail-Zadeh et al., 2013;
Popov and Sobolev, 2008; Quinteros et al., 2010; Yamato
et al., 2008). By imposing only the normal stress, material
is permitted to flow in and out of the domain in response to
the other boundary conditions and or deformation in the do-
main interior. This is inherently closer to the reality of the
dynamics within a regional segment of the Earth,compared
to a regional domain that is closed and in which neither in-
flow nor outflow is permitted. Hence, the ultimate intent of
imposing the normal stress is to provide dynamical behaviour
that is similar to that which would occur if the models were
performed in a much larger domain. Moreover, the reference
pressure can also be used as an initial guess for the pressure
when solving linear or non-linear system flow problems with
iterative methods.

The common approach to compute a reference pressure P
is to define a set of depth columns and integrate the rock den-
sity ρ(x) over each column to obtain the pressure at depth.
Thus, to compute the pressure P at some point of x′, we eval-
uate the 1D integral as follows:

P(x′)= Ps+

x′∫
x′s

ρ(x)||g(x)||dx, (1)

where x′s is the projection of x′ onto the surface of the
Earth in the direction opposite to the gravity vector g and
Ps is the reference pressure at the surface x′s. For the case
of a constant density and gravity, this expression reduces to
P(x′)= Ps+ρgD, whereD is the distance (depth) given by
D = ‖x′s−x

′
|| and g = ||g||. When the density is a function
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of space and gravity is constant, the 1D integral is decom-
posed into different segments Di and a suitable quadrature
rule is applied over each segment. For example using a one-
point Gauss quadrature rule we have

P(x′)= Ps+
∑
i

∫
Di

ρ(x)g dx ≈ Ps+
∑
i

ρigDi, (2)

where ρi is the density at the centroid of the segment Di .
For the case of a uniform mesh with cell edges aligned with
the gravity vector, all the cell edges and vertices are located
along straight lines that are parallel to the direction of gravity.
Hence, Eq. (2) can be simply evaluated by traversing along
a column associated with a set of cells (or vertices). In this
special case, the sub-division of the integral is naturally de-
fined by mesh cells. If the column sweep is performed from
the surface to depth, then only a single pass over each cell
in a column is required to compute the pressure at any depth
within that column by accumulating values from cells at shal-
lower depths. Therefore, if we traverse from segments i= 0,
1, 2, . . . , N , where the segments are ordered such that Di+1
is located at greater depth than Di , then we have the follow-
ing sequence P0 = Ps+ρ0gD0, P1 = Ps+ρ0gD0+ρ1gD1 =

P0+ρ1gD1, . . . , PN = Ps+
∑N
i ρigDi = PN−1+ρNgDN .

Although evaluating Eq. (2) may appear simple, its imple-
mentation may be inefficient or too algorithmically complex
for general use. Below we outline some common use cases
that render the column-wise integration difficult (or expen-
sive):

1. a mesh with cell edges (2D) or faces (3D) that are not
aligned with the gravity vector (Fig. 1a),

2. an unstructured mesh (Fig. 1b),

3. a density structure (or gravity vector) that is spatially
varying,

4. a parallel decomposition of the mesh (Fig. 1c),

5. time dependence in the density or mesh coordinates that
requires continual re-evaluation of the reference pres-
sure.

To compute P(x′) we first have to define the location x′s.
In general this is non-trivial for use cases (1) and (2). If both
the density and gravity are constant, then the only complexity
associated with meshes identified in points (1) and (2) relate
to computing x′s. Due to the fact that the path of the integral
(i.e. the “column”) does not coincide in general with a set of
mesh cells or vertices, the line integral must be performed for
each point x′ in the mesh, meaning that the single pass ap-
proach used in the gravity-aligned mesh is not possible. If the
density (or gravity) vary in space throughout the domain, the
integral must be approximated via a suitable sub-division in
space and/or a quadrature rule. Assuming that the density is

a piecewise constant over each cell, the simplest approxima-
tion would be to determine the intersection between the line
segment [x′,x′s] and each cell and apply a one-point quadra-
ture rule over the intersecting segment times. In Fig. 1a and
b we depict the complexity of this procedure for a non-
coordinate-aligned and unstructured mesh. When performing
simulations in parallel where the mesh is distributed across
multiple Message Passing Interface (MPI) ranks, even for the
case of a uniform mesh aligned with the gravity vector, the
column-wise integration approach is somewhat complicated.
Individual MPI ranks may compute their local contribution
to the sum of accumulated pressures; however, the final pres-
sure requires a partial sum to be performed over mesh sub-
domains that intersect the 1D line integral. The global reduc-
tion (with the chosen MPI ranks overlapping with each 1D
line integral) is complicated to define for mesh types identi-
fied in points (1) and (2). Lastly, if the reference pressure as-
sociated with some density structure is to be used as a bound-
ary condition in a mechanical model, time dependence of that
density structure (or mesh) will require one to re-compute the
reference pressure at each time step. Hence, the efficiency of
the implementation used to compute the pressure is impor-
tant.

Moreover, when the density structure evolves with time
as deformation occurs, the pressure gradients may no longer
be aligned with the gravitational acceleration vector. In these
non-hydrostatic cases, this pressure is not lithostatic. How-
ever, to be able to provide an approximation for the total
pressure or to use stress boundary conditions, it is still im-
portant to approximate the total pressure in the best possible
way.

For these reasons, we propose an efficient mesh and nu-
merical method (finite elements, finite differences, finite vol-
umes, etc.) to compute a reference pressure associated with
the density structure of a domain in hydrostatic cases or an
approximation of the total pressure for non-hydrostatic cases
for all scenarios given above by solving a partial differential
equation (PDE) derived from the conservation of the non-
inertial momentum equation for an incompressible fluid. We
also present thermo-mechanical numerical models and static
numerical models applied to Earth sciences and geodynam-
ics to show the usefulness of this approach.

2 PDE-based pressure formulation

For an incompressible fluid in a domain �, the non-inertial
form of the conservation of momentum is given by the Stokes
equation

∇ · τ −∇P + ρg = 0, (3)

where v is the velocity of the fluid, P is the total pressure,
τ = 2ηε̇(v) is the deviatoric stress tensor with η the viscos-
ity, ε̇(v) is the strain rate tensor, ρ := ρ(x, t) is the den-
sity, g := g(x, t) is the gravity vector, and x and t denote
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Figure 1. Schematic representation of meshes for which computing an integral in the vertical direction can be challenging: (a) mesh with a
grid not aligned with the gravity vector, (b) unstructured mesh, and (c) parallel distribution of a mesh. The dashed blue lines represent the
direction along which the integral must be performed. The blue crosses represent the points that have to be evaluated during the integration.

the space and time, respectively. The incompressibility con-
straint is given as follows:

∇ · v = 0. (4)

In the context of our problems we will decompose the bound-
ary of the domain into two non-overlapping segments: ∂�surf
that we will regard as the free surface and prescribe that tan-
gential and normal stresses are zero, i.e. τ−P I= 0, and ∂�i,
which denotes the interior parts of the boundary along which
we may impose any valid combination of velocity or stress
in the normal and tangential directions. Furthermore, ∂�=
∂�i ∪ ∂�surf and ∂�i ∩ ∂�surf =∅. The outward-pointing
unit normal vector to ∂� will be denoted via n̂.

To define the pressure associated with the density struc-
ture we make the “ansatz” that v = 0; hence, Eq. (4) is triv-
ially satisfied, and Eq. (3) reduces to the usual hydrostatic
equilibrium problem

0=−∇P + ρg. (5)

For spatial dimensions nd = 2,3, Eq. (5) is over-determined
as there are more equations (nd) than unknowns: ∂
∂x
∂
∂y
∂
∂z

P = ρ(x)
gxgy
gz

 . (6)

As such, there is no unique solution to Eq. (5). To obtain
a unique solution to Eq. (5), we require a single equation for

P . This can be achieved by taking the divergence of Eq. (5):

∇ ·∇P =∇ · (ρg). (7)

Eq. (7) will be referred to as the pressure Poisson equation
(PPE).

Equation (7) can be obtained in an alternative manner with
less restrictive assumptions. First, we assume that we have a
solution ((v),p) for Eqs. (3), (4). Then we take the diver-
gence of the momentum equation (as before) and integrate
over �∫
�

∇ · (∇ · τ )dV −
∫
�

∇ ·∇P dV +
∫
�

∇ · (ρg)dV = 0. (8)

Then, applying the divergence theorem to the first term we
obtain∫
∂�

(∇ · τ ) · n̂dS−
∫
�

∇ ·∇P dV +
∫
�

∇ · (ρg)dV = 0. (9)

If we assume the boundary term on the left-hand side is
small, we have∫
�

∇ ·∇P dV ≈
∫
�

∇ · (ρg)dV (10)

which must be true for any arbitrary domain, thus resulting
in Eq. (7).
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Assuming that n̂ is constant or slowly varying and that τ
is symmetric yields

(∇ · τ ) · n̂= ni
∂

∂xj
τij ≈

∂

∂xj
(τjini)=∇ · (τ n̂). (11)

Hence, dropping the first term in Eq. (9) is equivalent to say-
ing that τ n̂≈ 0 for all x ∈ ∂�. Alternatively, the term is zero
if ∇ · τ = 0 for all x ∈ ∂�. This condition is satisfied if the
fluid experiences either rigid body translations or rigid body
rotation along ∂�.

2.1 Boundary conditions

A unique solution to Eq. (7) requires boundary conditions
to be specified on P . Our choice of boundary conditions for
Eq. (7) is motivated by Earth-like bodies. The boundary con-
ditions will be specified in the usual manner, i.e. in terms of
a Dirichlet constraint in which we impose P and Neumann
constraints in which we impose the behaviour of ∇P · n̂.

Along the surface of the domain, which represents the free
surface of the Earth, we impose

P = 0 for all x ∈ ∂�surf. (12)

Equation (12) is a Dirichlet constraint and specifies that the
reference (or datum) pressure should be zero on the surface
of our geological body. This is consistent with the observa-
tion that the mean pressure on all points on the surface (above
sea level) are approximately equal. This Dirichlet boundary
condition is a natural extension of the free surface bound-
ary condition used for the flow problem in Eqs. (3), (4),
namely n̂ · (τ −P I)n̂= n̂ · (τ −P I)t̂ = 0, which reduces to
n̂·τ n̂−P = 0 and n̂·τ t̂ = 0 with t̂ a tangent unit vector to the
boundary such that n̂ · t̂ = 0. Equation (12) is consistent with
a fluid at rest since τ = 0. In the non-hydrostatic case, we
require τ n̂≈ 0 to arrive at Eq. (12). We also note that n̂ · τ n̂
is proportional to the mean curvature κ of the boundary ∂�
(Barth and Carey, 2007). Hence, if there is zero topography,
κ = 0 and P = 0 on ∂�surf, and if the change in topography
is small, then κ ≈ 0 and P ≈ 0.

Two different boundary conditions are introduced to con-
strain ∇P · n̂. These are defined as a direct extension of the
1D hydrostatic assumptions to 2D and 3D domains. We first
introduce some additional quantities that will aid the defini-
tion of the Neumann boundary condition. First, we split ∂�i
into two parts, such that ∂�i = ∂�⊥ ∪ ∂�‖. Next, we define
the gravity unit vector ĝ such that

g = gĝ, (13)

and the unit vector ĝ⊥, which is perpendicular to ĝ, i.e.

ĝ · ĝ⊥ = 0. (14)

The first constraint states that P should increase only in
the direction of gravity. Hence, from Eq. (5) we have

∇P · ĝ = ρg‖ĝ‖2 = ρg, for all x ∈ ∂�‖. (15)

The second constraint states that P should not change along
directions perpendicular to the gravity; hence,

∇P · ĝ⊥ = 0, for all x ∈ ∂�⊥. (16)

Since the unit vector n̂ normal to the boundary ∂� can be
decomposed according to

n̂= (n̂ · ĝ)ĝ+ (n̂ · ĝ⊥)ĝ⊥, (17)

we have

∇P · n̂= (n̂ · ĝ)∇P · ĝ+ (n̂ · ĝ⊥)∇P · ĝ⊥. (18)

Hence, the two Neumann boundary conditions may be stated
as

∇P ·n̂= (n̂·ĝ)ρg+(n̂·ĝ⊥)∇P ·ĝ⊥ for all x ∈ ∂�‖, (19)

and

∇P · n̂= (n̂ · ĝ)∇P · ĝ for all x ∈ ∂�⊥. (20)

Equations (19) and (20) may appear peculiar since both
the left-hand side and right-hand side involve the gradient of
pressure. In principle, to obtain a unique solution to Eq. (7)
one can constrain the gradient in any direction, independent
of the boundary normal n̂, and our 1D inspired gradients do
exactly that.

We note for domains with boundaries parallel to either ĝ
or ĝ⊥ that the Neumann conditions (19) and (20) simplify
(and in some cases do not provide any) the information to
constrain ∇P · n̂. For example, consider a 2D Cartesian do-
main’s right and left boundaries 0r,l with normal n̂= (±1,0)
and a bottom boundary 0b with normal n̂= (0,−1) and
ĝ = g(0,−1). Invoking Eq. (19), we obtain

∇P ·n̂=

{
∇P · ĝ⊥ =∇P · n̂ for x ∈ 0l,r, (21a)
ρg for x ∈ 0b. (21b)

Invoking Eq. (20) we obtain

∇P ·n̂=

{
0 for x ∈ 0l,r, (22a)
∇P · ĝ =∇P · n̂ for x ∈ 0b. (22b)

Clearly conditions (21a) and (22b) are redundant. As such,
the usage of Eqs. (19) and (20) cannot be used arbitrarily.

One may also consider employing both Eqs. (19) and (20)
simultaneously. In this way we would obtain

∇P · n̂= (n̂ · ĝ)∇P · ĝ+ (n̂ · ĝ⊥)∇P · ĝ⊥

= (n̂ · ĝ)ρg+ (n̂ · ĝ⊥)0
= ρgĝ · n̂= ρg · n̂, (23)

which is identical to the result obtained by computing the dot
product of Eq. (5) with n̂. Equations (23) certainly avoids the
potential issue of using Eqs. (19) and (20). If we again con-
sider the 2D Cartesian domain example, imposing Eq. (23)
on all of ∂�i is equivalent to imposing Eqs. (21b) and (22a).
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Nevertheless, for an arbitrarily shaped domain, using
boundary conditions (15), (16) or (23) does not yield the
same result (see Sect. 3.3). For general use (i.e. when con-
sidering arbitrarily shaped domains), we suggest employing
Eqs. (15) and (16) as they are a direct extension of the 1D
hydrostatic assumptions to 2D and 3D domains.

2.2 Weak formulation

To define the weak formulation of the PPE we will use func-
tions that are square integrable in the sense of Lebesgue, i.e.

L2(�) :=

u :�→ R
∣∣∣ ∫
�

u2 dV <∞

 ,
and functions from the H1(�) Sobolev space

H1(�) :=
{
u :�→ R

∣∣∣ u,∇u ∈ L2(�)
}
.

Finally we will require the space of functions in H1(�) that
vanish on the Dirichlet boundary ∂�surf:

H d
1 (�)=

{
u ∈H1(�)

∣∣∣ u= 0 on ∂�surf

}
.

Given a test function q ∈H d
1 (�), the weak form of the PPE

is obtained by multiplying Eq. (7) by q and integrating both
sides over �∫
�

q∇ ·∇P dV =
∫
�

q∇ · (ρg)dV. (24)

Applying integration by parts to the left- and right-hand sides
yields∫
�

∇q · ∇P dV −
∫
∂�i

q∇P · n̂dS

=

∫
�

∇q · (ρg)dV −
∫
∂�i

qρg · n̂dS. (25)

Note that the boundary ∂�surf does not appear in Eq. (25)
since the test function q vanishes along the Dirichlet bound-
ary. We also note that Eq. (25) only requires ρg ∈ L2(�),
and thus the formulation is valid for cases when the density
ρ is discontinuous.

Splitting the surface integrals over the two segments
∂�i = ∂�⊥ ∪ ∂�‖ and using Eqs. (19), (20) we have∫
�

∇q · ∇P dV −
∫
∂�‖

q
[
(n̂ · ĝ)ρg+ (n̂ · ĝ⊥)∇P · ĝ⊥

]
dS

−

∫
∂�⊥

q
[
(n̂ · ĝ)∇P · ĝ

]
dS

=

∫
�

ρg∇q · ĝ dV −
∫
∂�i

qρgĝ · n̂dS. (26)

Noting that the second term of the left-hand side and part of
the last term on the right-hand side exactly cancel each other
yields the following∫
�

∇q · ∇P dV −
∫
∂�‖

q
[
(n̂ · ĝ⊥)∇P · ĝ⊥

]
dS

−

∫
∂�⊥

q
[
(n̂ · ĝ)∇P · ĝ

]
dS

=

∫
�

ρg∇q · ĝ dV −
∫
∂�⊥

qρgĝ · n̂dS. (27)

From Eq. (25), the weak formulation obtained if using
Eq. (23) applied over all of ∂�i is simply∫
�

∇q · ∇P dV =
∫
�

ρg∇q · ĝ dV. (28)

2.3 Implementation

The strong (Eq. 7) and weak (Eq. 25) formulations of the
pressure Poisson problem can be solved using the standard
spatial discretization techniques, e.g. finite differences or fi-
nite elements. Moreover, since the equation is of Poisson
type, it is readily amenable to being solved using standard
iterative multigrid and/or direct solvers. Lastly, because the
formulation is expressed in terms of a PDE, it is also straight-
forward to compute the pressure on parallel computing archi-
tecture as we can re-use existing discretization implementa-
tions that support domain decomposition.

3 Numerical examples

In this section we provide several numerical models to show
the following items:

1. the accuracy and consistency of the method for hydro-
static cases,

2. the accuracy of the approximation of the total pressure
in non-hydrostatic cases,

3. the effect of using the depth-integrated approach and the
pressure Poisson problem approach to impose boundary
conditions on the momentum equation,

4. the usefulness of the method for 3D geodynamic
thermo-mechanical modelling.

3.1 Hydrostatic pressure

To compare the numerical solution of Eq. (7) with the analyt-
ical solution obtained with Eq. (2), we designed four hydro-
static models (in 1D and 2D) for which the analytical solution
is easily obtained (Figs. 2 and 3).
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Figure 2. Pressure for non-dimensioned hydrostatic cases. Panels
(a, c, e) show the 1D pressure for (a) a constant density ρ = 1,
(c) a continuous y-dependent density ρ = 2−y, and (e) a discontin-
uous density. The blue line is the analytical solution computed with
Eq. (2), and the red circles represent the numerical solution com-
puted with Eq. (7). Panels (b, d, f) show the 2D numerical solution
for (b) a constant density ρ = 1, (d) a continuous y-dependent den-
sity ρ = 2− y, and (f) a discontinuous density.

3.1.1 Box domain

We define the domain�= x ∈ [0,1]×y ∈ [0,1] and assume
that g = (0,−1). We consider three depth-dependent density
structures ρ = ρ(y) that thus admit a hydrostatic pressure so-
lution, i.e. satisfy ∂P/∂x = 0, ∂P/∂y =−ρ(y)g.

Case 1. This case assumes a constant density, ρ(y)= 1
(Fig. 2a, b). The analytic pressure solution is given by

P(y)=

ys=1∫
y

ρg dy =
[
ρgy

]ys
y
= ρg(ys− y)

= ys− y = 1− y. (29)

Case 2. This case assumes a continuous depth-varying den-
sity ρ(y)= 2− y (Fig. 2c, d). The analytic pressure so-
lution is given by

Figure 3. Pressure for a hydrostatic case in a half annulus approx-
imating a simplified and idealized layered Earth. (a) Density struc-
ture for the half-annulus model. (b) Numerical solution of the 2D
half-annulus model. (c) The blue line shows the 1D analytical solu-
tion for the density structure shown in (a) along a line parallel to the
gravity vector. The red circles show the numerical solution extracted
from (b) at coordinate x = 0 along a line parallel to the gravity vec-
tor. (d) Green dots show the normalized error between the analytical
solution and the numerical solution at x = 0 as |Pd−Pa|

Pd
.

P(y)=

ys=1∫
y

ρg dy =

ys=1∫
y

g(2− y) dy

=

[
g

(
−

1
2
y2
+ 2y

)]ys

y

= g

(
1
2

(
y2
− ys

)
+ 2(ys− y)

)
=

1
2
y2
− 2y+

3
2
. (30)

Case 3. This case assumes a discontinuous density such that
ρ(y)= 1 for y ∈ [0.5,1] and ρ(y)= 2 for y ∈ [0,0.5)
(Fig. 2e, f). The analytic pressure solution is given by
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P(y)=



ρ(y)g(1− y)= (1− y) ∀y>0.5

ρ(y>0.5)gD ∀y < 0.5
+ρ(y)g(0.5− y)
=D+ 1− 2y,

(31)

withD the distance between the surface and the y coor-
dinate at which the pressure is computed.

A finite-element (FE) method employing an unstructured
triangular mesh with a P2 function space was used to obtain
the numerical solution for each case. The FE method was
applied to Eq. (27) using boundary conditions described by
Eq. (15) at the base and Eq. (16) on the lateral sides. Along
the upper surface we impose the Dirichlet constraint P = 0.
Unless otherwise stated, when solving the PPE with FEs the
Dirichlet constraints are imposed strongly (i.e. point-wise),
whereas Neumann constraints are imposed weakly via sur-
face integrals defined on facets of the FE cells that live on
the boundary of the domain. Accordingly, all points living
on ∂�surf (including corner points) will be associated with
the Dirichlet constraint. Figure 2a–f shows the 1D and 2D
solution of these three models. On the 1D models both the
numerical and analytical solutions of Eqs. (7) and (2) are
shown, whereas on the 2D models only the numerical so-
lution is provided. Since the P2 FE approximation contains
the monomials 1, y, and y2, the FE solution exactly repro-
duces the analytic solution for case 1 and case 2 indepen-
dent of the number of finite elements used in the domain
(e.g. sub-dividing the box into two triangles would be suf-
ficient to obtain an exact solution). For case 3, the analytic
pressure solution is piecewise linear, and provided that the
density discontinuity is exactly resolved by the faces of the
triangular FE mesh (which was the case here), the FE method
exactly reproduces the analytic solution.

3.1.2 Half-annulus domain

The 2D half-annulus model aims to show the efficiency of
the method when computing the lithostatic pressure in a body
with a radial gravity vector and concentric density structure
(Fig. 3a). This model represents a domain extending from{

θ ∈ [−π2 ,
π
2 ],

r ∈ [RE− 2891,RE] km,
(32)

where θ is the polar angle, r is the radius in po-
lar coordinates, RE is the approximative Earth radius
(6371 km), and RE− 2891 km is the approximative core-
mantle boundary. Mapped into Cartesian coordinates this
gives x = r sin(θ) and y = r cos(θ). The gravity vector
pointing to the centre (x = (0,0)) is defined as g =

−9.8
(

x√
x2+y2

,
y

√
x2+y2

)
ms−2, and the density is defined

as five concentric layers with a constant density in each
(Fig. 3a). The pressure was computed by solving Eq. (27)
with the boundary condition of Eq. (15) on the core–mantle
boundary and the conditions of Eq. (16) on the sides parallel
to ĝ. At the surface of the domain we impose the Dirichlet
constraint P = 0. As in Sect. 3.1 we use a finite-element dis-
cretization employing an unstructured mesh of triangles em-
ploying a P2 function space. Pressure values vary from 0 to
180 GPa with a concentric distribution following the density
distribution and the gravity vector orientation (Fig. 3b).

The numerical solution extracted at x = 0 along a line
parallel to the gravity vector field reproduces the analyti-
cal solution computed for a 1D profile using Eq. (2) for
the density distribution displayed in the half-annulus model
(Fig. 3c). The difference between the pressure obtained us-
ing the depth-integrated approach and the PPE is very small
(Fig. 3d). Unlike the analytic solution for the box models, the
analytic solution for P here is non-polynomial (in Cartesian
coordinates); hence, the FE solution (which was discretized
in Cartesian coordinates) cannot exactly reproduce the ana-
lytic solution.

The four hydrostatic models clearly illustrate that the so-
lutions obtained using the depth-integrated approach and the
pressure Poisson equation (with one set of boundary con-
straints) are equivalent for scenarios that admit a hydrostatic
solution.

3.2 Non-hydrostatic pressure

Here, we show the differences and accuracy of the depth-
integrated equation (Eq. 2) and the pressure Poisson equa-
tion (Eq. 7) approaches to approximate the total pressure.
First, we compute and compare the pressure from the dif-
ferent methods in a large domain (referred to as the “global”
model) containing a topographic perturbation (Fig. 4). Fol-
lowing this, we compute the pressure in a smaller domain
(referred to as the “regional” model) and show the accuracy
of the different methods to approximate the total pressure
from the large domain (Figs. 5a, c and 6). Finally, we show
the velocity field resulting from applying these approximated
pressures as boundary conditions to solve the conservation
of momentum in the small domain (Fig. 5b, d). The pres-
sure Poisson problem was discretized and solved using the
same FE method described in Sect. 3.1. The flow field was
computed using the same underlying FE mesh and a mixed
P 2-P1 function space for velocity and pressure, respectively.

3.2.1 “Global” model

We define a large domain �G = x ∈ [−10,10]× y ∈ [0,1]
representing a global model, i.e. 20 times larger than the
domain of interest, in order to avoid boundary condition in-
fluence (Fig. 4). In this domain, we introduce a topographic
perturbation through a slope defined as ys(x)=−

1
4x, where

ys is the surface between x = 0 and x = 1. For demonstra-
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Figure 4. Non-dimensional “global” model for a large domain with a topographic perturbation. (a) The background colour shows the velocity
field computed with the Eq. (3). The coloured curves show the total pressure P iso-values every 0.1 computed with Eq. (3). (b) Comparison
between the total pressure from Eq. (3) and the pressure Pd computed from Eq. (7). The coloured background shows the difference log10|P−
Pd|. The coloured curves show the pressure Pd iso-values every 0.1 computed with Eq. (7). (c) Comparison between the total pressure from
Eq. (3) and the pressure Pa computed from Eq. (2). The coloured background shows the difference log10|P −Pa|. The coloured curves show
the pressure Pa iso-values every 0.1 computed with Eq. (2).

tion purposes this topography is highly exaggerated with re-
spect to the depth of the domain compared with the actual
regional geodynamic models. Moreover, we use a constant
density ρ = 1 and a vertical gravity vector g = (0,−1).

We solve the flow problem described by Eqs. (3), (4) us-
ing a constant viscosity and density, along with the following
boundary conditions: no-slip at base, free-slip on the right
and left faces, and a free surface along the top of the model
domain. Due to the topography, a non-vertical pressure gra-
dient that will drive flow is generated below that perturbation
(Fig. 4a). The generated flow shows a velocity field charac-
teristic of a gravitational collapse. Figure 4b shows the dif-
ference between the total pressure solution from Eq. (3) with
the pressure Pd obtained by solving Eq. (7) using the bound-
ary conditions described by Eq. (16) on the vertical sides,
Eq. (15) on the bottom boundary, and Pd = 0 on the upper
surface. Figure 4c shows the difference with the pressure Pa
obtained with Eq. (2).

The difference between the total pressure and the approxi-
mated pressure Pd is negligible in the non-perturbed domain
and increases with the topography perturbation. It shows that
as the system tends towards a hydrostatic state the total pres-
sure and the approximated pressure Pd tends to the same
value, i.e. the hydrostatic pressure. However, in the vicin-
ity of the topographic perturbation the differences between
the total pressure and the approximated pressure can be ex-

tremely small (Fig. 4b). In contrast, the difference between
the total pressure and depth-integrated approximated pres-
sure Pa is larger below the topographic slope, particularly
below the points at which the slope begins and ends (Fig. 4c).
In general, the pressure Pa obtained by applying the 1D so-
lution is less accurate than Pd within both the interior and
along the left, right, and bottom boundaries.

3.2.2 “Regional” model

Nevertheless, modelling a domain 20 times larger than the
domain of interest can hardly be achieved in practice, mainly
due to the numerical cost it represents. Thus, the boundary
conditions are a first-order component of regional models in
order to best capture the global behaviour and interactions in
a region without having to model the whole Earth. Therefore,
we define a smaller domain �R = x ∈ [0,1]×y ∈ [0,1] rep-
resenting a regional model (Fig. 5). This domain represents
the portion of the large domain in which the topographic
slope is defined.

In this case we aim to apply a normal stress on the bound-
aries of our regional model that will generate a flow sim-
ilar (or close) to the flow generated in the global model. To
achieve this we present two models using Eqs. (7) and (2), re-
spectively, to compute an approximated pressure that is then
used as a boundary condition for the momentum equation

Solid Earth, 13, 1107–1125, 2022 https://doi.org/10.5194/se-13-1107-2022



A. Jourdon and D. A. May: An efficient PDE-based method to compute pressure boundary conditions 1115

Figure 5. Non-dimensional “regional” model for a small domain
with a varying topography. (a) The coloured curves show the total
pressure P iso-values computed with Eq. (3) in the global model
every 0.1 and the pressure Pd computed with Eq. (7) in the re-
gional model every 0.1. (b) The coloured background shows the
velocity field computed with Eq. (3) with stress boundary condi-
tions described by Eq. (33) using Pd computed with Eq. (7). The
black arrows show the velocity vectors. (c) The coloured curves
show the total pressure P iso-values computed with Eq. (3) in the
global model every 0.1 and the pressure Pa computed with Eq. (2) in
the regional model every 0.1. (d) The coloured background shows
the velocity field computed with Eq. (3) with stress boundary con-
ditions described by Eq. (33) using Pa computed with Eq. (2). The
black arrows show the velocity vectors.

(Eq. 3) on vertical boundaries as follows:

σn=−Pα n̂, α = d,a, (33)

where Pα = {Pd,Pa} denote the pressure computed using
the pressure Poisson equation and the 1D depth-integrated
approach, respectively. The viscous flow problem for the
regional domain setting employs the following additional
boundary conditions: a free surface on the top boundary and
a no-slip condition at the base. To solve for the pressure Pd
using Eq. (7), we impose the following boundary conditions:
Pd = 0 on the surface, ∇Pd · n̂= (n̂ · ĝ)∇Pd · ĝ on vertical
sides, and ∇Pd · n̂= (n̂ · ĝ)ρg+ (n̂ · ĝ⊥)∇Pd · ĝ⊥ at the bot-
tom.

Figure 5a shows the pressure field Pd computed on the re-
gional domain and the total pressure P extracted from the
global model. The approximated pressure Pd highlights dif-
ferences with the total pressure from the global model, espe-
cially those regarding depth along the boundaries (blue lines

in Fig. 6b, d). These differences are mainly due to the size
of the domain that defines only the perturbed region without
providing information about the domain in which it is en-
closed. The boundary condition described by Eq. (16) used to
solve Eq. (7) enforces the idea that the pressure gradient must
be co-linear with the gravity vector on the boundary. There-
fore, given the definition of g, ∇P is enforced to be vertical
on the vertical sides, whereas the deflection of the pressure
field due to the topographic perturbation should occur in spa-
tial offset from the topographic perturbation, as shown by the
total pressure in the global model (Fig. 4a).

In Fig. 5b we show the velocity field resulting from solving
the Stokes equation (Eqs. 3, 4) using Pd in Eq. (33). The flow
field highlights velocities of around 5× 10−2 (velocity unit)
at the surface pointing toward the right side of the domain,
i.e. the bottom of the slope. Velocities progressively decrease
at depth. While the orientation of the velocity field is more
laminar than in the global model, its magnitude is very close,
with the highest velocities being only 1.5× higher than in the
global model.

Figure 5c displays the pressure field Pa computed from the
depth-integrated approach (Eq. 2) within the regional domain
and the total pressure P extracted from the global model. Be-
cause of the 1D behaviour of that method, the differences be-
tween the approximated pressure Pa and the total pressure
P (red lines in Figs. 5c and 6b, d) are independent of the
domain size and boundary conditions, and thus they are ex-
actly the same as in the global model (Fig. 4c). The velocity
field (Fig. 5d) resulting from using these approximated pres-
sure values as a boundary condition to solve the momentum
equation is approximatively 4 times higher than velocities
obtained while using the pressure Pd (Fig. 5b) and approxi-
matively 6 times higher than in the global model (Fig. 4a). As
for the velocity field orientation, the vectors at the top of the
slope show that the material uplifts, whereas in the global
model velocities at the same location show a gravitational
sliding. This orientation results from a stress value that is too
high being imposed in the boundary conditions by the value
of the pressure Pa at the boundaries (Fig. 6).

These simple tests demonstrate that the approximated
pressure Pd computed from the Eq. (7) is more accurate for
approximating the total pressure P than the pressure Pa com-
puted from the Eq. (2). The only area where this is not true
is located in the bottom-left corner of the regional model,
and this is again due to the boundary condition not capturing
the deflection of the pressure due to the size of the domain.
Thus, the pressure computed with the pressure Poisson prob-
lem should be preferred for use as a boundary condition for
the momentum equation. Moreover, as the domain size in-
creases the error with the total pressure decreases, which is
not the case with the depth-integrated approach due to its 1D
nature.
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Figure 6. Curves showing the pressure from the regional and global
models along the profiles (a) x = 0 and (c) x = 1. Absolute value of
the difference between the total pressure P in the global model and
the different pressures in the global and regional models along the
profiles (b) x = 0 and (d) x = 1.

3.3 Influence of the boundary condition type

The boundary conditions used to solve the pressure Poisson
problem are stated in Eqs. (15), (16), and (23). To show the
influence of the boundary conditions choices on the resulting
pressure field, we define an irregular quadrilateral domain
with the same topographic perturbation as the one described
in Sect. 3.2, with a constant density ρ = 1, a gravity vector
g = (0,−1), and a Dirichlet boundary condition Pd = 0 at
the top surface (0s). The irregular domain (shown in Fig. 7)
is constructed such that none of the three boundary segments
defining ∂�i = 01 ∪02 ∪03 are parallel or perpendicular to
g. The PPE was solved using the same FE method described
in Sect. 3.1.

In Fig. 7 we show different pressure fields Pd obtained
using several different boundary condition configurations.
These results show that the boundary conditions described
by Eq. (16) (or Eq. 20) force the pressure gradient to be par-
allel to g, i.e. ∂xPd = 0 (Fig. 7b segment 03, Fig. 7c seg-
ments 01,3, and Fig. 7d segments 01,2). We also confirm
that boundary conditions described by Eq. (15) (or Eq. 19)
constrain ∇Pd to be equivalent to the 1D solution of Eq. (2)
on the boundary (Fig. 7a segments 01,2,3, Fig. 7b segments
01,2, Fig. 7c segment 02, and Fig. 7d segment 03). Figure 7a

Figure 7. Pressure field Pd computed using Eq. (7) for different
boundary conditions applied to the individual boundary segments
0i , i = 1,2,3. The boundary conditions were defined according to
(a) Eq. (15) on 01, 02, and 03; (b) Eq. (15) on 01 and 02 and
Eq. (16) on 03; (c) Eq. (15) on 02 and Eq. (16) on 01 and 03; and
(d) Eq. (15) on 03 and Eq. (16) on 01 and 02.

highlights that the solution of the PPE can be identical to that
obtained using the depth-integrated approach with a specific
choice of boundary conditions.

Moreover, Fig. 8a shows the pressure field Pd obtained us-
ing the boundary condition described by Eq. (23). The pres-
sure solution is relatively similar to the solution obtained in
Fig. 7c. However, as shown in Fig. 8b, the solution along
the boundary (and therefore also in the interior) differs since
Eq. (23) does not enforce the pressure gradient to be vertical
on the boundary compared with the condition (16).

As previously noted, discretizations employing the weak
form with Eq. (23) are certainly simpler to implement than
imposing the Eqs. (19) and (20) as all the surface integrals
cancel (see Eq. 28), and thus no surface integrals appear in
either the linear form or bilinear form. We also reiterate that
when the domain has boundaries that are aligned with g, us-
ing the boundary conditions (15) on the boundaries orthog-
onal to g and the condition (16) on the boundaries that are
parallel to g results in an identical formulation.
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Figure 8. Pressure field Pd computed using Eq. (7) with the bound-
ary conditions described by Eq. (23) for (a) Pd over the entire model
with boundary conditions defined by Eq. (23) applied on 01, 02,
and 03. (b) Closer view of the right-hand boundary region. The
black curves show the iso-values of the pressure computed with
boundary conditions using Eq. (23). The red curves show the iso-
values of the pressure computed using the boundary conditions used
in Fig. 7c.

3.4 Thermo-mechanical model

3.4.1 Physical model

To simulate the long-term evolution of the deformation of
the lithosphere, we solve the stationary, non-inertial form of
the conservation of momentum described by Eq. (3) with
the incompressible constraint (Eq. 4). Moreover, to consider
the temperature variations in the domain, the following time-
dependent conservation of energy is solved:

ρ0Cp

(
∂T

∂t
+ v · ∇T

)
=∇ · (k∇T )+H, (34)

where T is the temperature, t is the time, k is the thermal
conductivity,H is the heat source, ρ0 is the reference density,
and Cp the thermal heat capacity.

The numerical solution of Eqs. (3) and (4) is obtained us-
ing a mixed finite-element method that independently dis-
cretizes the velocity and pressure fields. Hence, the numeri-
cal velocity and pressure obtained are solutions of the weak
form of the Stokes problem given by

A(w,v)+B(w,p)+B(v,q)−
∫
0N

w ·T (v,p)dS

=−

∫
�

ρw ·g dV

where w ∈H1(�) and q ∈ L2(�) are test functions for the
velocity and pressure, respectively, 0N denotes the Neumann
boundary, T denotes the traction vector given by T (v,p)=
(τ (u)−pI)n̂, and n̂ is the outward pointing normal vector
from the boundary. The bilinear forms for the Stokes problem
are given by (Elman et al., 2014):

A(w,v)=
∫
�

2η ε̇(w) : ε̇(v)dV, ε̇(v)=
1
2
[∇v+ (∇v)T ],

B(v,q)=−
∫
�

q∇ · v dV.

Both the Stokes and thermal problems were solved using
the parallel finite-element code pTatin3D (May et al.,
2014, 2015), which employs a mixed Q2-P1 discretization
for velocity and pressure.

3.4.2 Initial conditions and rheology

To model the strain localization we use non-linear visco-
plastic rheologies expressed in term of viscosity. The ductile
parts of the domain are simulated using an Arrhenius flow
law for dislocation creep

ηv = A
−

1
n
(
ε̇II) 1

n
−1

exp
(
Q+PV

nRT

)
, (35)

where A, Q, and n are material-defined parameters (see Ta-
ble 1); R is the universal gas constant; V is the activation
volume; and ε̇II is the square root of the strain rate second
invariant, computed as

ε̇II
=

√
1
2
ε̇ij ε̇ij . (36)

The brittle parts of the domain are simulated using a
Drucker–Prager yield criterion adapted to continuum me-
chanics, which is given by

ηp =
C cos(φ)+P sin(φ)

2ε̇II , (37)

where C is the cohesion of the material and φ is the friction
angle.

The modelled domain contains four initial flat layers rep-
resenting the upper continental crust, the lower continental
crust, the lithosphere mantle, and the asthenosphere man-
tle, respectively (Fig. 9a). The upper crust extends from
the surface of the domain (y = 0 km) to y =−25 km and is
modelled with a dislocation creep quartz rheology (Ranalli,
1997). The lower crust extends from y <−25 km to y =
−35 km and is modelled with a dislocation creep anorthite
rheology (Rybacki and Dresen, 2000). The lithosphere man-
tle extends from y <−35 km to y =−120 km, whereas the
asthenosphere mantle extends from y <−120 km to y =

−450 km. They are both modelled using a dislocation creep
olivine flow law (Hirth and Kohlstedt, 2003).
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Figure 9. (a) A 3D view of the modelled domain. An initial plas-
tic strain with a Gaussian repartition is applied in the central part
of the domain in the lithosphere. (b) Map and cross section of the
boundary conditions for the model with free-slip boundary condi-
tions. (c) Map and cross section of the boundary conditions for the
model with normal stress boundary conditions. (d) Yield–stress en-
velope and initial temperature of the first 120 km.

The initial density distribution follows the lithologies and
is reported in Table 1. In addition, the density varies with
pressure and temperature following the Boussinesq approxi-
mation

ρ(P,T )= ρ0(1−α(T − T0)+β(P −P0)), (38)

where ρ0 is the reference density at T0 and P0, P is the to-
tal pressure computed from the conservation of momentum
(Eq. 3) and continuity equation (Eq. 4), α is the thermal ex-
pansion and β the compressibility. The Boussinesq approx-
imation states that perturbations of density, if sufficiently
small, can only be considered in the buoyancy term and ne-
glected elsewhere regardless of the origin of the perturbation.

Moreover, the initial temperature field is computed as a
steady-state solution of the heat equation

∇ · (k∇T )+H = 0, (39)

using a surface temperature of T = 0 ◦C at y = 0 km and
T = 1450 ◦C at y =−450 km. Moreover, to simulate an adi-
abatic thermal gradient in the asthenosphere due to thermal
convection, the initial temperature field is solved with a con-
ductivity of k = 70 W m−1 K−1 in the asthenospheric mantle.
However, for the actual model run we used a more realistic
conductivity of k = 3.3 W m−1 K−1 to solve Eq. (34). Other
thermal parameters are reported in Table 1.

3.4.3 Boundary conditions

To show the influence of the normal stress boundary condi-
tion, we compare two rift models. In the reference model, an
extension velocity of vx = 1 cm yr−1 is applied on the whole
faces of normal x, whereas on faces of normal z a free-slip
boundary condition is applied (Fig. 9c). To ensure mass con-
servation we impose an inflow velocity on the bottom face of
normal y to balance any outflow that occurs due to the im-
posed extension. Along the surface of the model we use a free
surface (zero normal stress, zero tangential stress) boundary
condition.

The second rift model (Fig. 9b) uses the same Dirichlet
boundary conditions on faces of normal x. On the faces of
normal z we impose a Neumann boundary condition as

T =−Pd n̂, (40)

where Pd is the pressure computed with Eq. (7) and n̂ is the
normal vector pointing outward from the domain.

To account for the density evolution through time due to
the deformation and material advection, Eq. (7) is solved at
every non-linear iteration for each time step, and the Neu-
mann boundary condition described by Eq. (40) is evaluated
at every non-linear iteration. Using ρ(P,T ) computed from
Eq. (38) to evaluate the pressure Pd going into the boundary
condition described by Eq. (40) adds a new non-linearity to
the system.

The bottom of the domain is prescribed as an inflow con-
dition balancing the outflow, and the surface of the domain is
a free surface where the mesh deforms according to the com-
puted velocity field. These Neumann boundary conditions al-
low material to flow both in and out through the boundary
depending only on the Dirichlet boundary conditions and de-
formation that occurs inside the modelled domain.

3.4.4 Pressure Poisson problem in the 3D geodynamic
model

In the context of our finite-element forward model, we also
solve the pressure Poisson problem using finite elements. As
such, to compute Pd we employ the weak formulation given
by Eq. (27) using boundary conditions from Eqs. (15) and
(16) on bottom boundary and vertical boundaries, respec-
tively. In our particular implementation, we employ Q1 for
Pd, and these Q1 elements overlap the Q2 elements used to
approximate the velocity.
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Table 1. Physical parameters for the thermo-mechanical rift model.

Parameter Units Upper crust Lower crust Lithosphere mantle Asthenosphere mantle

A MPa−n s−1 6.7× 10−6 13.4637 2.5× 104 2.5× 104

n – 2.4 3.0 3.5 3.5
Q kJmol−1 156 345 532 532
φ ◦ 30 30 30 30
C MPa 20 20 20 20
V m3 mol−1 0 38× 10−6 8× 10−6 8× 10−6

Cp m2 K−1 s−2 850 850 850 850
k Wm−1 K−1 2.7 2.85 3.3 3.3
H µWm−3 1.5 0.3 0 0
ρ0 kgm−3 2700 2850 3300 3300
α K−1 3× 10−5 3× 10−5 3× 10−5 3× 10−5

β Pa−1 10−11 10−11 10−11 10−11

As a demonstration of the computed Pd using this ap-
proach, in Fig. 10c and d we show the approximated pressure
in our rift model at 8.7 Myr after large deformations that led
to mantle exhumation and differential thinning of the con-
tinental crust, causing a variable topography. In this model,
Pd was evaluated on a mesh consisting of 256×64×128Q1
finite elements on 1024 MPI ranks. The discrete pressure
Poisson system was solved using geometric multigrid. As a
rough estimate, solving for Pd required ∼ 0.2 % of the time
required to solve the non-linear viscous flow problem. Ob-
viously this value is strongly dependent on both the physi-
cal model (linear viscous versus non-linear viscous) and the
implementation details, as well as the efficiency of how the
discrete flow problem is solved. However, when considering
even the simplest flow problem imaginable (i.e. linear iso-
viscous flow laws), it remains true that solving the Poisson
problem will be far less expensive than solving either the lin-
ear or non-linear viscous flow problem.

3.4.5 Tectonics evolution

The model using free-slip boundary conditions displays a
cylindrical deformation pattern that could be reduced to a
two-dimensional model. As shown by the shear zone orien-
tation and strain regime, the deformation is only extensional
and perpendicular to the extension direction (Figs. 11a–d and
12). This strain localization is directly due to the free-slip
boundary condition stating that any flow perpendicular to the
boundary is prohibited.

In contrast, the model using the Pd pressure as a bound-
ary condition displays a non-cylindrical deformation. While
extensional shear zones perpendicular to the extension direc-
tion develop in the central part of the domain, the edges of the
rift experience oblique and strike-slip deformation (Fig. 11e
to h). As the extension goes on, the extensional deforma-
tion localizes along a spreading centre, causing an increas-
ing inflow on the boundaries of the domain with the normal
stress boundary condition (Fig. 13c). As a result, near these

boundaries the velocity field introduces non-cylindrical fea-
tures that are accommodated by strike-slip faults (Fig. 11g,
h). These strike-slip faults delimit a triangular region ter-
minating on a triple junction between two strike-slip faults
and a ridge (ridge–fault–fault, RFF, triple junction). Along
these strike-slip faults, the deformation is partitioned be-
tween purely vertical strike-slip shear zones and shallow-
dipping normal shear zones rooting into the strike-slip shear
zones (Fig. 12).

4 Discussion

4.1 Alternative PDE-based approaches

Recall that the starting point of defining the PPE was purely
algebraic, with the sole intention of removing the non-
uniqueness associated with Eq. (5). Here we discuss two al-
ternative PDE-based approaches constructed with a similar
rationale.

Rather than enforcing Eq. (15) only along the boundary,
suppose we wished to enforce it everywhere throughout the
domain,

∇P · ĝ = ρg, for x ∈�. (41)

This constraint can be interpreted as the steady-state solution
of the following scalar hyperbolic PDE:

∂P

∂τ
+ ĝ · ∇P = ρg, (42)

where τ plays the role of a time-like parameter having
units of length and ĝ plays the role of a velocity-like quan-
tity. Along the “inflow segments” 0in = {x ∈ ∂� : ĝ · n̂< 0}
we will impose P = 01. On the outflow segments 0out=

1“Inflow” in the context of Eq. (42) can be thought of as the
origin of “information” that enters the physical domain, while ĝ
defines the direction in which this information travels.
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Figure 10. (a) Cross section showing the density of the 3D rift model with normal stress boundary conditions in the x–y plane at z= 0.
(b) Cross section showing the density of the z–y plane at x = 500 km. (c) 3D view of the pressure computed with Eq. (7). (d) Cross section
of the z–y plane at x = 500 km for the reference pressure. The contour lines are plotted every 0.25 GPa.

∂� \0in; due to the hyperbolic nature of the PDE, no bound-
ary constraint are required. Since we seek the steady-state
solution of Eq. (42), no initial condition is required, but for
completeness we chose P(τ = 0)= 0. Hence, the solution of
Eq. (42) is equivalent to solving

dP
dτ
= ρg, (43)

along the family of characteristics given by

dx
dτ
= ĝ, (44)

with P(τ = 0)= 0 and x(τ = 0) ∈ 0in.
Compared to the PPE, the hyperbolic formulation has sev-

eral disadvantages.

1. We have less freedom to specify how ∇P varies along
the boundary. The choice of boundary conditions (BCs)
is largely dictated by the “inflow” and “outflow” seg-
ments. Along outflow segments, the only constraint
available is Eq. (41) evaluated on ∂�. If inflow occurs
on any part of ∂� not contained in ∂�surf, we have to
choose a flux BC, as using P = 0 does not make phys-
ical sense. Consistency may require the use of a con-
straint that is independent of the PDE, e.g. Eq. (16).

2. The formulation may place restrictions on the shape of
∂�. If we wish to avoid the definition of new flux BCs

(described above), the domain must be defined such that
for every xb ∈ ∂�\∂�surf there exists a characteristic
that intersects both xb and ∂�surf.

3. The lack of flexibility in controlling the boundary be-
haviour of ∇P will in general result in solutions of
Eq. (42) being identical to a family of 1D solutions to
Eq. (2) applied in directions parallel to the direction of
gravity; see Fig. 14b, d.

4. The spatial discretization required for the accurate so-
lution of Eq. (42) is arguably more complicated to im-
plement (on unstructured meshes) compared with dis-
cretizations for the Poisson equation. Scalable multi-
level solvers for the steady-state hyperbolic problem are
much more challenging to develop in comparison to the
Poisson problem.

From a linear algebra perspective, the non-uniqueness of
Eq. (5) can alternatively be addressed by (i) discretizing
Eq. (5) in space, yielding Gp= F, and then (ii) solving the
normal equations

GTGp̃=GTF. (45)

This approach obtains a unique solution that minimizes the
following objective function:

‖Gp̃−F‖2.
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Figure 11. Map view of the strain regime evolution in time and space of the model with (a–d) free-slip boundary conditions and (e–h) normal
stress boundary conditions.

In some senses, this approach is like the discrete counterpart
of the PPE, in so much as GTG are the discrete Laplacian
defined on the approximation space used to represent pres-
sure. The similarity between the pressure solution from the
PPE and p̃ are shown in Fig. 14a, c. Similar to the hyperbolic
formulation, obtaining the pressure via the normal equations
is restrictive from a modelling perspective as the formulation
does not allow for control of the behaviour of ∇P on the
boundary, and as such only the Dirichlet data on ∂�surf can
be specified. In Fig. 14a, c we provide snapshots of the pres-

sure obtained from solving Eq. (45) in two different domains.
Interestingly, the solutions indicate that ∇P · ĝ appears to be
approximately zero along the boundary despite the lack of a
constraint enforcing this.

4.2 Flexibility of the PPE with respect to boundary
conditions

Since the PPE is a second-order PDE, the formulation per-
mits a range of possible boundary constraints on ∇P to be

https://doi.org/10.5194/se-13-1107-2022 Solid Earth, 13, 1107–1125, 2022
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Figure 12. Map view of the models with free-slip (left) and normal stress (right) boundary conditions. The dashed lines in the upper panels
indicated by (a–a′, b–b′, c–c′) correspond to the cross sections displayed in the lower panels with the same labelling. The cross sections
show the numerical lithologies with the second invariant of the strain rate (Eq. 36) and the strain regime.

imposed. Specific choices allow one to define whether (i) the
equivalent of 1D pressure profiles as would be obtained by
applying Eq. (2) along a boundary face or (ii) an approxima-
tion of the pressure field on the boundary would be obtained
if a complete flow field was computed in a much larger global
domain.

Experiments showed that the PPE approach better ap-
proximates the total pressure computed from the momentum
equation. Therefore, its use as a boundary condition (or as
an initial guess) for the pressure field to solve the momen-
tum equation is preferred over hydrostatic solutions associ-
ated with Eq. (2). Moreover, as the domain size increases,
the PPE formulation gives a more accurate approximation of
the total pressure than the 1D depth-integrated approach.

4.3 Implications for lithosphere deformation

In the geodynamic rift model, using the pressure computed
with Eq. (7) as a boundary condition produces a veloc-
ity field perpendicular to the extension direction in the rift
axis (Fig. 13). This velocity field introduces non-cylindrical
deformation accommodated for by oblique and strike-slip
structures (Fig. 11). The results of this study are very sim-
ilar to previous studies directly applying an inflow perpen-

dicular to the extension direction (Le Pourhiet et al., 2018;
Jourdon et al., 2020). At the tip of the rift, a triangular re-
gion delimited by strike-slip faults or very oblique rift devel-
ops to accommodate the oblique velocity field. The similarity
of these results shows that using open boundary conditions
instead of kinematic boundary conditions in 3D may reveal
first-order implications for the lithosphere strain localization.
In the case of geodynamic systems presenting the character-
istics of a propagating rift (or ridge) with oblique and strike-
slip deformation at its tip, considering the forces applied by
the surrounding material weight could be the first-order pro-
cess at the origin of non-cylindrical deformation.

4.4 Linear and non-linear density

Two approaches can be considered to compute the pressure
using Eq. (7). The first approach (also the simplest) is to con-
sider that the density ρ is defined as a reference density ρ0
that only depends on rock type for a reference state, e.g. T0
and P0. In that case, Eq. (7) is linear and only depends on
the reference density structure. The second approach is to
consider that the density ρ can vary with respect to other pa-
rameters. In our geodynamic example, we considered that the
density can vary with pressure and temperature according to
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Figure 13. Map view of the z component of the velocity (vz). Red curves represent the z component of the velocity along the boundary zmax
at the surface. Blue curves represent the z component of the velocity along the boundary zmin at the surface.

Eq. (38). In that case the Eq. (7) becomes non-linear. This
kind of non-linearity is not rare in geodynamics, and the for-
mulation of Eq. (38) may appear in the pressure computation
when solving for an incompressible Boussinesq approxima-
tion or a compressible Stokes problem (e.g. Dannberg and
Heister, 2016; King et al., 2010; Tackley, 2008).

5 Conclusions

In this study we presented a method to compute a refer-
ence pressure associated with the density structure of a do-
main in which we cast the problem in terms of a partial dif-
ferential equation (PDE). From a practical standpoint, the
PDE approach is generic (it is applicable to all spatial dis-
cretization and on any type of computational grid), efficient,
and applicable in parallel computing environments. From the
modelling perspective, the PDE approach has specific advan-
tages, for example in models with a variable density structure
(stationary or time-dependent) and models that employ a ref-
erence pressure as a boundary condition of the flow prob-
lem (stationary or time-dependent problems). Re-evaluating
that pressure in time-dependent problems is not problematic

(even if the mesh deforms) since solving the Poisson problem
can be performed using optimal preconditioners (e.g. geo-
metric or algebraic multigrid preconditioners). Importantly,
the time to solve the pressure Poisson problem is a small
fraction of the time required to solve the linear (or non-
linear) incompressible viscous flow problem. Moreover, we
also demonstrate that the PDE formulation results in a bet-
ter approximation of the total pressure than the 1D depth-
integrated approach in non-hydrostatic cases.

Lastly, we showed in the context of 3D geodynamic mod-
els of continental rifting that using a reference pressure as a
boundary condition within the flow problem resulted in non-
cylindrical velocity fields. These 3D velocity fields produced
strain localization in the lithosphere along large-scale strike-
slip shear zones and the formation and evolution of triple
junctions.

Code availability. The code pTatin3D used in this study to
produce the 3D thermo-mechanical models is an open-source
free software licensed under GPL3. The Supplement contains
the version of the code used to produce the models presented
in this study. To run the same models, users should use the
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Figure 14. Pressure in non-dimensional models with constant den-
sity ρ = 1. Pressure computed for a hydrostatic case in an irregu-
larly shaped domain using (a) the normal equations (Eq. 45) and
(b) the hyperbolic equation (Eq. 42). Pressure computed for a non-
hydrostatic case due to topography using (c) the normal equation
(Eq. 45) and (d) the hyperbolic equation (Eq. 42). The contour lines
show contours of iso-pressure values every 0.1.

driver named test_driver_checkpoint_fv.app and the
options files (.opts) provided in the Supplement. We also provide
Firedrake code (Firedrake team, 2022; Balay et al., 2019, 1997;
Dalcin et al., 2011; Rathgeber et al., 2016) to compute the pres-
sure Poisson problem in a half-annulus domain, in a deformed do-
main, and in the large and small domains with a topography per-
turbation used in this study. The version of Firedrake used is
0.13.0+4944.g22178416 and is freely available. We also pro-
vide FEniCS code (FEniCS team, 2022; Alnaes et al., 2015; Logg
et al., 2012b; Logg and Wells, 2010; Logg et al., 2012a) to repro-
duce the models solving for the normal and hyperbolic equations.
The version of FEniCS used is 2016.1.0 and is freely available.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/se-13-1107-2022-supplement.
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