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Abstract. Understanding the long-term evolution of Earth’s
plate–mantle system is reliant on absolute plate motion mod-
els in a mantle reference frame, but such models are both
difficult to construct and controversial. We present a tectonic-
rules-based optimization approach to construct a plate mo-
tion model in a mantle reference frame covering the last bil-
lion years and use it as a constraint for mantle flow mod-
els. Our plate motion model results in net lithospheric ro-
tation consistently below 0.25◦Myr−1, in agreement with
mantle flow models, while trench motions are confined to a
relatively narrow range of −2 to +2 cm yr−1 since 320 Ma,
during Pangea stability and dispersal. In contrast, the pe-
riod from 600 to 320 Ma, nicknamed the “zippy tricentenary”
here, displays twice the trench motion scatter compared to
more recent times, reflecting a predominance of short and
highly mobile subduction zones. Our model supports an or-
thoversion evolution from Rodinia to Pangea with Pangea
offset approximately 90◦ eastwards relative to Rodinia – this
is the opposite sense of motion compared to a previous or-
thoversion hypothesis based on paleomagnetic data. In our

coupled plate–mantle model a broad network of basal man-
tle ridges forms between 1000 and 600 Ma, reflecting widely
distributed subduction zones. Between 600 and 500 Ma a
short-lived degree-2 basal mantle structure forms in response
to a band of subduction zones confined to low latitudes,
generating extensive antipodal lower mantle upwellings cen-
tred at the poles. Subsequently, the northern basal structure
migrates southward and evolves into a Pacific-centred up-
welling, while the southern structure is dissected by subduct-
ing slabs, disintegrating into a network of ridges between 500
and 400 Ma. From 400 to 200 Ma, a stable Pacific-centred
degree-1 convective planform emerges. It lacks an antipo-
dal counterpart due to the closure of the Iapetus and Rheic
oceans between Laurussia and Gondwana as well as due to
coeval subduction between Baltica and Laurentia and around
Siberia, populating the mantle with slabs until 320 Ma when
Pangea is assembled. A basal degree-2 structure forms sub-
sequent to Pangea breakup, after the influence of previously
subducted slabs in the African hemisphere on the lowermost
mantle structure has faded away. This succession of mantle
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states is distinct from previously proposed mantle convection
models. We show that the history of plume-related volcanism
is consistent with deep plumes associated with evolving basal
mantle structures. This Solid Earth Evolution Model for the
last 1000 million years (SEEM1000) forms the foundation
for a multitude of spatio-temporal data analysis approaches.

1 Introduction

1.1 Relative versus absolute plate motions

The study of plate tectonics unifies our understanding of the
evolving solid Earth, the ocean basins, landscapes, and the
evolution of life. Since the advent of plate tectonic theory
enormous progress has been made in mapping the relative
motions of the plates through time, constrained by magnetic
anomaly and fracture zone data in the ocean basins and a
variety of geological, geophysical, and paleomagnetic data
on the continents (see summary by Cox and Hart, 2009).
Nonetheless, absolute plate motions, i.e. the motions of the
plates relative to a fixed reference system such as the spin
axis of the Earth or the mesosphere, have been much more
difficult to constrain. Both the paleo-latitude of a plate and
its paleo-meridian orientation can be calculated using pale-
omagnetic data, providing a paleomagnetic pole for a given
plate (Cox and Hart, 2009). However, since the Earth’s mag-
netic dipole field is radially symmetric, paleo-longitudinal
information cannot be determined from paleomagnetic data
alone unless further assumptions are made (Torsvik and
Cocks, 2019). For relatively recent geological times (Late
Cretaceous to present), seamount chains as well as conti-
nental volcanic formations with a linear age progression can
be used to restore plates to their paleo-positions (includ-
ing paleo-latitude and paleo-longitude), with the assumption
that surface hotspots resulting from intersections of man-
tle plumes with the surface are either fixed relative to each
other or moving slowly with respect to each other (Koppers
et al., 2021). Various alternative time-dependent regional and
global absolute plate motion models based on hotspot tracks
have been developed over the past decades, with some based
on hotspot track data alone (e.g. Maher et al., 2015; Wessel
and Kroenke, 2008), while others reflect a combination of
relative plate motion and constraints provided by mantle con-
vection models (e.g. O’Neill et al., 2005; Steinberger, 2000).
Hotspot-track-based models for recent geological times can
be combined with models based on paleomagnetic data for
earlier times, forming “hybrid models” (Torsvik et al., 2008).
The difficulties involved in constructing hotspot reference
frames, and their lack of robustness for pre-Cretaceous times,
reflecting a shortage of preserved age-dated hotspot tracks,
led to the idea of a subduction reference frame. This follows
the assumption that slabs sink vertically through the entire
mantle, allowing the location of past subduction zones to be

reconstructed based on global mantle tomographic models
(Van Der Meer et al., 2010). However, the empirical “longitu-
dinal correction” applied to the plates in such models differs
significantly with plate positions derived from hotspot track
data (Butterworth et al., 2014). Domeier et al. (2016) tested
the concept of a subduction reference frame concept using a
range of tomographic models and concluded that the method
may be used for reconstructions back to 130 Ma, reflecting
imaged slabs down to a depth of 2300 km.

1.2 Large low-shear-velocity provinces as longitudinal
markers?

Considering that neither age-progressive hotspot tracks nor
subducted slabs are useful for reconstructing the past posi-
tions of plates before the Cretaceous Period and the consider-
able challenge of reconstructing paleo-longitude from paleo-
magnetic data, Torsvik and Cocks (2019) built on the idea of
large low-shear-velocity province (LLSVP) stability put for-
ward in Burke and Torsvik (2004). LLSVPs were regarded as
useful in this context as their edges were proposed to act as
“plume generation zones”, offering an avenue to align age-
dated large igneous provinces (LIPs) and kimberlites with
the present-day edges of LLSVPs. This hypothesis is built
on the assumption that LIPs and kimberlites are the product
of plumes rising from LLSVP boundaries, which remain sta-
tionary through time (Burke and Torsvik, 2004).

However, using statistical approaches a number of stud-
ies (e.g. Austermann et al., 2014; Davies et al., 2015a) have
shown that this correlation is not robust, whilst a follow-up
study by Doubrovine et al. (2016) essentially confirms this
in the sense that one cannot conclusively state that plumes
form at LLSVP edges versus interiors. Using similar statis-
tical approaches, Flament et al. (2022) recently showed that
the alignment of LIPs and kimberlites is statistically as con-
sistent with the boundaries and interiors of mobile basal man-
tle structures shaped by Earth’s reconstructed subduction his-
tory as with fixed ones.

This plume generation zone method offers a reproducible
and quantifiable method of adding a longitudinal correction
to reconstructed plates, thus providing an apparent solution
to reconstructing longitude. Le Pichon et al. (2019) also built
an absolute reference frame based on an assumption of sta-
tionary deep mantle structures back to 400 Ma. However, the
basic tenet of these approaches, namely the long-term stabil-
ity of LLSVPs, has been challenged. Recent mantle tomo-
graphic images, combined with fluid mechanic constraints,
have resulted in a view that LLSVPs are composed of bun-
dles of thermochemical upwellings enriched in denser than
average material (Davaille and Romanowicz, 2020), an in-
terpretation that follows numerous previous papers coming
to similar conclusions (e.g. Garnero and Mcnamara, 2008;
Heyn et al., 2018; Tan et al., 2011). Only when tomographic
models are filtered to long wavelengths do these structures
take on the appearance of homogenous, uniform, and po-
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tentially stable provinces (see also Schuberth et al., 2009;
Tkalčić et al., 2015). These models and observations, as well
as mantle flow models (e.g. Zhang et al., 2010; Zhong and
Liu, 2016; Cao et al., 2021a; Davies et al., 2015a; Garnero
and Mcnamara, 2008; Flament et al., 2017; Bull et al., 2014;
Davies et al., 2012), indicate that the shape of LLSVPs is
controlled by the distribution of subducted slabs and the po-
sition of LLSVPs relative to them, implying that LLSVP
structures and their boundaries are mobile. Based on mantle
flow models, Zhang et al. (2010) concluded that the African
LLSVP is unlikely to have existed in its current form be-
fore 230 Ma, while Mitchell et al. (2012) suggested, based
on distribution patterns of virtual geomagnetic poles, that
neither the African nor the Pacific antipodal upwellings ex-
isted before the creation of Pangea. Additionally, Doucet
et al. (2020b) used the geochemical composition of plume-
related basalts to argue for a dynamic relationship between
deep mantle structures and plate tectonic evolution. These in-
ferences remain to be further tested, but the apparent unlike-
lihood of LLSVP stability over long geological time periods
challenges the usefulness of the method proposed by Torsvik
and Cocks (2019) as a universal solution for reconstructing
the longitude of plates.

1.3 Alternative modes of supercontinent formation

Possible alternative modes of supercontinent formation in-
clude (1) closing of the youngest ocean basin on the same
hemisphere as the last supercontinent (“introversion”, re-
closing the Atlantic Ocean from the present configuration),
(2) closing of the older antipodal ocean basin (“extrover-
sion”, closing the Pacific Ocean from the present configu-
ration), and (3) closing an ocean basin orthogonal to the di-
rection of opening of the last ocean basin (“orthoversion”,
e.g. closing the Arctic Ocean from the present configuration)
(Evans et al., 2016; Murphy and Nance, 2003; Murphy et
al., 2009). Following these ideas, Mitchell et al. (2012) pro-
posed an alternative method to obtain paleo-longitude from
paleomagnetic data across supercontinent cycles. They uti-
lized the record of oscillatory true polar wander (TPW) as
expressed in apparent polar wander paths. True polar wan-
der is a solid-body rotation of the Earth about the equato-
rial minimum moment of inertia with respect to its spin axis,
causing geographic poles to “wander” (Raub et al., 2007).
Mitchell et al. (2012) suggested that consecutive superconti-
nents are roughly separated from each other by 90◦ of longi-
tude. This orthoversion reconstruction effectively assembles
a new supercontinent above one of the downwelling subduc-
tion girdles surrounding the previous supercontinent. While
this method provides a conceptual model for absolute plate
motions, it falls short of being useful for deriving an actual
mantle reference frame through time (Torsvik and Cocks,
2019). Specifically, the practical application of this method
is limited due to uncertainties related to the prediction of the
occurrence of true polar wander episodes rather than deriv-

ing them independently and the inability of the method to
uniquely determine whether the path from one superconti-
nent to the next is from west to east or vice versa. To under-
stand the geodynamic history of continents after superconti-
nent breakup it is imperative to have both a continuous time
series of absolute plate motions and a constraint on whether
the western or eastern borders of a dispersing supercontinent
move across a major downwelling driven by slabs sinking in
the mantle.

1.4 Net lithospheric rotation and trench migration

The net rotation of the lithospheric shell of the Earth relative
to the underlying mantle owes its origin to lateral variations
in upper mantle viscosity and mantle structure (Rudolph and
Zhong, 2014; Ricard et al., 1991). Many published absolute
plate motion models suffer from plate velocity artefacts, typ-
ically resulting in excessive net lithospheric rotation magni-
tudes. Often, absolute plate motion models are based on fit-
ting geological observations, which in some instances result
in either the over-fitting of observations or fitting the wrong
trends within data from volcanic chains (see Schellart et al.,
2008, for a discussion), resulting in geodynamically prob-
lematic models that are difficult to reconcile with our knowl-
edge of mantle rheology (e.g. Rudolph and Zhong, 2014). As
a consequence, mantle flow modellers often convert a plate
tectonic model into a so-called no-net-rotation (NNR) refer-
ence frame (e.g. Mao and Zhong, 2021), in which the net ro-
tation of the entire lithosphere relative to the mantle is set to
zero at all times. Upper magnitude limits to net lithospheric
rotation have been proposed based on mantle flow mod-
elling, suggesting net rotation should be a positive, non-zero
value less than∼ 0.2–0.3◦Myr−1 (Becker, 2006; Conrad and
Behn, 2010), but not necessarily zero. Using a low net rota-
tion threshold for building an absolute plate motion model, as
opposed to assuming that it is zero, implicitly acknowledges
the heterogeneous nature of the lithosphere and variations in
upper mantle viscosity, an often-cited criticism of NNR ref-
erence frames (Le Pichon et al., 2019). Here we consider an
NNR reference frame to be an endmember, while focussing
on building an absolute plate motion model that limits net ro-
tation to comply with geodynamic constraints (Becker, 2006;
Conrad and Behn, 2010). Williams et al. (2015) analysed
a set of alternative absolute plate motion models and pro-
posed that global optimization of trench migration charac-
teristics should be considered an additional criterion in the
construction of absolute plate motion models, a strategy that
we include here. Williams et al. (2015) followed the insights
of Schellart et al. (2008), who observed that most trenches
mostly roll back slowly at speeds of∼ 0–2 cm yr−1 at present
day, with trench advance being extremely rare.
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1.5 Alternative approach for mantle reference frame
construction

All absolute reference frames discussed above fall in the cat-
egory of mantle reference frames, i.e. they are designed to
estimate the position of plates relative to the mantle through
time, as opposed to the spin axis. Unlike the spin axis, the
convecting mantle does not provide a stable, fixed reference
system through time. A mantle reference frame attempts to
isolate the motions of plates relative to the mantle, given as
plate rotations relative to the Earth’s spin axis, which is as-
sumed to be fixed. Such a reference frame is therefore agnos-
tic of TPW. Paleomagnetic data record information inform-
ing both the motions of the plates relative to the mantle and
TPW, and they can thus be used to restore the plates in terms
of their “true” latitudinal positions through time, which is
useful for paleoclimate studies. However, reconstructed pa-
leomagnetic poles derived from paleomagnetic data cannot
constrain paleo-longitude due to the radial symmetry of the
Earth’s magnetic field (Cox and Hart, 2009) and therefore
cannot be used to accurately track the east–west movement
of the plates across mantle upwellings and downwellings
unless additional assumptions are made – see Sect. 1.2 in
Torsvik and Cocks (2019). In contrast, an ideal mantle refer-
ence frame provides constraints on both paleo-latitudes and
paleo-longitudes of plates relative to the mantle. However,
as it does not consider TPW, it does not provide paleogeo-
graphic reconstructions useful for paleoclimate studies (Van
Hinsbergen et al., 2015). These two types of reference frames
are complementary to each other.

To overcome the limitations of traditional mantle reference
frames, Tetley et al. (2019) presented a new method applying
a joint global inversion to evaluate the contribution of mul-
tiple time-dependent absolute plate motion constraints in-
cluding fit to age-progressive hotspot tracks, optimizing sub-
duction zone migration behaviours, and minimizing rates of
net lithospheric rotation. This approach explicitly excludes
true polar wander, as the method is deliberately aimed at
reconstructing the plates relative to the convecting mantle.
The method automatically provides both paleo-latitudes and
paleo-longitudes relative to the mantle, thus providing a man-
tle reference frame expressed as rotations of the plates rela-
tive to the spin axis of the Earth, which is assumed to be
stationary. This approach has been extended for the appli-
cation in this paper by including evaluation of continental
velocities relative to the mantle as an additional criterion.
Tectonic-rules-based plate motion model optimization can be
applied to any plate motion model with continuous closing
plate boundaries through time (Gurnis et al., 2012).

Our aim is to derive a mantle reference frame for the
plate motion model of Merdith et al. (2021), extending
the tectonic-rules-based approach proposed by Tetley et
al. (2019) to the last billion years. This results in a “deep-
time” plate motion model suitable for plate–mantle system
simulations and allows us to test the orthoversion hypothe-

sis suggested by Mitchell et al. (2012) independently of any
reliance on paleomagnetic data. It also allows us to evaluate
the difference between the widely used NNR reference frame
approach and a more complex application of tectonic rules to
reference frame construction, aiming to minimize net rota-
tion jointly with other key parameters. Lastly, it allows us to
design a plate–mantle system model to understand how the
deep mantle structure responds to plate motions following a
set of tectonic rules. For instance, we can test the hypothesis
by Mitchell et al. (2012) that the African and Pacific LLSVPs
did not exist before Pangea assembled.

2 Methods

2.1 Mantle reference frame optimization

It needs to be stated in the outset that prior to the assembly
of Pangea we have far fewer constraints on the relative po-
sitions of plates compared to more recent times. To render
mantle reference frame construction tractable, we leave rel-
ative plate motions unaltered and focus on optimizing a sin-
gle, global reference frame. Our workflow for absolute plate
motion model construction follows the iterative method out-
lined in Tetley et al. (2019) (Fig. 1). For a given iteration,
the approach starts with perturbing an initial absolute Euler
rotation (pole latitude, pole longitude, and angle magnitude)
for a given reference continent or plate and then calculates
a series of fit metrics with selected constraining data using
objective (or cost) functions. This process continues until a
global minimum is found. For this study, we use continen-
tal Africa as the reference (as it forms the base of the plate
model rotation tree of Merdith et al., 2021). Following Tetley
et al. (2019), we calculate fit metrics computed from evalu-
ating (1) net lithospheric rotation rate (NR), (2) trench mi-
gration rate (TM), and (3) the fit of present-day hotspots to
the major age-progressive hotspot tracks for the period of 0–
80 Ma only (HS). In addition to the above, we extend the
existing method to also compute a fourth constraining cri-
terion: (4) median global continental absolute plate veloc-
ity (PV). We introduce continental absolute plate velocities
as an additional criterion to prevent mean oceanic plate ve-
locities based on synthetic plates from potentially inducing
unreasonably high continental speeds globally, as the deep-
time reconstructions used here include large swathes of re-
constructed ocean floor that is now subducted based on a va-
riety of indirect pieces of geological evidence (Merdith et al.,
2021).

The four constraining criteria are applied to the abso-
lute plate motion model optimization with the following as-
sumptions and/or bounds: (1) rates of net lithospheric ro-
tation (NR) are minimized but non-zero, (2) global trench
migration velocities are minimized, favouring trench retreat
over trench advance, (3) spatio-temporal misfit between the
plate motion model and present-day hotspot chains is min-

Solid Earth, 13, 1127–1159, 2022 https://doi.org/10.5194/se-13-1127-2022



R. D. Müller et al.: A tectonic-rules-based mantle reference frame since 1 billion years ago 1131

imized, and (4) global continental median plate speed re-
mains <60 mm yr−1 based on continental plate speed statis-
tics reported in Zahirovic et al. (2015). The contributions of
individual optimization parameters to the overall inversion
are initially scaled by relative magnitude and then weighted
by empirically determined weights. For times older than
80 Ma, NR= 1, TM= 0.5, PV= 0.5, and HS= 0 (0–80 Ma,
NR=TM=PV=HS= 1). From this optimized plate mo-
tion model, we then reconstruct the age-area distribution of
the ocean floor based on the evolving plate boundary topolo-
gies and rotations, following the method by Williams et
al. (2021).

2.2 Mantle convection modelling

We model mantle convection using the extended Boussinesq
approximation in a version of CitcomS (Zhong et al., 2008)
which has been modified for progressive assimilation of sur-
face boundary conditions from plate reconstructions (Bower
et al., 2015). We build the thermal structure of the lithosphere
using reconstructed seafloor ages and a half-space cooling
model with maximum seafloor age set to 80 Myr. This cor-
responds to a fast and simple implementation of the equiv-
alent of a plate model; for the purpose of our application,
the difference to using an actual plate model would be neg-
ligible. Similarly, we build the thermal structure of subduct-
ing slabs from the surface to 350 km depth with a dip angle
of 45◦ using seafloor ages at 1 Myr intervals. We apply an
isothermal (T = 273 K) and kinematic (plate velocities ex-
ported from the reconstructions) boundary condition at the
surface, as well as an isothermal (T = 3373 K) and free-slip
boundary condition at the CMB. Slabs are initially built from
the surface to 1000 km depth, with dip angles of 45◦ above
425 km depth and 90◦ below.

We consider four mantle model cases: cases OPT1 and
OPT2 use our optimized reconstruction as time-dependent
boundary conditions, case PMAG uses the reconstruction
from Merdith et al. (2021), which is in a paleomagnetic ref-
erence frame, and case NNR uses the same reconstruction
except with net lithospheric rotations removed (i.e. a no-net-
rotation reference frame). The initial condition includes a
113 km thick denser basal layer. The excess density is de-
fined by the buoyancy ratio B = δρch/(ρα1T ), where ρ is
the density, α is the coefficient of thermal expansivity,1T =
3100 K is the temperature difference across the mantle, and
δρch is density contrast disregarding thermal effects. The
buoyancy ratio B is 0.25 for case OPT1 and 0.325 for other
cases (Table 1), which respectively corresponds to an excess
density of about ∼ 1 % (δρch = 56.8 kg m−3) and ∼ 1.3 %
(δρch = 73.8 kg m−3) for the basal layer if we take ρ =

5546 kg m−3 (the average value of the bottom 100 km above
the CMB from the Preliminary Reference Earth Model,
Dziewonski and Anderson, 1981) and α = 1.32× 10−5 K−1

(the average value of the bottom 100 km above the CMB).
The composition field is tracked with tracers using the ra-

tio tracer method (Mcnamara and Zhong, 2004; Tackley and
King, 2003). Before the main calculation, the 1000 Ma plate
configuration was applied during a 250 Myr warm-up phase.

The convective vigour is controlled by the Rayleigh
number: Ra= α0ρ0g01T h

3
M/κ0η0 = 7.8×107, where α0 =

3× 10−5 K−1 is the reference coefficient of thermal ex-
pansivity at the surface, ρ0 = 4000 kg m−3 is the density,
g0 = 9.81 m s−2 is the acceleration of gravity at the sur-
face, hM = 2867 km is the thickness of the mantle, and
κ0 = 1× 10−6 m2 s−1 is the thermal diffusivity. The dissi-
pation number is Di= α0g0R0/CP0 = 1.56, where CP0 =

1200 J kg−1 K−1 is the reference heat capacity. The rate of
internal heating for the whole model is H = 33.6 TW. Vis-
cosity is temperature-, composition-, and depth-dependent:

η = η(r)η0ηC exp
(
Eη+ ρ0gZη (R0− r)

R (T + Toff)

−
Eη+ ρ0gZη (R0−Rc)

R (TCMB+ Toff)

)
,

where η(r) is a depth-dependent pre-factor with values 0.02,
0.002, 0.02, and 0.2 for mantle above 160 km, between 160
and 310 km, between 310 and 660 km, and below 660 km, re-
spectively. η0 = 1.1× 1021 Pa s is the reference viscosity, ηC
is the compositional viscosity pre-factors of 1, 100, and 10
for ambient mantle, continental lithosphere, and basal layer,
respectively, in the initial condition. Eη = 283.5 kJ mol−1 is
the activation energy, Zη = 2.1 cm3 mol−1 is the activation
volume, g is the acceleration of gravity, R0 = 6371 km is the
radius of the Earth, r is the radius, R = 8.31 J mol−1 K−1 is
the universal gas constant, T is the temperature, Toff = 496 K
is a temperature offset, and RC = 3504 km is the radius of
the core. Eη and Toff are selected to obtain viscosity varia-
tions by 3 orders of magnitude as a function of temperature
(Flament, 2019). The model consists of ∼ 13 million nodes
(129× 129× 65× 12) with radial mesh refinement to obtain
slightly higher resolutions at the surface (∼50× 50× 15 km)
and CMB (∼ 28× 28× 27 km) and a lower resolution in the
mid-mantle (∼ 40× 40× 100 km).

2.3 Assessing the match of volcanic eruption locations
and basal mantle structures

We follow the approach of Flament et al. (2022) to eval-
uate model success from (i) the time-dependent match be-
tween volcanic eruption locations and basal mantle struc-
tures and (ii) the match between the present-day man-
tle structure predicted by mantle flow models and im-
aged by tomographic models. We are primarily interested
in basal mantle structures (BMSs) that are hot in mantle
flow models and slow in tomographic models. The first
step consists of carrying out a cluster analysis of lower
mantle structure. As in Flament et al. (2017), we classify
∼ 200 000 equally spaced points on Earth’s surface into
two groups of points with similar variations in a given
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Figure 1. Optimization workflow including decisions (yellow diamonds) and directing flow through processes (rectangular grey boxes)
that accept input and produce output data (orange boxes). The beginning and end of the workflow are denoted by light blue boxes with
rounded edges. The workflow sequentially optimizes absolute plate motion in 5 Myr time intervals starting at present day and progressing
backwards in time until 1000 Ma. Within each time interval the motion of a reference plate (and thereby the absolute motion of all plates) is
optimized by perturbing its rotation while iteratively minimizing the cost of an objective function. The reference plate is Africa between 550
and 0 Ma and Laurentia between 1000 and 550 Ma. Global optimization in the current time interval is initiated by generating 400 rotations
with which to seed local optimizations. Each seed is generated from the reference plate rotation optimized in the preceding time interval
by retaining its rotation angle but distributing its rotation pole (latitude and longitude) to 400 uniform locations across the globe. To take
advantage of parallel processing we distribute these 400 seeds in parallel across multiple computational nodes, with each node performing
a local optimization of a single seed, with the results from all nodes gathered to find the globally minimal reference plate rotation for the
current time interval. The objective function (minimized during optimization) consists of four separate weighted cost functions using the
perturbed rotation model as input: (1) misfit distances of hotspot trails (between 0 and 80 Ma), (2) net rotation of reference plate with an
extra penalty if below 0.08 or above 0.20◦Myr−1 (for efficiency the net rotation is calculated relative to a no-net-rotation model), (3) trench
migration calculated as the mean magnitude of trench-orthogonal velocity sampled uniformly along all trenches with an extra penalty if the
mean magnitude exceeds 30 mm yr−1 (for efficiency we only resolve trenches from topological plate boundaries once per time interval),
and (4) plate velocity magnitude calculated as the median velocity of uniformly sampled points inside continents with an extra penalty if
magnitude exceeds 60 mm yr−1 (for efficiency we only reconstruct continental polygons and their contained sample points once per time
interval).
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Table 1. Parameters for mantle flow models.

Parameters Value
Rayleigh number 7.8× 107

Dissipation number 1.56
Earth radius 6371 km
Mantle thickness 2867 km
Initial slab depth 1000 km
Basal layer thickness 113 km
Coefficient of thermal expansion 3× 10−5 K−1

Reference density 4000 kg m−3

Acceleration of gravity 9.81 m s−2

Temperature difference between the surface and CMB 3100 K
Reference viscosity 1.1× 1021 Pa s
Thermal diffusivity 1× 10−6 m2 s−1

Depth-dependent viscosity pre-factor 0.02, 0.002, 0.02, 0.2 (above 160, 160–310, 310–660 km, and below 660 km)
Compositional viscosity pre-factor 1, 100, 10 for ambient mantle, continental lithosphere, and basal layer.
Activation energy 283.5 kJ mol−1

Activation volume 2.1 cm3 mol−1

Temperature offset 496 K
Heat capacity 1200 J kg−1 K−1

Internal heating rate 33.6 TW
Model warm-up time 250 Myr
Buoyancy ratio for basal layer OPT1: 0.25 (1 % excess density), OPT2, NNR, PMAG: 0.325 (1.3 % excess density)
Hot basal structure (Paraview visualization) Mantle hotter than layer average by non-dimensional value 0.1 (310 K)
Slab (Paraview visualization) Mantle colder than layer average by non-dimensional value 0.05 (155 K)

property between 1000 and 2800 km depth (Flament et
al., 2017; Lekic et al., 2012) . The analysis was carried
out on both mantle flow and tomographic models using
the scientific Python implementation of the k-means (Mac-
queen, 1967) algorithm (http://docs.scipy.org/doc/scipy/
reference/generated/scipy.cluster.vq.kmeans2.html, last ac-
cess: 19 February 2021), deriving four metrics from these
clusters.

The first is the fractional area fa of deep mantle covered by
BMS hot basal mantle structures in cluster space. fa is time-
averaged for the flow models. The purpose of this metric is
to verify that the area of predicted BMSs is consistent with
the area of imaged BMSs.

The second is the accuracy Acc= (TP+TN) /A (Flament,
2019; Flament et al., 2017) that quantifies the match between
present-day BMSs from flow models and BMSs from seven
S-wave tomographic models: SAW24B16 (Mégnin and Ro-
manowicz, 2000), HMSL-S (Houser et al., 2008), S362ANI
(Kustowski et al., 2008), GyPSuM-S (Simmons et al., 2010),
S40RTS (Ritsema et al., 2011), Savani (Auer et al., 2014),
and SEMUCB-WM1 (French and Romanowicz, 2014). TP
stands for “true positive”, indicating a high-temperature clus-
ter for mantle flow models and a low-velocity cluster for
seismic tomographic models; similarly, TN (“true negative”)
corresponds to a low-temperature cluster and a high-velocity
cluster for flow models and seismic tomographic models, and
FN (“false negative”) corresponds to a low-temperature clus-
ter and low-velocity cluster for flow models and seismic to-

mographic models, respectively. A is Earth’s total surface
area.

The third is the time-averaged median angular distance θ̃
between volcanic eruptions and basal mantle structures. We
considered three databases of volcanic eruptions: (1) large
igneous provinces (LIPs) from Ernst and Youbi (2017), here-
after referred to as EY17. These LIPs are typically associ-
ated with plume heads (Richards et al., 1989), covering>1×
105 km2 and erupted as igneous pulses 1–5 Myr long over
less than 50 Myr (Bryan and Ernst, 2008). EY17 contains
105 LIPs back to 960 Ma (Fig. 2). (2) We also considered
LIPs from Johansson et al. (2018), hereafter referred to as
J18. J18 contains 185 LIPs from 960 Ma (Fig. 2), which are
compiled from Bryan and Ernst (2008), Coffin et al. (2006),
and Ernst (2014). J18 also contains smaller oceanic islands
and seamounts associated with plume tails (Coffin et al.,
2006), which are longer-lived than transient plume heads
(Richards et al., 1989). (3) Lastly, we considered kimber-
lite eruptions from Tappe et al. (2018), hereafter referred to
as T18. T18 contains 983 kimberlite eruptions from 960 Ma
(Fig. 2). We used the pyGPlates Python API (https://www.
gplates.org/pygplates, last access: 30 November 2020) to
identify the centroid of LIP polygons in databases EY17 and
J18. We only considered LIPs covering an area greater than
20 000 km2. We resampled databases EY17, J18, and T18
to obtain the same temporal resolution (20 Myr) as in the
mantle flow models. Volcanic eruptions that occurred within
(a− aw) < a ≤ (a+ aw), where aw = 10 Myr is an age win-
dow, were assigned the age a. We combined 1168 centroids
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from EY17, J18, and T18 to measure the distance between
volcanic eruptions and BMSs from 960 Ma. We created maps
of angular distances from the edge of BMSs, with distances
positive inside and negative outside BMSs (Davies et al.,
2015b; Doubrovine et al., 2016; Flament et al., 2022). For
a given tectonic reconstruction, minimum angular distances
to BMSs were derived from these maps at reconstructed vol-
canic eruption locations. These minimum distances were cu-
mulated over the period of interest and represented as “sam-
ple” empirical distribution functions (EDFs). We reported
the time-averaged median angular distance θ̃ (with cumula-
tive probability equal to 0.5) between volcanic eruptions and
basal mantle structures. θ̃>0 indicates that 50 % of volcanic
eruptions are within BMSs, whereas θ̃<0 indicates that 50 %
of volcanic eruptions are outside BMSs. The absolute value
of θ̃ indicates the proximity of volcanic products to BMSs (in
a median sense). The computation was carried out for mobile
BMSs predicted by mantle flow models and for stationary
BMSs imaged by tomographic models.

The last is the statistical significance of the median dis-
tance between volcanic eruptions and BMSs, expressed as
a fraction fs. For each mantle flow or tomographic model,
we created 1000 distributions of spatially random points,
each containing 1168 points with the same temporal distri-
bution as in the database (Fig. 2). A set of 1000 “random”
EDFs was created for each case. We computed the mean
of absolute values of distances (|θ |) for each sample and
random EDF. We carried out a Kolmogorov–Smirnov (KS)
statistics test (Kolmogorov, 1933) based on the distance be-
tween two EDFs (the sample EDF and each random EDF).
We used the scientific Python implementation of the KS test
for two samples (https://docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.ks_2samp.html, last access: 19 Febru-
ary 2021). In these tests, the null hypothesis that the sam-
ple EDF and each random EDF were accidentally selected
from the same underlying population can be rejected if the
KS statistic D was greater than a critical value, a relation-

ship which we expressed as (Knuth, 2014) Dn >
√
−

ln( α2 )
n

,
where n= 1168 is the number of LIPs in both the sample
and random EDFs, and α = 0.05 is the confidence level. We
computed the fraction fs of random EDFs that passed the KS
test and for which |θ | was greater than in the sample EDF.
fs close to 1 indicates that the considered volcanic eruption
locations are closer to the considered BMSs than random
points (in a mean sense) and that the sample distribution is
significantly different from the random distribution. In con-
trast, fs close to 0 indicates that random points are closer to
the considered BMSs than the considered volcanic eruption
locations (in a mean sense) and/or that the sample distribu-
tion is not significantly different from the random distribu-
tion.

2.4 Mantle structure cluster analysis

To facilitate an objective, quantitative comparison between
3D volumes of seismic velocity and model temperature fields
in the lower mantle, we reduce these 3D volumes into 2D
maps using vertical volume averaging (see Flament, 2019;
Lekic et al., 2012). We use k-means clustering (Macqueen,
1967) to separately classify temperature and seismic veloc-
ity anomalies in the lower mantle into two groups. Profiles
for each field are extracted beneath∼ 200 000 equally spaced
points (with average distance 0.45◦) at 31 depths between
1000 and 2800 km (Lekic et al., 2012) and then separated
into two clusters according to the variation in the property
of interest with depth. We refer to these quantities as “lower
mantle clusters”.

In order to evaluate the models, as in Flament (2019), we
compute the accuracy Acc= (TP+TN) /A and sensitivity
S =TP / (TP+FN) to quantify the match between present-
day lower mantle clusters from flow models and seven S-
wave tomographic models: SAW24B16 (Mégnin and Ro-
manowicz, 2000), HMSL-S (Houser et al., 2008), S362ANI
(Kustowski et al., 2008), GyPSuM-S (Simmons et al., 2010),
S40RTS (Ritsema et al., 2011), Savani (Auer et al., 2014),
and SEMUCB-WM1 (French and Romanowicz, 2014). TP
stands for true positive, indicating a high-temperature clus-
ter for mantle flow models and a low-velocity cluster for
seismic tomographic models; similarly, TN (true negative)
corresponds to a low-temperature cluster and a high-velocity
cluster for flow models and seismic tomographic models, and
FN (false negative) corresponds to a low-temperature cluster
and low-velocity cluster for flow models and seismic tomo-
graphic models, respectively; A is Earth’s total surface area.

3 Results

3.1 Implications of alternative reference frames

We compare five different reconstructions between 200
and 900 Ma to assess the consequences of alternative as-
sumptions and approaches for reference frame construc-
tion (Fig. 3), including a standard paleomagnetic reference
frame (Merdith et al., 2021) (PMAG), a no-net-rotation ref-
erence frame (NNR), our reference frame which is optimized
with respect to tectonic rules (OPT), an orthoversion refer-
ence frame from Cao et al. (2021a) following Mitchell et
al. (2012) (ORTHO), and a reference frame based on a com-
bination of paleomagnetic and geological data incorporating
the alignment of plume products at the surface with fixed
LLSVP edges (Torsvik and Cocks, 2019) (FIX_LLSVP).
At 200 Ma (Fig. 3a) all reconstructions are quite similar;
however, by 300 Ma a visible difference emerges between
FIX_LLSVP and all other reconstructions in terms of the lon-
gitudinal positions of continents. At this time, South America
is located about 20◦ farther westward in FIX_LLSVP com-
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Figure 2. Number of volcanic eruptions as a function of age from 0–960 Ma for databases EY17 (Ernst and Youbi, 2017), J18 (Johansson et
al., 2018), and T18 (Tappe et al., 2018). The number of volcanic eruptions from 960 Ma is given in brackets for each database, as is the total
number of volcanic eruptions.

pared with all other reconstructions, keeping in mind that
there are only two tie points for a longitudinal-correction-
based aligning of plume products with the African LLSVP:
the Skagerrak central LIP and a Scandinavian kimberlite
(Torsvik and Cocks, 2019). At 400 Ma the NNR, OPT, and
ORTHO reference frames are still very similar but devi-
ate substantially from both PMAG and FIX_LLSVP refer-
ence frames, in particular the longitudinal continental posi-
tions in the FIX_LLSVP frame, which ties kimberlites and
LIPs in Siberia to the Pacific LLSVP (Torsvik and Cocks,
2019). This assumption requires the western edge of Lau-
russia (North America, Greenland, and Baltica combined)
to migrate ∼ 80◦ westward back in time between 300 and
400 Ma (Fig. 3a), translating to a speed of ∼ 9 cm yr−1 of a
large continental mass including several cratons and a small
amount of ocean crust. This is inconsistent with the analy-
sis of Zahirovic et al. (2015), who found that the root mean
square (rms) speeds of plates with more than 50 % of their
area comprised of continental crust predominantly have rms
speeds between 2 and 4 cm yr−1. This reflects the substantial
continental drag resisting plate motion in these cases, casting
doubt on the viability of the FIX_LLSVP scenario. The dif-
ferences between the OPT and NNR cases on the one hand
with FIX_LLSVP on the other hand are even more extreme
at 500 Ma. In FIX_LLSVP Laurentia (North America and
Greenland) is aligned with the Pacific LLSVP ∼ 45◦ farther
west than at 400 Ma (Fig. 3a), while the longitudinal posi-
tions of Laurentia and Gondwana have not changed much in
the OPT and NNR reconstructions, reflecting both the min-
imization of net rotation and limits imposed on the speeds
of continents in the OPT case. The PMAG reconstruction is
quite different to all other models, as expected, as it is not a
mantle reference frame and implies no constraints on longi-
tude.

For times older than 500 Ma (Fig. 3b) we only com-
pare four reconstructions as the model by Torsvik and
Cocks (2019) does not reach back to 600 Ma. Firstly, there is
distinctive similarity between the OPT and NNR reconstruc-
tions, even though the OPT case minimizes trench migration
speeds and penalizes global continental velocities in addition
to minimizing net rotation. The primary reason for this is that
trench migration and net rotation are relatively closely cou-
pled, so minimizing one also reduces the other to a large ex-
tent, and continents typically do not tend to move fast when
both net rotation and trench migration are minimized, even
if explicit constraints are not introduced for continents. This
comparison provides an important insight, namely that the
simple lithospheric no-net-rotation rule used to produce the
NNR model produces results that are not dramatically differ-
ent from a model optimized by a set of more general tectonic
rules. This is important because NNR models have been fre-
quently used in tectonic and mantle flow models for practi-
cal reasons (e.g. Mao and Zhong, 2021; Zhong and Rudolph,
2015; Behn et al., 2004; Kreemer and Holt, 2001) in the ab-
sence of other available mantle reference frames. Our results
here suggest that NNR reference frames are not entirely un-
realistic from a tectonic rules point of view. In terms of the
relative importance of plate motion optimization parameters,
our results suggest that minimizing net rotation is the most
important one, with minimizing subduction zone migration
of secondary importance, as minimizing net rotation also re-
duces subduction zone migration to some extent (also see
Müller et al., 2019, for a discussion of the effect of chang-
ing the relative weight of these parameters). Preventing the
speed of continents from exceeding continental speed lim-
its is the least important parameter. We introduced it to en-
sure that large swathes of synthetically reconstructed ocean
floor would not result in a minimal net rotation solution that
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imposes unreasonable motions on the smaller continental re-
gions.

The PMAG model is expectedly quite different, with no
longitudinal and plate speed constraints imposed, while the
orthoversion model (ORTHO) is very different by design, as
it follows the idea that Rodinia formed about 90◦ east from
Pangea such that Pangea assembled over the western subduc-
tion girdle bounding Rodinia (Mitchell et al., 2012). Inter-
estingly, our OPT reconstruction implies instead that Pangea
formed about 90◦ east of Rodinia. We stress that this model
behaviour emerges naturally from our optimization param-
eters without being imposed. It is important to note that
Mitchell et al. (2012) found that their data could not discrimi-
nate well between one or the other scenario; i.e. Pangea either
forming 90◦ east or west of Rodinia. They merely favoured
a westward migration of the two successive supercontinent
centres because they thought this solution would minimize
plate speeds. Instead, our optimized reconstruction suggests
that the opposite solution minimizes plate velocities. In sum-
mary, an unexpected outcome of our optimized absolute ref-
erence frame is that it generates an orthoversion-consistent
reconstruction by following a completely different approach
from that used by Mitchell et al. (2012), thus independently
lending support to the concept as a natural evolutionary path-
way of successive supercontinents.

3.2 Lithospheric net rotation

The dramatic reduction of lithospheric net rotation in our
optimized reference frame relative to the PMAG reference
frame is illustrated in Fig. 4a, which compares net rotation of
our optimized model with the paleomagnetic reference frame
from Merdith et al. (2021) and the mantle reference frame
model by Matthews et al. (2016) incorporating the Paleozoic
reconstruction from Domeier and Torsvik (2014), with the
latter being similar to the model of Torsvik and Cocks (2019)
shown in Fig. 3. These two Paleozoic models (Domeier and
Torsvik, 2014; Torsvik and Cocks, 2019) are constructed as
mantle reference frames by following the idea that by apply-
ing a TPW correction and aligning LIPs and kimberlites with
the edges of LLSVPs an approximation of the “true” latitude
and longitude of plates relative to the mantle is obtained. If
this were the case, we would expect to see the large fluc-
tuations in lithospheric net rotation seen in a model based
on paleomagnetic data alone (Fig. 4b) dramatically reduced.
However, the result of applying empirical TPW and longitu-
dinal corrections as proposed by Domeier and Torsvik (2014)
results in 0.4–1.5◦Myr−1 of net lithospheric rotation, which
is up to 5 times larger than the rates regarded as reasonable
based on geodynamic considerations (Becker, 2006; Conrad
and Behn, 2010) (Fig. 4b). In contrast, if absolute plate mo-
tions are jointly optimized for minimizing net rotation, trench
migration, and fast continent velocity, we obtain a model that
displays net rotation with rates less than 0.25◦Myr−1.

3.3 Subduction zone migration

Compared to the paleomagnetic model (Fig. 5a), our opti-
mized model (Fig. 5b) exhibits significantly reduced trench-
orthogonal subduction zone migration scatter as well as re-
duced median absolute deviation of trench motion (Fig. 6),
reflecting the suppression of fast, geodynamically unreason-
able global trench migration rates. The substantial overall im-
provement in the scatter of trench migration velocities is ex-
pressed in limiting the bulk of trench advance to a relatively
narrow band of rates to 0–3 cm yr−1 (Fig. 5a, b). Subduction
zone retreat exhibits more scatter, particularly between 150
and 100 Ma and before 190 Ma, but the majority of retreat-
ing trench speeds are confined to 0–4 cm yr−1 for most of the
model. In addition, the optimized model exhibits a notable
improvement over the no-net-rotation model (Fig. 5c) in con-
fining the majority of trench advance to 0–2 cm yr−1 and the
majority of trench retreat to 0–4 cm yr−1 (c). There are pe-
riods during which the scatter of trench migration speeds is
systematically smaller or larger than those observed during
Pangea stability and after Pangea breakup (Fig. 5b). In the
last 320 million years the median absolute deviation (MAD)
of subduction zone migration is largely between −1 cm yr−1

(trench advance) and 2 cm yr−1 (trench retreat), with the ex-
ception of the Early Cretaceous period with a MAD of up
to 4 cm yr−1 (Fig. 6). During periods of Rodinia amalgama-
tion (prior to 940 Ma) and stability (940–870 Ma) the MAD
of trench migration is confined to −1 to +2 cm yr−1, while
Pangea assembly and stability from 320 to ∼ 200 Ma are
characterized by a range of −2 to +2 cm yr−1 (Fig. 6). The
relative subduction zone stability during these periods re-
flects the fact that during the late stage of closure of internal
ocean basins that are consumed in the process of supercon-
tinent amalgamation, subduction zone migration slows, and
during phases of stability of a large continental mass the ring
of subduction zones surrounding it is also relatively stable.

The opposite holds for times of supercontinental disper-
sal, during which the ring of subduction zones surrounding
a supercontinent rolls back oceanward, accommodating the
creation of new internal ocean basins. The spread of trench
migration during the dispersal of Rodinia (∼ 870–650 Ma)
is in the range of −2 to +5 cm yr−1 (MAD, Fig. 6), which is
slightly larger than that observed during the last 200 Myr, but
the difference may simply be an artefact of much larger un-
certainties for Neoproterozoic plate reconstructions. The pe-
riod that stands out by displaying by far the largest scatter of
trench migration, with the bulk between −3 and +6 cm yr−1

and some even larger outliers, is the period from 600 to
320 Ma (Fig. 6). This period is the most dynamic time in
terms of subduction zone migration in the last billion years
and comprises most of the Paleozoic era with the exception
of the late Carboniferous and Permian. This is the antithe-
sis of the “boring billion” (Brasier, 2012) – we propose call-
ing it the “zippy tricentenary era”, for short the “zippy tri-
centenary”. Multiple internal ocean basins were destroyed
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Figure 3. Plate reconstructions based on alternative approaches for modelling absolute plate motions, with reference frames based on pale-
omagnetic data (PMAG) (Merdith et al., 2021), no-net-rotation (NNR), tectonic-rules-based optimization (OPT), orthoversion from Cao et
al. (2021a) following Mitchell et al. (2012), and a combination of paleomagnetic data and aligning LIPs with the edges of LLSVPs assumed
to be stationary (Torsvik and Cocks, 2019), covering the time period from 200–900 Ma. The reconstruction of Torsvik and Cocks (2019)
does not extend back to 600 Ma and older. Continents are outlined in beige, while subduction zones are toothed black lines. The present-day
position of continents is shown in light grey in the background as a reference.
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Figure 4. (a) Net lithospheric rotation of the paleomagnetic ref-
erence frame from Merdith et al. (2021) (PMAG, magenta) versus
our optimized reference frame (OPT, blue) with weights for NR= 1
(net rotation), TM= 0.5 (trench migration), and PV= 0.5 (absolute
plate velocity of continental regions) from 1000 Ma to the present
with the NNR model shown for reference in red with zero net rota-
tion. For the period of 80–0 Ma hotspot tracks are used in addition
as part of the optimization, with a weight HS= 1 (fitting of present-
day hotspots to age-progressive seamount tracks). Net rotation is
below 0.25◦Myr−1, as recommended by independent geodynamic
studies (Conrad and Behn, 2010; Becker, 2006). (b) Net rotation of
the mantle reference frame model by Matthews et al. (2016), which
is based on a combination of the models by Müller et al. (2016)
from 230–0 Ma and Domeier and Torsvik (2014) for the period
of 410–250 Ma, compared to our optimized model. The Domeier
and Torsvik (2014) model is similar to the model by Torsvik and
Cocks (2019) (Fig. 3), but the latter does not include plate topolo-
gies and therefore cannot be used to compute net rotation.

in the process of the formation of Gondwana between 600
and 550 Ma, while after 490 Ma the ephemeral Iapetus Ocean
was replaced by the Rheic Ocean, separating several arc ter-
ranes from northern Gondwana.

3.4 Continental and plate speeds

The third parameter we use to impose tectonic rules on
our optimized plate motion model is global continental rms
speeds. The paleomagnetic reference model (Fig. 7a) is char-

Figure 5. Histogram of the trench-orthogonal overriding plate
speed for (a) the plate motion model from Merdith et
al. (2021), (b) the same model with net lithospheric rotation re-
moved, and (c) our optimized mantle reference frame. Colours are
proportional to the length of subduction zones, which are either re-
treating (blue) or advancing (red) at a given rate. Both the no-net-
rotation and optimized models limit the occurrence of unreasonably
fast trench retreat or advance.

acterized by plate and continental speeds that are frequently
50 % or more above those of the optimized model (Fig. 7b),
which limits maximum continental rms speeds below the
continental “speed limit” of 10 cm yr−1 (Zahirovic et al.,
2015) whilst minimizing peaks in plate speeds. The short-
lived peak in plate speeds at 590–570 Ma is likely related
to an artefact in the reconstruction of now subducted ocean
basins.
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Figure 6. Median trench motion speed with median absolute devia-
tion error range for the unoptimized plate motion model in red and
the optimized model in blue using a 5 Myr moving average window.
Periods of supercontinent stability are characterized by very slowly
moving subduction zones, but Rodinia dispersal and the following
long period of the successive opening and closing of a number of
internal ocean basins resulted in a larger prevalence of relatively
fast subduction zone migration compared with Pangea dispersal.
See text for discussion.

3.5 Mantle flow models

Our mantle flow models are driven by imposed surface plate
velocities, subduction zone locations and geometries (Sup-
plement Animation S1), and reconstructed age-area distri-
butions of the ocean crust through time (Figs. 8, 9, Sup-
plement Animation S2), following the method of Williams
et al. (2021). The predicted evolution of mantle tempera-
ture primarily records the effect of changing subduction zone
topologies and convergence velocities as well as the age of
subducting slabs through time. Here we focus on the evolu-
tion of basal mantle structure (Figs. 10 and 11), which is par-
ticularly relevant for understanding the history of deep man-
tle plumes, and on the upper mantle structure through time,
which is connected to surface magmatism via upper mantle
temperature anomalies and upwellings. To do this, we com-
pare output from two mantle flow models, OPT1 (Fig. 10a)
and OPT2 (Fig. 10b), which differ in buoyancy ratio for the
basal mantle layer (Table 1) (see also Supplement S3–S10).
Model outputs for the NNR and PMAG models are included
in the Supplement (Figs. S1–S4, S6, and S7).

During the first 400 million years of model evolution
(1000–600 Ma) the basal mantle structure is dissected into
a network of ridges as a response to a widely dispersed
network of subduction zones from 1000–760 Ma, prevent-
ing any extensive basal mantle structure akin to present-day
LLSVPs from forming (Fig. 10a). Between 760 and 560 Ma,
an equatorially centred subduction girdle forms in our model,
restricted to a latitude range less than 60◦ (Fig. 10a), ac-
companied by an arrangement of the continents within the

Figure 7. Root mean square (rms) speeds of all plates and conti-
nents in the paleomagnetic model (a) and the optimized model (b).
The paleomagnetic model displays large rms speeds of plates and
continents up to 18 cm yr−1. The no-net-rotation model alleviates
outliers to a large extent, with the optimized model especially re-
ducing mean continental speeds further. Some time periods, notably
600–550 and 450–400 Ma, still show relatively large rms speeds,
likely reflecting artefacts in the reconstruction of relative plate mo-
tions and plate boundaries. Such artefacts mostly occur due to the
way synthetic, now subducted ocean crust is reconstructed. These
reconstructions assimilate preserved geological evidence related to
the types of regional plate boundaries and the timing of the opening
or closing of ocean basins but are nevertheless subject to interpreta-
tion, and seafloor spreading rates are only inferred based on ensur-
ing self-consistent relative plate kinematics such as divergence be-
tween continents or convergence at subduction zone margins. As a
consequence, rms speed artefacts can arise, which can be addressed
in future improved plate and plate boundary reconstructions.

same latitudinal belt. This gives rise to the formation of two
coherent, extensive polar basal mantle structures, connected
by a small number of evolving, ephemeral basal ridges,
which persist to 500 Ma (Fig. 10a). The subsequent move-
ment of Gondwana, some fragments of Eurasia, and asso-
ciated subduction zones to higher latitudes starts dissecting
the previously formed polar basal mantle structures, while
a coherent Pacific basal structure emerges around 400 Ma
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Figure 8. Reconstruction at 1 Ga with the synthetic age of the ocean
floor reconstructed using the method by Williams et al. (2021). Mid-
ocean ridges are shown as white lines, subduction zones as toothed
black lines, and regions of continental crust filled with grey; individ-
ual continental blocks are labelled. Afg: Afghanistan, KMT: Kyrgyz
Middle Tianshan, SC: southern China, NC: northern China, WAC:
West Africa Craton.

(Fig. 10a). As no subduction zones migrate into this region
after 400 Ma, the structure consolidates itself over the next
200 million years, without any equivalent on the opposite
African side forming, which is reflective of the persistent
subduction zones between Gondwana and Laurussia (Figs. 9,
10, 11). A coherent sub-African basal mantle structure only
starts emerging in our model about 20–40 million years after
the breakup of Pangea, reflecting the time involved in the ef-
fect of sinking slabs on the lowermost mantle structure fad-
ing away after cessation of subduction between Gondwana
and North America after 380 Ma (Figs. 9, 10, 11).

These results are consistent with the inference from Cao et
al. (2021a) that it may take 160–240 Myr for the basal man-
tle structure to reflect changes in subduction zone geometry
at the surface. Our model thus records five distinct intervals
of mantle convection geometry: (1) a network of dissected
basal ridges (1000–600 Ma), (2) a short-lived degree-2 basal
mantle structure with upwellings centred on the North and
South Pole (600–500 Ma), (3) a transitional state in which
the north polar basal structure migrates southward and grad-
ually evolves into a Pacific-centred structure while the south
polar structure is dissected by subducting slabs and disinte-
grates into a network of ridges (500–400 Ma), (4) a Pacific-
centred degree-1 structure (400–200 Ma), and (5) a degree-2
structure akin to what is observed today (160–0 Ma), which
is composed of a long-lived Pacific basal structure joined by
an African counterpart that gradually amalgamates during a
∼ 40 Myr transition after the breakup of Pangea at 200 Ma.
The overall evolution described above is similar for mod-
els OPT1 (Figs. 10a, 11a) and OPT2 (Figs. 10b and 11b),
suggesting that the excess density of the basal mantle layer
may play a secondary role, in comparison to the imposed
plate motion history, in driving large-scale mantle structure
through time (Figs. 10a, b and S1–S4, Supplement Anima-

tions S3–S6). We show how basal mantle structures under
Africa, the Pacific, and elsewhere (in between) have evolved
through time based on model OPT1 (Fig. 12a). The predicted
horizontally averaged temperature and viscosity of model
OPT1 at 1000 Ma and at present day (Fig. 12b) illustrate
that the model mantle temperature profile does not change
significantly during the entire model run and that the man-
tle viscosity profile follows that of Steinberger and Calder-
wood (2006).

Upper mantle temperature anomaly maps at ∼ 400 km
depth (Figs. 13, S5–S7) complement the view of the lower
mantle evolution of our model and allow us to evaluate the
mantle temperature response to the history of subduction as
well as upwellings underneath continents, which is of in-
terest as some continental magmatism may be partly driven
by upper mantle temperature anomalies (as well as compo-
sitional anomalies, but these are not modelled here). These
maps (Fig. 13) highlight time periods during which continen-
tal regions overrode subducting slabs, leading to cooler than
average upper mantle temperatures in these regions, while
at the same time potentially enriching the mantle transition
zone in these regions with volatiles from subducting slabs
(e.g. Mather et al., 2020; Safonova et al., 2015; Cao et al.,
2021c). This is observed under Siberia, Baltica, and North
America between 420 and 380 Ma, under North America be-
tween 100 and 40 Ma, and along the rim of eastern–southern
Asia and Zealandia after 100 Ma (Fig. 13) (see also Supple-
ment Animations S7–S10).

We use virtual transparent globes displaying the modelled
time-dependent mantle temperature structure to visualize the
response of the 3D geometry of the basal layer and asso-
ciated upwellings to the evolving geometry and volume of
slabs descending in the mantle (Fig. 14). The development
of basal mantle structures in response to subduction in our
model is illustrated in two views of the mantle through time:
one view is centred at 270◦ E, a meridian crossing the centre
of Rodinia in the south and the Mirovoi Ocean in the north at
800 Ma while straddling the eastern Pacific Ocean at present
day (Fig. 14a), while a second view is centred at 150◦ E,
straddling subduction zones bounding the eastern portion of
Rodinia in the south and crossing the boundary between the
Indian and Mirovoi oceans in the north (Figs. 8, 9 and Sup-
plement Animation S11).

3.6 Match of large igneous provinces and kimberlites
with basal mantle structure through time

As noted in previous work (Torsvik et al., 2010), the volcanic
eruptions reconstructed at their time of eruption and shown
at present day are generally close to LLSVPs, although this
depends on the reconstruction that is used (Fig. 15). Recon-
structed locations of volcanic eruptions are also close to mo-
bile BMSs predicted by mantle flow models (Fig. 16) (Fla-
ment et al., 2022). The statistical significance of the median
distance between volcanic eruptions and BMSs (see Fig. 17),
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Figure 9. Oceanic crustal age grids from 1 Ga to the present constructed from plate rotations and boundaries in 100 Myr intervals following
Williams et al. (2021), with plate boundaries and continents coloured as in Fig. 8.

expressed as a fraction fs, forms the basis of evaluating the
association of plume-related volcanic eruptions and BMSs.
fs close to 1 indicates that the sample distribution is signif-
icantly different from the random distribution and that vol-
canic eruption locations are closer (in a mean sense) to BMS
than random points.

For cases OPT2, PMAG, and NNR, fa ≈ 0.38, which is
within range for tomographic models (0.32<fa<0.52, grey
shading in Fig. 18a), while for OPT1, fa ≈ 0.31 is outside
the range for tomographic models. This is because the excess
density of the basal structure is smaller in OPT1 (+1 %) than
in other cases (+1.3 %), and a greater excess density leads
to greater fa (Flament et al., 2022). The match to present-
day BMSs as imaged by seismic tomographic models (Acc)
is around 0.71 to 0.72 for the flow models, which is just be-
low the range for tomographic models (0.74<(Acc)<0.87,
grey shading in Fig. 18b). Acc is largest for OPT1 (0.72), in
which the smaller area of BMSs leads to a larger true nega-
tive area, leading to a greater Acc. Acc is slightly larger for
OPT2 (0.715) than for PMAG (0.71) and NNR (0.706).

We use our optimized absolute plate motion model as a
reference for the time-averaged median distance θ between
volcanic products and BMSs (−2.2◦<θ<4◦, grey shading
in Fig. 18c). Compared to this reference, volcanic products
tend to be above BMSs (in a median sense) for reference
frame PMAG (0◦<θ<6◦) and further outside BMSs for ref-
erence frame NNR (−5◦<θ<3◦). This primarily reflects the
fact that the net rotation for reference frame OPT falls be-
tween that for PMAG and NNR (Fig. 3). As for mantle
flow models, OPT2 and NNR both result in θ =−1◦, which

is more favourable than PMAG and OPT1 that both result
in θ =−3.6◦. As for the statistical test, fs = 1 for all four
mantle flow models and for most tomographic models, with
the exception of SEMUCB-WM1 for NNR and OPT (fs ≈

0), GyPsuM-S for PMAG (fs ≈ 0), and S40RTS for NNR
(fs ≈ 0.75). This result reflects the large fa for GyPsuM-
S (fa = 0.52) and relatively large fa for SEMUCB-WM1
(fa = 0.38). Overall, results for fs confirm that the prox-
imity between volcanic eruptions and BMSs is statistically
as consistent when considering mobile BMSs from mantle
flow models as when considering stationary BMSs from to-
mographic models (Flament et al., 2022).

We did not attempt to identify a model that falls within
range of tomographic models for Acc. While the comparison
in cluster space is a useful indication of the match, we did
not convert mantle flow models from temperature to density,
and we did not apply a tomographic operator (which takes the
distribution of earthquakes and seismic stations into account)
to the results of mantle flow models. Both these steps would
affect the present-day match between mantle flow and tomo-
graphic models (Davies et al., 2015a; Schuberth et al., 2009).
We note that only one tomographic operator is available for
such calculations (Ritsema et al., 2011) and that using this
operator on the predicted temperature field has a small effect
on Acc (Flament et al., 2017). OPT2 is the preferred model
overall in this context, as it fits the location of volcanic erup-
tions and the present-day structure of the lower mantle better
than other models.
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Figure 10. Map view of mantle temperature anomalies relative to the mean temperature at 2677 km depth for our geodynamic reference
model OPT1 (a) and model OPT2 (b) from 800 Ma to the present (see Table 1 for model parameters). Reconstructed present-day coastlines
and continental sutures are shown as thin grey lines, while outlines of continents are displayed as bold grey lines. Subduction zones are bold
magenta lines with triangles pointing towards overriding plates, while mid-ocean ridges are shown as yellow lines. The black line along the
Equator highlights the location of the mantle cross-sections shown in Fig. 8.

3.7 Cluster analysis of modelled versus
tomographically imaged mantle structure

The spatial match between modelled lower mantle tempera-
ture clusters between 1000 and 2800 km depth at present day
from models OPT1 and OPT2 versus seismic tomographic
clusters from tomographic models GyPSuM-S, HMSL-S,
S40RTS, S362ANI, Savani, SAW24b16, and SEMUCB-
WM1d (Auer et al., 2014; French and Romanowicz, 2014;

Houser et al., 2008; Kustowski et al., 2008; Mégnin and Ro-
manowicz, 2000; Ritsema et al., 2011; Simmons et al., 2010)
is illustrated in Fig. 13. The relatively larger basal mantle
structure buoyancy ratio in model OPT2 relative to our ref-
erence model OPT1 results in a larger lateral extent of lower
mantle structures (Fig. 12a, b). In particular, the anomalously
hot lower mantle cluster centred on the Pacific extends sig-
nificantly beyond the anomalously slow structures captured
in the tomography models (Fig. 13b), while the anomalously
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Figure 11.

hot structure underneath Africa is also more extensive in
OPT2 than in OPT1. In this instance, the spatial extent of
this structure as imaged in the tomography models is some-
what underestimated in OPT1 (Fig. 19a), highlighting the
difficulty of finding a model that matches equally well in all
regions.

The model accuracy, i.e. the fraction of correct predictions
of all our mantle flow models in terms of the clusters anal-
ysed here, is best compared to tomographic models Savani
(Auer et al., 2014) and HMSL-S (Houser et al., 2008) at
∼ 75 %–76 %, followed by S40RTS (Ritsema et al., 2011)
not far behind at 73 %–74 % (Fig. 20a). GyPSuM-S (Sim-
mons et al., 2010) represents an outlier at the low end with
an accuracy of 58 %–62 % because the seismically slow clus-
ter covers a larger area in this tomographic model (Fig. 18a).
GyPSuM-S is different from the other tomographic models

used here as it includes constraints from geodynamic and
mineral physics (Simmons et al., 2010).

In contrast to the model accuracy, sensitivity is the true
positive rate at which the mantle flow model reproduces
the geographical distribution of slow clusters in tomographic
models; i.e. it represents the percentage of anomalously slow
mantle from tomographic models that is correctly matched
by modelled hot mantle temperature anomalies (Fig. 20b).
Model sensitivity covers a range of 52 %–65 %, clearly dif-
ferentiating our preferred model OPT1 from all other mod-
els (Fig. 19b). The OPT1 sensitivity is larger than 61 %
for all tomographic models with the exception of S362ANI
(Kustowski et al., 2008) and SAW24B16 (Mégnin and Ro-
manowicz, 2000). In terms of sensitivity, the paleomag-
netic and no-net-rotation mantle flow models are the lowest-
ranked models with a mean of 56 %–57 % averaged across all
seven tomographic models. The top three tomographic mod-
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Figure 11. Global equatorial mantle cross-sections for our geodynamic reference model OPT1 (a) and OPT2 (b), distinguished by a dif-
ference in the excess density of the basal mantle material (see Table 1) in 100 Myr increments since 800 Ma. The dashed black line is the
boundary between the upper and lower mantle. Numbers above the colour palette represent non-dimensional temperature anomalies, while
numbers below the colour palette are dimensional temperature anomalies.

els in terms of their match to mantle flow model OPT1 are
SEMUCB-WM1 (French and Romanowicz, 2014), Savani
(Auer et al., 2014), and S40RTS (Ritsema et al., 2011), with
a sensitivity between 64 % and 66 %. In summary, our pre-
ferred mantle flow model OPT1 produces the highest mean
for accuracy (72 %) and sensitivity (61 %) averaged across all
seven tomographic models, while Savani (Auer et al., 2014)
and S40RTS (Ritsema et al., 2011) consistently produce high
scores for models OPT1 and OPT2 for both accuracy and
sensitivity (Fig. 20a, b).

4 Discussion

4.1 Tectonic-rules-based mantle reference frame
implications

Our tectonic-rules-based absolute plate motion model in a
mantle reference frame provides an alternative methodology
to constrain both latitudes and longitudes of plates and con-
tinents through time. Our optimized model lacks the distinct
northward migration of Pangea during and after its assem-
bly featured in the model by Merdith et al. (2021) (compare
reconstructions at 400 and 300 Ma in Fig. 3a). This 60◦ mi-
gration, confined mostly to 400–250 Ma, is present in many
Pangea reconstructions and was attributed to true polar wan-
der by Le Pichon et al. (2021), an interpretation confirmed
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Figure 12. (a) The basal mantle structures at 2677 km depth for model OPT1 separated into three equal-area parts from 800 Ma to present
day. Basal mantle structures below present-day Africa (centred on long–lat 11◦ E, 0◦ N, with a radius of 70.5◦) are green, structures below
the Pacific Ocean (centred on long–lat 169◦W, 0◦ N, with a radius of 70.5◦) are magenta, and structures elsewhere are blue. (b) Predicted
horizontally averaged temperature (left panel) and viscosity (right panel) at 1000 and 0 Ma for mantle flow model OPT1. The black dashed
lines show the minimum and maximum values at the present day in each panel. The grey line in the right panel shows the viscosity profile
estimated by Steinberger and Calderwood (2006).

https://doi.org/10.5194/se-13-1127-2022 Solid Earth, 13, 1127–1159, 2022



1146 R. D. Müller et al.: A tectonic-rules-based mantle reference frame since 1 billion years ago

Figure 13. Map view of mantle temperature anomalies relative to the mean temperature at 396 km depth for our geodynamic reference model
OPT1 in 100 Myr increments since 800 Ma. Reconstructed present-day coastlines and continental sutures are shown as thin grey lines, while
outlines of continents are displayed as bold grey lines. Subduction zones are bold magenta lines with triangles pointing towards overriding
plates, while mid-ocean ridges are shown as yellow lines.

by our reconstruction considering that the migration is ab-
sent in our mantle reference frame, which does not consider
true polar wander. The similarity between our optimized and
NNR models confirms that an NNR tectonic reference frame
is a reasonable approximation for use in mantle convection
models.

In terms of subduction zone migration, our results suggest
that the distribution of trench migration, largely confined to
a relatively narrow range of ±2 cm yr−1 during the assembly
of Pangea and during its breakup and dispersal (Fig. 5), does
not hold for pre-Pangea times, apart from stability during as-
sembly of Rodinia (1000–870 Ma) during the assembly of
Gondwana (650–600 Ma). For other times before the assem-
bly of Pangea, the spread of subduction zone migration rates
was significantly larger (Fig. 5), particularly during the pe-
riod from 600–320 Ma (Fig. 4), the zippy tricentenary, when
multiple internal ocean basins evolved, closed, and opened
rapidly (Fig. 3), coinciding with a peak in passive margin
length (Sobolev and Brown, 2019). The beginning of this pe-
riod follows closely from the conclusion of the boring bil-
lion and the end of Neoproterozoic “snowball” Earth glacia-
tions (Hoffman and Schrag, 2002). The zippy tricentenary
might have been initiated by a major burst in surface erosion
and subduction zone lubrication events (Sobolev and Brown,
2019), coming to an end when this lubrication became de-
pleted. The zippy tricentenary coincides with a global sea
level high and a minimum of land area (Kocsis and Scotese,
2021), driven partly by increased oceanic crustal production

and an associated increase in the proportion of young, shal-
low seafloor (Fig. 8).

After the assembly of Gondwana a number of new ocean
basins formed around its periphery, separating it from Lau-
rentia, Baltica, Siberia, and other blocks now part of Asia,
successively creating and destroying ocean basins including
the Iapetus Ocean (Fig. 8). The period was characterized
by numerous relatively short subduction zones, which have
the capacity to roll back faster than long subduction zones
(Schellart et al., 2008). After 490 Ma the ephemeral Iapetus
Ocean was replaced by the Rheic Ocean, separating several
arc terranes from northern Gondwana, also characterized by
fast trench migration of relatively short subduction zones. Ul-
timately the difference in the spread of trench migration be-
haviour (shown as its median absolute deviation in Fig. 6) be-
tween the Paleozoic zippy tricentenary compared to the rela-
tively sluggish late Mesozoic–Cenozoic dispersal of Pangea
reflects the fact that the latter was characterized by a smaller
number of relatively long subduction zones which cannot roll
back easily, as shown by mantle flow models (Schellart et al.,
2007). The rollback potential of subduction zones wider than
4000 km is limited by the lacking ability of their central por-
tions to migrate (Schellart et al., 2007). In contrast, much of
the Paleozoic Era was characterized by a profusion of rela-
tively short subduction zones in the Merdith et al. (2021) re-
constructions, many associated with rapidly evolving internal
ocean basins (Fig. 6b).
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Figure 14.

The most surprising outcome of our mantle reference
frame optimization using a set of tectonic rules is that the
resulting absolute plate rotations produce an orthoversion
model in which the centres of Rodinia and Pangea are ap-
proximately offset from each other by 90◦ in longitude
(Fig. 3). However, this offset is in the opposite direction to
that proposed by Mitchell et al. (2012) – they favoured an
offset between Rodinia and Pangea to the west to minimize
plate velocities, but added that their model does not constrain
the sense of motion well. In our model, which minimizes
plate velocities, Pangea forms about 90◦ to the east of Ro-
dinia. The longitudinal sense of motion, constrained by our
model, adds an important dimension to the Rodinia–Pangea
orthoversion evolution, as knowing the longitudinal motion
of the plates, and particularly the continents, between suc-
cessive supercontinents makes it possible to make geody-
namic predictions about plate–mantle interaction, including
the effect of dynamic topography and associated relative sea

level change affecting the continents involved (e.g. Cao et al.,
2019).

In our model Rodinia is located father south (mostly south
of 60◦ S) compared to the model by Merdith et al. (2021)
(Fig. 3). This difference may primarily reflect true polar wan-
der, which our model is agnostic to since it is designed to re-
construct plate locations relative to the mantle without con-
sidering whole solid Earth rotations relative to its spin axis.
In contrast, the Merdith et al. (2021) model includes motions
of plates relative to the mantle as well as true polar wander.
Earth’s true polar wander history includes a major episode
of “Rodinia true polar wander” roughly from 800 to 400 Ma
(Mitchell, 2014). This corresponds to the main period dur-
ing which the latitude and orientation of plates in our model
diverge significantly from that of Merdith et al. (2021), pro-
viding a plausible explanation for the difference in the refer-
ence frames. This inference remains to be tested with inde-
pendently computed true polar wander models for this time
interval.
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Figure 14. Visualization of modelled mantle structure through time focussing on the Pacific hemisphere since 800 Ma in 100 Myr intervals
with central meridians at 270 (a) and 150◦ E (b). Mantle hotter than the layer average by the non-dimensional value of 0.1 (305 K) is shown in
orange, while mantle colder than the layer average by the non-dimensional value of−0.05 (153 K) is shown in blue, highlighting anomalously
hot and cold mantle structures largely corresponding to upwellings and subducting slabs, respectively.

4.2 Coupled plate–mantle evolution

Similarly to previous models, our mantle flow model shows
that the geometry and location of basal mantle structures
are controlled by subducting slabs (e.g. Bunge et al., 1998;
Garnero and Mcnamara, 2008; Zhong and Rudolph, 2015;
Bull et al., 2014; King, 2015). Zhong et al. (2007) proposed
that the evolution of subduction across supercontinent cy-
cles may cause alternations between degree-1 and degree-2
planform convection. In contrast, Cao et al. (2021a), using
simplified plate motion models to test alternative absolute
reference frames since 1 Ga including an orthoversion and
no-net-rotation model, could not find evidence of degree-1
mantle convection forming in their models. Our mantle flow
model, which differs from that used in Cao et al. (2021a) in
that we use the plate motion model by Merdith et al. (2021)
and a novel mantle reference frame, does demonstrate the

development of a degree-1 planform, but as a relatively rare
occurrence over the last 1 Gyr (Fig. 10a). In our model, a
Pacific-centred degree-1 basal structure forms in the lead-up
to the assembly of Pangea around 400 Ma (Figs. 10, 11) un-
derneath a long-lasting superocean, with the underlying man-
tle largely protected from descending slabs after ∼ 600 Ma
(Figs. 10, 11, 14). It takes approximately 200 million years
for the basal Pacific mantle region to reflect the absence of
subduction above it, with a degree-1 structure initially form-
ing at ∼ 400 Ma. At the same time, an equivalent antipodal
structure in the African hemisphere is prevented from form-
ing because it is populated by subduction zones related to the
closure of the Iapetus and Rheic oceans, as well as subduc-
tion between Laurussia and Gondwana (Figs. 10, 11). Sub-
duction in this region ceases at ∼ 300 Ma, and, mirroring the
Paleozoic evolution of the sub-Pacific mantle, it takes nearly
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Figure 15. High-velocity (white) and low-velocity (grey) regions
revealed by k-means cluster analysis between 1000 and 2800 km
depth for the seismic tomographic model Savani (Auer et al., 2014)
and the location of volcanic eruptions (squares, EY17, Ernst and
Youbi, 2017, and diamonds, J18, Johansson et al., 2018) and kim-
berlites (circles, T18, Tappe et al., 2018) reconstructed at their time
of eruption and shown at present day using (a) tectonic reconstruc-
tion PMAG, (b) tectonic reconstruction NNR, and (c) tectonic re-
construction OPT. The brown lines are present-day coastlines. Sym-
bols are coloured by age. Robinson projection at Earth’s surface.

150 million years in our model for a coherent, extensive hot
basal structure to form underneath the remnants of Pangea in
both models OPT1 and OPT2 (Fig. 10a, b). Large, coherent
basal mantle structures thus only form when a lower man-
tle region is located distal to descending slabs for ∼ 150–
200 million years. In general terms, a reconstruction with

a reference frame that seeks to stabilize trenches, as is the
case in our optimized model, tends to stabilize mantle struc-
ture. Alternative models with a different reference frame (but
the same plate boundary configurations) are unlikely to do
any better at generating stable deep mantle structures, as can
be seen in the more mobile deep mantle structures resulting
from the PMAG model (Supplement Animation S6).

The major changes in subduction geometry over the
last 1 Gyr therefore dictate that basal mantle structures are
ephemeral and constantly changing in response to subduct-
ing slabs pushing against their edges or flowing over them
(Fig. 14). Akin to the extremely heterogenous lower mantle
structures seen in the seismic tomography images (e.g. Schu-
berth et al., 2009; Tkalčić et al., 2015) our model produces
bundles of basal mantle upwellings very similar to the ther-
mochemical upwellings enriched in denser than average ma-
terial interpreted by Davaille and Romanowicz (2020) based
on a combination of seismic tomography and fluid mechanic
constraints (Fig. 14). In our mantle flow model basal mantle
structures are always composed of a network of upwelling
structures, from which mantle plumes emanate. These net-
works may form and evolve without “LLSVP-like” extensive
mantle upwellings, as is the case in our model from 1000–
600 Ma, a period without either degree-1 or degree-2 lower
mantle structures (Fig. 14, Supplement Animation S11).
Their absence during this period reflects the widely dis-
tributed, rapidly evolving network of subduction zones, pre-
venting large coherent basal mantle structures from forming
(Figs. 10, 14). Large basal structures form from the coales-
cence of distributed ridges as they are being pushed towards
each other by descending slabs in nearby regions (Fig. 14,
Supplement Animation S11) (see also Bower et al., 2013;
Davies et al., 2012).

Most slabs descend into the lower mantle, but we find
that slab stagnation occurs both in the transition zone and in
the middle to lower mantle around 1000–1400 km depth, as
is observed in tomographic models (Shephard et al., 2017).
However, we point out here that our model does not in-
clude phase transitions. The likelihood of stagnation at ei-
ther depth appears to be increased by fast trench retreat or
advance and/or subduction of relatively young lithosphere.
Accumulations of slabs below the middle to lower mantle
are often detached from shallower slabs and move laterally
(Figs. 10, 14, Supplement Animation S11). Therefore, it can-
not be expected that slab accumulations imaged in seismic
tomography at depths far below 1400 km can be used as re-
liable markers for past locations of subduction zones, as im-
plied in the subduction reference frame by Van Der Meer et
al. (2010). Our mantle flow model further illustrates the ef-
fects of dynamic slab thickening and buckling (Lee and King,
2011) as slabs move from the transition zone into the lower
mantle, and slabs also break off (Gerya et al., 2004; von
Blanckenburg and Davies, 1995) when subduction ceases,
due to rapid trench advance or retreat, or due to a change
in the sign of trench motion (e.g. from advance to retreat).
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Figure 16.

When slabs reach the lowermost mantle, they move laterally
towards upwelling regions, pushing hot, low-viscosity basal
structures to form steep ridges along their margins (Supple-
ment Animations S3, S4, S11). The coalescence of ridge-
like upwellings that are being pushed towards each other by
slabs results in enlarged structures with internal and marginal
ridges (Fig. 14, Supplement Animation S11). Slabs that have
sunk to the lowermost mantle gradually heat up and occa-
sionally rise and spread over the edge of basal mantle up-
wellings, and mantle plumes form along basal ridges ei-
ther in the interior or along the edges of basal mantle struc-
tures (Fig. 14, Supplement Animation S11). The roots of in-
dividual plumes are not stationary but migrate in response
to the deformation of basal structures, as found previously
(e.g. Cao et al., 2021b; Hassan et al., 2016; Arnould et al.,
2019). Plume tilt mostly forms in response to relatively fast
plate motion and induced sub-horizontal lower mantle flow
(Fig. 14, Supplement Animation S11).

The spatial match between lower mantle temperature clus-
ters of our preferred model OPT1 with tomographically im-
aged lower mantle structure (Fig. 19a) demonstrates that
our model reproduces the observed large-scale mantle struc-
ture quite well. It is noteworthy that the unoptimized model
PMAG, not representing a mantle reference frame, reaches
an equivalent accuracy as the optimized models OPT1 and
OPT2 (Fig. 20a). This reflects the fact that the present-day

mantle structure is largely the result of the post-250 Ma sub-
duction history (Flament, 2019) and that the unoptimized
versus the optimized models do not show any dramatic dif-
ferences in the position of plates and subduction zones dur-
ing this time (compare reconstructions of the two models at
300 and 200 Ma in Fig. 3a). The post-250 Ma differences in
the subduction history between these models are not large
enough to create any major dissimilarities between the mod-
elled lower mantle structure at present day. Stark differences
between these plate models are confined to pre-300 Ma times
(Fig. 3). The slightly larger excess density of the basal man-
tle layer in model OPT2 compared to OPT1 (Table 1) results
in spatially more extensive basal mantle upwellings in OPT2
relative to OPT1 (Figs. 11a, b, 14a, b). This slightly improves
the match to most seismic tomographic models in the African
hemisphere in OPT2, while worsening the match in the Pa-
cific hemisphere (Fig. 19b). In other words, in OPT2, the Pa-
cific LLSVP is somewhat too extensive compared with to-
mographic images, while in OPT1 the African LLSVP is not
sufficiently extensive, as reflected in the variation of the size
of the areas labelled as true positive (Fig. 19a, b). This may
reflect the fact that the excess density of the Pacific versus
African LLSVPs is not identical. This is confirmed by a re-
cent analysis of global shear-wave tomography models, sug-
gesting that the African LLSVP has a relatively lower den-
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Figure 16. Low-temperature (white) and high-temperature (grey) regions predicted by plate–mantle models OPT2, PMAG, NNR, and OPT1
as indicated in 100 Myr increments from 900 Ma, as well as the location of volcanic eruptions (magenta squares, EY17, Ernst and Youbi,
2017, and green diamonds, J18, Johansson et al., 2018) and kimberlites (black circles, Tappe et al., 2018) reconstructed at the age of interest,
shown for eruptions that occurred within 10 Myr of the age of interest. The black lines indicate a value of 5 (solid) and a value of 1 (dotted)
in a vote map for low-velocity regions in S-wave tomographic models (Lekic et al., 2012).

sity and is less stable than its Pacific counterpart (Yuan and
Li, 2022).

Upper mantle temperature anomalies through time at
∼ 400 km depth (Fig. 13) illustrate that the largest anoma-
lously hot upper mantle temperatures through time are asso-
ciated with the formation of the degree-1 convection plan-
form in the Pacific region around 400 Ma, spawning numer-
ous plumes from an extensive network of upwelling basal
mantle ridges (Fig. 14, Supplement Animation S11). How-
ever, as all ocean crust formed during this time is now sub-
ducted, it is difficult to find observational evidence support-
ing these model results, even though Doucet et al. (2020a)
mapped a pulse of oceanic plume volcanism from 400–
200 Ma based on ophiolite data, providing some circumstan-
tial evidence in support of this model result. Cooler than aver-
age upper mantle temperatures are associated with continents
overriding “slab burial grounds” (Fig. 14). Mapping such re-
gions in the upper mantle is relevant for understanding mag-
matism related to upwellings originating from mantle tran-
sition zone regions enriched with volatiles from subducting
slabs (e.g. Mather et al., 2020; Safonova et al., 2015).

Extensive anomalously cool regions in the upper mantle
occur in our model under Siberia, Baltica, and North Amer-
ica (420–380 Ma, early to middle Devonian), North Amer-
ica (100–40 Ma, Late Cretaceous to early Cenozoic), and
along eastern–southern Asia and Zealandia (after 100 Ma)
(Fig. 14). Devonian magmatism, including intraplate mag-
matism, in Siberia, Baltica, and North America was recently
summarized by Ernst et al. (2020). Non-plume-related in-
traplate magmatism across this region may have been driven
by subducted volatiles accumulating in the mantle transition
zone under these continental regions and driving the forma-
tion of volatile-bearing transition zone plumes which have
been related to both ocean island basalt-type mafic and fel-
sic melts (Safonova et al., 2015). Post-100 Ma subduction-
related intraplate volcanism (including kimberlites) far in-
land from active trenches has been described for North
America (Currie and Beaumont, 2011; Heaman et al., 2003),
eastern Asia (Cao et al., 2021c; Wu et al., 2005), and Zealan-
dia (Mather et al., 2020; Mortimer and Scott, 2020).

The primary differences between our optimized plate–
mantle models OPT1 and OPT2 compared to the PMAG
plate–mantle model are driven by the much larger net ro-
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Figure 17. Sample empirical distribution functions (EDFs; blue lines) showing the cumulative probability of minimum angular distances
between 1168 volcanic eruptions and the nearest basal mantle structure over the last 960 Myr for two tomographic models and two man-
tle flow models. Grey lines are a series of 1000 EDFs showing the same quantity for points randomly distributed around the globe. θ is
the median distance for the sample EDF, and fs is the fraction of random EDFs compared to which the sample EDF passes a statistical
test. Results are shown for SEMUCB-WM1 with reconstruction OPT (a), Savani with reconstruction OPT (b), and mantle flow models
OPT1 (c) and OPT2 (d).

tation implicit in the PMAG model and the difference in
the reconstructed paleo-latitude of Rodinia, which is centred
on low latitudes in the PMAG model versus a high south-
ern latitude in the optimized plate model (Fig. 3b). This dif-
ference illustrates that our model implies a substantial de-
gree of TPW due to the difference between the OPT and
PMAG configurations. Using the PMAG plate model as a
surface condition for a mantle convection model is inher-
ently unreasonable, as the large net rotation embedded in the
model, reaching peaks of over 1.2◦Myr−1, induces signifi-
cant, lateral displacement of mantle material, which can be
readily observed in Supplement Animations S6 and S9. We
provide this model merely to demonstrate the difference be-
tween mantle and non-mantle plate reference frames in terms
of modelled mantle convection. The low-latitude position of
Rodinia in the PMAG model prevents the formation of high-
latitude LLSVP-like structures, which we observe in models
OPT1 and OPT2 from ∼ 600–500 Ma. These generate ex-
tensive lower mantle upwellings at high latitudes until the

structures are dispersed by migrating subduction zones after
500 Ma and reassemble at low latitudes.

The differences in the modelled history of basal mantle
structures, i.e. their location, size, and heterogeneity, have
implications for modelling the Earth’s magnetic field through
time. LLSVPs increase the insulation of the core–mantle
boundary, decrease the temperature gradient, and suppress
core–mantle boundary heat flow (Li et al., 2018). Glatzmaier
et al. (1999) suggested that the polar core–mantle boundary
heat flow may be key to driving magnetic reversal frequency.
In contrast, Olson et al. (2010) found that the average po-
larity reversal frequency is sensitive to the total core–mantle
boundary heat flow and to the total heat flow at the Equator,
while reversal frequency may also increase with the ampli-
tude of the boundary heterogeneity. Our basal mantle struc-
ture models could be used to evaluate the effect of alterna-
tive plate–mantle models on the spatio-temporal patterns of
core–mantle boundary heat flow and magnetic reversal fre-
quency. Such models could also be used to test the validity
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Figure 18. Match between predicted model basal mantle structures, volcanic eruption locations, and tomographic models. (a) Fractional area
fa of deep mantle cluster maps covered by slow (in tomography) or hot (in flow models, averaged over 960 Myr) basal mantle structures.
(b) Spatial match Acc between present-day basal mantle structures for a given case and LLSVPs imaged by tomographic models. (c) Time-
averaged median of minimum angular distances θ̃ between basal mantle structures and volcanic eruptions from 960 Ma. (d) Fraction fs of
random EDFs compared to which the sample EDF passes a statistical test (see Fig. 17). In (a)–(d), the first three rows show results for a
series of tomographic models (stationary LLSVPs) for different reference frames, and the last row shows results for the mantle flow models
(mobile basal mantle structures) considered in this study. MFM: mantle flow model; T1–T7: tomographic models 1–7. The grey shadings in
(a)–(c) highlight the range of results for tomographic models (based on OPT in c).

of alternative reference frames in terms of how well modelled
magnetic reversal frequencies match observed ones.

Further future tests of our absolute reference frames
in terms of their suitability as mantle reference frames
may include dynamic surface topography models derived
from plate–mantle models. Such models could be compared
against geologically mapped continental flooding patterns,
following approaches designed to separate effects of eustasy
and dynamic topography on continental flooding (e.g. Cao et
al., 2019; Müller et al., 2018). In terms of testing alternative
orthoversion models, if continents move eastwards after Ro-
dinia breakup, as in our optimized mantle reference frame,
one would expect the eastern portions of continents to be

flooded first as they move towards dynamic topography lows
associated with subduction zones to the east of Rodinia. In
contrast, if continents move westwards after Rodinia breakup
as suggested by Mitchell et al. (2012) and implemented as a
model with evolving plate boundaries by Cao et al. (2021a),
one would expect to see the western portions of continents
inundated first after Rodinia breakup.

5 Conclusions

We have used “tectonic rules” to optimize an absolute mantle
reference frame devoid of unreasonably large lithospheric net
rotation, excessive subduction zone migration rates, and ex-
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Figure 19. Spatial match between modelled lower mantle temperature clusters between 1000 and 2800 km depth at present day from models
OPT1 (a) and OPT2 (b) versus seismic tomographic clusters from tomographic models SAW24B16 (Mégnin and Romanowicz, 2000),
HMSL-S (Houser et al., 2008), S362ANI (Kustowski et al., 2008), GyPSuM-S (Simmons et al., 2010), S40RTS, (Ritsema et al., 2011),
Savani (Auer et al., 2014), and SEMUCB-WM1 (French and Romanowicz, 2014). Dark red indicates true positive areas for hot–slow mantle,
while dark blue indicates true negative regions for cold–fast mantle, and grey indicates true negative areas. Light red indicates false positives,
i.e. high-temperature mantle clusters paired with low-velocity regions, while light blue indicates false negatives, i.e. low-temperature mantle
clusters paired with low-velocity mantle regions. Coastlines are shown in black. TN: true negative, FN: false negative, FP: false positive, TP:
true positive.

cessive speeds for plates hosting large continents. Our model
results in net rotation consistently below 0.25◦Myr−1, while
trench migration scatter is substantially reduced compared
with the unoptimized model. Trench motion scatter is con-
fined to a relatively narrow range during Pangea stability and
dispersal, mostly between −1 cm yr−1 (trench advance) and
2 cm yr−1 (trench retreat). In contrast, the period between
600 and 320 Ma stands out as the most dynamic time in terms
of ocean basin evolution and subduction zone migration in
the last billion years, with relatively short, highly mobile
subduction zones dominating – we propose calling this pe-
riod the “zippy tricentenary”. Our model independently con-
firms an orthoversion evolution from Rodinia to Pangea as
proposed by Mitchell et al. (2012) but involving an eastward
shift of their respective centres, not westward as previously
suggested. We show that the emplacement history of large ig-
neous provinces and kimberlites is consistent with deep man-
tle plumes associated with basal mantle structures, thus illus-
trating that their eruption history does not demand stationary
LLSVPs, as previously hypothesized (Torsvik et al., 2010).

Our mantle flow model is driven by the imposed plate mo-
tions and subduction history and results in a succession of

deep mantle states without or with large basal mantle struc-
tures akin to present-day LLSVPs. Our numerically mod-
elled basal mantle structures bear a striking resemblance to
the mantle tomographic images by Davaille and Romanow-
icz (2020). Their tomographic model, together with labora-
tory experiments, led to the view that LLSVPs are composed
of bundles of thermochemical upwellings, whose shape is
controlled by subduction history, resulting in a position and
geometry of LLSVPs that are time-dependent (Davaille and
Romanowicz, 2020). This view is supported by our work,
which explicitly links the evolution of the plates and plate
boundaries over time with mantle structure evolution. Our
model records five distinct intervals of mantle convection
evolution over the last 1000 Myr. Initially, a broad network
of basal ridges forms between 1000 and 600 Ma, followed by
the formation of a short-lived degree-2 basal mantle struc-
ture centred on the North and South Pole between 600 and
500 Ma. It is superseded by a transitional phase during which
the north polar basal structure migrates southward and grad-
ually morphs into an extensive Pacific-centred basal struc-
ture, while the south polar structure is dissected by subduct-
ing slabs and disintegrates into a network of ridges between
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Figure 20. Quantitative match between predicted lower mantle temperature clusters between 1000 and 2800 km depth of our four mantle
flow models OPT1, OPT2, PMAG, and NNR at present day and seven seismic tomographic clusters from models GyPSuM-S, HMSL-S,
S40RTS, S362ANI, Savani, SAW24b16, and SEMUCB-WM1 shown as model accuracy (a) and sensitivity (b).

500 and 400 Ma. Subsequently, a Pacific-centred degree-
1 structure forms and is stable between 400 and 200 Ma,
which is superseded by a basal degree-2 mantle structure
after ∼ 160 Ma. This succession of mantle states is distinct
from previously proposed models. Our Solid Earth Evolu-
tion Model for the last 1000 million years (SEEM1000) can
be analysed, tested, and modified to provide insights into the
history of magmatism, the history of the Earth’s geodynamo
and magnetic field reversals, mineral resources, sea level
change, and biological evolution, forming the foundation for
a multitude of spatio-temporal data analysis approaches.
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