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Abstract. The objective of this work is to analyse the den-
sity structure of the continental forearc in the northern seg-
ment of the 1960 Mw 9.6 Valdivia earthquake. Regional 2D
and local 3D density models have been obtained from avail-
able gravity data in the area, complemented by new gravi-
metric stations. Models are constrained by independent geo-
physical and geological information and new TEM and MT
soundings. The results show a segmentation of the conti-
nental wedge along and perpendicular to the margin, high-
lighting a high-density anomaly, below the onshore forearc
basin, that limits the late Paleozoic–early Mesozoic meta-
morphic basement in the region where Chaitenia terrane has
been proposed. A progressive landward shift of this anomaly
correlates with the high slip patch of the giant 1960 Mw 9.6
Valdivia earthquake. Based on these results, we propose that
the horizontal extension of the less rigid basement units con-
forming the marine wedge and Coastal Cordillera domain
could modify the process of stress loading during the inter-
seismic periods, and also that changes in position and exten-
sion of the late Paleozoic–early Mesozoic accretionary com-
plex could be linked with the frictional properties of the in-
terplate boundary. This analysis provides new evidence of the
role of the overriding plate structure in the seismotectonic
process in subduction zones.

1 Introduction

The physical structure of the oceanic and continental plates
have had an important role in the long- and short-term defor-
mation process of the subduction margins. On the other hand,
the tectonic activity has modified the internal structure and
geometry of the tectonic plates (i.e. Bilek et al., 2003; Hack-
ney et al., 2006; Hicks et al., 2014; Contreras-Reyes and Car-
rizo, 2011; Bassett and Watts, 2015; Poli et al., 2017). This
geodynamical feedback is evinced by spatial correlations be-
tween the physical segmentation of the continental wedge,
and ruptures of large megathrust earthquakes (i.e. Contreras-
Reyes et al., 2010; Li and Liu, 2017; Martínez-Loriente et
al., 2019; Molina et al., 2021). Examples of this are the spa-
tial correlation between gravity (density) anomalies in the
continental wedge and the location of high slip patches in
large earthquakes (> 7.5–8 Mw, Song and Simons, 2003;
Wells et al., 2003; Álvarez et al., 2014; Bassett and Watts,
2015; Bassett et al., 2016; Schurr et al., 2020), which sug-
gests that changes in normal stresses on the seismogenic zone
have a role on the seismic rate and slip propagation during
large earthquakes (Tassara, 2010; Maksymowicz et al., 2015,
2018; Molina et al., 2021). On the other hand, changes of the
continental wedge geometry have been associated with varia-
tions of the interplate boundary friction at the maximum slip
patches of the large 2011 Mw 9.0 Tohoku-Oki, 2010 Mw 8.8
Maule and 1960 Mw 9.6 Valdivia earthquakes (Cubas et al.,
2013a, b; Maksymowicz, 2015; Contreras-Reyes et al., 2017;
Molina et al., 2021).
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Diverse works have highlighted the importance of the
transition between accretionary prisms (or highly fractured
frontal units) and the more rigid rocks of the continental
basement as a tectonic limit, controlling, at least partially, the
upward propagation of coseismic slip, foreshocks and after-
shocks during large megathrust earthquakes (Scholz, 1998;
Contreras-Reyes et al., 2010; Moscoso et al., 2011; Ko-
daira et al., 2012; León-Ríos et al., 2016; Maksymowicz et
al., 2017, 2018; Tsuji et al., 2017). At the same time, the
downdip limit of the megathrust earthquakes has been re-
lated (among other factors) to physical properties of the man-
tle wedge and deep interplate boundary (Peacock and Hynd-
man, 1999; Seno, 2005; Wang et al., 2020), which are modi-
fied by fluid subduction, slab dehydration and the presence of
basal accretionary complexes (Moreno et al., 2018; Menant
et al., 2019). Nevertheless, less attention has been paid to the
internal physical structure (and lithology) of the continental
crust above the downward limit of the megathrust, even con-
sidering that all forearc units above the fragile–ductile limit
should work as a part of the same mechanically coupled sys-
tem (van Dinther et al., 2012; Comte et al., 2019).

In this context, we have explored the continental forearc
density structure of the Nazca–South America subduction
zone in a segment where the high slip patch of the giant
1960 Mw 9.6 Valdivia earthquake ruptured (Fig. 1). As men-
tioned before, this slip patch correlates not only with a low
gravity anomaly above the marine forearc (Wells et al., 2003)
and low continental slope angles (Maksymowicz, 2015), but
also, with a landward extension of Paleozoic metamorphic
outcrops on the shore (Fig. 1a). Furthermore, ages and petro-
logical data of continental basement rocks (metamorphic and
plutonic rocks) suggest a complex ancient history of accreted
terranes (Ramos et al., 1986; Rapalini, 2005) that consti-
tutes the present continental crust in the area (Fig. 1b). Par-
ticularly, the recent proposal of an oceanic terrane accreted
against the Gondwana margin during Devonian times (Chait-
enia, Hervé et al., 2016, 2018, Ct in Fig. 1b) could deter-
mine changes in the internal structure of the continental fore-
arc, southward of ∼ 40◦ S. However, the exact limits of this
basement configuration remain poorly constrained. In order
to reveal the crustal structure of this active portion of the
Chilean margin, this work presents the results and interpre-
tation obtained from regional 2D density models, extended
from Nazca plate to the Andes Cordillera (Fig. 3), and a local
3D density inversion of the continental forearc (red rectangle
in Figs. 2 and 3). The models include magnetotellurics (MT)
and transient electromagnetic (TEM) measurements, as well
as available independent geophysical and geological data to
constrain forward modelling and 3D inversion.

2 Geotectonic settings

The study zone, located between 38.5 and 42.5◦ S (Fig. 1), is
part of the south-central Chilean margin, where the oceanic
Nazca plate subducts beneath the continental South Ameri-
can plate. The current rapid convergence rate (∼ 6.6 cm yr−1,
Kendrick et al., 2003; Vigny et al., 2009) determines high
seismotectonic activity, including the occurrence of mega-
earthquakes such as the giant 1960 Mw 9.6 Valdivia earth-
quake (the largest instrumentally registered worldwide). In
the long term, this subduction process has been continuously
active since Jurassic times (Charrier et al., 2007), being su-
perimposed to ancient tectonic processes of Gondwana struc-
turation (Ramos et al., 1986), and generating the current con-
figuration of the continental South American plate western
border. Marine seismic studies, to the north and south of
the study area, indicate that the structure of the continen-
tal wedge shows physical and tectonic segmentation from
the trench to the coast, characterized by active accretionary
prisms along the lower slope regions, compressional geome-
tries, and the development of confined slope basins inside the
middle and upper slope, while the shelf region exhibits fore-
arc basins with a complex deformation style structured by
normal and inverted faults (Bangs and Cande, 1997; Geersen
et al., 2011; Becerra et al., 2013; Bangs et al., 2020). Con-
sistently, Vp models derived from wide-angle seismic refrac-
tion, at 38◦ S (Contreras-Reyes et al., 2008) and south of
43◦ S (Contreras-Reyes et al., 2010), present changes in the
deep structure of the continental wedge that can be inter-
preted as transitions between the accretionary prism, paleo-
accretionary rocks and continental basement. Regarding the
geometry of the marine forearc, the continental wedge shows
a narrow continental slope (defined between the deformation
front and shelf break; see Fig. 1) to the south of ∼ 41◦ S.
This morphological change corresponds to a decrease in the
slope angle at the northern region of the Valdivia earthquake
rupture (38.5–41◦ S), which in turn can be interpreted as a
decrease in the effective friction coefficient (µ∗b) at the inter-
plate boundary (Dahlen, 1984; Cubas et al., 2013b; Maksy-
mowicz, 2015).

Onshore, three major trench-parallel morphostructural
units from west to east can be observed (Fig. 1a): (1) the
Coastal Cordillera (CC), where old rocks of a paired meta-
morphic belt are exposed (Hervé, 1988); (2) the Central De-
pression (CD) characterized by the presence of unconsol-
idated Quaternary sediments overlaying Cenozoic deposits
(Jordan et al., 2001); and (3) the Principal Cordillera (PC),
where the active volcanic arc is currently located. In a close
spatial relation with the volcanic arc, the prominent Liquiñe–
Ofqui Fault System (LOFS, Fig. 1) stretches along more
than 1000 km between 37 and 46◦ S (Cembrano et al., 1996).
This continental structure has been interpreted as right-lateral
strike-slip system that currently concentrates most of the
crustal intraplate seismic activity in response to oblique
Nazca–South America convergence (Lange et al., 2008; Orts
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Figure 1. Geotectonic settings of the studied zone. (a) Tectonic and morphostructural features above the coloured bathymetric/topographic
elevation grid. Metamorphic and plutonic/intrusives outcrops are shown. Oceanic fracture zones (Mocha, Valdivia and Chiloé) are indicated
in black. The deformation front (continental wedge toe) at the Nazca–South America trench is indicated by a bold black line. The blue lines
correspond to continental structures identified at the surface (SERNAGEOMIN, 2003; Melnick and Echtler, 2006), including the Liquiñe–
Ofqui fault system (LOFS), Mocha–Villarrica fault zone (MVFZ) and Lanalhue fault zone (LFZ). The red triangles illustrate active volcanoes.
The red arrow indicates the direction of Nazca–South America convergence, and the green lines represent the iso-slip contours of the Valdivia
earthquake according to Moreno et al. (2009). (b) Schematic map of basement units after Hervé et al. (2018) and other elements as in (a).

et al., 2012) and exhumation at these latitudes (Adriasola
et al., 2005; Glodny et al., 2008). Moreover, numerous tec-
tonic lineaments and fault zones have been described (SER-
NAGEOMIN, 2003; Melnick and Echtler, 2006), generally
showing north-west and north-east orientations. According
to Melnick et al. (2009), the kinematics of LOFS generates
intense deformation in its northern limit, explaining the de-
formation associated with large north-west strike continental
faults (as LFZ) and the eastward bending of the CC.

Accretionary metamorphic complexes, associated with
late Paleozoic–early Mesozoic subduction, are exhumed
along the study zone (Hervé, 1988; Duhart et al., 2001; Will-
ner et al., 2004; Hervé et al., 2013). These units correspond
to a paired metamorphic belt, which includes the Western
and Eastern Series (WS/ES) formed under high P/T and
low P/T conditions, respectively. WS has been interpreted
as a basal accretionary complex while ES is interpreted as
a frontal accretionary prism and/or as the shallow sedimen-
tary units deformed by the basal underplating of WS units
(Glodny et al., 2005; Willner et al., 2005). This paired meta-

morphic belt is observed continuously at the CC, but the
width of their outcrops varies along the margin (see Fig. 1a).
Between ∼ 38 and 40◦ S, and southward of ∼ 41.5◦ S, out-
crops of WS are observed eastward, near the western limit
of PC. Thus, between ∼ 40 and ∼ 41.5◦ S, the eastern limit
of these units is not defined due to the presence of the
CD deposits and could form most of the forearc basement,
or it could be confined near the coast. Westward of ac-
cretionary metamorphic complexes and north of 38◦ S, the
Coastal Batholith (late Paleozoic intrusive rocks) is observed
along CC, but southward (in the study zone) the outcrops
of this ancient volcanic arc bends to the southeast and be-
comes part of the PC. Younger Plutonic and intrusive rocks,
related to magmatic arcs from Mesozoic to Cenozoic times
(Andean tectonic cycle), are observed along the PC near the
position of the active volcanic arc and the LOFS, forming
the North Patagonian Batholith (Charrier et al., 2007; Hervé
et al., 2018; SERNAGEOMIN, 2003; SEGMAR, 1997; see
Fig. 1a).
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The continental crust of the western border of South Amer-
ica was configured, during Paleozoic times, by collisions of
allochthonous terranes against Gondwana (Rapalini, 2005).
To the north of the study zone, Chilenia terrane (Ch in
Fig. 1b) collided during Devonian times (Ramos et al., 1986;
Hyppolito et al., 2014, and references therein), but its south-
ern extension is roughly defined and could be present in the
northern area of the study zone. Southward, the geodynamic
evolution of the margin during Devonian to Triassic times
has been explained with a double subduction system (Hervé
et al., 2016). These authors proposed the development of
an island arc (named as Chaitenia, Ct in Fig. 1b) parallel
to the margin colliding with Gondwana during Carbonifer-
ous times (Hervé et al., 2016, 2018; Rapela et al., 2021,
Ct in Fig. 1b). If this hypothesis is correct, the continental
crust of the current forearc corresponds to Chaitenia, south
of ∼ 40◦ S. However, it is important to point out that the lim-
its between all these terranes are poorly constrained in the
study zone owing to the scarcity of basement outcrops.

3 Data and methods

3.1 Gravimetric database and processing

We compile a gravimetric database (see Fig. 2), including
public databases and new measurements in the studied area.
The resulting merged database includes (1) onshore gravi-
metric data acquired by Chilean and European institutions
in the Central Andes from 1982 to 2006, originally com-
piled by Schmidt and Götze (2006); (2) 167 new gravi-
metric stations acquired by our group in 2019; (3) marine
gravimetric profiles available in the GEODAS database data
(NOAA); and (4) a satellite gravimetric grid from Sandwell
and Smith (https://topex.ucsd.edu/cgi-bin/get_data.cgi, last
access: 20 December 2021, Sandwell and Smith, 2009;
Sandwell et al., 2014) to cover marine gaps and regions to
the south of 42◦ S. Bathymetric and topographic databases
merge an onshore elevation grid (SRTM elevation grid, Jarvis
et al., 2008) and swath bathymetry data of the studied zone
(Flueh and Grevemeyer, 2005), complemented by Global To-
pography V18.1 (Smith and Sandwell, 1997).

The new gravimetric data were distributed to fill in
some observed gaps in onshore studies, and to comple-
ment and validate gravity and topographic information
from old stations. The gravity acquisition was made us-
ing a Lacoste & Romberg G-411 gravimeter with a dig-
ital upgrade (http://www.gravitymeter-repair.com, last ac-
cess: 20 December 2021) funded by ANID-FONDECYT
project no. 11170047. Elevation was obtained by differen-
tial GPS using Topcon HiperV instruments of the Univer-
sity of Chile (DGF). GPS data were processed with the
permanent GPS bases of the Chilean national seismologi-
cal network (Centro Sismólogico Nacional, http://www.csn.
uchile.cl/red-sismologica-nacional/red-gps/, last access: 20

December 2021), and the new gravity measurements were
tied to the absolute gravity stations available in the study
zone (International Gravimetric Bureau (BGI), https://bgi.
obs-mip.fr/, last access: 20 December 2021). Estimated pre-
cision of new gravity measurements is under ±0.01 mGal
(10−5 m s−2) and obtained elevation errors of differential
GPS data are under ±0.5 m. The data were corrected to ob-
tain the complete Bouguer anomaly (CBA) using standard
correction processes (Blakely, 1995; Lowrie, 2007): tide cor-
rection, instrumental drift correction using daily repetitions
at base stations, normal gravity correction, free-air, Bouguer,
and terrain corrections. These processes were conducted con-
sidering a 2.67 g cm−3 reduction density. Earth tide correc-
tion was removed from the new data according to the Long-
man (1959) algorithm. Normal gravity correction of new data
considered the subtraction of the theoretical gravity of the
WGS-84 ellipsoid. Free-air correction of all onshore data
was calculated as 0.3086h (mGal), where h is ellipsoidal
height in metres (Lowrie, 2007). Due to the inhomogeneities
in the elevation measurement techniques used in old onshore
data acquisition (registered between 1982 and 2002, Schmidt
and Götze, 2006), we prefer to use SRTM elevation data to
perform the free-air and Bouguer corrections of these old
gravity data. The terrain correction of all data was calculated
following a combination of the algorithms proposed by Kane
(1962) and Nagy (1966) and with a high-resolution SRTM
elevation grid. The terrain correction includes topographic
data located up to ∼ 300 km around each station. GPS data
processing, gravity data processing and all figures presented
here consider geographic coordinates in the datum WGS84
and WGS84-18S for UTM coordinates.

The spatial coverages of different gravity databases (satel-
lite, marine and onshore) present areas of interception
(Fig. 2) where they can be compared to determine the aver-
age gravity differences (constant average shifts). These shifts
were used to generate a merged database levelling all data
to the values observed in the new acquired data. The free-
air values of the onshore stations were used to move the
free-air anomaly of Sandwell and Smith (satellite data) to
the same level (adding a shift of −17.3 mGal to Sandwell
and Smith data), and finally GEODAS free-air data (marine
lines) were levelled and merged with the other data (adding
a shift of −24.78 mGal to GEODAS data) to calculate the
CBA (Fig. 3).

3.2 Density modelling

3.2.1 2D regional forward gravity models

In order to study the regional structure of the continen-
tal wedge and subduction zone, we modelled five pro-
files (P1_Toltén, P2_Unión, P3_Osorno, P4_Llanquihue and
P5_Chepu; see Fig.2), which run perpendicular to the trench
at latitudes of 39.25, 40.2, 40.5, 41 and 42◦ S, respectively.
These profiles were extracted from the regional complete
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Bouguer anomaly grid obtained from the merged gravity
database (Fig. 3). 2D forward modelling was performed by
using the GravGrad modelling scheme (Maksymowicz et al.,
2015), allowing the calculation of the gravimetric response
of a stack of layers with arbitrary shape. The densities in-
side each layer can be varied along the vertical and horizon-
tal directions. As the gravity anomalies are not exclusively
dependent on the density structure below each data (i.e. it
should be modelled considering masses around the profile),
the elevation (bathymetry and topography) in 2D modelling
is an averaged elevation profile which includes data inside a
∼ 40 km wide band around the profile (i.e. averaging the ele-
vation to 20 km on each side of the gravity profile). A 40 km
wide band is a reasonable assumption considering that the
wavelengths of the CBA gravity anomalies along the profiles
are mostly larger than ∼ 40–50 km. On the other hand, this
parameter is not critical for the obtained 2D model. In fact, a
completely different value (e.g. 10 km wide) can be consid-
ered with minor modification in the resulting density model
(see more details in the Supplement).

As a forward modelling procedure, GravGrad allows the
user to iteratively modify the geometry and densities of all
layers in the model to fit the observed gravity anomalies
(CBA in this case). Section 3.3 and Fig. 2 describe the in-
dependent information used to constrain the slab geometry,
continental Moho depths and sedimentary thickness at the
CD basin. The general density structures of the slab, conti-
nental plate and mantle were based on seismic and seismo-
logical Vp models available at the zone, converted to density
by the empirical Nafe–Drake transformation curve (Brocher,
2005).

3.2.2 3D gravity inversion

Regarding a more detailed analysis of the continental den-
sity structure onshore, a 3D inversion was performed in a
central patch of the study zone, where a large gravity max-
imum is observed parallel to the Coastal Range (red poly-
gon in Fig. 3). This onshore 3D density model was obtained
using the UBC-GIF GRAV3D v3.0 software (Li and Old-
enburg, 1998). The algorithm inverts the residual Bouguer
anomaly (RBA) to derive a 3D density anomaly model of
the crust. The residual Bouguer anomaly was generated by
subtracting a first-order polynomial trend from complete
Bouguer anomaly data (see Supplement). The 3D mesh has
67×80×102 blocks (inX, Y ,Z directions, respectively). The
horizontal mesh size is 3000 m× 3000 m. Due to the progres-
sive sensitivity decrease in the gravity inversion to sources at
depth, UBC-GIF developers recommend using smaller cells
near the surface and increase the cell thickness with the
model depth (https://www.eoas.ubc.ca/ubcgif/iag/index.htm,
last access: 20 December 2021). Accordingly, the cell size
gradually grows from 100 to 1500 m in our model, reaching
70 km in depth.

Figure 2. Geophysical database in the study zone and the location
of 2D and 3D models. The blue lines indicate the location of five
2D regional density model, and the red rectangle is the zone in
which local 3D inversion was obtained. The black dots designate
gravity stations compiled by Schmidt and Götze (2006), onshore,
and in GEODAS database (NOAA) offshore. The green dots illus-
trate the complementary gravity stations acquired by our group un-
der the ANID-FONDECYT project no. 11170047. The blue and red
dots correspond to TEM soundings and MT stations acquired under
the aforementioned FONDECYT project. Magenta dots indicate the
MT stations presented by Segovia et al. (2021) and cyan dots corre-
spond to TEM soundings published by DGA (2012). Receiver func-
tion profiles obtained by Dzierma et al. (2012a) are shown with cyan
lines. The location of seismic Vp–depth models (Contreras-Reyes et
al., 2008, 2010; Bangs et al., 2020; Maksymowicz et al., 2021) and
the seismic reflection lines presented by Jordan et al. (2001) and
González et al. (1989) are indicated with magenta lines. The yel-
low dots correspond to the location of boreholes (McDonough et
al., 1997).

A total of 3514 onshore gravity data points were used for
the 3D inversion, generating a regular spaced grid (with a
grid size of 3000 m× 3000 m). After numerous preliminary
experiments, we set the length scale parameters of the UBC-
GIF algorithm (Li and Oldenburg, 1998) as 6000, 6000 and
3000 m in X, Y and Z directions, respectively. These length
scale parameters define the horizontal and vertical smooth-
ness of the solution, and preferred values are the double of
the horizontal and vertical cell size used to discretize the
media. This criterion is one of those recommended in the
software manual (https://www.eoas.ubc.ca/ubcgif/iag/index.
htm, last access: 20 December 2021), but also it is important
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to highlight that sensitivity tests show that under a strong
variation of these parameters the obtained solution of den-
sity structure shows similar features (see details in the Sup-
plement). The 3D inversion was constrained by information
from the geological map of 1 : 1 000 000 scale (SERNA-
GEOMIN, 2003), MT stations, TEM stations and onshore
seismic lines (Fig. 2). Accordingly, we performed the inver-
sion with the following definitions for surface sediments and
the basement: a minimum homogeneous thickness of 500 m
was assigned to the entire area of the model where Qua-
ternary sediments are exposed. These cells can take densi-
ties between 1.9 and 2.1 g cm−3. The next 500 m (five cells)
in depth correspond to a transition zone, where the blocks
could be sediments or rock and can vary between 1.9 and
2.7 g cm−3. The next 300 m (three cells) in depth corresponds
to a second transitory zone, where the blocks could be frac-
tured rock or consolidated rock and can vary between 2.4 and
3 g cm−3. Below, the blocks corresponding to the basement
can take values between 2.5 and 3 g cm−3. Finally, below
7500 m depth we constrained the model to have greater den-
sities than the background (2.67 g cm−3). Then, those deep
cells can take values between 2.67 and 3 g cm−3 in order
to ensure more realistic vertical gradients in the lower con-
strained deep portion of the model.

To include the presence of the main lakes in the zone, the
model is forced to be water in the blocks that correspond to
lake, assigning them a density of 1 g cm−3. The bathymetry
of the two first lakes was obtained from Chilean National
Oceanographic Service (http://www.shoa.cl/php/inicio, last
access: 20 December 2021), and in the case of Llanqihue
Lake, a mean of 200 m of depth was considered. Similarly,
to consider the gravimetric effect of the sea, the model was
forced to be water in the blocks above bathymetry.

3.3 Geophysical constraints

3.3.1 Available geophysical information

Independent geophysical data were used to constrain the 2D
density models and onshore 3D inversion (Fig. 2). This in-
formation includes (1) the available 2D velocity–depth mod-
els at different latitudes (Contreras-Reyes et al., 2008, 2010;
Bangs et al., 2020; Maksymowicz et al., 2021), used as a
reference for the general structure of the oceanic plate and
marine continental wedge after Vp-to-density conversion ac-
cording to the empirical Nafe–Drake transformation curve
(Brocher, 2005); (2) interpretation of reflection seismic pro-
file (in depth) at ∼ 42◦ S (González et al., 1989); (3) the
Quaternary sedimentary thickness and the top of the Pale-
ozoic basement observed in the onshore ENAP seismic lines
Z5B-010A and ZDO-001 (McDonough et al., 1997; Jordan
et al., 2001) and ENAP boreholes (McDonough et al., 1997;
Honores et al., 2015); (4) the SLAB 2.0 model (Hayes et
al., 2018) to constrain the deep slab geometry; (5) Moho
depth along the profiles presented by Dzierma et al. (2012a);

and (6) 1D electrical resistivity models using magnetotelluric
measurements obtained by Segovia et al. (2021), 1D electri-
cal resistivity models from TEM measurements presented by
DGA (2012), and 1D electrical resistivity models from new
MT and TEM measurements. These resistivity models were
used to constrain the thickness of young sedimentary fill at
CD. At the MT/TEM stations where 1D resistivity models do
not reach the base of the young sedimentary fill (by cultural
electromagnetic noise or limited penetration in thick sedi-
mentary fill areas), we define values of minimum sedimen-
tary thickness, aiming to decrease uncertainties in the density
modelling.

3.3.2 Electromagnetic methods to constrain gravity
measurements

The new magnetotelluric data (red dots in Fig. 2) were col-
lected using Metronix ADU-08 data loggers and MFS-07 in-
duction coil magnetometers along with Pb-PbCl electrodes.
Time series data were recorded between 12 and 24 h. All sites
were processed using the robust method based on Egbert
and Booker (1989). The 1D resistivity models of new and
previously measured data (from Segovia et al., 2021) were
obtained using occam (Constable et al., 1987 and Bostick,
1977) algorithms implemented in WinGLink (Schlumberger,
version 2.21). See data and models in the Supplement.

The transient electromagnetics measurements (blue dots
in Fig. 2) were carried out utilizing the ABEM Walk-
TEM (ABEM, 2016). In general, a central loop set-up
was used with a transmitter loop size of 100 m× 100 m
or 40 m× 40 m. TEM stations were modelled by using
Interpex-IX1D TEM software, generating 1D resistivity
depth models using the ridge regression algorithm (see data
and models in the Supplement).

4 Results

4.1 Complete Bouguer gravity anomaly (CBA)

It is necessary to describe the main characteristics observed
in the CBA at the study zone (Fig. 3) before analysing den-
sity models. The general aspect of the CBA is a sequence
of bands with high and low gravity, roughly parallel to the
margin. Offshore, we observe the low CBA associated with
the deep trench seafloor and its sedimentary fill. It is impor-
tant to notice that this low CBA extends several kilometres
landward from the deformation front (toe of the continental
wedge), which implies the presence of low-density units at
the lower slope of the continental wedge. The main feature
observed in the slope and shelf area is the low CBA zone
(L1 in Fig. 3a) extended from ∼ 38.5 to ∼ 41◦ S, correlating
with a decrease in general slope angles at the same latitudes
(Fig. 1). This morphologic and gravimetric anomaly is also
correlated with the maximum slip patch of the giant Valdivia
earthquake, as highlighted by several authors (Wells et al.,
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2003; Maksymowicz, 2015; Contreras-Reyes et al., 2017; see
Fig. 3b).

Onshore, the regional aspect of CBA is an eastward trend
of gravity decreases from the coast to PC, mostly related to
the presence of continental roots below the Andes (Tassara et
al., 2006; Tašárová, 2007). Therefore, high CBA anomalies
are observed along the coast (Fig. 3a), but their amplitude
decreases between ∼ 38.7 and ∼ 40◦ S, where a relatively
low CBA anomaly is observed (L2 in Fig. 3a). It is neces-
sary to consider that L2 is spatially correlated with a zone
of landward extension of the CC and metamorphic complex
outcrops (WS/ES).

To the east, a sequence of gravity lows, with sparse grav-
ity maximums, is correlated with the eastern part of the
CD basin, the current volcanic arc and LOFS, suggesting
a complex density structure at the PC zone. Between ∼ 40
and ∼ 41.5◦ S (and probably southward) a prominent posi-
tive anomaly can be seen above the western portion of the
CD basin (H1 in Fig. 3a), indicating the presence of a high-
density body elongated to the north-east and covered by sedi-
mentary fill of CD. This interesting forearc gravity maximum
was observed by Hackney et al. (2006) based on the same
onshore data, and has been confirmed by our new comple-
mentary stations.

By a visual inspection of the CBA map, we interpret
a set of gravity lineaments (Fig. 3b) with north-west and
north-east directions. Derivative filters (directional deriva-
tives, slope gradient and analytical signal) applied to CBA
helped to identify these regional trends (see Supplement).
This qualitative interpretation confirms the location of fault
zones previously identified at the surface (SERNAGEOMIN,
2003; Melnick and Echtler, 2006), suggesting their continu-
ity through the forearc and, in some cases, their seaward ex-
tension (e.g. Valdivia–Futrono lineament, VFL in Fig. 3b).
Additionally, new gravimetric lineaments are identified in
CBA, suggesting the presence of large structures affecting
the basement units (e.g. Bahía Mansa–Choshuenco linea-
ment, BMCHL in Fig. 3b). The H1 anomaly is limited to
the north-west by the Osorno lineament (OL in Fig. 3b),
which presents continuity with an identified west-dipping re-
verse fault in the south-west (SERNAGEOMIN, 2003; Mel-
nick and Echtler, 2006; Hackney et al., 2006; Encinas et al.,
2021), indicating that the geometry of H1 has a structural and
tectonic control.

4.2 2D density profiles

Figure 4 shows the results of the 2D forward gravity mod-
els obtained through the five studied profiles. As observed
in Fig. 4a, the modelling process allowed a good fit to be
attained between observed and calculated gravity data, as-
sociated with low RMS values (≤ 4.0 mGal) in comparison
with the total amplitude of the gravity anomaly. Accord-
ing to these results, the marine structure of the overriding
plate can be described as a general landward increase in den-

sity between the deformation front (DF at the trench) and
the coastal area, where it is possible to define at least two
internal units (Fig. 4b to f). The first one corresponds to
a frontal low-density unit (ρ <∼ 2.5 g cm−3) of about 25–
35 km width, with a rapid landward horizontal density gra-
dient. This frontal unit is roughly correlated with the lower
slope of the continental wedge. The second unit is charac-
terized by a lower landward horizontal density gradient and
shows densities between ∼ 2.5 and ∼ 2.8–2.9 g cm−3. This
middle wedge unit is extended from the lower slope to the
coast by ∼ 70 km at profiles P2 to P5 and is slightly wider
(∼ 90 km) at the northernmost profile P1_Toltén. Immedi-
ately below the seafloor, all profiles present marine fore-
arc basins with variable thicknesses (< 5 km) and densities
lower than ∼ 2.3 g cm−3. A few kilometres westward from
the coast, a continental wedge shows a transition to higher
densities landward (higher than∼ 2.9–3.0 g cm−3 in the deep
portion of the crust). This transition can be described as a
landward limit of the middle wedge unit and seems to have a
west-dipping geometry.

Onshore, the upper portion of the continental forearc
(the upper ∼ 10–15 km) displays a sequence of low- and
high-density zones. Below CC (and metamorphic complex
outcrops), the shallow densities are generally higher than
2.5 g cm−3 and downward. However, this region is not par-
ticularly dense. In fact, below the sedimentary fill of the CD
basin we observe a high-density maximum in the five 2D pro-
files (H1 in Fig. 4b to f). Then, the results confirm the pres-
ence of a high-density zone associated with the high CBA
anomaly already described (D1 in Fig. 3a), suggesting its
prolongation to the north-east and south-west. Comparing the
2D profiles, we notice that D1 is progressively closer to the
coast, southward from profile P2_Unión (∼ 40◦ S); i.e. D1
presents a north-east trend, as suggested before in the CBA
description. It is important to note that the presence of D1
is clear in all profiles except for P2_Unión, in which this
density anomaly is slightly raised from a more homogenous
model of the upper continental crust.

To the east of D1, all profiles show another high-density
zone (D2 in Fig. 4b to f). It is important to consider that the
large LOFS approximately correlates with the western limit
of D2 in profile P1_Toltén, with the eastern limit of D1 in
profile P2_Unión and with the eastern border of D2 at pro-
files P4_LLanquihue and P5_Chepu, which suggests a struc-
tural relation between the deep geometry of the high-density
anomalies (D1 and D2) and LOFS.

4.3 3D local density model

As explained before, a large latitudinal change of onshore
forearc continental structure is observed in the central pro-
files (P2_Unión, P3_Osorno and P4_Lannquihue), where D1
seems to have a north-east trend and where D2 is observed
near the LOFS and the arc. This motivates the development
of a local 3D density inversion in the forearc area, to derive
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Figure 3. Complete Bouguer anomaly (CBA) at the study zone. (a) The main gravimetric forearc features observed in the area (see main
text for details). The blue lines illustrate the tracks of 2D forward density models, and the red rectangle indicates the zone where 3D density
inversion was carried out. Dotted black ellipses show the approximated extension of anomalies L1, L2 and H1 along with other elements
seen in Fig. 1a. (b) Crustal tectonic structures and CBA. The figure includes the contours of the metamorphic Western and Eastern Series and
late Paleozoic batholith outcrops. Dotted black lines are interpreted gravimetric lineaments, e.g. Valdivia–Futrono lineament (VFL), Bahía
Mansa–Choshuenco lineament (BMCHL) and Osorno lineament (OL). The other elements are as in Fig. 1a.

the detailed structure of upper continental crust with an inde-
pendent model strategy.

The 3D inversion modelled the input residual Bouguer
anomaly (Fig. 5a) with high precision, as is observed in
Fig. 5b, where differences between modelled and observed
data are in general lower than ±1 mGal. The results show
density contrast anomalies to about 20 km depth (Figs. 6, 7
and in the Supplement), which means that deeper anomalies
are mostly contributing to a regional linear trend of the CBA
at the scale of 3D local inversion.

Four constant depth slices through the final 3D model are
shown in Fig. 6. In the slice at 49 m b.s.l. (Fig. 6a) it is pos-
sible to observe the geometry of the CD basin as yellow
zones that correspond to density contrasts between −0.77
and −0.57 g cm−3. Also, it is possible to observe the areas
that correspond to seawater as blue zones with density con-
trasts of−1.67 g cm−3 and sedimentary areas below the lakes
with density contrasts of about −0.73 g cm−3. Similar den-
sity structures are observed in Fig. 6b (at 1049 m b.s.l.).

Figure 6c and d show slices at 5149 and 7149 m b.s.l., re-
spectively. In this figure it is feasible to observe the promi-
nent high-density zone D1 under the CD, being consistent
with the observed one in CBA and 2D models (Figs. 3 and

4). In the 3D model, D1 covers∼ 230 km along the strike and
∼ 80 km in the horizontal direction, being oriented ∼ 25◦ E
in the same direction as the western border of CC. The den-
sity contrast of this structure is higher than 0 g cm−3 in most
of the areas, reaching 0.3 g cm−3 at denser zones. South of
∼ 40.75◦ S, D1 is limited with WS outcrops to the west,
while to the north-west it is bordered by the OL lineament
(see Fig. 3b). The northern limit of D1 correlates with the
presence of an VFL lineament. To the east, a low-density
lineament in the same D1 direction, with density contrasts
from −0.17 to 0 g cm−3, can be seen. This low-density band
is about 10 to 15 km wide and is limited to the east with the
high-density zone D2. The 3D density model shows varia-
tions inside D1 and D2, which are formed by high-density
zones (density contrast ≥ 0.3 g cm−3) merged with lower-
density areas.

To analyse the density variation with depth, Fig. 7 presents
six W–E vertical cross sections of the 3D model at different
latitudes (c1 to c6 in Fig. 6a). All cross sections show that
D1 is below the CD and correlated to the eastern limit of
the CC and WS outcrops, confirming the results obtained by
2D regional modelling. The top of the D1 anomaly is ob-
tained around 5 km b.s.l., displaying a trend of deepening to
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Figure 4. 2D regional forward models (a) complete Bouguer anomaly (CBA) curves along five modelled profiles. Coloured curves are the
modelled gravity signals, and the corresponding observed data are presented in grey. (b) Density–depth model along the profile P1_Toltén,
morphological limits of the continental wedge (as lower slope, LS) are indicated. Dotted black lines illustrate the approximate limits of
frontal low-density unit and the middle wedge/shelf unit of the marine continental wedge. The thin vertical line indicates the limit between
CC and CD. Red triangles correspond to the active volcanoes located near the profile. Pink dots correspond to slab geometry according to
the SLAB2.0 model (Hayes et al., 2018). Green dots depict the continental Moho depths obtained by receiver function analysis (Dzierma
et al., 2012a). Black dots indicate the base of the poorly compacted shallow sedimentary layer according to MT and TEM soundings, and
cyan dots correspond to the minimum thickness of this sedimentary layer according to MT and TEM soundings. White lines limit a zone
of high Vp and low Vp/Vs obtained by Dzierma et al. (2012b). Thin dotted yellow and cyan lines limit electrically conductive and resistive
zones (C and R) according to Kapinos et al. (2016). (c) Density–depth model along the profile P2_Unión. (d) Density–depth model along
the profile P3_Osorno. Grey dots show the base of the poorly compacted shallow sedimentary layer according to onshore seismic profiles
and ENAP boreholes (McDonough et al., 1997; Jordan et al., 2001; Honores et al., 2015). Other elements as in (a). (e) Density–depth model
along the profile P4_Llanquigue. Thin dotted yellow and cyan lines limit electrically conductive and resistive zones (C and R) according to
Segovia et al. (2021). Other elements as in (d). (f) Density–depth model along the profile P5_Chepu. Grey dots represent the base of shallow
sedimentary layers according to seismic reflection data (González, 1989) and other elements as in (a). Individual figures of each profile are
presented in the Supplement.

the north (also suggested by 2D modelling). At a lower scale,
the geometry of D1 is characterized by two lobes, and its
western and eastern borders seem to be tilted to the east and
west, respectively (segmented black lines in Fig. 7). East-
ward, D2 is modelled in the southern region at profiles c4, c5
and c6 (Fig. 7d to f), and it is also characterized by two lobes.
The western limit of this anomaly suggests an inclination to
the east.

5 Interpretations and discussions

These obtained results exhibit a landward segmentation of
the continental wedge density structure observed from trench
to arc (see an interpretative schema at Fig. 8a). Offshore,
the frontal portion of the continental wedge (to ∼ 25–35 km
landward from the deformation front) presents low densities
with a rapid horizontal increment of densities, interpreted
as a compaction process in the active accretionary prism
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Figure 5. (a) Residual Bouguer anomaly (RBA) used as input for 3D inversion. (b) Difference between final modelled and input RBA data.

along the south-central Chilean margin (Maksymowicz et al.,
2015). It is also evidenced by seismic studies in the region
(Moscoso et al., 2011; Tréhu et al., 2019; Contreras-Reyes et
al., 2008, 2010; Bangs and Cande, 1997; Bangs et al., 2020).
To the east, below the sedimentary fill of slope and shelf
basins, the continental wedge is characterized by a second
unit of higher density and lower horizontal density gradient
(middle wedge unit, MWU). This unit can be associated with
fractured basement rocks and/or more compacted units of a
paleo-accretionary prism. In this sense, Contreras-Reyes et
al. (2008) at ∼ 38◦ S and Contreras-Reyes et al. (2010) at
∼ 43◦ S interpret this unit (in Vp-depth profiles) as a paleo-
accretionary prisms of an undetermined age between Meso-
zoic and Tertiary. On the other hand, at ∼ 39 and ∼ 40.5◦ S,
Bangs et al. (2020) suggest that the Paleozoic–early Meso-
zoic accretionary complex (WS/ES) can extend further sea-
ward to the eastern limit of the active accretionary prism
(seismic backstop), in accordance with the interpretation of
marine seismic data (and boreholes) of González (1989) at
∼ 42◦ S. However, the exploration boreholes presented by
González (1989) were drilled in the shelf basin area and
therefore do not provide direct information about the age of
the continental basement in the western portion of MWU.

Landward from MWU, the next segment correlates on the
surface with the morphostructural domain of CC and shows
a density increase with respect to the marine wedge, but
lower densities compared to continental crust below the CD
and PC. Therefore, this CC domain is clearly related to the
Paleozoic–early Mesozoic accretionary complexes (WS/ES)
and their continuity to depth. Gravity modelling techniques
do not define a downward limit of WS/ES (without indepen-
dent deep constraints). Nevertheless, interpretations of seis-
mic reflection data at ∼ 38.25◦ S (Krawczyk et al., 2006;

Ramos et al., 2018) showed the downward prolongation of
WS/ES reaching deep levels near the continental Moho inter-
face (∼ 30 km depth). As previously mentioned, the seaward
limit of WS/ES is not defined by direct lithological observa-
tions; their presence beneath the shelf basin is confirmed by
exploration boreholes (González, 1989). Thereafter, the rel-
ative rapid change in velocity associated with the transition
between MWU and CC domain (dotted grey line in Fig. 8)
is interpreted as a structural limit (rather than a lithologi-
cal change of the basement). This structural limit is proba-
bly associated with the development of the shelf basin and a
general seaward increase in fracturing within the continental
wedge. This structural interpretation seems to be confirmed
by Contreras-Reyes et al. (2008) at ∼ 38.25◦ S, where con-
tinental intraplate seismicity (located by Haberland et al.,
2006) is aligned with this limit, as well as the intraplate seis-
micity located at 39.5◦ S by Dzierma et al. (2012c).

The CC domain extends landward to the contact with the
D1 anomaly (dotted red line in Fig. 8). The eastern border
of CC range at the surface correlates almost exactly with
the western border of D1 in the 3D model (Figs. 6 and 7),
which is also observed in 2D regional profiles (Fig. 4). Ac-
cordingly, we understand that the continental crust of the CC
domain is deformed against a denser (and probably more
rigid) block of the continental crust observed here as the D1
anomaly. As mentioned before, the lineament OL (Figs. 1b,
6 and 8) is continued to the south by a west-dipping reverse
fault that limits CC and CD (SERNAGEOMIN, 2003; Mel-
nick and Echtler, 2006; Hackney et al., 2006; Encinas et al.,
2021). This is an example of the contractional deformation
styles that could be generated in the eastern border of CC
by the depth contact between the CC domain and D1. It is
interesting to note that the onshore refraction seismic profile
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Figure 6. Density slices from the 3D density model at different depths. (a) Slice at 49 m b.s.l. Blue lines correspond to continental structures
identified at the surface (SERNAGEOMIN, 2003; Melnick and Echtler, 2006); VFL highlights the Valdivia–Futrono lineament, and OL
corresponds to Osorno lineament (see Fig. 3b). Segmented green line illustrates the border of CD, and the external limits of the lakes are
highlighted with a cyan line. Active volcanoes are marked by black triangles. Segmented black lines indicate the approximate borders of H1
and H2 density anomalies (see main text for details) defined at the deeper slice shown in (d). Partially hidden zones are outside of onshore
data considered for 3D inversion. (b) Slice at 1049 m b.s.l. Note the change of colour scale in relation to (a). Other elements as in (a). (c) Slice
at 5149 m b.s.l. Other elements as in (b). (d) Slice at 7149 m b.s.l. and other elements as in (b) .

ZDO-001, located to the west of D1 (in the CC along the pro-
file P3_Osorno; see location in Fig. 2), shows the inversion
of an Oligo-Miocene normal fault, while the seismic profile
Z5B-010A (located to the south of P4_Llanquihue profile)
presents a minor contractional deformation in the CD se-
quences, above the D1 (Jordan et al., 2001). Deep below the
CC, Maksymowicz et al. (2021) shows seismic reflectors at
deep crustal levels with east-dipping angles, which is consis-
tent with the geometry of the western border of D1 (Fig. 7)
and supports a structural relation between the metamorphic

complexes (WS/ES) and D1. However, the resolution of the
density model is not enough to calculate the precise inclina-
tion of the western border of D1, and this structural relation
is only suggested by the results.

In the northern profile P1_Toltén, D1 correlates with the
high Vp and low Vp/Vs anomalies obtained by Dzierma
et al. (2012b). Inside the region highlighted by white con-
tours in Fig. 4b, these authors show Vp/Vs values lower than
1.74, contrasting with values higher than 1.78, eastward and
westward. In same region Vp and Vs models reach values
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Figure 7. Density–depth profiles extracted from the 3D inversion model (see location in Fig. 6a). (a) Profile c1 at UTM-North= 5 560 500 m
(WGS84-18S). Thin vertical lines indicate the limits of CC, CD. Black dots mark the base of shallow sedimentary unit, according to TEM/MT
measurements, and cyan dots correspond to the minimum sedimentary fill according to the TEM/MT soundings that do not reach the base-
ment. Grey and blue dots show respectively the base of Quaternary sediment and the top of the Paleozoic basement according to onshore
seismic profiles and ENAP boreholes (McDonough et al., 1997; Jordan et al., 2001; Honores et al., 2015). The interpretation of the approxi-
mate borders of the D1 anomaly is highlighted with dotted black lines. The partially hidden zones are outside of onshore data considered for
3D inversion. (b) Profile c2 at UTM-North= 5 530 500 m (WGS84-18S). (c) Profile c3 at UTM-North= 5 500 500 m (WGS84-18S). Grey
and blue lines show the shallow sedimentary unit and the top of the metamorphic basement, according to seismic reflection profile ZDO-001
(see main text for details) and other elements as in (b). (d) Profile c4 at UTM-North= 5 467 500 m (WGS84-18S). The approximate borders
of the high-density anomalies D1 and D2 are highlighted with dotted black lines. (e) Profile c5 at UTM-North= 5 440 500 m (WGS84-
18S). Grey and blues lines show the shallow sedimentary unit and top of the metamorphic basement, according to seismic reflection profile
Z5B-010A (see main text for details) and other elements as in (d). (e) Profile c5 at UTM-North= 5 410 500 m (WGS84-18S).

∼ 4 % and ∼ 8 % higher than surrounding regions, respec-
tively. Then, at least at the profile P1_Toltén, the correlation
between D1 anomaly and the change in elastic properties is
clearly observed. Considering this Vs velocity anomaly and
an increase in density of about 0.05 g cm−3 (associated with
the D1 anomaly, Figs. 4a and 7), we estimated an increase
in shear modulus of the order of 20 % in comparison to the
surrounding regions (at the same depth). To the south, this
seismic velocity anomaly shows a clear continuity with the
D1 geometry noticed in the 3D density model (Fig. 8b). This
continuity indicates that D1 is a primary characteristic of the
continental crust, southward from ∼ 39◦ S, and this supports

the interpretation of D1 as a dense–rigid zone. The latitudinal
analysis of these independent geophysical models establishes
that those basement units associated with D1 are progres-
sively shifted to the east (and taken away from the trench),
northward from 41.5◦ S (Fig. 8b). In other words, the portion
of the continental wedge formed by the MWU and CC do-
main is ∼ 50 km wider at 39.5◦ S compared to that observed
at 42◦ S.

Outcrops of the late Paleozoic batholith near ∼ 40◦ S are
observed in the western border of WS/ES and D1 anomaly,
possible implying that D1 is the southward continuation
of the late Paleozoic batholith. However, outcrops of this
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Figure 8. Schematic interpretation of continental forearc structure at regional scale. (a) Interpreted profile based on the 2D density model
along P3_Osorno line. The main geological/physical units are hatched with different colours: light green for active accretionary prims,
grey for Paleozoic–early Mesozoic metamorphic accretionary complex (WS/ES) and light red for high-density continental crust interpreted
as evidence of Chaitenia terrane in the forearc region. Dark red areas correspond to anomalies with high-density contrast (≥ 0.1 g cm−3)
according to the 3D model along the P3_Osorno line. Light blue indicates Mesozoic to Cenozoic deposits of slope and shelf basins and
Cenozoic deposits in the CD basin. Segmented green, grey and red lines indicate the landward limits of the active accretionary prism, middle
wedge unit and CC domain (see main text for details). (b) Interpretation map of continental forearc structure. Light red areas highlight the
high-density zones (H1 and H2) defined at ∼ 7 km depth in the 3D density model (Fig. 6), and cyan areas correspond to high Vp–low Vp/Vs
zones identified at 10 km depth by Dzierma et al. (2012b). As in (a) segmented green, grey and red lines indicate the landward limits of the
active accretionary prism, middle wedge unit and CC domain and other elements as in Figs. 1a and 3b.
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Batholith are described at ∼ 40.3◦ S (Deckart et al., 2014)
and ∼ 42.5◦ S (SERNAGEOMIN, 2003) near to a volcanic
arc, indicating a possible association of this unit with the D2
anomaly. In this case, south of 39◦ S, D1 should be a high-
density basement unit located westward from the late Pa-
leozoic (Pennsylvanian) batholith. An interesting candidate
to fit these conditions is Chaitenia terrane (Ct in Fig. 1b),
which is described as an island arc, accreted to the Gond-
wana margin during late Devonian times (Hervé et al., 2016,
2018). The northward limit of D1 (high Vp and Low Vp/Vs
anomaly, Dzierma et al., 2012b) can be roughly defined by
the MVFZ. This structure could be interpreted as a limit be-
tween Chaitenia and Chilenia terrane to the north (Fig. 8b).
This interpretation raises an interesting question about the
role of the Chaitenia–Chilenia limit in the observed westward
shift of the late Paleozoic batholith southward of 38◦ S and
its relationship with the continental deformation generated
by the kinematics of LOFS (Cembrano et al., 1996; Mel-
nick et al., 2009; Geersen et al., 2011). On the other hand,
Plissard et al. (2019) observed that outcrops of mafic and
ultramafic (serpentinites) rocks associated with WS (south
of 39◦ S) show P –T patterns (and structural characteristics)
that allow these units to be interpreted as rock located be-
low an incipient back-arc basin during Devonian times (380–
370 Ma), which were incorporated into the subduction chan-
nel, reaching depths of about 60 km downward in the inter-
polate boundary (during Carboniferous time), to be finally
exhumed in the eastern border of an accretionary wedge dur-
ing Permian times. Under this interpretation the eastern bor-
der of the Devonian island arc (associated with Chaitenia ter-
rane by Hervé et al., 2016, 2018) corresponds to an incipient
back-arc, rather than a subduction zone, but the process fi-
nally ends in the accretion of the Devonian island arc to the
Gondwana margin. Again, these accreted units could be re-
lated to the D1 anomaly in the region.

Beyond the lithology and age of D1 and D2 anomalies
it is necessary to highlight the spatial association between
the active volcanism and the main lineaments of the LOFS
(Lara and Folguera, 2006; Sánchez et al., 2013; Díaz et al.,
2020). Figure 6 shows that most of the quaternary volcanoes
are located above the local regions of relatively low-density
contrast (in general < 0.0 g cm−3 below 5 km depth) inside
D2. This local 3D pattern of density anomalies is not easy
to interpret in 2D regional models, because they are averag-
ing the density structure around the profiles, and shows that
the 3D local inversion is a relevant methodology (comple-
mentary to 2D regional analysis) to observe medium-depth
and shallow-density structures in the upper crust. These lo-
cal regions of relatively low-density contrast could respond
to more fractured regions of the upper crust as a response
of deep structures associated with branches of LOFS and
other continental structures presents below the CC and CD.
In fact, relatively low-density zones may be related to active
volcanic processes observed along this fault system in the
Araucanía, Los Ríos and Los Lagos districts. As shown by

Díaz et al. (2020), relatively low electric resistivity is found
at depths between 7 and 15 km below the local trace of the
LOFS, east of Osorno volcano, associated in this case with
a zone of partial melt related to a deeper ascent of basaltic
magmas enhanced by the LOFS, and therefore a lower den-
sity compared to its surroundings.

The upward migration of magmas should generate local
weakening zones in the overriding plate, and consequently,
the continental crust in the active volcanic zone should
present pervasive fracturing, fluid migration and lower den-
sity. Hence, the basement extended to the east of D1 could
correspond to a similar lithology but be affected by the per-
vasive fracturing and fluid migration processes associated
with an active volcanic arc and LOFS. This interpretation
is supported by the increase in Vp/Vs values to the east of
D1 (Dzierma et al., 2012b), at least at the profile P1_Toltén
(Fig. 4a). On the other hand, Kapinos et al. (2016) and
Segovia el al. (2021) describe electrically conductive anoma-
lies eastward from LOFS and high resistivity values beneath
the CD basin (Fig. 4b and e). To the west of D1, these au-
thors also establish conductive anomalies associated with the
CC domain, reinforcing the interpretation of a transition from
a highly deformed and fractured basement (related to deep
units of WS/ES) to a denser/rigid basement below CD.

It is already known that the rupture propagation during
large earthquakes, the interseismic deformation (including
aftershocks and foreshocks), and the interplate locking are
complex processes that depend primary on the frictional
properties at the interplate boundary (subduction channel)
and the stress field evolution (Scholz, 1998; Perfettini and
Avouac, 2004; Tassara, 2010; Moreno et al., 2018; Im et al.,
2020). As mentioned before, the segment of the continen-
tal wedge that includes MWU and CC domains, i.e. frac-
tured and/or metamorphic basement units, is progressively
wider to the north of 42◦ S. This structural change correlates
with the patch of high coseismic slip of the 1960 Mw 9.6
Valdivia earthquake (Fig. 8b), which added to the correla-
tion with gravity anomaly L1 (Fig. 3a) and with changes in
slope morphology, suggesting a link between the megath-
rust seismotectonics and physical properties of the overrid-
ing plate. In this regard, we propose that the MWU and CC
domains correspond to a portion of the continental plate dis-
playing a higher elastic and permanent deformation com-
pared to the rigid basement landward (Chaitenia/Chilenia).
Consequently, the change in the horizontal extension of this
unit should modify the process of stress loading during the
interseismic periods.

Due to the relatively scarce seismological data in the area
and the long recurrence time for large events, it is difficult to
conceptualize the complete seismotectonic story of the study
zone. Nevertheless, some observations seem to support our
hypothesis. Firstly, the rupture zone and aftershocks (includ-
ing continental intraplate events) of the Mw 7.6 earthquake
occurred in 2016 at 43.5◦ S. This event was the largest since
1960 in the rupture area of the Valdivia earthquake (Moreno
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et al., 2018; Lange et al., 2018) was located at the base and
within the CC domain, in the western border of a high Vp-
low Vp/Vs anomaly (Lange, 2008). This velocity anomaly is
a clear continuation of D1 to the south of the studied area.
On the other hand, historical (not instrumentally recorded)
megathrusts events activated this segment of the margin in
1737 (Mw ∼ 7.5) and 1837 (Mw ∼ 8). They have been asso-
ciated with ruptures extended to the south of ∼ 39◦ S (Kelle-
her, 1974; Lomnitz, 2004), indicating that the northern por-
tion of 1960 Valdivia earthquake could have different me-
chanical properties.

Lithology and internal deformation style inside and at the
base of MWU and CC domains can play a different but
complementary physical role in the seismotectonic segmen-
tation of the margin. The high slip patch of Valdivia earth-
quake also correlates with the segment where the geometry
of the marine continental wedge (seaward from shelf break)
is consistent with a decrease in the effective friction coeffi-
cient (µ∗b) at the interplate boundary (Maksymowicz et al.,
2015). This suggests oversaturated fluid conditions in the
subduction channel, at least in the western portion MWU at
the study zone. At the same time, according to Menant et
al. (2019), the deformation style of basal accretionary com-
plexes (typically an antiformal stack of duplexes) favoured
upward fluid fluxes from the interplate boundary, generat-
ing dewatering and the increase in µ∗b in some adjacent re-
gions of the subduction channel (mainly downward from
basal accretionary complex). Several authors have suggested
the presence of this deformation style in the deep zone of WS
units (Krawczyk et al., 2006; Ramos et al., 2018; Moreno et
al., 2018; Maksymowicz et al., 2021). Under this interpre-
tation, the widening of MWU and CC domains to the north
of ∼ 42◦ S could favour high friction in the deep region of
the interplate boundary (below CC domain) and a relatively
low friction in the seaward portion of MWU. Therefore, the
position and horizontal extension of the WS could be linked
to changes in the frictional properties along the megathrust.
However, more studies should be done to explore the sea-
ward limit of WS/ES and the internal structure of MWU and
CC domain.

6 Conclusions

2D and 3D density models of the forearc show a landward
and latitudinal segmentation of the continental wedge in the
studied zone. Offshore, the active accretionary prism limit,
with a more competent basement below the middle wedge
and shelf, exhibits a landward increase in density, proba-
bly associated with a progressive decrease in fracturing. To
the east, the Coastal Cordillera domain presents an increase
in the upper crust densities but reaches lower values than
those observed in the high-density anomaly below the Cen-
tral Depression. Northward from ∼ 42◦ S, this high-density
anomaly is seen progressively further from the trench, de-

termining a northward widening of the middle wedge and
Coastal Cordillera. This feature correlates with the high slip
patch of the giant 1960 Mw 9.6 Valdivia earthquake.

Based on geological information, we associate the mid-
dle wedge unit (at least its eastern portion) and Coastal
Cordillera domain with the late Paleozoic–early Mesozoic
accretionary complex, and the high-density anomaly below
the Central Depression as geophysical evidence of Chaitenia
terrane. The deformation style at the eastern border of the
Coastal Cordillera and seismological studies support the hy-
pothesis of a more rigid behaviour of the continental crust
below the Central Depression. Accordingly, we propose that
changes in the horizontal extension of the middle wedge unit
and Coastal Cordillera domain should have modified the pro-
cess of stress loading during the interseismic periods, and
that changes in position and extension of the late Paleozoic–
early Mesozoic accretionary complex could be linked to the
frictional properties of the interplate boundary.

Our results highlight the role of the overriding plate struc-
ture in the seismotectonics process in subduction zones,
but more studies are necessary to understand the changes
in physical properties (elasticity, temperature, among oth-
ers) associated with the geological story of the margin. This
work motivates similar analysis of the continental basement
in other subduction margins, as in the 2010 Mw 8.8 Maule
earthquake and Mw 9.0 Tohoku-Oki rupture zones.
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