
Solid Earth, 13, 1309–1325, 2022
https://doi.org/10.5194/se-13-1309-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

An efficient probabilistic workflow for estimating induced
earthquake parameters in 3D heterogeneous media
La Ode Marzujriban Masfara1, Thomas Cullison2, and Cornelis Weemstra1,3

1Department of Geoscience and Engineering, Delft University of Technology, Stevinweg 1,
2628 CN, Delft, the Netherlands
2Department of Earth Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands
3Department of Seismology and Acoustics, Royal Netherlands Meteorological Institute,
Utrechtseweg 297, 3730 AE, De Bilt, the Netherlands

Correspondence: La Ode Marzujriban Masfara (l.o.m.masfara@tudelft.nl)

Received: 28 December 2021 – Discussion started: 9 February 2022
Revised: 18 June 2022 – Accepted: 15 July 2022 – Published: 23 August 2022

Abstract. We present an efficient probabilistic workflow
for the estimation of source parameters of induced seismic
events in three-dimensional heterogeneous media. Our work-
flow exploits a linearized variant of the Hamiltonian Monte
Carlo (HMC) algorithm. Compared to traditional Markov
chain Monte Carlo (MCMC) algorithms, HMC is highly ef-
ficient in sampling high-dimensional model spaces. Through
a linearization of the forward problem around the prior mean
(i.e., the “best” initial model), this efficiency can be further
improved. We show, however, that this linearization leads to
a performance in which the output of an HMC chain strongly
depends on the quality of the prior, in particular because not
all (induced) earthquake model parameters have a linear rela-
tionship with the recordings observed at the surface. To mit-
igate the importance of an accurate prior, we integrate the
linearized HMC scheme into a workflow that (i) allows for a
weak prior through linearization around various (initial) cen-
troid locations, (ii) is able to converge to the mode containing
the model with the (global) minimum misfit by means of an
iterative HMC approach, and (iii) uses variance reduction as
a criterion to include the output of individual Markov chains
in the estimation of the posterior probability. Using a three-
dimensional heterogeneous subsurface model of the Gronin-
gen gas field, we simulate an induced earthquake to test our
workflow. We then demonstrate the virtue of our workflow by
estimating the event’s centroid (three parameters), moment
tensor (six parameters), and the earthquake’s origin time. Us-
ing the synthetic case, we find that our proposed workflow is
able to recover the posterior probability of these source pa-

rameters rather well, even when the prior model information
is inaccurate, imprecise, or both inaccurate and imprecise.

1 Introduction

The need to understand earthquake source mechanisms is an
essential aspect in fields as diverse as global seismology (Ek-
ström et al., 2005), oil and gas exploration (Gu et al., 2018),
hazard mitigation (Pinar et al., 2003), and space exploration
(Brinkman et al., 2020). In its simplest form, an earthquake
source can be described, from a physics point of view, by
means of a moment tensor (MT) (Aki and Richards, 2002).
An MT captures displacement, (potential) fault orientation,
and the energy released during an earthquake. In a regional
seismology context, MT inversions can provide insight into
seismic afterslip patterns of megathrust earthquakes (e.g.,
Agurto et al., 2012). In the case that seismic activity is in-
duced by anthropogenic subsurface operations, characteriz-
ing seismic sources may also prove essential (e.g., Sen et al.,
2013; Langenbruch et al., 2018). With regard to oil and gas
exploration, earthquake source mechanisms are often mon-
itored when hydrocarbons are extracted or when fluids are
injected into the subsurface (e.g., for fracking). In fact, such
monitoring can be used to assess and mitigate the risk of on-
going injection processes activating existing faults (Clarke
et al., 2019).

For the purpose of monitoring induced seismicity, arrays
of seismometers can be installed over the exploration area.
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The waveforms recorded by these seismometers can subse-
quently be exploited to characterize the induced events. For
example, the time of the first arrival (typically the direct P
wave) is sensitive to the earthquake hypocenter and origin
time. There are many inversion algorithms that exploit first
arrivals to obtain estimates of earthquake hypocenters and
origin times, such as the double-difference (Waldhauser and
Ellsworth, 2000) and equal differential time (EDT) (Lomax,
2005) algorithms. However, to estimate MTs, it is insuffi-
cient to use only (first-arrival) travel times. In this study we
therefore develop a workflow that utilizes full waveforms as
input. Importantly, we pair the workflow with a probabilistic
inversion algorithm.

In terms of computational efficiency, each combination
of a specific inversion algorithm and a specific subsurface
model has both advantages and disadvantages. In general, the
main advantage of using a probabilistic approach is that the
output does not consist of a single set of (source) model pa-
rameters that minimizes an objective function, but the poste-
rior distribution (see, e.g., Tarantola, 2006) of the desired
earthquake parameters. Probabilistic approaches, however,
are significantly more computationally expensive than deter-
ministic ones. One way to reduce the computational expense
is using 1D subsurface models instead of 3D velocity mod-
els to model seismograms. Unfortunately, this can adversely
affect the reliability of the obtained posterior because some
of the heterogeneity of the subsurface is not accounted for
(Hingee et al., 2011; Hejrani et al., 2017). In our workflow,
we therefore deploy a computationally efficient probabilis-
tic algorithm to invert for centroid (three coordinate compo-
nents), origin time, and MT (six independent MT compo-
nents) while at the same time utilizing a detailed 3D subsur-
face model.

The algorithm used in our workflow is the Hamiltonian
Monte Carlo (HMC) algorithm, which, for sampling high-
dimensional posterior distributions, has been shown to be
significantly more efficient than the conventional probabilis-
tic Metropolis–Hastings family of algorithms (Betancourt,
2017). Using frequencies lower than 0.1 Hz and available
prior information, Fichtner and Simutė (2018) developed a
variant of the HMC and demonstrated its efficiency to in-
vert for the source parameters of a tectonic earthquake. More
recently, Simute et al. (2022) demonstrated the variant’s abil-
ity to estimate earthquake parameters of tectonic earthquakes
while employing 3D subsurface models of the Japanese is-
lands. In contrast to tectonic earthquakes, for which prior in-
formation regarding the event’s MT, centroid, and origin time
is often available, such prior information is usually absent
for induced earthquakes. An insufficiently constrained prior
reduces the ability and efficiency of sampling algorithms
to properly sample the posterior distribution and increases
the chance of the sampler getting trapped in local minima
(Sen and Stoffa, 2013). In addition, compared to tectonic
events, the frequency content of induced earthquake wave-
forms is usually significantly higher. This is because tectonic

events usually occur at greater depths than induced events,
and hence the higher frequencies have been attenuated more.
Also, most of the studied induced events are of lower magni-
tudes than tectonic events (e.g., below Mw 3) and therefore
do not excite frequencies below 1 Hz that effectively.

Due to the higher frequencies present in recordings of in-
duced events, the wavelengths are significantly shorter. Lay-
ers of sediment–basin infill close to the Earth’s surface may
exacerbate this, since velocities usually decrease rapidly in
this case. Shorter wavelengths matter because, other things
being equal, they increase nonlinearity. In essence, how-
ever, the degree to which the relation between the source pa-
rameters and the recorded waveforms is nonlinear depends
on the ratio between the nominal event–receiver separation
and the wavelength. For example, consider (i) an induced
seismic event at 3 km depth, an average P-wave velocity
of 2.5 kms−1, periods that range between 1 and 0.33 s, and
event–receiver distances of 4 to 11 km (this study), as well as
(ii) a tectonic event at 50 km depth, an average P-wave ve-
locity of 5 kms−1, periods between 100 and 15 s, and event–
receiver distances of 200 to 1100 km (e.g., Fichtner and
Simutė, 2018). These values correspond to ratios between
event–receiver separation and wavelength that vary (approx-
imately) between 2 and 14 (this study) and between 1 and 14
(Fichtner and Simutė, 2018). As soon as shear waves are used
to perform centroid–moment tensor inversions, however, the
nonlinearity in the induced seismic setting considered in this
study increases relative to the tectonic case considered. This
is due to the fact that Vp/Vs ratios are typically significantly
higher in the near surface (i.e., the top 1 to 2 km) than at
greater depth. This is particularly the case in Groningen (e.g.,
Spetzler and Dost, 2017).

In this study, the absence of a well-constrained prior and
an increase in nonlinearity receive significant attention. First,
the challenge of a weaker prior is met by means of a work-
flow in which the initial prior is updated before running the
HMC algorithm. In addition, multiple chains of the HMC
variant are run sequentially, with the results of the current
chain serving as priors for the next chain. This iterative HMC
is meant to provide improved prior information resulting in
an adequate linear approximation. We demonstrate the valid-
ity of our workflow using data from a synthetically generated
induced earthquake, which was simulated using the velocity
model of the Groningen subsurface. It should be understood
that the proposed workflow is of interest for the characteri-
zation of induced seismic events in general. The Groningen
case is merely chosen because of the quality and density at
which the induced wavefields are sampled and the relatively
high resolution of the available velocity model.

The Groningen gas field is one of the largest gas reser-
voirs in Europe. Since production began in 1963, more than
2115 billion m3 of natural gas has been produced from the
field (van Thienen-Visser and Breunese, 2015). Due to this
gas production, the reservoir layer has compacted over time,
causing earthquakes that have in some cases caused damage
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to buildings in the Groningen province (Van Eck et al., 2006)
and led to several protests against further gas extraction
in the area (Verdoes and Boin, 2021). To investigate these
earthquakes, an extensive seismometer array was installed,
which is operated by the KNMI (the Royal Netherlands
Meteorological Institute) on behalf of Nederlandse Aardolie
Maatschappij (NAM) (Ntinalexis et al., 2019). Event record-
ings collected over the Groningen field have been used as
input for several inversion algorithms. Spetzler and Dost
(2017) used the EDT algorithm to invert for the hypocen-
ters of many Groningen earthquakes. They inverted arrival
times of 87 events and found that all earthquakes occurred
within a depth interval of 2300 to 3500 m, with most of the
events originating from the reservoir layer (approximately
3000 m depth). These findings are in line with the results
of Smith et al. (2020), who used the envelopes of the seis-
mic arrivals as input to their probabilistic algorithm. To in-
vert for both hypocenter (or centroid) and MT, Willacy et al.
(2018) took a different approach. Contrary to Spetzler and
Dost (2017), who uses a 1D model to represent Groningen’s
subsurface, they utilized a 3D heterogeneous model similar
to Smith et al. (2020) and used the model to generate syn-
thetic waveforms to perform a full-waveform deterministic
MT inversion. The results of Willacy et al. (2018), however,
only focused on pure double-couple sources, which might
not capture the true source dynamics. In fact, Dost et al.
(2020) recently followed a probabilistic approach to invert
event centroids and MTs of a selected number of events and
consistently found the (non-double-couple) isotropic compo-
nent of the MT to be dominant and negative. The latter is
in agreement with expectations for a compacting medium.
Similar to Willacy et al. (2018), they invert waveforms but
employ 1D local subsurface models to generate the modeled
seismograms.

In what follows, we first introduce the forward problem of
obtaining surface displacements (recorded wavefields) due to
induced seismic source activity, including the description of a
seismic source in terms of elementary moment tensors. Sub-
sequently, we introduce the Bayesian formulation and detail
the linearized HMC algorithm. Afterward, we proceed with
the description and implementation of our workflow, which
involves several steps that are specific to the characteriza-
tion of induced seismic sources. We then test the proposed
workflow using synthetic recordings of an induced earth-
quake source. We end by giving a perspective discussion of
our results, including an outlook of applying our workflow
to actual field recordings of induced earthquakes from the
Groningen gas field.

2 Forward problem

As with all Markov chain Monte Carlo algorithms, HMC in-
volves an evaluation of forward-modeled data against ob-
served data. In our case, this evaluation is between (for-

ward) modeled surface displacement and observed displace-
ment. Specifically, we compute synthetic displacement seis-
mograms u due to a moment tensor source M (Aki and
Richards, 2002) as

ui(xr, t)=
∑
j,k

Mjk(xa, t) ∗Gij,kxr;xa, t), (1)

with xr the location at which u is recorded, xa the source
location, and ∗ representing temporal convolution. Sub-
scripts i,j , and k take on values of 1, 2, and 3 such that a
vector can be decomposed in three Cartesian components,
associated with the x1, x2, and x3 axis, respectively. G is
the Green’s function, and its first subscript represents its
recorded component. The second subscript indicates the di-
rection in which an impulsive (delta function) force is act-
ing. The comma after the second subscript represents a spa-
tial derivative, and the subscript after the comma indicates
the direction in which the derivative is taken. Each compo-
nent of M represents the strength of force couples. Together,
the nine constants Mjk constitute the second-order seismic
moment tensor M. The MT effectively approximates a seis-
mic source by collapsing it into a single point. Furthermore,
due to conservation of angular momentum, The MT has only
six independent components (e.g., Aki and Richards, 2002;
Jost and Herrmann, 1989).

Instead of repeatedly computing u for each source–
receiver pair location, it is convenient to exploit source–
receiver reciprocity. That is, we exploit the fact that
Gij (xr;xa, t)=Gji (xa;xr, t) (Aki and Richards, 2002;
Wapenaar and Fokkema, 2006), which yields

ui(xr, t)=
∑
j,k

Mjk(xa, t) ∗Gji,k(xa;xr, t). (2)

To facilitate the computation of seismograms for a specific
M, we follow the work of Mustać and Tkalčić (2016), who
use six independent tensors that they call elementary moment
tensors as decomposed by Kikuchi and Kanamori (1991):

M1
=

 0 1 0
1 0 0
0 0 0

 M2
=

 0 0 1
0 0 0
1 0 0


M3
=

 0 0 0
0 0 −1
0 −1 0

 M4
=

 −1 0 0
0 0 0
0 0 1


M5
=

 0 0 0
0 −1 0
0 0 1

 M6
=

 1 0 0
0 1 0
0 0 1


. (3)

Under the assumption that each of these elementary mo-
ment tensors has the same time dependence (e.g., in the case
of pure shear, this would imply that faulting occurs along a
straight “trajectory”), a specific M can be described as a lin-
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ear combination of these elementary moment tensors, i.e.,

M=
6∑
n=1

anMn

=

 −a4+ a6 a1 a2
a1 −a5+ a6 −a3
a2 −a3 a4+ a5+ a6

 , (4)

where the coefficients an (n= 1,2, . . .,6) are usually referred
to as expansion coefficients. In this study, we assume instan-
taneous rupturing of the source. This is not an uncommon as-
sumption for (relatively small) induced seismic events. This
assumption implies that the time dependence of an MT is
modeled using a Heaviside function. Using the decomposi-
tion above and source–receiver reciprocity, we compute ele-
mentary seismograms Sni as

Sni (xr;xa, t)=
∑
j,k

Gji,k(xa;xr, t) ∗M
n
jk(t). (5)

Consequently, we obtain

ui (xr;xa, t)=

6∑
n=1

anS
n
i (xr;xa, t). (6)

In practice, all Sni (xr;xa, t) are computed for a finite num-
ber of xa on a predetermined subsurface grid with a spe-
cific grid spacing. We detail the numerical implementation
of computing the Sni (xr;xa, t) further below.

3 Hamiltonian Monte Carlo

The HMC algorithm originated from the field of classical
mechanics and its application to statistical mechanics (Betan-
court, 2017). It is known to be one of the most efficient prob-
abilistic algorithms within the Markov chain Monte Carlo
(MCMC) family. For our workflow, we apply a variant of the
HMC algorithm that utilizes a linearization of the forward
problem. Therefore, we include several initial steps in our
workflow to obtain priors that enable meaningful lineariza-
tion. In total, our workflow estimates 10 source parameters.
These are the centroid xa (three components), the origin time
T0, and the MT (six independent MT components).

Similar to other probabilistic algorithms, HMC is de-
ployed in the context of Bayesian inference. The objective
of Bayesian inference is to obtain an estimate of the poste-
rior probability distribution ρ(m|d) that approaches the true
posterior probability distribution (from here on, we will re-
fer to ρ(m|d) as being “the posterior”). This approach com-
bines the likelihood ρ(d|m) of the observed data given the
modeled data with the simultaneous assimilation of the dis-
tribution of prior knowledge ρ(m), i.e.,

ρ(m|d)∝ ρ(d|m)ρ(m), (7)

where m that contains model parameters and d a vector con-
taining the observed data. The likelihood evaluates a model
m against the observed data d by evaluating the misfit be-
tween the latter and forward-modeled data associated with
m.

The HMC algorithm relies on the sequential calculation
of two quantities. These are the potential energy U , which
explicitly quantifies ρ(m|d), and the kinetic energyK , which
is a function of momentum vector p. Together, they make up
the Hamiltonian H(m,p), which represents the total energy
of a system (Neal, 2011) and is written as follows:

H =K(p)+U(m),with U(m)=− lnρ(m | d)

and K(p)= pTR−1p/2. (8)

A model m can be interpreted as the position of a particle
within phase space. The phase space has a dimension that is
twice the dimension of the model space (i.e., this dimension
coincides with the length of the vector m multiplied by 2). By
having the same dimension as m, the elements of the auxil-
iary momentum vector p are therefore needed to complement
each dimension of the model space (Betancourt, 2017). The
movement of the particle is highly dependent on the mass
matrix R, which therefore often acts as a tuning parameter
(Fichtner et al., 2019, 2021). The mass matrix affects the
“distance” a particle travels and ideally coincides with the
posterior covariance matrix. Given a certain momentum p,
the particle is allowed to travel for a certain (artificial) time τ
while in conjunction fulfilling Hamilton’s equations:

dm

dτ
=
∂K

∂p
,
dp

dτ
=−

∂U

∂m
. (9)

We parenthetically coined τ an artificial time because it
should not be confused with physical time t . It is this artifi-
cial time with which the model moves through phase space:
at time τ , the particle arrives at a new location represent-
ing a new model m(τ ). The new model and momentum vec-
tors are associated with updated potential and kinetic ener-
gies, respectively, and hence a higher or lower Hamiltonian
H(p(τ ),m(τ )). Given the probability θ that the particle will
stay at the new location, the acceptance probability is given
by

θ =min
[

1,
exp[−H(p(τ ),m(τ ))]

exp[−H(p,m)]

]
. (10)

By sequentially evaluating Eqs. (8) to (10) in an iterative
manner, we collect all locations (models) visited by the par-
ticle, except for a number of initial models (representing the
burn-in period). The density of the collected models asymp-
totically approaches the posterior probability distribution.

In Fig. 1, we visualize the sampling behavior of both
the Metropolis algorithm (Fig. 1a) and the HMC algo-
rithm (Fig. 1b) for a 2D joint probability distribution.
Note that the Metropolis algorithm is a special case of the
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Figure 1. Comparison between the sampling strategy of the (a) Metropolis algorithm and (b) Hamiltonian Monte Carlo algorithm.

Metropolis–Hastings algorithm in the sense that the proposal
distribution is symmetric (Hoff, 2009). Both algorithms start
with the same starting model, which is represented by the
red ball. The low a posteriori probability of this initial model
corresponds to a highU . The question marks in Fig. 1a repre-
sent randomly selected models by the Metropolis algorithm,
which were not accepted due to their relatively low accep-
tance probability. Hence, each of these question marks in-
volves a (computationally expensive) solution to the forward
problem. Instead of using random sampling, in the HMC al-
gorithm, the particle within phase space moves along tra-
jectories obtained by solving Eq. (9), leading to the parti-
cle being exerted towards areas with low U , as illustrated in
Fig. 1b. Furthermore, in Fig. 1b, the result of solving Eq. (9)
(i.e., the HMC trajectory) is represented by the brown dashed
lines, and the pointing finger represents the momentum vec-
tor p. For both the HMC and Metropolis algorithms, an ac-
cepted model serves as a starting model for the next sample.
Although probabilistic in terms of acceptance probabilities,
the trajectories of the HMC algorithm are deterministically
guided by ∂U/∂m as shown in Eq. (9). Therefore, the al-
gorithm is also known as the hybrid Monte Carlo algorithm
(Duane et al., 1987). Thus, after proper tuning, the HMC al-
gorithm requires less sampling than the Metropolis algorithm
to converge, which makes the HMC algorithm computation-
ally more efficient.

Assuming Gaussian-distributed, uncorrelated, and coin-
ciding data variance σ 2

d , we can write U as (Fichtner and
Simutė, 2018)

U(m)=
1

2T

Nr∑
r=1

3∑
i=1

T∫
0

σ−2
d

×

[
ui(xr, t;m)− u

obs
i (xr, t)

]2
dt

+
1

2Nm
(m−m0)ᵀC−1

m (m−m0). (11)

In our context, xr represents the locations of the Nr three-
component KNMI seismometers (r = 1,2,3, . . .,Nr). Fur-
thermore, T is the length of observed and forward modeled
seismograms in time, Nm the number of model parameters
(10 in our case), m0 a vector containing prior means, and
Cm the prior covariance matrix. In application to field data,
uobs
i would represent field recordings by seismometers, but

in this study we restrict ourselves to a numerically simulated
induced event.

4 Linearization of the forward problem

In our workflow, most of the computational burden in run-
ning HMC involves the evaluation of Eq. (9). This is because
for each dτ we have to evaluate ∂U/∂m. To speed up the pro-
cess, we use a variant of the HMC algorithm introduced by
Fichtner and Simutė (2018), in which u(xr, t;m) is approxi-
mated by means of an expansion around the prior mean, i.e.,
around m0:

ui(xr, t;m)= ui

(
xr, t;m

0
)

+

Nm∑
p=1

∂

∂mp
ui

(
xr, t;m

0
)(
mp −m

0
p

)
. (12)

Substituting this linearized expression in Eq. (11) gives

U(m)=
1
2

Nm∑
p,q=1

(
mp −m

0
p

)
Apq

(
mq −m

0
q

)

+

Nm∑
p=1

bp

(
mp −m

0
p

)
+

1
2
c, (13)
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where Apq , bp, and c read

Apq =
1
T σ 2

d

Nr∑
r=1

3∑
i=1

T∫
0

[
∂

∂mp
ui

(
xr, t;m

0
)

×
∂

∂mq
ui

(
xr, t;m

0
)]

dt +
1

Nmσ 2
m
, (14)

bp =
1
T σ 2

d

Nr∑
r=1

3∑
i=1

T∫
0

[
ui

(
xr, t;m

0
)
− uobs

i (xr, t)
]

×
∂

∂mp
ui

(
xr, t;m

0
)

dt, (15)

and

c =
1
T σ 2

d

Nr∑
r=1

3∑
i=1

T∫
0

[
ui

(
xr, t;m

0
)
− uobs

i (xr, t)
]2

dt. (16)

Differentiating Eq. (13) with respect to mp, we have
(Fichtner and Simutė, 2018)

∂U

∂mp
=

Nm∑
q=1

Apq

(
mq −m

0
q

)
+ bp, (17)

which, together with the random momentum vector, deter-
mines the HMC trajectory.

Because the displacement depends linearly on the moment
tensor components (see Eqs. 5 and 6), Eq. (12) is exact with
respect to these parameters. The dependence on the other pa-
rameters is nonlinear, and this nonlinearity increases as the
frequency of the input data increases. Therefore, in the case
of induced events, which usually generate higher frequencies
than stronger, regional events, the nonlinearity is consider-
ably higher. Hence, to have a tolerable linearization, accu-
rate priors are required when it comes to the centroid and
origin time. Without sufficiently accurate priors, the above
HMC variant will struggle to sample the mode containing
the global minimum of the potential energy. Therefore, we
propose an approach that involves an initial estimation of the
prior mean in order to permit this linearization. This is de-
tailed further below.

5 Numerical implementation

In practice, the elementary seismograms discussed in Sect. 2
are computed for a finite number of possible centroid loca-
tions. That is, prior to our probabilistic inversion, we gen-
erate a database of these seismograms. This database con-
tains, for each possible source location xa and receiver lo-
cation xr (r = 1, . . .,Nr), a total of 3× 6= 18 elementary
seismograms (three components for each of the six ele-
mentary moment tensors). In our case, each xr corresponds

to a (KNMI) seismometer location that recorded the in-
duced event. The elementary seismograms are computed us-
ing the spectral element software SPECFEM3D-Cartesian
(Komatitsch and Tromp, 2002), and we exploited spatial
reciprocity while doing so. We use an existing detailed
Groningen velocity model (Romijn, 2017) for this pur-
pose from which we construct a regular grid of the model
using the gnam and PyAspect Python packages that are
available at https://github.com/code-cullison/gnam (last ac-
cess: 12 August 2022) and https://github.com/code-cullison/
pyaspect (last access: 12 August 2022).

To confirm the successful implementation of source–
receiver reciprocity, we simulate a scenario of an induced
event in the Groningen gas reservoir (Fig. 2). The centroid
is indicated with a red star, and the receivers are depicted as
white triangles. At each location, the wavefield is “recorded”
at 200 m depth by the deepest of a series of four borehole
geophones (Ruigrok and Dost, 2019). The elementary seis-
mograms computed at the location of KNMI station G094 are
shown in Fig. 3 (green), and superimposed on top (yellow)
are the waveforms resulting from the application of source–
receiver reciprocity. All seismograms are band-pass-filtered
between 1 and 3 Hz, similar to the passband used by Dost
et al. (2020).

We integrate the above HMC variant into our workflow
by implementing a leapfrog algorithm for evaluating Eq. (9).
Furthermore, we define dτ as suggested by Neal (2011) to
ensure numerical stability and set a fixed value for τ for all
chains. The construction of the mass matrix R is discussed in
the next section.

6 An iterative approach

The performance of the linearized HMC variant strongly de-
pends on the prior means (see Eq. 12). For that reason, we
propose a workflow in which the algorithm is run iteratively,
with each iteration involving an update of the priors to allow
for an updated linearization. Specifically, instead of evaluat-
ing Eqs. (14)–(16) once, we run a sequence of HMC chains.
For each successive chain, the posterior means and standard
deviations from the previous chain act as prior means and en-
tries for R in the new chain (i.e., the next iteration). For the
first chain in the sequence, the “initial” prior means (i.e., m0)
are obtained via a specific scheme integrated into the work-
flow. The estimation of these prior means is described in
more detail in the subsection below.

We test our workflow for an induced event shown in
Fig. 2. We set the MT components to 9× 1013, −1E× 1013,
−3× 1013, 8× 1013, 5× 1013, and 4× 1013 Nm for M11,
M22, M33, M12, M13, and M23, respectively. Using the
moment–magnitude relation given by Gutenberg (1956) and
Kanamori (1977), this moment tensor can be shown to corre-
spond to an earthquake of magnitude Mw 3.28. We also add
noise to our synthetic seismograms in order to make our ex-

Solid Earth, 13, 1309–1325, 2022 https://doi.org/10.5194/se-13-1309-2022

https://github.com/code-cullison/gnam
https://github.com/code-cullison/pyaspect
https://github.com/code-cullison/pyaspect


L. O. M. Masfara et al.: An efficient probabilistic workflow for estimating induced earthquake parameters 1315

Figure 2. Scenario of an induced earthquake in the Groningen area. (a) Horizontal slice of the Groningen P-wave velocity model. (b) Zoom
of the area indicated by the green rectangle in (a). Inverted triangles indicate locations of KNMI stations (i.e., the xr). (c) Vertical slice along
the blue line in (b). (d) Vertical slice along the red line in (b).

periment more realistic. This noise is added in the frequency
domain by multiplying the (complex) spectrum of each syn-
thetic seismogram with a bivariate normal distribution that
has a zero mean and a standard deviation of 15 % of the
amplitude of the seismogram at the dominant frequency. As

a result, this noise will not only give amplitude variations
but also varying time shifts with respect to the true synthetic
seismograms. When running the Markov chains, we assume
the square root of the data variance (σd) to be 30 % of the
maximum amplitude of each seismogram. Admittedly, this
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Figure 3. Comparison between elementary seismograms due to a source at the actual location (red star) and the receiver at G094 (green) as
well as the elementary seismograms resulting from the implementation of source–receiver reciprocity (yellow). The equality of the traces
confirms successful implementation of source–receiver reciprocity. Along the vertical axis, all six (independent) elementary seismograms
are depicted. (a–c) Plots show particle displacement in the x1, x2, and x3 direction, respectively.

is rather arbitrary, and in the application to field data, the
data uncertainty has to be estimated from the obtained seis-
mograms themselves. Finally, we set the origin time to 14 s.

6.1 Prior mean estimation

Before running the first HMC chain, we need to estimate the
initial prior means and variances. In short, we propose an
approach in which a first-arrival-based algorithm is used to
estimate the centroid. Subsequently, the origin time can be
estimated, after which Eq. (17) can be used to compute the
prior means for the individual moment tensor components.
Each of these steps is now discussed in more detail.

Numerous algorithms exist that allow one to estimate an
earthquake’s hypocenter and/or centroid. Here we propose
using first-arrival-based algorithms for this purpose since
these are computationally more efficient than waveform-
based algorithms. First-arrival-based algorithms only require
the computation of the P- and S-wave arrival times, and
by adopting a high-frequency approximation (e.g., Aki and
Richards, 2002), these arrivals can be found by running one
of the various eikonal solvers (e.g., Noble et al., 2014). For
example, the EDT method detailed in Lomax (2005) can be
used for this purpose (Masfara and Weemstra, 2021).

As an alternative to using a first-arrival-based algorithm,
the prior means of the centroid can instead be retrieved from
the literature if it exists. For example, in the case of the in-
duced seismicity in the Groningen field, Smith et al. (2020)
have shown that they could resolve hypocenters with maxi-
mum uncertainties of 150 and 300 m for epicenter and depth,
respectively. Their results could be considered priors. An-
other option is to use the epicenters from the KNMI earth-
quake database, which by default all have depths set to 3 km.

Given a centroid prior mean that was either calculated or
acquired from the literature, the prior mean of the origin time
can be estimated by computing the P-wave travel times from

a centroid prior to each of the receivers. These travel times
can be computed using the same eikonal solver that was used
to obtain the centroid prior (e.g., the fast marching method;
Sethian and Popovici, 1999). By subtracting the computed
travel times from the observed (picked) first-arrival times and
averaging across receivers, an initial origin-time prior mean
can be obtained.

To refine the initial origin-time prior estimate, we
cross-correlate the envelope of the observed seismograms
env[uobs

i (xr, t)] with the envelope of the forward-modeled
seismograms env[u(xr, t,m

0)]. We do this for each com-
ponent of each receiver location individually. The forward-
modeled seismograms are computed with full-waveform
modeling (detailed in Sect. 5) using the initial prior means
for centroid and origin time, as well as given arbitrary MT
components. Specifically, we compute

T0shift = argmaxt
Nr∑
r=1

3∑
i=1

env
[
ui

(
xr, t;m

0
)]

× env
[
uobs
i (xr, t)

]
, (18)

where T0shift is the additional time shift that needs to be
added to the initial origin-time prior mean to obtain the re-
fined origin-time prior.

We test Eq. (18) using the synthetic earthquake shown in
Fig. 2. For this test, we add 600 m to the true x1, x2, and
x3 centroid components, and we impose a (rather aggressive)
9 s time shift with respect to the true origin time. Note that
this implies that we did not employ the aforementioned pro-
cedure to obtain initial centroid and origin-time priors be-
cause this would result in a centroid and origin-time estimate
that would be too close to the true centroid and origin time –
essentially rendering the use of Eq. (18) unnecessary. In other
words, we deliberately impose large deviations from the true
values to show the merit of using Eq. (18).
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Figure 4. The results of estimating the prior mean of origin time using Eq. (18) (d), given the envelopes of modeled displacements (a), noisy
synthetic “observed” seismograms (b), and the convolution between (a) and (b) in (c).

Given arbitrary MT components, we show in Fig. 4 the re-
sult of applying Eq. (18) to vertical surface displacements.
In Fig. 4a, we depict the envelopes of modeled seismograms
given available prior means (i.e., 600 m deviation from the
true x1, x2, and x3 values and 9 s from the true T0). Fig-
ure 4b shows the noisy synthetic “observed” seismograms,
and Fig. 4c is the result of applying Eq. (18) to each of the
displacement envelopes. In Fig. 4d, we show the result of
stacking all signals in Fig. 4c. The vertical blue line indicates
the time at which the stack of the cross-correlated envelopes
attains its maximum value, i.e., T0shift; the vertical red line
represents the deviation of the initial origin-time prior from
the true origin time (i.e., 9 s in this example).

Having sufficiently accurate prior means for the centroid
and origin time, we then estimate the prior mean of the MT.
For this purpose, we keep the centroid and origin time con-
stant but solve for the remaining six parameters (the inde-
pendent MT elements). In Sect. 4, we showed that because

Eq. (13) is a quadratic function of m, its derivative is linear
in m (see Eq. 17). This first derivative hence coincides with
zero for that model for which U(m) attains its (global) min-
imum value. As such, setting this derivative to zero allows
us to obtain a first estimate (i.e., prior means) of the moment
tensor components. Setting the left-hand side of Eq. (17) to
zero yields

m= A−1
(

Am0
− b

)
=m0

−A−1b. (19)

It should be understood that Eq. (19) is implemented
with T0 and centroid fixed. Hence, the model vector has only
six elements, and A is a 6 by 6 matrix. The quadratic nature
of U in Eq. (13) furthermore implies that arbitrary values can
be chosen for the initial moment tensor components in m0. In
fact, in the absence of noise and the correct prior means for
the centroid and origin time, the MT priors estimated using
Eq. (19) will coincide with the true MT components.
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In practice, the prior means resulting from Eq. (19) may
still deviate significantly from the true values due to the inac-
curacy of the initial centroid and origin-time priors. Solving
Eq. (19) nevertheless provides sufficiently accurate prior in-
formation regarding the magnitude of the induced event. Fi-
nally, it is useful to draw a parallel with typical least-squares
optimization problems (e.g., Virieux and Operto, 2009). In
such a context, A is analogous to the Hessian, and the dif-
ference between m and m0 in Eq. (19) can be considered the
model update vector.

6.2 Full workflow

In Fig. 5, we illustrate our entire workflow. The main compo-
nent of the workflow is the iterative HMC procedure, which
is preceded by the (just-described) determination of the ini-
tial prior and succeeded by the evaluation of the posteriors.

The determination of the initial prior consists of the fol-
lowing four steps.

1. Estimate the initial prior mean for the centroid, either
by running a first-arrival-based probabilistic inversion
algorithm or by extracting it from existing literature.

2. Estimate the initial prior mean of the origin time us-
ing (P-wave) travel times from the centroid obtained in
step 1 to the receiver locations. This estimate is refined
by evaluating Eq. (18) using an arbitrary MT.

3. Estimate the initial prior mean of the MT by fixing cen-
troid and origin time to their prior means (steps 1 and 2)
and solving Eq. (19). The sought-after MT prior means
are contained in m upon substitution of arbitrary MT
components in m0.

4. Determine the standard deviation for each of the
10 model parameters: centroid (3), origin time, and mo-
ment tensor (6). These standard deviations are needed
to construct our first mass matrix R. Ideally, R is the
posterior covariance matrix. Here we approximate it by
a 10× 10 diagonal matrix with the following entries for
the diagonal. For the first three entries (representing the
centroid), we take the standard deviation of the centroid
prior mean obtained in step 1. For the entry representing
origin time, we use half the period of the dominant fre-
quency in the recordings. For the MT components, we
use 5 % of the minimum absolute value of the MT prior
means obtained by solving Eq. (19).

Now that the (initial) prior means and standard deviations
are determined, the HMC variant is run iteratively up to
n chains (yellow box in Fig. 5). A test for chain convergence
might be required to determine the number of chains needed,
and it is highly dependent on the quality of the prior means,
data uncertainty, model uncertainty, initial model, and dom-
inant frequency of the observed recordings. In our exam-
ple (detailed below), approximately 10 chains are sufficient

when the distance between the initial estimation of the cen-
troid and the true centroid is less than 700 m. The separate
steps of the iterative HMC procedure are the following.

5. Collect the prior means and associated standard devi-
ations, and construct the mass matrix R. For the first
chain, the output from steps 1 to 4 is used as input. In
subsequent chains, they are extracted from the posterior
of the previous HMC chain. In this step, A (Eq. 14),
b (Eq. 15) and c (Eq. 16) are also recomputed.

6. Run a new HMC chain with a preset number of itera-
tions and burn-in period. Note that for each chain, the
results are stored for latter use.

7. Collect the results. The means and standard deviations
will serve as input of for the next iteration (see step 5).

After a total of n HMC chains, we evaluate the posteriors
(dark blue box in Fig. 5). This involves the following.

8. For each of the n posteriors, compute the means ms

(s = 1, . . .,n). We use these means to generate synthetic
recordings and evaluate them against the observed data
through determination of the variance reduction (VR).

VR= 1

−

√√√√∑Nr
r=1
∑3
i=1
(
ui (xr, t;m

s)− uobs
i (xr, t)

)2∑Nr
r=1
∑3
i=1
(
uobs
i (xr, t)

)2 (20)

9. Define a VR threshold. Posteriors associated with ms

for which the VR exceeds this threshold are used to
compute the final posterior distribution.

We use the above workflow to estimate the parameters of
the synthetic event shown in Fig. 2. In step 1, we assume a
suitable prior of the centroid can be retrieved from the liter-
ature (e.g., from Smith et al., 2020, in the case of the seis-
micity in Groningen). To simulate the fact that this prior may
well deviate from the true centroid, we shift this initial cen-
troid prior mean by 600 m in all directions (i.e., with respect
to the correct event location). Having the prior mean for the
centroid, we follow steps 2 and 3 in the workflow to obtain
the other prior means. To encode for a state of ignorance,
we set the standard deviation σm of each model parameter to
infinity, which implies that the last term of Eq. (14) evalu-
ates to 0. The elements of our initial mass matrix are taken
from the results of steps 1–3 as explained in the full work-
flow (step 4), except for those elements that correspond to
the centroid; these we set to 300 m. Using the initial prior
means and the initial mass matrix, we run 20 chains of the
HMC variant. Furthermore, we run 2500 iterations (step 6)
for every chain, with the first 500 samples discarded as burn-
in samples. After finishing all iterations, the results of each
current chain are then used to update the prior means and
mass matrix for the next HMC chain (the actual iterative

Solid Earth, 13, 1309–1325, 2022 https://doi.org/10.5194/se-13-1309-2022



L. O. M. Masfara et al.: An efficient probabilistic workflow for estimating induced earthquake parameters 1319

Figure 5. Full workflow of our iterative HMC scheme.

Figure 6. Results of our iterative HMC scheme for a total of 20 chains, each involving 2500 steps, the first 500 of which are discarded as
burn-in samples (not shown). The red lines are the true values.

HMC procedure). For each of the 10 model parameters, all
40 000 samples (20 iterations× 200 samples) are depicted in
Fig. 6. To obtain our final posterior, we take the results of
chains for which the means are associated with seismograms
yielding a VR≥ 85 % of the maximum VR. In detail, the
samples from all chains (black dots) and the selected chains
(green dots) are depicted in Fig. 7. For the samples of the se-
lected chains, the one-dimensional marginal probability dis-
tributions of each of the 10 source parameters are shown in
Fig. 8. In Fig. 9, we show the synthetic (observed) seismo-
grams (green), seismograms generated from the final poste-
rior means (blue), and the true noise-free seismograms (red).

With the use of a database containing pre-computed elemen-
tary seismograms and using the Python code we developed,
the entire workflow takes approximately 1 min to finish on a
single-core CPU system.

7 The importance of the prior

The above workflow might not be optimal if the initial prior
information is “weak” in the sense that the initial centroid
prior mean deviates significantly from the true value. This is
due to the fact that our forward problem is in essence a non-
linear problem, whereas the adopted linearization (Sect. 4)
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Figure 7. A total of 10 two-dimensional marginal probability densities of the inverted model parameters. Black dots are all the samples given
the results from all chains (Fig. 6), whereas the green dots represent the samples from chains that give VR≥ 85 % of the maximum VR,
which then represent our final posterior. The red lines are the true values.

Figure 8. The final marginal posterior distributions (green samples in Fig. 7). The means are represented by the blue lines, and the gray lines
are the standard deviations. Red lines are the true values.

relies on the assumption of it being only weakly nonlinear.
In other words, poor initial centroid priors imply lineariza-
tion around a location x that deviates too much from the
true source location xa, which may result in the HMC al-
gorithm “getting stuck” in local minima. This problem can
be mitigated by running the workflow with multiple initial
prior means. Depending on how close each of the initial prior
means is to the true values, some chains might get stuck in
a local (minimum) mode while others correctly sample the
mode containing the global minimum (or global maximum if
one considers ρ(m|d)). In the end, the final posterior can be
drawn by combining the results of all chains given multiple
initial prior means.

To showcase the effect of weak prior information in the
context of induced seismicity in the Groningen gas field, we
re-use the synthetic earthquake in Fig. 2. However, instead
of shifting the initial centroid prior mean by 600 m for all co-

ordinate components, we rigorously shift it by 1 km for each
horizontal coordinate. Meanwhile, the depth is set to 3 km,
corresponding to the default depth in the KNMI database,
because, in application to field data, this database will be our
primary source to obtain our priors. To get additional initial
centroid prior means, we construct a 2.8 km× 2.8 km 2D grid
at a depth of 3 km with a spacing of 700 m centered around
the initial centroid prior mean. A pre-test can help in deter-
mining the grid spacing. We previously demonstrated that
our workflow performs well when the centroid prior means
are shifted by 600 m (in all directions) from their true values.
This shift corresponds to an absolute deviation of about 1 km.
Given the spacing of the constructed grid, assuming that the
depth could be around ± 500 m, the maximum total distance
is about 700 m, which is then considered safe for the HMC
algorithm to sample the mode containing the global mini-
mum.
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Figure 9. Comparison between the true seismograms (red), observed (true+noise) seismograms (green), and seismograms generated using
the final posterior mean (blue).

Overall, given our 5× 5 horizontal grid, we have 25 ini-
tial centroid prior means, each of them being subjected to
our workflow. For each workflow run, we use the same
model and data uncertainty as in the initial synthetic case.
The same applies to the number of chains (20), samples per
chain (2500), and burn-in period (500 samples). To reduce
the computational time, we run the 25 workflows (associ-
ated with 25 initial centroid prior means) simultaneously by
parallelizing our code. We subsequently collect the results
of each workflow to obtain an estimate of our posterior dis-
tribution. The results of this parallelization are summarized
in Fig. 10, which highlights the effect of the separation be-
tween the centroid prior mean and the true centroid. Using
the same threshold as in our initial experiment (VR≥ 85 %
of maximum VR), in Fig. 11, we show all (non-burn-in) sam-
ples associated with the selected chains and samples from all
chains given the calculated VR. For the selected chains, the
marginal probability distribution of each parameter is pre-
sented in Fig. 12. As expected, chains with an initial centroid
prior mean relatively close to the true centroid converge to

the true mode (containing the global minimum). At the same
time, chains starting from a centroid further away from the
true centroid “got stuck” in a local mode. Fortunately, our
VR strategy is still successful in picking appropriate chains,
allowing us to obtain an estimate of the posterior distribu-
tions.

8 Discussion and conclusions

Using synthetic events, we demonstrate that the proposed
probabilistic workflow is able to efficiently estimate the pos-
terior probability of the various parameters describing in-
duced seismic events. A number of caveats need to be made
though. First, the synthetic recordings used to test our prob-
abilistic workflow are the result of propagating a wavefield
through the very same velocity model as the one used to
estimate the posterior (i.e., the velocity model in our prob-
abilistic workflow). In application to field data, this would
obviously not be the case. Part of the misfit between mod-
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Figure 10. Summary of running the workflow using the 25 initial prior means. The distance between each of the initial centroid prior means
and the true centroid is indicated in (a). In (b), we show for each of these initial prior means the VR as a function of chain number (vertical
axis). Chains associated with a VR≥ 85 % of the maximum VR (0.4) are labeled with green dots, whereas chains with a posterior mean
yielding seismograms for which the VR does not exceed 85% are labeled with black dots.

Figure 11. The same 10 two-dimensional marginal probability densities as in Fig. 7. Note that scales on horizonal and vertical axes differ.
Black dots are the samples from all chains, whereas the green dots represent the samples from chains with a posterior mean that yields a VR
higher than 85 % of the maximum VR. The red lines represent the true values.
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Figure 12. Marginal posterior distributions for each model parameter given the selected chains (depicted as green dots in Fig. 10). The blue
lines represent the means, and the standard deviations are represented by the gray lines. The red lines represent the true values.

eled recordings and observed recordings would then be the
result of discrepancies between the true velocity model and
the employed numerical velocity model. Second, and in the
same vein, we employed the same code (SPECFEM3D-
Cartesian) for generating the synthetic recordings as for mod-
eling the wavefield in the probabilistic workflow. And al-
though this code is known to be rather accurate (Komatitsch
and Tromp, 2002), undoubtedly some of the physics describ-
ing the actual wavefield propagation are not fully captured by
SPECFEM3D-Cartesian. Third, this study does not include
an application to field data. This is intentional as our objec-
tive is to present a stand-alone workflow that can be applied
in any induced seismic setting. Applying a methodology to
field recordings of induced seismic events (e.g., in Gronin-
gen) would require numerous processing details, which we
consider to be beyond the scope of this paper. We are cur-
rently drafting a follow-up paper in which we apply the pro-
posed HMC workflow to field recordings of induced seismic
events in Groningen.

The aforementioned deviation of the available numerical
velocity model from the true subsurface velocities will pose
a number of challenges. First, the estimated posterior prob-
ability would give a lower bound in terms of the variability
of the source parameters: inaccuracies in the velocity model
necessarily imply broader posterior probabilities. Second, in
the presence of strong anisotropy, the posterior could be ad-
versely affected. In particular, in the case of non-pure shear
mechanisms this effect could be significant (Ma et al., 2022).
Third, cycle skipping will be particularly hard to tackle in the
case that the velocity model is rather inaccurate.

Our workflow includes a systematic approach to obtain
meaningful initial priors, which is particularly important for
the employed HMC variant: the linearization of the forward
problem around the prior mean requires the initial priors to
be sufficiently close to the true event location. Furthermore,
we show that by using an iterative scheme, we can update the
prior mean such that convergence is obtained to a centroid

location that allows the estimation of a meaningful posterior.
The iterative scheme involves sequentially updating the prior
mean of each new HMC chain using the posterior estimate
obtained from the previous HMC chain. This approach is
based on the suggestion of Fichtner and Simutė (2018) to re-
peat the Taylor expansion (of the forward problem) for each
new sample of the Markov chain. However, we (only) do this
every 2500 samples in our case. A brute-force approach to
perform the expansion at each step of every chain would ren-
der computational costs prohibitively large.

Prior to executing the workflow, one needs to compile a
database of the elementary seismograms, which often re-
quires significant computing power. In our case, it took about
one day to generate the database using one node of our com-
puter cluster that consists of 24 CPU cores (Intel(R) Xeon(R)
CPU E5-2680 v3 at 2.50 GHz) with a total RAM of 503 GB.
Once compiled, our workflow can be run efficiently. Using a
single-core CPU system, a single run of our workflow with
20 sequential HMC chains takes about 1 min to finish, with
each chain consisting of 2500 iterations. In contrast, the com-
putational costs of the Metropolis algorithm (to get the same
results) would be much higher, as previously shown (Fichtner
and Simutė, 2018; Fichtner et al., 2019). Furthermore, vari-
ous modifications could be applied to the workflow, such as
adding simulated annealing and tempering (Tarantola, 2006),
including a step to quantify the error in the input seismo-
grams (Mustać and Tkalčić, 2016) and/or applying a scheme
that is able to tune dτ and τ for each HMC run (Hoffman
and Gelman, 2014). These modifications could be beneficial,
especially when dealing with field observations, which is the
subject of future work. We also show that the workflow can
be adapted to account for scenarios in which the initial cen-
troid prior mean is rather inaccurate and/or the initial prior
is weak. If that is the case, an approach can be adopted in
which various iterative HMC workflows, each using a dif-
ferent centroid prior mean as a starting point, are run. Sub-
sequently, using the variance reduction associated with the
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posterior means of the individual chains as a binary criterion
for selecting a chain’s samples, a final estimate of the poste-
rior probability can be obtained.

We would like to emphasize that our workflow is, in prin-
ciple, not limited to inversions of the parameters we use
here. We could extend our probabilistic inversion to parame-
ters such as stress drop, velocity, or inverting for finite fault
source parameters. Furthermore, it is important to mention
that our workflow aims to invert seismic source parame-
ters using seismic surface recordings in a specific frequency
range. That is, it is specifically geared towards inverting for
induced seismic events. We found that the workflow works
well when applied to data with frequencies between 1 and
3 Hz. For higher frequencies, however, some testing might
be needed because the nonlinearity between the input data
and model parameters increases with increasing frequency.
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able at https://github.com/geodynamics/specfem3d (Komatitsch
and Tromp, 2002). To generate the input data for the solver, the ini-
tial velocity model of the Groningen gas field was constructed using
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