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Abstract. The multiscale analysis of lineament patterns
helps define the geometric scaling laws and the relationships
between outcrop- and regional-scale structures in a fracture
network. Here, we present a novel analytical and statisti-
cal workflow to analyze the geometrical and spatial orga-
nization properties of the Rolvsnes granodiorite lineament
(fracture) network in the crystalline basement of southwest-
ern Norway (Bømlo Island). The network shows a scale-
invariant spatial distribution described by a fractal dimen-
sion D ≈ 1.51, with lineament lengths distributed following
a general scaling power law (exponent α = 1.88). However,
orientation-dependent analyses show that the identified sets
vary their relative abundance and spatial organization and oc-
cupancy with scale, defining a hierarchical network. Linea-
ment length, density, and intensity distributions of each set
follow power-law scaling laws characterized by their own
exponents. Thus, our multiscale, orientation-dependent sta-
tistical approach can aid in the identification of the hierar-
chical structure of the fracture network, quantifying the spa-
tial heterogeneity of lineament sets and their related regional-
vs. local-scale relevance. These results, integrated with field
petrophysical analyses of fracture lineaments, can effectively
improve the detail and accuracy of permeability prediction
of heterogeneously fractured media. Our results also show
how the geological and geometrical properties of the fracture
network and analytical biases affect the results of multiscale
analyses and how they must be critically assessed before ex-
trapolating the conclusions to any other similar case study of
fractured crystalline basement blocks.

1 Introduction

Crystalline rocks are characterized by very low intrinsic
permeability, usually on the order of 10−18 m2 (Achtziger-
Zupančič et al., 2017; Brace, 1984), so that their capability
to transmit and/or store fluids is mainly related to the struc-
tural permeability associated with fracture and fault networks
created by brittle deformation and the associated fluid–rock
interaction (Caine et al., 1996; Caine and Tomusiak, 2003;
Ceccato et al., 2021b, a; Evans et al., 1997; Pennacchioni
et al., 2016; Schneeberger et al., 2018; Stober and Bucher,
2015). When studied at different scales, fracture and fault
networks commonly exhibit variable geometrical and spa-
tial characteristics, which may significantly affect the overall
permeability structure (spatial heterogeneity and anisotropy
of permeable zones) of the fractured crystalline rock (Le
Garzic et al., 2011; Hardebol et al., 2015; Holdsworth et al.,
2019; Torabi et al., 2018). One way to obtain quantitative
constraints upon the scale dependency of fracture and fault
network attributes is to perform a multiscale analysis of, for
example, their length and spacing distributions. The aim of
these multiscale analyses is to obtain scaling laws that can
quantify the variability of fracture network properties across
scales (Bonnet et al., 2001; Bossennec et al., 2021; Castaing
et al., 1996; Chabani et al., 2021; Dichiarante et al., 2020;
Gillespie et al., 1993; McCaffrey et al., 2020; Odling, 1997).
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1.1 Presentation of the problem

Quantifications across scales and scaling laws are usually
derived from the analysis of lineament maps traced by re-
mote sensing techniques (Bour et al., 2002; Castaing et al.,
1996; Odling, 1997). In the past, much effort has been in-
vested in the definition of a direct mathematical, quanti-
tative relationship between lineament map parameters and
permeability–porosity parameters (Davy et al., 2006). How-
ever, in order to provide realistic qualitative and quantitative
constraints on fracture network permeability, the analysis of
lineament maps requires the integration of deterministic field
inputs with the geology of the remotely sensed “lineaments”
(Bertrand et al., 2015; Bossennec et al., 2021, 2022; Harde-
bol et al., 2015). Furthermore, lineament maps provide very
large and statistically robust datasets, which are, however,
subject to analytical, methodological, and interpretative bi-
ases (Peacock et al., 2019; Scheiber et al., 2015). Therefore,
accurate statistical analyses need to be performed to evaluate
the possible biases affecting each dataset and the extrapola-
tion limits of the observations retrieved from their analyses
(Bistacchi et al., 2020; Dichiarante et al., 2020; McCaffrey et
al., 2020).

1.2 Structure of the paper

In this paper, we present a methodological approach, which,
when informed by statistical tests, aims to support the
decision-making process during the analysis and identifica-
tion of the most appropriate scaling laws describing fracture
network property variability across scales, as derived from
the analysis of multiscale lineament maps. In addition, we
integrate previously obtained geological, geochronological,
and petrophysical data about the geology and permeability of
the identified lineaments to constrain the permeability struc-
ture of fractured crystalline basement units.

We describe the case study of the Bømlo crystalline base-
ment formed by the Rolvsnes granodiorite (western Norway)
(Scheiber and Viola, 2018). The lineament network detected
in the Rolvsnes granodiorite developed during a prolonged
brittle tectonic history within an initially massive, isotropic
granitoid rock. The in situ analysis and characterization of
the structural elements forming this fracture and fault zone
network, e.g., the Goddo Fault Zone (GFZ, Fig. 1), have pre-
viously allowed us to reconstruct the absolute and relative
timing of the various brittle deformation phases that affected
the area and to quantify the geometry and petrophysical prop-
erties of the fractures (Ceccato et al., 2021b, a; Scheiber and
Viola, 2018; Viola et al., 2016), although the larger-scale ge-
ometry and organization of the fracture and fault network on
Bømlo remained poorly constrained and thus needed further
constraining and quantification. To this end, fracture network
maps of the study area were obtained from the manual pick-
ing of lineaments on lidar digital terrain model, aerial, and

Figure 1. Simplified geological map of the part of Bømlo Island
centered on the Rolvsnes granodiorite overlaying the digital ter-
rain model obtained from a high-resolution (1 mpxl−1) lidar survey
(courtesy of Norges Geologiske Undersøkelse). The inset shows the
location of the study area (red square) and the location of the Utsira
High within the North Sea (blue square). The trace of the exposed
Goddo Fault Zone (GFZ) is indicated by the red dashed line.

unmanned aerial vehicle (UAV, drone) orthophotos of the ex-
posure area of the Rolvsnes granodiorite (Fig. 1).

The analyzed attributes include (i) fractal dimension D of
the lineament network, (ii) lineament orientation, (iii) cumu-
lative length distribution of lineaments at each analyzed scale
and for each orientation set, (iv) intensity–density scaling for
the whole lineament network and for each orientation set, and
(v) heterogeneity of lineament spacing distribution. These
parameters are usually adopted for the quantification of the
spatial occupancy and of the “fractal” character of fracture–
lineament networks (fractal dimension D and length distri-
bution scaling laws), to constrain their physical connectiv-
ity and spatial organization (spacing and length) and, ulti-
mately, for the quantification of the permeability structure
of the host fractured medium (Bonnet et al., 2001; Healy
et al., 2017; Nyberg et al., 2018; Peacock and Sanderson,
2018). The statistical tests adopted to constrain the most rep-
resentative fitting curves and distributions include (i) least-
square regression (LSR) and maximum likelihood estimation
(MLE) coupled with Kolmogorov–Smirnov (KS) statistical
tests adopted on cumulative distributions (Dichiarante et al.,
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2020; Kolyukhin and Torabi, 2013; Rizzo et al., 2017) and
(ii) bivariate box-and-whisker plots to evaluate the distribu-
tion of fracture spacing heterogeneity parameters and their
statistical significance.

Our statistical, orientation-dependent multiscale analysis
permits to (i) identification of groups of regional- vs. local-
scale lineament sets based on the variation in geometrical
and scaling parameters, (ii) definition of statistically robust
scaling laws for the geometrical properties and the range of
scales within which those laws can be applied, and (iii) eval-
uation of the difference between scaling laws retrieved from
the entire network and those from individual sets. This mul-
tiscale and statistical approach tries to overcome the natural
bias of lineament maps retrieved from remote sensing of nat-
ural outcrops, which are inherently incomplete due to par-
tial exposure, resolution, and analytical biases. The impli-
cations of the adoption of general scaling laws on the up-
scaling and/or downscaling of fracture network properties,
as well as the possible analytical biases and sources of er-
rors in the analytical approach, are then evaluated and dis-
cussed. In this work, rather than trying to accurately quan-
tify the scaling parameters, we focused on highlighting and
analyzing the weaknesses and uncertainties that invariably
accompany this sort of lineament analysis even when very
robust statistical approaches and analytical methods are ap-
plied (Dichiarante et al., 2020). By integrating this informa-
tion with existing field structural analyses and modeling of
lineament petrophysical properties (Ceccato et al., 2021b, a;
Scheiber and Viola, 2018), we provide further constraints on
the multi-scale heterogeneity in magnitude, orientation, and
spatial distribution of the permeability structure of the stud-
ied fractured crystalline basement.

2 Geological setting

The crystalline basement of the island of Bømlo belongs
to the Upper Allochthon units of the Caledonian orogen
(Gee et al., 2008). Our lineament maps represent the fracture
pattern affecting the Rolvsnes granodiorite, a pre-Scandian
(466± 3 Ma; zircon U–Pb dating) granitoid pluton hosted in
the Upper Allochthon metamorphic units (Scheiber et al.,
2016) (Fig. 1). The Rolvsnes granodiorite recorded a pro-
longed and multi-phase brittle deformation history (Scheiber
et al., 2016; Scheiber and Viola, 2018), only briefly summa-
rized in the following, while the reader is referred to the cited
literature for a more detailed and comprehensive description
of the tectonic history of the area. Overall, the whole tec-
tonic history of the area is the expression of three main de-
formation episodes (Bell et al., 2014; Fossen et al., 2017,
2021): (1) Caledonian convergence and continental collision
from the Mid-Ordovician to the Silurian, (2) extensional tec-
tonics related to the late-Scandian orogenic collapse during
the Devonian, and (3) prolonged and multi-phase extensional
tectonics related to the North Sea rifting from the Permian

to the Cretaceous. During this tectonic evolution, the pre-
Scandian Rolvsnes granodiorite did not record penetrative
ductile strain and was instead affected by pervasive brittle
deformation. Each tectonic stage recorded in the granodi-
orite is associated with a characteristic set of fracture and
fault zones that dissect Bømlo (Scheiber and Viola, 2018):
(1) NNW- and WNW-striking conjugate strike-slip faults de-
veloped coevally with ENE–WSW- and NE–SW-striking re-
verse faults during Caledonian convergence; (2) the same
structures were reactivated with opposite kinematics during
the early stages of late-Scandian orogenic collapse; (3) NW-
and NNW-striking normal faults ascribable to the regional
Permian-to-Jurassic rifting phase of the North Sea, which
partially reactivated earlier, inherited structures. During the
latest rifting stages of the North Sea, in the Early Creta-
ceous, new N- to NNE-striking fracture corridors and nor-
mal faults overprinted the previously formed fracture pat-
tern. This tectonic history is reflected in the field by a se-
quence of three main classes of fracture and fault zones:
(i) pre-Permian ESE–WNW- and NE–SW-striking mineral-
ized shear fractures and minor faults; (ii) Permo-Jurassic
major normal faults, mainly NW–SE and N–S striking; and
(iii) Cretaceous fracture clusters striking N–S to NNE–SSW
(Scheiber et al., 2016; Scheiber and Viola, 2018).

A key structure for the detailed analysis of the timing of
deformation, the geometry of the deformation structures, and
the effects of deformation on the petrophysical properties of
the crystalline basement of Bømlo is the Goddo Fault Zone
(GFZ, Fig. 1), (Ceccato et al., 2021b, a; Scheiber and Viola,
2018; Viola et al., 2016). The GFZ is an east-dipping normal
fault that accommodated multiple slip increments during the
prolonged Permian-to-Cretaceous rifting of the North Sea,
recording several stages of reactivation, during which a com-
plex network of brittle structural facies developed in the fault
core (sensu Tartaglia et al., 2020). Structures like the GFZ
actually controlled the permeability and fluid flow evolution
from rifting to current times of the crystalline basement (Cec-
cato et al., 2021b, a; Viola et al., 2016).

The Rolvsnes granodiorite is interpreted as the onshore
analogue of the crystalline basement of the Utsira High,
which, similarly to Bømlo, is affected by a complex fracture
and fault network (Fredin et al., 2017; Trice et al., 2019).
The Utsira High crystalline basement is composed of (likely
multiple) pre-Scandian igneous intrusions of similar age and
composition to the Rolvsnes granodiorite (Lundmark et al.,
2014; Slagstad et al., 2011). The fracture network in the Ut-
sira High developed under tectonic conditions like those of
the Bømlo crystalline basement, but with several significant
differences mainly related to the structural position of the
two crystalline basements within the North Sea rifting region
(Bell et al., 2014).
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3 Methods

In this study, the word “lineament” is used to refer to any
linear feature of the topography as detected on a digital
representation of the surface. The topography of Bømlo is
cut through by deep linear grooves resulting from the pen-
etration at depth of erosional processes exploiting fracture
and fault zones of the crystalline basement (Scheiber and
Viola, 2018). Therefore, the mapped lineaments represent
fracture and fault zones identified in the field. In the fol-
lowing, the terms fracture(s) and fault zone(s) refer only
to the geological structures observed in the field, which in-
deed assemble the remotely sensed lineaments. The linea-
ment maps (Fig. 2a) used for the presented multiscale anal-
yses have been generated in ArcGIS 10.8 by manually pick-
ing the same digital terrain model (DTM) of selected areas
of the island of Bømlo at different scales of observation.
DTMs from high-resolution (1 mpxl−1) airborne light detec-
tion and ranging (lidar, kindly provided by Norges Geolo-
giske Undersøkelse) surveys (Fig. 1) have been used for the
manual picking of lineaments at the 1 : 5000; 1 : 25000 and
1 : 100000 scales. The details of lidar data acquisition and
DTMs elaboration can be found in Scheiber et al. (2015). In
addition, the dataset of lineaments interpreted from the lidar
DTM at the 1 : 5000 scale was integrated with the interpre-
tation of aerial orthophotos from the Bing Maps database
(https://www.bing.com/maps, last access: 25 April 2022).
Bing aerial imagery was also adopted to distinguish be-
tween natural and manmade linear structures and to check
for artifacts and potential misinterpretation of linear fea-
tures on lidar-derived DTMs in the absence of systematic
ground truthing. The 1 : 100 outcrop-scale lineament pick-
ing was performed on digital orthophotos of a key GFZ out-
crop (Figs. 1 and 3a) as obtained from the elaboration of the
imagery collected via UAV-drone surveys through structure-
from-motion (SfM) algorithms. Details on this acquisition
and its elaboration methods can be found in Ceccato et al.
(2021a). Topographic lineaments were traced as single lin-
ear segments (not polylines) interpreting their topographic
expression on DTMs. The obtained lineament maps are in-
cluded in the dataset related to the present paper available at
https://data.mendeley.com/datasets/3ymhkpmr9s/1 (last ac-
cess: 6 September 2022). This interpretation technique in-
troduces two major analytical biases on the obtained linea-
ment maps: (1) the interpreted length may only partially rep-
resent the entire lineament (which may be covered by de-
posits or be differently expressed in the topography, thus
not being visible in its entire length, e.g., Cao and Lei,
2018); (2) as a consequence, abutting relationships, inter-
sections between lineaments, and lineament network topol-
ogy and connectivity remain highly speculative and suscep-
tible to subjective biases (Andrews et al., 2019). The ori-
entation of mapped lineaments, expressed as azimuth an-
gle from the geographic north, was calculated in ArcGIS
10.8 using Easy Calculate 10 (https://www.ian-ko.com/free/

free_arcgis.htm, last access: 6 September 2022) and the Ori-
entation Analysis Tools (https://is.muni.cz/www/lenka.koc/
prvnistrana.html, last access: 6 September 2022). Rose dia-
grams plotting lineament azimuths were produced with the
MARD 1.0 software (Munro and Blenkinsop, 2012). Lin-
eament density P20 (m−2) and intensity P21 (mm−2) (Der-
showitz and Herda, 1992) were calculated as the ratio be-
tween the total number of lineaments and total length of lin-
eaments, respectively, over the total area of the land exposure
in each lineament map.

3.1 Fractal dimension – box-counting method

The fractal dimension of each lineament map at different
scales was computed with the box-counting method (Bonnet
et al., 2001; Gillespie et al., 1993) by using the freely avail-
able function boxcount.m in MATLAB R2019b (http://www.
fast.u-psud.fr/~moisy/ml/boxcount/html/demo.html, last ac-
cess: 6 September 2022). The box-counting method consists
in subdividing the analyzed image in progressively smaller
square boxes of side b and counting how many of them con-
tain a segment of the analyzed lineament network. Plotting
the number of boxes Nb containing at least one lineament
against the side length b on a log-log diagram should yield
a straight curve, whose slope defines a power-law function
with D as the fractal exponent (Bonnet et al., 2001). The
fractal dimension obtained from the box-counting method
quantifies the scaling properties of the spatial occupancy of
the lineament network (Bonnet et al., 2001). We have an-
alyzed (i) all the lineament maps at each scale of observa-
tion and, additionally, (ii) selected sub-areas of the lineament
maps completely exposed on the land surface (that is, with-
out any sea cover). Entire lineament maps inherently present
discontinuous exposures of lineaments, which crop out on
different islands of the Bømlo archipelago and are “sepa-
rated” by sea branches and bays. Therefore, we have also
analyzed the spatial occupancy (and the related fractal di-
mension D) of the exposed land surface of the Bømlo Island
archipelago by box counting as shown in Fig. 1 in order to
check if the fractal characteristics of the exposed land surface
affect the fractal parameters of the fracture network. The se-
lected areas, instead, represent continuous exposures of lin-
eaments over several square meters or square kilometers (de-
pending on the scale of observation). For each lineament map
we have then analyzed selected areas of continuous exposure
(Fig. S1 in the Supplement). For the lineament map of the
GFZ outcrop we have analyzed eight sub-areas of 25 (four
areas) and 100 (four areas) m2 each. For the 1 : 5000 linea-
ment map, we have analyzed six sub-areas of 1 km2 each.
For the 1 : 25000 lineament map, we have analyzed 10 sub-
areas of 1 (six areas) and 4 (four areas) km2 each. For the
1 : 100000 lineament map, we have analyzed four sub-areas
of 4 (three areas) and 9 (1 area) km2 each. Selected areas and
lineament maps and the complete results of the box-counting
analyses are reported in Fig. S1 and in the online repository
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Figure 2. Explanatory figure for the Method section. (a) Example of lineament map retrieved from the analysis of small-scale DTMs.
(b) Schematic representation of power law, negative exponential, and log-normal distributions, each of which defines a linear relationship
between length L and cumulative number N(l>L) on a log-log, linear-log, or log-linear diagram, respectively. (c) Example of cumulative
length distribution, plotted on a log-log diagram, obtained from the analysis of lineament maps explaining graphically what the upper cut
and lower cut values are. The blue and red circles represent the upper and lower cut values related to the checkerboard in (d). The orange
segment represents the sub-domain of the cumulative distribution, included between the upper cut and lower cut bounds, fitted by the power-
law relation identified by MLE–KS tests. (c) Example of checkerboard diagram. Each symbol (circle, triangle, square) represents a different
fitting function, and each symbol is color-coded according to the fitting score yielded by the MLE–KS test for the portion of the cumulative
distribution delimited by upper and lower cut values (plotted on the y and x axis, respectively). The orange square represents the results of
the MLE–KS tests performed on the distribution subdomain shown in (c). (e) Schematic representation of a virtual scanline and the related
diagram showing the difference (d values) between the observed lineament distribution and a theoretical uniform (constant) distribution of
spacings. (f) Box-and-whisker plot of coefficient of variation (CoV) vs. the statistical significance of the coefficient of heterogeneity (V ∗)
diagram showing the expected ranges for uniform, random, clustered, and fractal spacing distributions. The box-and-whisker plot (light blue
for CoV, cyan for V ∗) reports the values of the zeroth (q0), first (q1/4), third (q3/4), and fourth (q1) quartiles of the distribution of CoV and
V ∗ results. The central dot represents the median value of the results distribution (second quartile, q2/4).
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Figure 3. Lineament maps produced by manual lineament picking on outcrop orthophotos (a) and DTM from lidar surveys (b–d).

(https://data.mendeley.com/datasets/3ymhkpmr9s/1, last ac-
cess: 6 September 2022).

3.2 Cumulative length distribution analyses

Length data of lineaments have been organized as cumulative
distributions and plotted in log-log diagrams of the length L
of lineaments on the x axis versus N(l>L), the cumulative
number of lineaments with length l > L (Fig. 2b and c). The
cumulative length distributions were then normalized by the
area of the land surface reported on each map over which
the lineaments were picked. Single-scale distributions report
the lineament lengths at a specific scale of observation. Mul-
tiscale distributions report the sum of the cumulative length
distributions observed at different scales. We have analyzed
the multiscale and single-scale normalized distribution func-
tions of (i) all lineaments included in each lineament map
at different scales and (ii) each lineament orientation set at
different scales.

3.2.1 Fitting of multiscale cumulative length
distributions

The single-scale cumulative length distributions have been
merged to form a single multiscale distribution. The mathe-
matical functions fitting multiscale cumulative distributions
are commonly retrieved by manual fitting of the distributions
by assessing the slope of the tangent to the observed distri-
butions (e.g., Bertrand et al., 2015; Bossennec et al., 2021;
Castaing et al., 1996; Le Garzic et al., 2011). Here we apply
a more quantitative method by adopting least-square regres-
sion (LSR) in Microsoft Excel to the multiscale cumulative
distributions. Manual fitting has been performed as well (re-
sults are reported and compared to LSR fitting in Fig. S2 in
the Supplement).

3.2.2 Fitting of single-scale cumulative length
distributions

Single-scale cumulative length distributions have been an-
alyzed by means of the maximum likelihood estimation
(MLE) and Kolmogorov–Smirnov (KS) statistical tests to re-
trieve the best fitting mathematical function (Dichiarante et

Solid Earth, 13, 1431–1453, 2022 https://doi.org/10.5194/se-13-1431-2022
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al., 2020; Kolyukhin and Torabi, 2013; Rizzo et al., 2017).
The mathematical functions considered were negative expo-
nential, power-law, and log-normal (Fig. 2b). The advantage
of adopting MLE–KS statistical tests derives from the pos-
sibility to also retrieve the function parameters (namely the
exponent λ for the exponential, the exponent α for the power-
law, and the mean µ and standard deviation σ for the log-
normal functions) in addition to the mathematical function
best approximating the observed cumulative length distribu-
tions. A dedicated MATLAB script implementing the freely
available functions provided in the latest version of Frac-
PaQ (Healy et al., 2017; Rizzo et al., 2017) was used for
this purpose. The results of the MLE–KS tests are reported
in “checkerboard” diagrams, following the method proposed
by Dichiarante et al. (2020) (Fig. 2d). Such diagrams allow
us to image the results of the MLE–KS tests on the selected
portions of the cumulative distribution, i.e., the best fitting
mathematical function for varying subdomains of the cumu-
lative distribution. A subdomain is defined as a segment of
the cumulative distribution curve bounded by a lower and
upper cut value (Fig. 2c and d). The upper cut (UC) value
represents the distance, expressed in terms of percentage of
the total number of elements contained in the cumulative dis-
tribution, from the shortest observed length. The lower cut
(LC) value represents the distance, in terms of percentage
of the total number of elements contained in the cumula-
tive distribution, from the longest observed length. On the
checkerboard diagrams, the LC values are plotted versus the
UC values (Fig. 2d). Each point of the checkerboard repre-
sents a specific percentage range of the total cumulative dis-
tribution between the upper and lower cut limits over which
the MLE–KS tests were run. The plotted symbol represents
the mathematical function among those considered (power-
law, exponential, log-normal) for which the MLE–KS tests
yielded the highest fitting score, whereas the symbol is color-
coded according to the retrieved value of the fitting scores
(namely the H percentage (HP) and the P percentage (PP)
parameters; see Rizzo et al., 2017; Dichiarante et al., 2020).
This analytical approach allows for the determination of the
mathematical function that best fits the truncated cumulative
distribution and for the evaluation of the effects of truncation
and censoring biases (Fig. 2c and d). We report in the main
text and tables the range of UC values for which each func-
tion fits best: the upper cut values quantify the “truncation”
of the cumulative distribution at short lengths, and this has
been demonstrated to deeply affect the results of MLE–KS
tests (Dichiarante et al., 2020).

3.3 Spatial distribution analysis

The spatial distribution of lineaments has been quantified
following the approach by Sanderson and Peacock (2019).
We analyzed the spacing between lineaments collected along
virtual scanlines computed with the NetworkGT toolkit in
QGis 3.12.2 (Nyberg et al., 2018) (e.g., Fig. 2e). The lin-

eaments were classified and grouped into orientation sets.
A grid of equally spaced virtual scanlines (100 m spacing
for the 1 : 5000 scale and 500 m spacing for the 1 : 25000
and 1 : 100000 scales) oriented perpendicular to the selected
lineament set orientation was drawn upon the imported lin-
eament map with NetworkGT (e.g., Fig. 2e). Intersections
between each virtual scanline and map lineament were also
obtained in NetworkGT. For each scanline, we analyzed the
statistics (mean – µ, standard deviation – σS, and minimum
and maximum values) for several parameters (Fig. 2e): (i)
spacing (S) between lineaments; (ii) coefficient of variation
(CoV) of the spacing, defined as the ratio between the stan-
dard deviation of spacing along a scanline and its average
(CoV= σS/µ) (Gillespie et al., 2001); and (iii) coefficient
of heterogeneity (Vf ) and its statistical significance (V ∗)
according to Sanderson and Peacock (2019). The CoV of
spacing is commonly adopted to assess the spatial organiza-
tion (clustering vs. uniform distribution) of lineaments along
scanlines (e.g., Gillespie et al., 2001). CoV values > 1 are
usually related to clustered lineaments; CoV= 1 should rep-
resent a (negative) exponential-random distribution of spac-
ing intervals, and CoV< 1 is usually related to log-normal
(uniform) spacing distributions (Gillespie et al., 2001; Mc-
Caffrey et al., 2020; Odling et al., 1999). The spacing hetero-
geneity, i.e., the deviation of the spacing distribution along
a scanline from a uniform distribution, is quantified by the
Vf and V ∗ coefficients computed with the Kuiper method
(Sanderson and Peacock, 2019). The coefficient of hetero-
geneity Vf quantifies the deviation from a theoretical uni-
form distribution of the observed spacing distribution along
a given scanline expressed as the sum of the moduli of the
positive and negative deviations (see Sanderson and Peacock,
2019; Fig. 2e). The coefficient V ∗ quantifies the statistical
significance of the heterogeneity factor Vf :

V ∗ = Vf

(√
Ni + 0.155+

0.24
√
Ni

)
, (1)

where Ni represents the number of lineaments intersected
by the scanline. Stephens (1970) demonstrated that for V ∗ >
1.75, 2.0, and 2.3, the null hypothesis of uniformity can be
rejected at the 95 %, 99 %, and 99.9 % levels, respectively.
Thus, the coefficient V ∗ can be used to quantify the proba-
bility that a certain spacing distribution is uniform or not.

We present the results of this analyses as CoV–V ∗ dia-
grams (Fig. 2f) in which we plot the statistical distribution
of the values of CoV vs. V ∗ as box-and-whisker plots. In
doing so, we can qualitatively evaluate if, statistically, a set
of lineaments has a random or organized spatial distribution
(Sanderson and Peacock, 2019). With this method, four main
spatial organization types can be distinguished (Fig. 2f): (i)
uniform distribution, characterized by CoV� 1 and V ∗ <
1.75; (ii) random distribution, characterized by CoV≈ 1 and
V ∗ < 1.75; (iii) corridor/clustered distribution, characterized
by CoV> 1 and V ∗ > 1.75–2.00; (iv) fractal distribution,
characterized by CoV� 1 and V ∗� 1.75–2.00. Scanlines
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with more than 10, 5, and 3 lineament intersections were
considered on maps at 1 : 5000, 1 : 25000, and 1 : 100000,
respectively.

Given the limited number of intersections recorded by
each virtual scanline in our maps (Ni � 30), more advanced
and up-to-date analyses of the spacing variability (Marrett
et al., 2018; Sanderson and Peacock, 2019; Bistacchi et al.,
2020) were not possible. The Vf-V ∗ method proposed by
Sanderson and Peacock (2019) yields statistically meaning-
ful results for datasets containing a number of intersected lin-
eaments Ni > 6. Our datasets unfortunately do not always
satisfy this requirement. To perform the analysis on a sta-
tistically meaningful number of samples (total number of
scanlines, NSL > 10), we had to reduce the minimum num-
ber of spacing data each scanline had to contain to be in-
cluded in the dataset. Therefore, our analyses report the re-
sults from scanlines showing a minimum number of intersec-
tionsNi > 10,> 5, and> 3 for the analyses performed at the
1 : 5000, 1 : 25000 and 1 : 100000 scale, respectively.

All parameters and the related abbreviations are reported
in Table 1.

4 Results

4.1 Lineament map description

The manual picking of topographic lineaments on different
digital representations of the selected areas of Bømlo led to
the production of maps at different scales (Figs. 3 and S1, S3,
and S4 in the Supplement). The orthophotos retrieved from
UAV-drone surveys and the related lineament map (Figs. 3a
and S3a) helped to characterize the main outcrop of the GFZ
along the eastern shoreline of Goddo Island (Ceccato et al.,
2021b, a; Viola et al., 2016). The investigated areas extend
for 2127 m2, over which we picked 930 lineaments. Linea-
ment mapping on lidar DTM and aerial imagery at the 1 :
5000 scale (Figs. 3b and S3b) was performed on the best ex-
posed areas along the coastline of Goddo Island and nearby
smaller islands. The resulting lineament map covers more
than 17 km2 and includes 3835 lineaments. Furthermore, we
generated additional lineament maps from the interpretation
of the lidar DTM at the 1 : 25000 and 1 : 100000 scales over
the same area (83 km2; Figs. 3c and d and S3c and d). The
1 : 25000 lineament map contains 894 lineaments, whereas
the 1 : 100000 map contains 249 lineaments.

4.2 Fractal dimension

The fractal dimension of the lineament maps at all scales
was evaluated by applying the box-counting method (Bon-
net et al., 2001; Gillespie et al., 1993). The number of filled
boxes Nb decreases with increasing box size b following a
power-law relationship (Fig. 4). The power-law exponents
(the fractal exponents) retrieved from the box-counting anal-
yses of the entire lineament maps at different scales range

Table 1. Summary table of the parameters and related nomenclature
adopted in this paper.

Parameter Unit

µ Mean –
σS Standard deviation –
R2 Coefficient of determination –
m Proportionality coefficient for scaling

laws
–

s Scale –
b Box size for box counting m
NLin Number of lineaments –
Nb Number of filled boxes –
N(l>L) Number of lineaments with a length

l > L

–

Ni Number of lineaments intersected by
a scanline

–

NSL Number of scanlines –
L Length of lineaments m
D Fractal dimension –
P20 Lineament–fracture density m−2

P21 Lineament–fracture intensity mm−2

S Spacing m
α Exponent of power-law distribution –
β Exponent of density scaling law –
δ Exponent of intensity scaling law –
λ Exponent of negative exponential

distribution
m−1

Xmin Minimum lineament length of the
truncated dataset

m

UC Upper cut %
LC Lower cut %
HP H percentage %
PP P percentage %
CoV Coefficient of variation for spacing –
d Difference from uniform distribution %
Vf Coefficient of heterogeneity –
V ∗ Statistical significance of

coefficient Vf
–

between 1.45 and 1.61 (Fig. 4). On average, the lineament
network exposed on the discontinuous outcrops of the Bømlo
island archipelago is characterized by a fractal dimension
D = 1.51± 0.14 (2σS). The analysis of the spatial occupancy
of the exposed land surface of the Bømlo island archipelago
yielded a fractal dimensionD = 1.72 (Fig. 4; see supplemen-
tary dataset in the online repository).

Figure 4 shows the box-and-whisker diagram of the frac-
tal exponentD for each scale of observation as obtained from
the analyses of selected areas. The fractal dimensions D ob-
tained from the analyses of both entire lineament maps (cross
marker in Fig. 4) and selected areas (box-and-whisker plots
in Fig. 4) are always smaller than the fractal dimension D
of the exposed land surface on the Bømlo island archipelago
(D = 1.72; gray solid line in Fig. 4). Similarly, the fractal di-
mension of the whole lineament maps at 1 : 5000, 1 : 25000,
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Figure 4. Results of the box-counting method applied to the lin-
eament maps of Fig. 3. The dashed interpolation curves represent
the results from box-counting analyses of the entire lineament maps
for each scale of observation. The gray dotted curve represents the
results of the box-counting analyses applied to the distribution of
the exposed land surface in the Bømlo island archipelago. The solid
gray line represents the value of D for the land surface (D = 1.71).
The box-and-whisker plot represents the distribution of the frac-
tal dimension D obtained from the box-counting analyses of se-
lected sub-areas of lineament maps for each scale of observation.
Encircled dots represent the average value of D obtained from the
analyses of sub-areas. The cross marker represents the fractal di-
mension D obtained from the analysis of the entire lineament map
(lineaments maps and selected sub-areas are reported in Fig. S1; the
whole dataset is available at the online repository).

and 1 : 100000 scales always over-estimate the fractal di-
mensions D obtained from the analyses of selected areas.
This is not true for the GFZ lineament map at the 1 : 100
scale, in which the average fractal dimension of the consid-
ered sub-areas is systematically larger than that of the en-
tire lineament map (D = 1.46). The distribution of D val-
ues from sub-areas from the 1 : 100 and 1 : 5000 scales over-
laps and is very similar from a statistical point of view
(D > 1.46). Similarly, the sub-areas of the 1 : 25000 and 1 :
100000 scales yielded similar distributions ofD (D < 1.45).

4.3 Lineament orientation

The comparison of the rose diagrams at different scales of
observation allows the definition of some dominant trends
(Fig. 5a and b). The five main orientation sets are (Figs. 5a
and S4 and Table 2) (a) a N–S-striking Set 1, (b) a NE–
SW-striking Set 2, (c) a ENE–WSW-striking Set 3, (d) a
ESE–WNW-striking Set 4, and (e) a SE–NW-striking Set
5. These sets display a significant variation in their rela-

Figure 5. Rose diagrams (a) and histograms of the relative frequen-
cies (b) of the identified orientation sets at different scales of obser-
vation.

tive abundance across scales. At the smallest scale of ob-
servation (1 : 100000), Set 5 is dominant, whereas at the
largest observation scale (1 : 100), Sets 1 and 2 are domi-
nant (Fig. 5b). At intermediate scales (1 : 5000; 1 : 25000),
all sets are equally represented (Table 2). Set 3 is the least
represented, occurring only in small percentages (< 10 %) at
all scales (Table 2). Sets 2 to 5 have a constant average ori-
entation across scales, but the average orientation of Set 1
lineaments changes with scale of observation. N–S-striking
orientations are dominant at the smallest and largest scales of
observation. At the intermediate scale, Set 1 presents either
a NNW- (scale 1 : 5000) or a NNE-dominant strike (scale
1 : 25000) (Fig. 5a). Therefore, we have subdivided Set 1
into Set 1a, including NNE–SSW-striking lineaments, and
Set 1b, including N–S- to NNW–SSE-striking lineaments.
This subdivision will be adopted for discussing the spatial
organization of the lineaments.

4.4 Cumulative length distributions

The results of LSR fitting and MLE–KS tests are reported
and summarized in Fig. 6 and Table 3; the checkerboard dia-
grams are reported in the Supplement (Fig. S5 in the Supple-
ment).
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Table 2. Table presenting the orientation data for the identified lineament sets for each scale of observation. Azimuth (◦) represents the
average strike of the manually picked lineaments. Total L represents the sum of the length of all picked lineaments in each map for each set.

Set Azimuth (◦) NLin Relative P20 (m−2) Total L (m) P21 (mm−2)
frequency (%)

s 1 : 100

Area (m2) 1 0–17; 156–180 274 29.46 1.29× 10−1 490.10 2.30× 10−1

2127 2 19–67 374 40.22 1.76× 10−1 771.86 3.63× 10−1

3 68–91 97 10.43 4.56× 10−2 156.25 7.35× 10−2

4 92–120 86 9.25 4.04× 10−2 134.12 6.31× 10−2

5 121–155 99 10.65 4.65× 10−2 175.30 8.24× 10−2

Total 930 4.37× 10−1 1727.63 8.12× 10−1

s 1 : 5000

Area (m2) 1 0–28; 154–180 1059 27.61 6.17× 10−5 103 655.02 6.04× 10−3

17 170 533 2 29–60 896 23.36 5.22× 10−5 76 172.72 4.44× 10−3

3 61–88 299 7.80 1.74× 10−5 23 934.34 1.39× 10−3

4 89–130 832 21.69 4.85× 10−5 80 080.14 4.66× 10−3

5 131–153 749 19.53 4.36× 10−5 90 759.34 5.29× 10−3

Total 3835 2.23× 10−4 374 601.56 2.18× 10−2

s 1 : 25000

Area (m2) 1 0–25; 162–180 216 24.16 2.60× 10−6 93 912.71 1.13× 10−3

83 000 724 2 26–59 187 20.92 2.25× 10−6 60 252.45 7.26× 10−4

3 60–90 62 6.94 7.47× 10−7 20 544.88 2.48× 10−4

4 91–131 187 20.92 2.25× 10−6 74 024.49 8.92× 10−4

5 131–161 242 27.07 2.92× 10−6 113 476.26 1.37× 10−3

Total 894 1.08× 10−5 362 210.79 4.36× 10−3

s 1 : 100000

Area (m2) 1 0–19; 171–180 48 19.28 5.78× 10−7 35 972.83 4.33× 10−4

83 000 724 2 20–60 48 19.28 5.78× 10−7 38 877.02 4.68× 10−4

3 61–90 5 2.01 6.02× 10−8 4354.50 5.25× 10−5

4 91–130 45 18.07 5.42× 10−7 36 742.25 4.43× 10−4

5 131–171 103 41.37 1.24× 10−6 106 590.06 1.28× 10−3

Total 249 3.00× 10−6 222 536.66 2.68× 10−3

The results of the MLE–KS tests suggest that a log-normal
function best approximates the entire single-scale distribu-
tion in all considered cases (Fig. S5 and Table 3). Variably
truncated distributions are best approximated by either nega-
tive exponential or power-law functions (Table 3). In particu-
lar, the truncated length probability distributions for both sin-
gle sets and the entire lineament network mapped at 1 : 100
are best represented by negative exponential functions, with
λ ranging between 0.65 and 1.25. Truncated distributions re-
trieved from lineament maps at 1 : 5000 are best fitted, in
most cases, by power-law functions with a minimum expo-
nent α of 2.2. Truncated length distributions for lineaments
mapped at 1 : 25000 and 1 : 100000 scales are well approx-
imated by negative exponential functions, with an average λ
of 0.004 and 0.0017, respectively (Table 3).

Figure 6a reports the cumulative length distributions for
the entire set of lineament maps normalized to the area of in-
vestigation at each scale of observation. The multiscale nor-
malized cumulative distributions obey a general power-law
relationship valid over 5 orders of magnitude (1 to 10 000 m).
The power-law exponent α is 1.88 (Fig. 6a). Figure 6b re-
ports the multiscale cumulative length distributions for each
lineament set normalized for the area of investigation. Also in
this case, multiscale distributions obey a general power-law
scaling with a characteristic exponent α for each set ranging
between 1.62 and 2.12 (Figs. 6b and S2).

4.5 Lineament density and intensity

As also suggested by the cross-scale variation in the rela-
tive proportions of the orientation sets (Fig. 5a and b), the
normalized density P20 (m−2) and intensity P21 (mm−2) of
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Figure 6. (a) Log-log diagram of lineament length L vs. cumulative
number of lineaments N(l>L) per unit area showing the cumulative
length distribution for the lineament maps reported in Fig. 3. (b)
Log-log diagram as above showing the cumulative length distribu-
tion for each orientation set.

each lineament set vary across scales. The variations in den-
sity and intensity are both described by a power-law relation-
ship in log-log diagrams plotting the scale on the x axis (e.g.,
105
= 1 : 100000) and the density P20 or intensity P21 on the

y axis (Fig. 7a and b) (e.g., Castaing et al., 1996). The vari-
ation trend for the total lineament density P20 of each map
at different scales is characterized by power-law exponents
β = 1.77 (Fig. 7a). Sets 1–3 display β values larger than the
average value; Sets 4 and 5 display β values smaller than the
average values. Similarly, the variation trend for P21 is char-
acterized by a power-law exponent δ = 0.86 (Fig. 7b); Sets
1–3 show δ values larger than the average value. Sets 4 and 5
display δ values smaller than the average value.

4.6 Spacing and organization at different scales

The CoV–V ∗ diagrams highlight a similar trend for all ana-
lyzed lineament sets with an increasing scale of observation
(from 1 : 100000 to 1 : 5000). At the 1 : 5000 scale (Fig. 8a),
Set 1a and 1b lineaments are characterized by CoV≤ 1 and
V ∗ ≤ 1.75, suggesting a random-to-uniform spatial distribu-
tion. At smaller scales, CoV for Set 1 exhibits a tendency to-
wards random-to-uniform distribution (Fig. 8b and c). Set 2
lineaments display CoV on average > 1 at the 1 : 5000 scale
and V ∗ > 1.75 for a significant number of data (> 40 % of
the total number of data), suggesting a clustered spatial dis-
tribution. At smaller scales, both CoV and V ∗ values gener-
ally decrease, although some of the analyzed scanlines still
display CoV> 1 and V ∗ > 1.75–2.00. Set 3 lineaments are
too scattered and sparse to allow for a meaningful analysis
of their spatial arrangement, and, therefore, they are not re-
ported in Fig. 8. Set 4 lineaments mapped at the 1 : 5000
scale on average show CoV values > 1, but V ∗ is rarely
> 1.75. At smaller scales, both CoV and V ∗ decrease pro-
gressively. CoV and V ∗ for Set 5 lineaments are generally
< 1 and < 1.75, respectively. The most significative varia-
tion across scales in spatial distribution occurs for Set 2 and
Set 4, both of which exhibit a tendency towards clustering at
the large scale (1 : 5000; CoV> 1, V ∗ > 1.75; Figs. 8a–9d),
whereas they exhibit a tendency toward a random-to-uniform
distribution at the smaller scales (1 : 25000 and 1 : 100000;
CoV< 1; V ∗ < 1.75; Figs. 8b and c and 9e). None of the lin-
eament sets show a tendency to develop fractal behavior with
a power-law spacing distribution.

5 Discussion

In the following, we first assess the geometrical character-
istics, scaling laws, and exponent values obtained for the
Rolvsnes granodiorite fracture network. Then, we evaluate
the possible biases affecting the analyzed datasets and their
effect on the quantification of the fracture network geometri-
cal properties. In addition, we discuss the implications of ap-
plying the scaling relationships to the quantification of frac-
turing and reservoir permeability at different scales by inte-
grating our results with field geological data.

5.1 Characterization of geometric properties of the
Rolvsnes granodiorite lineament network

The fractal dimensions D retrieved from the analysis of the
2D entire lineament maps cluster around 1.5 (Fig. 4), sim-
ilar to what is commonly reported from other case studies
on lineament pattern fractal dimensions (Bonnet et al., 2001;
Hirata, 1989). Also, the normalized cumulative distribution
of lineament lengths effectively defines a single scaling law,
which can be best described by a power-law relationship
with an exponent α = 1.88 (Fig. 6a and Table 5). The gen-
eral scaling law obtained for the overall lineament network
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Figure 7. Lineament density (P20) and intensity (P21) variation across scales for each orientation set (Sets 1 to 5) and for the entire lineament
network (total).

Figure 8. Box-and-whisker plots reporting CoV–V ∗ values quantifying the spatial organization of the orientation sets identified in the
lineament map at (a) 1 : 5000, (b) 1 : 25000, and (c) 1 : 100000 scales.

is very similar to that derived from many other case studies
of fracture networks affecting both crystalline basements and
(meta)sedimentary rocks, with an average power-law expo-
nent close to α = 2 (see Bertrand et al., 2015; Bonnet et al.,
2001; Bossennec et al., 2021; Chabani et al., 2021; Le Garzic
et al., 2011; McCaffrey et al., 2020; Odling, 1997; Torabi and
Berg, 2011). The power-law scaling relationship defined by
the lineament density P20 values is characterized by a power-
law exponent β = 1.77, similar to the value of 1.7 commonly
observed in many other fault networks (Castaing et al., 1996;
Bonnet et al., 2001, and references therein).

5.1.1 Scale-invariant lineament network

A similar fractal dimension D and power-law scaling rela-
tionship are commonly used as evidence for the occurrence
of a fracture network whose geometrical properties (size of
fractures, i.e., length and spatial correlation and organiza-
tion) are scale-invariant (Bonnet et al., 2001). This suggests
that, at a first approximation, the documented lineament pat-
tern in the Rolvsnes granodiorite is self-similar at any scale
of observation. However, the Rolvsnes granodiorite case ap-
pears to be more complex than it would seem at a first glance.
The detailed analyses of lineament maps, fractal dimension
D, and the geometrical properties of orientation sets revealed
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Figure 9. Schematic summary of the results and interpretations for the Rolvsnes granodiorite case study. (a) Rose diagrams of the orienta-
tion of lineaments at different scales (1 : 5000, 1 : 25000, 1 : 100000) with the classification into Type A (Sets 1–3) and B (Sets 4 and 5)
lineaments. (b) Schematic log-log diagram showing the observed general trends of P20 and P21 variations with scale. The values of β and δ
exponents are reported for the entire lineament network (gray dashed line) and Type A (orange line) and Type B (light blue line) lineaments.
(c) Schematic log-log diagram showing the observed general scaling laws retrieved for the cumulative length distributions. The values of the
exponent α are reported for the entire lineament network (gray dashed line), Type A (orange line) and Type B (light blue line) lineaments.
(d) Schematic representation of the lineament distribution at 1 : 5000 scale. The reported lineaments are redrawn from the 1 : 5000 lineament
map and represent the spatial organization observed within the Rolvsnes granodiorite. (e) Schematic representation of the lineament distri-
bution at 1 : 25000–1 : 100000 scales. The reported lineaments are redrawn from the 1 : 25000–1 : 100000 lineament maps and represent
the spatial organization mapped on the Rolvsnes granodiorite. Note the clustered organization of Set 2 lineaments and the two domains
(highlighted by transparent gray and dashed areas) where Set 4 and 5 lineaments are dominant.

similar patterns of variation through the scales of observa-
tion.

5.1.2 Lineament types within a hierarchical fracture
network

For each scale of observation, the box-counting analyses of
sub-areas of the lineament maps yielded similar D values
(2σ always < 0.1), suggesting that the lineament network is
rather homogeneous in space in terms of spatial occupancy.
Nonetheless, these results highlight a general decrease in the
fractal dimension D from the largest (1 : 100) to the smallest
(1 : 100000) scale of observations (box-and-whisker plots of
Fig. 4).

Theoretically, a scale-invariant lineament map should ex-
hibit a similar fractal dimension D irrespective of the scale
of observation, of the change in resolution, and of the detail
of the lineament maps.

A variation trend in the detected fractal dimensions across
scales might, therefore, suggest a change in the spatial occu-
pancy (fractal dimension) of the lineaments detected at the
different scales in different proportions. Indeed, the occur-
rence of lineament orientation sets that are dominant at dif-
ferent scales (local vs. regional scale), showing inherent dif-
ferent spatial occupancy properties (different fractal dimen-
sions of each orientation set), might result in different fractal
dimension D values detected at different scales of observa-
tion. Accordingly, the observed variation trend of the fractal
dimension of the Rolvsnes granodiorite lineament network is
consistent with a change in the dominant lineament set ori-
entation and the associated geometrical properties and spa-
tial distribution (see discussion below). In this perspective,
the largerD values (D > 1.45) at larger scales of observation
(1 : 100, 1 : 5000) are consistent with the occurrence of linea-
ment sets more abundant at the local and outcrop scales occu-
pying a larger surface of the maps. Vice versa, the smaller D
values (D < 1.45) at smaller scales (1 : 25000, 1 : 100000)
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suggest the occurrence of regional lineaments with a de-
creased spatial occupancy.

Even if there is a small variability in the fractal dimen-
sion D values, none of the measure fractal dimensions, ei-
ther from small sub-areas or entire lineament maps, are simi-
lar to the fractal dimensionD = 1.77 retrieved from the areal
occupancy of the exposed land surface of the Bømlo Island
archipelago. The relationship between fractal dimensions of
exposed land surface and fracture maps remains to be under-
stood and would deserve further analyses, which however go
beyond the scope of the present paper.

The Rolvsnes granodiorite lineament network is composed
of five main orientation sets with variable relative abundance,
density, and intensity across scales (Figs. 5 and 7 and Ta-
ble 2). The observed variations in density and intensity are
predictable and can be described by a general power-law
function, the exponent of which is characteristic of each ori-
entation set (Fig. 7 and Table 5). Even though the single-
scale cumulative length distribution for each orientation set
can be best approximated by scaling laws other than the
power law (Table 3), the multiscale cumulative length dis-
tribution is best approximated by a power-law scaling rela-
tionship (Fig. 6b and Table 5). Again, each orientation set
is characterized by its own power-law exponent (Fig. 6b and
Table 5), which differs slightly from that computed for the
entire lineament network.

Some lineament sets display similar trends of variation in
the relative abundance and intensity, such that they can be
grouped into two main set types (Figs. 6b and 9 and Ta-
ble 5): (1) Type A includes Sets 1–3, characterized by com-
parable P20 and P21 variation trends across scales (β ≈ 1.90,
δ ≈ 0.95) and length distributions (α ≥ 2), and (2) Type B
includes Sets 4 and 5, characterized by comparable P20 and
P21 variation trends across scales (β ≈ 1.60, δ ≈ 0.70) and
length distributions (α < 1.7). This classification into Type
A and B lineament sets is not directly reflected in the CoV–
V ∗ diagrams (Fig. 8a and b), the latter rather suggesting a
scale-dependent organization of spacing for each lineament
set.

Therefore, the observed density–intensity variation and
spatial organization trends indicate the occurrence of a hi-
erarchical (scale-dependent) organization of lineament sets
within a network presenting overall scale-invariant geomet-
rical properties (e.g., Le Garzic et al., 2011). In this hierar-
chy, Type B lineaments represent the higher-order structures,
controlling the geometrical properties of the network at the
regional scale (Fig. 9d and e). Type A lineaments represent
lower-order structures and control the geometrical properties
of the network at the local-to-outcrop scale (Fig. 9d and e).

At the smallest investigated scale, the homogeneously
spaced, WNW-to-NW-striking Type B lineaments (Fig. 9d
and e) dominate the network. These lineaments are charac-
teristic of – and predominant over – the whole of onshore
western and southwestern Norway (Gabrielsen et al., 2002;
Gabrielsen and Braathen, 2014; Tartaglia et al., 2022), as

well as offshore (Preiss and Adam, 2021). The power-law
exponent for Type B lineaments (α < 1.7) suggests that long
lineaments represent a substantial part of the overall linea-
ment population. These observations also suggest that Type
B lineaments probably result from the homogeneous distri-
bution of deformation at the regional scale, while still repre-
senting localized zones accommodating significant deforma-
tion at the outcrop scale, when compared to Type A structures
(Ackermann et al., 2001). Therefore, these lineaments proba-
bly represent major fractures and normal fault zones formed
and repeatedly reactivated during the prolonged brittle tec-
tonic history of the Rolvsnes granodiorite (Ceccato et al.,
2021a; Preiss and Adam, 2021; Scheiber and Viola, 2018; Vi-
ola et al., 2016). The schematic representation of lineaments
in Fig. 9d and e highlights a heterogeneous distributions of
Type B lineaments, which is not captured by the statistical
analysis of spacing heterogeneity. Indeed, the Rolvsnes gra-
nodiorite can be subdivided into several domains of the lin-
eament maps where either Set 4 or Set 5 lineaments are pre-
dominant at the regional scale (“Set 4–5 domain” – gray and
dashed transparent areas in Fig. 9d and e). These domain-
type distribution of regional lineaments were already re-
ported by Scheiber and Viola (2018). At the largest ana-
lyzed scale, the lineament network is mainly dominated by
random-to-clustered, NNW–SSE- to NE–SW-striking Type
A lineament sets (Fig. 9d and e). Accordingly, the general
power-law exponent (α ≥ 2) suggests that, among Type A
lineaments, short lineaments represent a significant part of
that population, probably resulting from an incipient stage
of distributed faulting and deformation accommodation (e.g.,
Ackermann et al., 2001).

5.2 Analysis of reliability, biases, and limitations of the
scaling laws

The scaling laws described here have several limitations in
their applicability related to (i) occurrence of different orien-
tation sets, (ii) network heterogeneity at different scales, and
(iii) analytical biases.

5.2.1 Reliability and biases behind orientation set
definitions

The lineament sets defined by this study are grouped in
classes based on their azimuthal orientation. As such, they
may or may not share a genetic relationship. However, field
analyses (Scheiber et al., 2015, 2016; Scheiber and Viola,
2018) have demonstrated the occurrence of systematic sets
of fractures, genetically related in terms of chronology, tec-
tonic phase, and orientation, which can be identified from
remote sensing techniques. Thus, we assume that the iden-
tified orientation sets effectively represent groups of geneti-
cally correlated fractures (see below, Sect. 5.3).

The lineament orientation reported by the 1 : 100 rose di-
agram differs significantly from the orientations of all other
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diagrams (Fig. 5). Even though the number of lineaments in-
terpreted from UAV-drone imagery is statistically significant
(NLin = 930), the N–S-trending outcrop exposure, its 3D to-
pography, and the location of the exposed area along a ma-
jor fault zone (Ceccato et al., 2021b, a) are such that it is
necessary to question whether the obtained results are truly
representative of the larger-scale lineament network. The ob-
served variations in density, intensity, and relative abundance
of orientation sets across scales could be affected by several
analytical and interpretative orientation-dependent and clas-
sification biases.

First of all, under-sampling of specific lineament orienta-
tions during manual interpretation may be due to (Scheiber
et al., 2015) (i) interpretative biases of the operator, (ii)
changes in resolution of the digital representation of the ter-
rain (DTMs and orthophotos) with the changing scale of
observation, and (iii) constant direction of the light source
adopted for the lidar DTM hill shading (from NW in our
study). The change in resolution would equally affect each
orientation set, thus maintaining a constant relative abun-
dance across scales. Likely, constant direction of the light
source may affect the detection of lineaments at specific ori-
entations, but systematic effects have not been identified by
previous studies (Scheiber et al., 2015). Also, the topogra-
phy, surface extension, perimetral shape, and exposure of
outcrops with rough topography (such as the GFZ outcrop
analyzed here at 1 : 100 scale) might affect the exposure and
detection of specific lineaments and thus orientation sets –
some sets may be more visible than others. In particular,
gently dipping fractures or fractures parallel to the surface
of the outcrop might be underrepresented. Moreover, rose
diagrams only report the number of lineaments and do not
consider their spatial persistence (length), such that fractures
related to the main GFZ and expected to be dominant at the
local scale might be represented by very few but longer linea-
ments. Thus, the small number of lineaments can be diluted
and obscured by the large number of short lineaments related
to background fracturing.

This notwithstanding, by considering the relative abun-
dance of orientation sets retrieved only from the 1 : 5000,
1 : 25000, and 1 : 100000 lineament maps, we can still ob-
serve the relative decrease in Sets 1–3 along with the increase
in Set 5 lineaments at progressively smaller scales of obser-
vation (Fig. 4b). This suggests that the observed variation
trends reflect an effective variation in relative abundance of
lineaments across scales and represent a real characteristic of
the lineament network.

5.2.2 Network vs. orientation set scaling laws

The studied lineament network exhibits some general power-
law relationships describing the multiscale behavior of linea-
ment length distribution (α = 1.88), density P20 (β = 1.77),
and intensity P21 (δ = 0.86) (Table 5). These general power-
law scaling laws may effectively be adopted to retrieve frac-

ture network properties (geometrical properties and perme-
ability) at any scale of observation. However, the adoption of
a general scaling law for the geometrical properties without
taking into consideration the peculiarity of each orientation
set building up the network may lead to an erroneous extrap-
olation of the analyzed properties. For example, lineament
sets exhibit different power-law exponents for density P20
and intensity P21 distributions, which, in our case study are
systematically smaller for Type A sets and larger for Type
B sets than the exponent of the network taken as a whole
(Fig. 7). Adopting power-law exponents larger than the ac-
tual exponent of the individual lineament set would lead to
an overestimation of the network properties at larger scales,
and vice versa. In the case of the Rolvsnes granodiorite linea-
ment network, this overestimation or underestimation could
be significant and reach 1 order of magnitude in terms of in-
tensity and density (Fig. 7).

5.2.3 Spatial organization and scaling limitations

Field investigations (Ceccato et al., 2021b, a; Scheiber and
Viola, 2018) have revealed the highly heterogeneous distri-
bution of fractures at the outcrop scale. Most of the identified
fracture sets at the outcrop occur with either a clustered spa-
tial organization or a variable intensity over short distances
(50–100 m; Ceccato et al., 2021a). This clearly represents a
limitation to the acritical extrapolation of the general power
law determined in this study and thus the lower bound for the
application of the proposed power-law scaling (Bonnet et al.,
2001). Similarly, the “zonal” spatial distribution of Set 4 and
5 lineaments identified at a small scale of observation (see
the identified “Set 4 domain” and “Set 5 domain” reported
in Fig. 9d and e) needs to be accounted for when evaluating
the upper limit of applicability of the general scaling laws
defined here. The outcrop-scale spatial heterogeneity and
the overestimation–underestimation effects due to applying
a general power-law scaling become relevant when consider-
ing the role that different fracture sets may have in the defi-
nition of the net permeability of a fractured crystalline base-
ment, as highlighted by field studies (Ceccato et al., 2021b,
a; Gabrielsen and Braathen, 2014; Torabi et al., 2018).

5.2.4 Analytical biases and statistical methods to
overcome them

In the light of the discussion above, it is therefore important
to analyze the mapped distributions with appropriate meth-
ods and to always consider the regional lineament network
as composed of different orientation sets, each of which is
characterized by its own geometrical and scaling properties.
Additionally, we need to consider all potential sources of er-
ror and estimate the analytical and human biases that poten-
tially affect our analyses.

It is worth noting that manual fitting of our multiscale dis-
tribution slightly overestimates the power-law exponents re-
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trieved from LSR methods (Fig. S2). This might be since
LSR methods consider the entire distribution, including the
portions of the distributions affected by censoring and trun-
cation, which are inherently excluded by manual fitting.

Most published length datasets and the related fitting re-
sults have been analyzed qualitatively (e.g., manual mul-
tiscale fitting or LSR of truncated distributions). Indeed,
the review process of similar published datasets (for ex-
ample, particle size distributions) with updated statistical
methods has revealed a fundamental misfitting of mathe-
matical distributions and therefore a fundamental misunder-
standing of the mathematical function describing the distri-
bution of the investigated geological parameter (Phillips and
Williams, 2021). MLE–KS tests have already demonstrated
their strength in the analysis of fault attribute distributions
(Dichiarante et al., 2020; Kolyukhin and Torabi, 2013). In
our case, the results of length cumulative distributions fit-
ting with MLE–KS tests differ significantly from the multi-
scale LSR power-law relations reported in Fig. 6. Even when
the distribution is best approximated by a power-law func-
tion (e.g., most lineament sets mapped at 1 : 5000; Table 3),
the values of the power-law exponents retrieved from MLE–
KS tests (α > 2.2) differ from those obtained from the LSR
fitting of multiscale distributions (α < 2.12).

Even though we might apply very robust statistical meth-
ods for the evaluation of the significance of the results of lin-
eament map analyses, we still struggle to accurately quantify
the scaling parameters or to define general statistically ro-
bust scaling laws. Nevertheless, the first step to improve our
accuracy in the quantification of scaling laws and scaling pa-
rameters is to consider and discuss the most important biases
and analytical errors that might affect the analysis results and
lead to deviation from the “natural” scaling laws.

The observed deviations in curve fitting results (both that
of single-scale distributions from the power law and that of
the single-scale power-law exponents from the multiscale
ones) are commonly observed in almost all natural fracture
networks. Remarkable deviations from a power-law scaling
behavior have been previously explained as resulting from
several causes: (i) analytical biases (such as truncation and
censoring of lineaments; Dichiarante et al., 2020; Manzocchi
et al., 2009; Odling, 1997; Yielding et al., 1996), (ii) subdivi-
sion of long lineaments into segments (segmentation; Acker-
mann et al., 2001; Cao and Lei, 2018; Scholz, 2002; Schultz
et al., 2013; Xu et al., 2006), and (iii) effectively different
scaling properties at different scales of observation (Castaing
et al., 1996; Le Garzic et al., 2011; Kruhl, 2013).

Power-law fitting is usually retrieved from short segments
in the central portions of a “truncated” cumulative distribu-
tion (e.g., Dichiarante et al., 2020). Truncation and censor-
ing biases may affect large portions (even > 50 % of data)
of the cumulative distribution. This would mean that most
(� 50 % of data) of the analyzed dataset is biased and thus of
little use to any kind of statistically significant analysis, such
that the related fitting results are not statistically meaningful.

The multiscale distribution analysis can reveal the overarch-
ing scaling law of the fracture network and of each lineament
set, but the actual values of the exponents of the fitting laws
need to be carefully evaluated by also considering the statis-
tical significance of the analyzed dataset.

Segmentation of long lineaments into shorter segments
may be due to several causes, both introduced into the dataset
by analytical/interpretative biases and intrinsically related to
the network topology, fracture chronology, and geological
fracture formation processes. Segmentation may result from
partial exposure and cover of the fracture network, and it may
increase the power-law scaling exponent, without affecting
the type of scaling-law function (Cao and Lei, 2018). Seg-
mentation may be related to the progressive growth stages of
fault/joint patterns evolving with increasing accommodated
deformation and faulting maturity from a network composed
of completely isolated short fractures to a network formed
by a few long, single lineaments, through fracture interac-
tion and interconnection (Ackermann et al., 2001; Michas
et al., 2015; Scholz, 2002). This has been demonstrated to
affect both the shape of the mathematical function describ-
ing the length distribution (exponential vs. power law) and
the power-law exponent at a specific scale of observation
(Schultz et al., 2013). However, this may explain the differ-
ence in scaling relationships observed during the evolution
of a fracture network through time but not at different scales
of observation. In addition, the subjective choice of tracing
single segments composing a longer lineament as separate
fractures rather than tracing a single, continuous, long lin-
eament may likely affect the cumulative length distributions
of the fracture network. Tracing single segments would in-
crease the number of short segments compared to longer seg-
ments, at constant P21 intensity, increasing the total number
of traced lineaments and thus increasing the power-law expo-
nent of the distribution (Xu et al., 2006). This segmentation
bias may justify the fact that power-law exponents of the LSR
multiscale length distributions of each fracture set (Fig. 5b)
are systematically smaller than those obtained from single-
scale MLE–KS tests at the 1 : 5000 scale. Whether or not this
sampling bias may effectively affect the mathematical shape
of the cumulative distribution would deserve further investi-
gations, which goes beyond the scope of the present paper.

Thus, the most plausible option is that the fracture net-
work may effectively present different scaling properties at
different scales of observations (Kruhl, 2013). Indeed, fault
and fracture networks may exhibit a hierarchical organiza-
tion, which inherently implies scale-dependent geometrical
properties and spatial distribution of lineaments (Castaing et
al., 1996; Le Garzic et al., 2011). In fact, this is also con-
sistent with the observed variation in relative abundances of
orientation sets across scales: each lineament set contributes
differently to the overall fracture network geometrical char-
acters, and thus the variation in the relative abundance may
also lead to variations in geometrical properties (spatial or-
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Table 4. Spacing, CoV, and V ∗ statistical parameters. The table reports the mean (µ), the standard deviation (σS), the minimum and maximum
values of spacing (S), CoV, and V ∗ obtained from scanline statistical analyses.

s 1 : 5000 1 : 25000 1 : 100000

Set S (m) CoV V ∗ S (m) CoV V ∗ S (m) CoV V ∗

NSL(Ni > 10)= 17 NSL(Ni > 5)= 11 NSL(Ni > 3)= 61

µ 1a 132.64 0.91 1.45 342.29 0.87 1.77 738.25 0.42 1.40
σS 78.55 0.28 0.43 96.80 0.27 0.12 314.96 0.22 0.21
Min 19.37 0.53 0.92 269.18 0.57 1.45 262.68 0.03 1.03
Max 232.39 1.69 2.30 568.70 1.42 1.85 1253.90 0.88 1.80

NSL(Ni > 10)= 38 NSL(Ni > 5)= 53 –

µ 1b 189.33 0.93 1.55 487.49 0.78 1.51 – – –
σS 52.19 0.18 0.37 175.44 0.23 0.37 – – –
Min 87.87 0.57 0.78 133.91 0.25 0.98 – – –
Max 311.72 1.44 2.38 883.45 1.25 2.26 – – –

NSL(Ni > 10)= 47 NSL(Ni > 5)= 47 NSL(Ni > 3)= 59

µ 2 133.39 1.21 1.78 475.32 0.84 1.44 1013.41 0.71 1.52
σS 45.48 0.32 0.44 264.12 0.20 0.27 304.75 0.28 0.27
Min 37.64 0.59 1.15 89.24 0.37 0.87 352.64 0.28 1.05
Max 213.61 2.02 2.87 1295.42 1.20 2.12 1506.44 1.31 2.05

NSL(Ni > 10)= 22 NSL(Ni > 5)= 48 NSL(Ni > 3)= 64

µ 4 135.66 1.10 1.54 395.51 0.77 1.38 671.34 0.50 1.34
σS 41.33 0.29 0.27 183.80 0.26 0.25 403.20 0.26 0.28
Min 75.78 0.57 1.12 81.86 0.31 0.95 150.10 0.04 0.89
Max 251.38 1.62 2.00 804.31 1.51 2.00 1566.48 1.10 1.96

NSL(Ni > 10)= 27 NSL(Ni > 5)= 77 NSL(Ni > 3)= 184

µ 5 150.88 0.89 1.36 406.09 0.66 1.27 453.89 0.49 1.23
σS 69.94 0.23 0.31 184.59 0.21 0.26 174.28 0.22 0.26
Min 51.16 0.60 0.88 99.05 0.15 0.72 52.05 0.08 0.72
Max 255.16 1.62 2.02 801.94 1.16 1.91 963.48 1.06 1.88

ganization and length distributions) at different scales (e.g.,
Le Garzic et al., 2011).

5.3 Integration of remote sensing and field
observations

The fracture pattern of the Rolvsnes granodiorite includes
three main classes of fractures and fault zones (Scheiber et
al., 2016; Scheiber and Viola, 2018): (i) pre-Permian, ESE–
WNW and NE–SW-striking mineralized shear fractures and
minor faults; (ii) Permo-Jurassic major normal faults, mainly
striking NW–SE and N–S; and (iii) Cretaceous fracture clus-
ters striking N–S to NNE–SSW.

Smaller normal faults and mineralized shear fractures de-
scribed by Scheiber and Viola (2018) are subparallel to the
lineament Sets 2–4 defined here. They form the background
fracture pattern of the Rolvsnes granodiorite (Ceccato et al.,
2021a). In particular, Set 4 lineaments are subparallel to the
ESE–WNW orientation of the (relatively) oldest generation
of fractures identified in the field (Scheiber and Viola, 2018).

Indeed, the regional distribution of Set 4 and the geometri-
cal characteristics discussed above stress their importance as
regional structures accommodating significant deformation
through the brittle deformation history of the Rolvsnes gran-
odiorite (Scheiber and Viola, 2018). Conversely, NE–SW mi-
nor faults and shear fractures, subparallel to Set 2 and 3 linea-
ments, accommodated only limited deformation, which may
be compatible with their local-scale distribution and geomet-
rical characteristics (e.g., Ackermann et al., 2001). Permo-
Jurassic normal fault zones are oriented NW–SE to N–S, sim-
ilarly to our Set 5 and Set 1(b) lineaments. The geometrical
characters and spatial distribution of Set 5 lineaments suggest
their role as important zones of deformation accommodation
at the regional scale. N–S to NNE–SSW fracture clusters are
comparable to Set 1(a) orientations; they are indeed local-
scale structural features and are inferred to have accommo-
dated limited deformation during Cretaceous rifting of the
North Sea (Scheiber and Viola, 2018).
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Table 5. Summary table reporting the power-law scaling and the values of the related parameters retrieved from the multiscale analysis of
cumulative length distribution, lineament density, and intensity.

Cumulative length distributions P20 density distribution P21 intensity distribution

N(l>L) =m ·L
−α P20 =m · s

−β P21 =m · s
−δ

Set Type m α R2 m β R2 m δ R2

Set 1 A 0.074 1.99 0.610 475 1.83 0.992 15.7 0.92 0.997
Set 2 A 0.146 2.21 0.552 761 1.88 0.988 30.6 1.01 0.979
Set 3 A 0.025 1.99 0.677 371 1.96 0.999 9.4 1.04 0.999
Set 4 B 0.019 1.67 0.678 76 1.66 0.994 1.9 0.74 0.992
Set 5 B 0.022 1.62 0.679 50 1.58 0.982 1.4 0.64 0.967
Total 0.261 1.88 0.594 1187 1.77 0.989 37.6 0.86 0.986

Summarizing, although our lineament classification in
Types A and B is certainly an oversimplification of the ac-
tual complexity of the natural fracture network, it provides
valuable information as to the geometrical characteristics of
faults and fractures and their regional and local importance
as zones of deformation accommodation.

5.3.1 Constraints on the multiscale permeability
structure of crystalline basement

As constrained by field studies, each lineament/fracture set
may contribute differently to the bulk permeability of a frac-
tured crystalline basement block (Ceccato et al., 2021b, a;
Gabrielsen and Braathen, 2014; Torabi et al., 2018). The ef-
fects of the background fracturing of the Rolvsnes granodior-
ite on permeability is secondary (Ceccato et al., 2021a), it be-
ing mainly composed of minor sealed faults and mineralized
fractures belonging to Set 2–4 lineaments. It is the regional-
scale structures, like our Type B lineaments (Set 5; e.g., the
GFZ), that effectively control permeability, fluid flow, and
reservoir compartmentalization at the regional scale (Ceccato
et al., 2021a; Holdsworth et al., 2019). Results from in situ
petrophysical analyses and discrete fracture network model-
ing of fault zone permeability have shown that these struc-
tures behave as a mixed conduit–barrier for fluid flow, and
they are characterized by a strongly anisotropic permeabil-
ity tensor (Caine et al., 1996; Ceccato et al., 2021a). Fluid
flow is promoted parallel to the main fault plane, especially
parallel to the (sub-horizontal) intersection directions of the
dominant fracture sets within the fault damage zone, whereas
the anisotropic permeability of the fault core brittle structural
facies buffers cross-fault fluid flow (Ceccato et al., 2021b, a;
Tartaglia et al., 2020). Conversely, fracture clusters, compa-
rable to our Set 1(a) lineaments, may represent effective fluid
pathways at the outcrop scale, acting as preferential conduits
for vertical fluid flow within the basement (Ceccato et al.,
2021b, a; Torabi et al., 2018; Place et al., 2016; Souque et
al., 2019).

In summary, by integrating field and remote sensing data,
we can improve the conceptual models and their dimen-

sioning in an attempt to describe the anisotropic permeabil-
ity structure of a fractured crystalline basement at differ-
ent scales (e.g., Fig. 11 of Ceccato et al., 2021b). Our re-
sults constrain the heterogeneous structure of a fractured
basement block in terms of orientation and spatial distri-
bution of permeability. The permeability of the fractured
basement at the regional scale is characterized by the oc-
currence of rhombohedral-shaped compartments (the fault-
bounded polygonal domains of Ceccato et al., 2021b) that
are homogeneously distributed and defined by the higher-
hierarchical-order Type B lineaments. Their extension is de-
termined by the spacing of Type B lineaments, ranging on the
order of 500–1000 m at the regional scale (Table 4). Fluid
flow is promoted along the major fault planes and paral-
lel to the sub-horizontal intersections of fracture sets domi-
nant within the fault damage zones (Ceccato et al., 2021a).
Within these rhombohedral compartments, permeability is
heterogeneously distributed at the 50–100 m scale, follow-
ing the random-to-uniform spacing distribution of lower-
hierarchical-order Type A (Set 1b) lineaments (Table 4). At
the outcrop scale, these N–S lineaments are represented by
fracture clusters, which promote vertical fluid flow (Ceccato
et al., 2021b, a).

Accordingly, any underestimation and/or overestimation
of spatial distribution and density of the lineaments may
deeply affect the accuracy of hydrological and petrophysi-
cal models of fractured basement blocks at the outcrop and
at the sub-seismic resolution scale (Bertrand et al., 2015; Le
Garzic et al., 2011).

6 Conclusions

The fractured crystalline basement of the Rolvsnes granodi-
orite on Bømlo is characterized by the occurrence of a frac-
tal fracture network controlled by a general power-law scal-
ing law for the distribution of fracture lengths. However,
detailed orientation-dependent analyses have revealed that
this first-approximation scale-invariant lineament network is
composed of lineament sets, which individually exhibit a
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scale-dependent hierarchical spatial distribution, and param-
eter variation trends with the scale of observation. Different
trends of intensity–density variation across scales for each
orientation set have been detected, as well as different scal-
ing laws for length distribution of each orientation set. These
results, integrated with field observations, suggest that the
documented lineament network results from the summation
of different geological structures (e.g., faults vs. joints, major
fault zones vs. incipient minor faults) organized in a hierar-
chical manner and characterized by different geometrical and
scale-dependent properties.

The hierarchical lineament network affecting the Rolvsnes
granodiorite controls the anisotropy and directionality of the
permeability structure of the basement at different scales.
At the regional scale, the crystalline basement is charac-
terized by a rhombohedral pattern of basement compart-
ments bounded by regional fault zones impermeable to cross-
fault fluid flow. Within these compartments, the permeability
structure is controlled by local-scale fracture clusters, pro-
moting subvertical N–S-striking fluid flow.

Our study allows us to draw some general conclusions
about the methods for characterization of fracture network
and their analysis.

– Firstly, the presented multiscale analytical workflow
may represent a valid option for the quantification of
large, inherently incomplete (due to analytical and sub-
jective biases) lineament datasets. The lineament maps
retrieved from digital terrain and surface models of the
Rolvsnes granodiorite offer very large datasets, which
are inherently incomplete due to partial exposure and/or
incomplete sampling of lineament due to partial expo-
sure, resolution, or human biases. Thus, a statistical ap-
proach such as that proposed in this paper is highly rec-
ommended when aiming to retrieve relevant informa-
tion from datasets that, for several reasons, are only par-
tially representative for the entire fracture network.

– Detailed orientation-dependent multiscale analyses of
the lineament network can provide the different scaling
laws and geometrical properties for each constituent lin-
eament set, which can be adopted to improve the detail
and tune the accuracy of permeability models of frac-
tured crystalline basements considering outcrop-scale
structural features.

– The integration of multiscale length distribution analy-
ses, multiscale intensity–density estimations, and multi-
scale description of spatial organization provides useful
information for the classification of topographic linea-
ments as different geological structures (e.g., fracture
clusters vs. fault zones) with specific hierarchy and con-
trol on the permeability of the fractured basement.
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