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Abstract. Studying porous rocks with X-ray computed to-
mography (XRCT) has been established as a standard pro-
cedure for the non-destructive characterization of flow and
transport in porous media. Despite the recent advances in
the field of XRCT, various challenges still remain due to the
inherent noise and imaging artifacts in the produced data.
These issues become even more profound when the objec-
tive is the identification of fractures and/or fracture networks.
One challenge is the limited contrast between the regions of
interest and the neighboring areas, which can mostly be at-
tributed to the minute aperture of the fractures. In order to
overcome this challenge, it has been a common approach to
apply various digital image processing steps, such as filter-
ing, to enhance the signal-to-noise ratio. Additionally, seg-
mentation methods based on threshold/morphology schemes
have been employed to obtain enhanced information from the
features of interest. However, this workflow needs a skillful
operator to fine-tune its input parameters, and the required
computation time significantly increases due to the com-
plexity of the available methods and the large volume of an
XRCT dataset. In this study, based on a dataset produced by
the successful visualization of a fracture network in Carrara
marble with micro X-ray computed tomography (µXRCT),
we present the results from five segmentation methods, three
conventional and two machine-learning-based ones. The ob-
jective is to provide the interested reader with a compre-
hensive comparison between existing approaches while pre-
senting the operating principles, advantages and limitations,
to serve as a guide towards an individualized segmentation
workflow. The segmentation results from all five methods
are compared to each other in terms of quality and time ef-

ficiency. Due to memory limitations, and in order to accom-
plish a fair comparison, all the methods are employed in a 2D
scheme. The output of the 2D U-net model, which is one of
the adopted machine-learning-based segmentation methods,
shows the best performance regarding the quality of segmen-
tation and the required processing time.

1 Introduction

The adequate characterization and knowledge of the geomet-
rical properties of fractures have a strong constructive im-
pact on various disciplines in engineering and geosciences.
In civil engineering, detecting fractures on building materi-
als (Yamaguchi and Hashimoto, 2010; Xing et al., 2018), or
road pavements (Nguyen et al., 2009) is important for main-
tenance and inspection. In the field of reservoir management,
due to the fact that fractures strongly influence the perme-
ability and porosity of a reservoir, their properties, like net-
work connectivity and mean aperture, play a decisive role
(Berkowitz, 1995; Jing et al., 2017; Karimpouli et al., 2017;
Suzuki et al., 2020) in the production and conservation pro-
cesses of resources, such as methane (Jiang et al., 2016) and
shale oil (Dong et al., 2019; van Santvoort and Golombok,
2018). Additionally, the geometry of the fracture network is
an equally important property that needs to be addressed in
our efforts to properly characterize the stresses developing
between tectonic plates (Lei and Gao, 2018), which, even-
tually, have a strong effect on the permeability of a reser-
voir (Crawford et al., 2017; Huang et al., 2019). As one of
the most straightforward and effective ways of investigating
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such fracture properties, 3D visualization and consequent ef-
ficient extraction of various fractures, or a fracture network,
and spatial properties, like length, aperture, and tortuosity,
have been increasingly employed.

X-ray computed tomography (XRCT) has been adopted as
a non-destructive method to monitor and quantify such spa-
tial properties, and it has become a standard procedure in lab-
oratory studies (Weerakone and Wong, 2010; Taylor et al.,
2015; De Kock et al., 2015; Saenger et al., 2016; Halisch
et al., 2016; Chung et al., 2019). More specifically, lab-based
micro X-ray computed tomography (µXRCT) offers the abil-
ity to visualize features on the pore scale at micrometer res-
olution. However, as with every other visualization method,
there are some drawbacks which are inherent to the method
itself. This visualization method is based on the interaction
of an otherwise opaque sample with a specific type of ra-
diation. Occasionally, there is a low contrast between dis-
tinct features, either belonging to different materials or hav-
ing spatial characteristics which are close to the resolution
of the method itself. Such an example is the distinction be-
tween the solid matrix and an existing fracture, which com-
monly has a very small aperture (Lai et al., 2017; Kumari
et al., 2018; Zhang et al., 2018; Furat et al., 2019; Alzubaidi
et al., 2022). Consequently, a lot of effort has to be made to
“clean” the acquired data from potential noise, independently
of its source (Frangakis and Hegerl, 2001; Behrenbruch et al.,
2004; Christe et al., 2007). As a means to tackle this issue,
there have been many studies focusing on the enhancement
and optimization of digital image processing with the use
of filtering methods (Behrenbruch et al., 2004; Coady et al.,
2019), which could reduce the inherent noise of the image-
based data while keeping the features of interest intact. In
this way “clean” images, meaning with a low signal-to-noise
ratio, can be obtained with an enhanced contrast between the
features of interest and their surroundings.

In the work of Poulose (2013), the authors classified the
available filtering methods. Their classification can be nar-
rowed down into two major categories, namely the linear and
the nonlinear ones (Ahamed et al., 2019). The latter type of
filtering methods makes use of the intensities of the neigh-
boring pixels in comparison to the intensities of the ones of
interest. There are two well-known filtering methods of this
type; the first one is commonly referred to as “anisotropic dif-
fusion” (Perona and Malik, 1990), where a blurring scheme
is applied in correlation to a threshold grayscale value. The
other is commonly referred to as the “non-local-means” filter
(Buades et al., 2011). This method uses mean intensities to
compute the variance (similarity) at the local area surround-
ing a target pixel. As an improvement to this filter, the “adap-
tive manifold non-local-means” filter (Gastal and Oliveira,
2012) has been recently developed to reduce the data noise
with the help of an Euclidean–geodesic relation between
pixel intensities and the calculated local mean intensities of
the created manifolds, accounting for the grayscale value as
a separate dimension for each pixel. On the other hand, the

linear type of filtering method only makes use of fixed (pixel-
oriented) criteria. This, in practice, means that it simply blurs
the image without distinguishing between generic noise and
the boundaries of an object of interest. Although there are no
prerequisites in the selection of the appropriate noise filtering
method, the nonlinear type of filtering is more frequently em-
ployed with XRCT due to its edge-conserving characteristic
(Sheppard et al., 2004; Taylor et al., 2015; Ramandi et al.,
2017).

The extraction of features of interest in images ought to
be carried out for further evaluations. This can be achieved
by performing image segmentation, which is a clear pixel-
wise classification of image objects. For instance, the clas-
sification of the pixels belonging to the pore space or the
solid matrix results in the effective estimation of porosity.
Conventionally, image segmentation can take place simply
by applying a certain threshold to classify the image corre-
sponding to pixel intensity. The most well-known approach
based on this scheme is the Otsu method (Otsu, 1979). In
this segmentation scheme, histogram information from in-
tensities is used to return a threshold value which classifies
the pixels into two classes, one of interest and the rest. As
an advanced intensity-based approach for multi-class appli-
cations, the K-means method is often used (Salman, 2006;
Dhanachandra et al., 2015; Chauhan et al., 2016; MacQueen,
1967). Dhanachandra et al. (2015) showed their effectively
segmented results of malaria-infected blood cells with the
help of this method. However, this intensity-based segmenta-
tion approach could not be a general solution for XRCT data
due to lab-based XRCT inherent “beam-hardening” effects,
which creates imaging artifacts. These artifacts are caused
by polychromatic X-rays (more than one wavelength) which
induce different attenuation rates along the thickness of a
sample (Ketcham and Hanna, 2014). As another common
approach of segmentation, the methods based on “edge de-
tection” are often adopted (Su et al., 2011; Bharodiya and
Gonsai, 2019). In this scheme one could utilize the contrast
of intensities within the images which would eventually out-
line the features of interest (Al-amri et al., 2010). Based on
the assumption that the biggest contrast would be detected
where two differently grayscaled features meet, there are
many different types of operators in order to compute this
contrast, namely the Canny (Canny, 1986), Sobel (Dura and
Hart, 1973) and Laplacian (Marr and Hildreth, 1980) ones.
However, there is an inherent limitation to apply the method
to XRCT applications, since the image has to have a high
signal-to-noise ratio, which is hardly ever the case when frac-
tures are involved.

Voorn et al. (2013) adopted a Hessian matrix-based
scheme and employed “multiscale Hessian fracture” (MHF)
filtering to enhance the narrow planar shape of fractures in
3D XRCT data from rock samples, after applying a Gaus-
sian filter to improve fracture visibility. This resulted in the
enhancement of fractures of various apertures. The authors
easily binarized their images with the help of emphasized re-
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sponses with structural information obtained from the Hes-
sian matrix. This scheme was also employed in the work of
Deng et al. (2016), where they introduced the “Technique of
Iterative Local Thresholding” (TILT) in order to segment a
single fracture in their rock image datasets. After acquiring
an initial image just to get a rough shape of the fracture by
using a threshold or MHF, they applied the “local threshold”
method (Li and Jain, 2009), which sets a threshold individ-
ually for every pixel (see Sect. 2.3.1) repeatedly to narrow
down the rough shape into a finer one, until its boundary
reaches the outline of the fracture. Despite the successful seg-
mentation of their dataset, some challenges still remained for
the segmentation of fracture networks, as expressed in the
work of Drechsler and Oyarzun Laura (2010). The authors
compared the famous Hessian-based algorithms from Sato
et al. (1997), Frangi et al. (1998), and Erdt et al. (2008) with
each other. In their study they showed that these schemes are
not too effective in classifying the intersections of the fea-
tures of interest. Additionally, in the case of MHF, due to the
used Gaussian filter which blurs the edges of a fracture, the
surface roughness of the fractures would most probably not
be identified. Also, the segmentation results varied signifi-
cantly, corresponding to the chosen range of standard devia-
tions (Deng et al., 2016).

As a more advanced segmentation approach, the water-
shed segmentation method was introduced by Beucher and
Meyer (1993). It allows individually assigned groups of pix-
els (features) to be obtained as a segmentation result. This
can be accomplished by carrying out the following steps:

1. Find the local intensity minimums for each one of the
assigned groups of pixels.

2. At each local minimum, the assignment of the nearby
pixels to individual label groups is performed according
to the magnitudes of the corresponding intensity gradi-
ents. A distance map, where the distance is computed
from all nonzero pixels of a binarized image, could be
used instead of an image which contains intensity val-
ues (Maurer et al., 2003).

3. The above-mentioned procedures ought to be performed
repetitively until there are no more pixels to be assigned.

Taylor et al. (2015), based on the watershed method, were
able to successfully visualize a segmented void space of
XRCT-scanned granular media (sand), which also had a nar-
row and elongated shape, similar to a fracture. Ramandi
et al. (2017) demonstrated the segmentation result of coal
cleats by applying a more advanced scheme based on the
watershed method, the “converging active contour” (CAC)
method, initially developed by Sheppard et al. (2004). Their
method combined two different schemes; one was the water-
shed method itself, and the other was the active contouring
method (Caselles et al., 1993), which is commonly used for
finding the continuous and compact outline of features. How-
ever, there was still a fundamental limitation to cope with, to

directly segment a fracture with the introduced method since
the method requires a well-selected initial group of pixels,
while it is hard to define those only with a threshold due to
the low contrast of the feature (Weerakone and Wong, 2010).
The same authors (Ramandi et al., 2017) applied a satura-
tion technique with an X-ray attenuating fluid. By perform-
ing this, they were able to enhance the visibility of the pores
and fractures within the XRCT data.

Instead of dealing with the image with numerically de-
signed schemes, in recent years and in various fields, like re-
mote sensing (Li et al., 2019; Cracknell and Reading, 2014),
medical imaging (Singh et al., 2020) and computer vision
(Minaee et al., 2020), image segmentation using machine
learning techniques has been being robustly studied as a new
approach due to its well-known benefits, like flexibility to all
types of applications and less demanding user intervention.
Based on these advantages, Kodym and Španěl (2018) intro-
duced a semi-automatic image segmentation workflow with
XRCT data using the random forest algorithm (Amit and Ge-
man, 1997), which statistically evaluated the output from de-
cision trees (see Sect. 2.3.4). Karimpouli et al. (2019) demon-
strated cleat segmentation results from XRCT with a coal
data sample by applying the convolutional neural network
(CNN) approach, which is another machine learning scheme.
The CNN is one of the deep artificial neural network models
which consists of multi-layers with convolutional and max-
pooling layers (Albawi et al., 2018; Palafox et al., 2017). The
former type of layers is employed to extract features out of an
input image, and the latter one is employed to downsample
the input by collecting the maximum coefficients which are
obtained from the convolutional layers. Based on the CNN
architecture, Long et al. (2017) demonstrated the fully con-
volutional network (FCN) model. The model consists of an
encoding part, which is of the same structure as the CNNs,
and a decoding part, which upsamples the layers using a de-
convolutional operation (see Sect. 2.3.5). The authors also in-
troduced a skip connection scheme, which concatenates the
previously maximum collected layers into the decoding part
in order to enhance the prediction of the model.

With the help of these CNN architectures, exploratory
models were proposed and studied for the detection and seg-
mentation of cracks from image data. In the work of Rezaie
et al. (2020), the U-net and VGG-16 combined architecture,
called TernausNet, was employed. The VGG-16 (Simonyan
and Zisserman, 2014) is also a CNN-type architecture con-
sisting of sequential convolutional layers with multiple pool-
ing layers, which can extract features hierarchically. Fei et al.
(2020) introduced CrackNet-V, which utilizes a VGG-16-
like architecture. The CrackNet-V contains only sequential
convolutional layers without the pooling layers. The authors
showed that the model was beneficial to detect fine and shal-
low cracks. Recently, Li et al. (2022), proposed the SoUNet
(side-output U-net) model. The model consists of two parts;
one is a conventional U-net part which performs a segmen-
tation task. The other is the side-output part which detects
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edges of segmented results. By utilizing both, they improved
their segmentation result.

Despite these promising results from the use of machine
learning schemes, there is still room for improvement. In a
machine-learning-based scheme, apart from improving the
architecture of the training model, which significantly af-
fects the efficiency and output of the model (Khryashchev
et al., 2018), one major issue is the provision of a ground-
truth dataset. In most applications (Shorten and Khoshgof-
taar, 2019; Roberts et al., 2019; Zhou et al., 2019; Alqahtani
et al., 2020), this was performed based on subjective manual
annotation which would consume noticeable time and effort
of an expert. This manual annotation is hardly the best ap-
proach, especially in our application which contains sophis-
ticated shapes of fracture networks and low-contrast features
due to the low density of air within the small volume of a
fracture (Furat et al., 2019).

Eventually, the introduced various segmentation tech-
niques were used in order to characterize fractures, i.e., crack
density, length, orientation and aperture. In the works of
Fredrich and Wong (1986) and Healy et al. (2017), the au-
thors binarized their high-resolution images by manually an-
notating the fracture traces. Griffiths et al. (2017) classified
fractures by applying the watershed segmentation method.
Arena et al. (2014) segmented fractures using the Trainable
Weka platform (Arganda-Carreras et al., 2017). Given that
the estimation of such parameters in the studies relied on bi-
narized images, by following differently adopted segmenta-
tion methods, it is important to compare the effectiveness and
efficiency of the relevant segmentation methods.

With the use of a dataset taken from the imaging of a
real fractured porous medium, and for comparative purposes,
three different segmentation techniques were adopted in this
work, based on conventional means, such as the Sato, local
threshold, and active contouring method, including filtering
and post-processing. Two different machine learning models
were employed for this comparison as well. The well-known
U-net (Ronneberger et al., 2015), as well as the random for-
est model, was evaluated, with the random forest model be-
ing supported in Trainable Weka (Arganda-Carreras et al.,
2017). Due to memory limitations of the U-net model, we
had to dice the 2D images to smaller 2D tiles and compute
sequentially. The computed prediction tiles were merged to-
gether at a later stage to reconstruct the 2D image. In order
to train the adopted model, we provided a training dataset,
which was obtained by means of a conventional segmenta-
tion method. Note that only a small portion of the results (60
slices out of 2140 images) was used as a training dataset.
For a fair comparison between methods, all segmentation
schemes were applied on 2D data. Via comparison, we were
able to identify that the U-net segmentation model outper-
formed the others in terms of quality of output and time ef-
ficiency. Some defects which appeared in the provided true
data by conventional segmentation means were smeared out
in the predictions of the model.

2 Materials and methods

2.1 Sample preparation

The segmentation approach presented here is based on a
µXRCT dataset of a thermally treated cylindrical Bianco
Carrara marble core sample with a diameter of 5 mm and a
length of 10 mm. Bianco Carrara marble is a crystalline rock,
consisting of about 98 % calcite (CaCO3) (Pieri et al., 2001),
and is a frequently used material in experimental rock me-
chanics (Delle Piane et al., 2015). In combination with me-
chanical or thermal treatment, the virgin state can be mod-
ified to achieve different characteristics of micro fractures
within the sample (Lissa et al., 2020, 2021; Pimienta et al.,
2019; Sarout et al., 2017; Delle Piane et al., 2015; Peacock
et al., 1994).

The considered sample was extracted from a bigger cylin-
drical core sample, which was subjected to a thermal treat-
ment beforehand. This treatment included the following:

1. The room temperature was heated up from 20 to 600 ◦C
with a heating rate of 3 K min−1.

2. This temperature was held for 2 h to ensure a uniform
temperature distribution in the entire sample.

3. The sample was quenched in a water basin at room
temperature (20 ◦C). The porosity of the raw material,
before any treatment, was 0.57 % measured with mer-
cury porosimetry. The porosity of the thermally treated
sample was obtained from measurements of volume
changes before/after quenching and was found to be
around 3 %.

The scanning of the extracted sample was performed in a
self-built, modular, cone-beam µXRCT system, thoroughly
described in Ruf and Steeb (2020b) (please refer to Fig. 1).
The dataset along with all meta data can be found in Ruf and
Steeb (2020a). For more technical details, please refer to Ap-
pendix A.

2.2 Noise reduction

In order to conserve the edge information while reducing
artifacts, the adaptive manifold non-local mean (AMNLM)
method was adopted. As shown in Fig. 2, this procedure is an
essential step to obtain good segmentation results with some
of the conventional segmentation methods. The adopted fil-
tering method was applied with the help of the commercial
software Avizo© (2019.02 ver.). The adopted input parame-
ters of the filter in this study were spatial standard deviation
(5), intensity standard deviation (0.2), size of search window
(10) and size of local neighborhood (3). The numerical de-
scription of this filtering method in 2D is explained in Ap-
pendix B.
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Figure 1. Illustration of the underlying raw µXRCT dataset of a
thermally treated Bianco Carrara marble sample taken from Ruf and
Steeb (2020a). The dataset along with all meta data can be found in
Ruf and Steeb (2020a), licensed under a Creative Commons Attri-
bution (CC BY) license.

2.3 Segmentation methods

The adopted segmentation methods are introduced and dis-
cussed in this chapter. As conventional schemes, the local
threshold, Sato, and active contouring methods were chosen.
Note that the adopted conventional segmentation methods
had to be employed with noise-reduced images and also re-
quired certain workflows (see Fig. 3). The implemented code
with detailed parameters is available via the link in the “Code
availability” section.

2.3.1 Local threshold

The local threshold method is a binarization method, also
known as the adaptive threshold method. With this method
one can create a threshold map which has the same size as
this of the input image for binarization, corresponding to the
intensities within the local region. The output of this pro-
cedure is a map which includes individual thresholds (local
thresholds) for each pixel. From the obtained threshold map,
binarization is performed by setting the pixels which con-
tain higher intensities than the corresponding location at the
threshold map as logical truth and the others to be logical
false.

For our application, this method was applied on noise-
reduced data in order to minimize any artifacts. Smoothing
was performed in order to obtain a threshold map with the
help of Gaussian filtering Eq. (C1).

Parameters like the offset and the radius of the adja-
cent area were empirically selected. This procedure was per-

formed with the threshold_local function from the
Python skimage library. Small artifacts which remained were
removed by employing the remove_small_object
function from the same library. In order to cope with the
modus operandi of the method, before applying the method,
the outer part of the sample was filled with a mean intensity
value extracted from a region of the image where a fracture
was not contained.

2.3.2 Sato filtering

The Sato filtering method is one of the most well-known fil-
tering methods. The potential of this filter in finding struc-
tural information is well matching for the segmentation of a
fracture, which often has a long and thin string-like shape in
two-dimensional images. An elaborate analysis of the fun-
damentals of the filtering method can be found in the Ap-
pendix C.

2.3.3 Active contouring

In image processing, the active contouring method is one
of the conventional methods applied in order to detect,
smoothen, and clear the boundaries of the features of inter-
est (Caselles et al., 1993). Instead of the conventional active
contouring approach, which requires distinguishable gradi-
ent information within an image, we adopted the Chan–Vese
method (Chan and Vese, 2001), which makes use of the in-
tensity information. This has an advantage, especially for
XRCT applications, as in this case, due to the low signal-to-
noise ratio data. An elaborate analysis of the fundamentals of
the filtering method can be found in the Appendix D.

2.3.4 The random forest scheme

The random forest method (Amit and Geman, 1997) uses
statistical results from multiple classifiers, commonly re-
ferred to as decision trees. A decision tree, which is a sin-
gle classifier, is made of decision nodes and branches which
are bifurcated from the nodes. In image segmentation, each
node represents an applied filter, such as Gaussian or Hes-
sian, in order to create branches which represent the re-
sponses of the filter. These applied filters are also called fea-
ture maps or layers (Arganda-Carreras et al., 2017). In our
study, the chosen feature maps, in order to create decision
trees, were edge detectors (Sobel filtering, Gaussian differ-
ence and Hessian filtering), noise reduction filters (Gaussian
blurring) and membrane detectors (membrane projections).
The model was trained with the Trainable Weka platform
(Arganda-Carreras et al., 2017). The first slice of scanned
data at the top side of the sample was used for training, with
the corresponding result obtained from the active contouring
method (see Sect. 2.3.3). On the trained model, diced data
(Sect. E1) were applied, and their corresponding predictions
were merged, as explained in Sect. E3.
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Figure 2. Filtering effects. The images shown above are 2D partial images from the original image (a) and noise-reduced image (b) by
applying 3D adaptive manifold non-local mean filtering (Gastal and Oliveira, 2012). The red box areas are zoomed-in views (400× 400
pixels). The intensity surfaces for both zoomed-in images are shown below.

Figure 3. Workflows of the adopted conventional methods: the workflows of segmentation with Sato, local threshold (LT) method and active
contouring (AC) method are shown with sample images from each step. The magnified region is marked in red.

2.3.5 The U-net model

The U-net model, one of the convolutional neural network
(CNN) architectures proposed by Ronneberger et al. (2015),
was applied to segment the fractures. This model finds op-
timized predictions between input and target by supervis-
ing the model with a ground truth (GT). The GT was cho-
sen from the segmentation results from the active contouring
combined method (Sect. 2.3.3), while the input data were raw
images which were not treated with any noise reduction tech-
niques.

The model makes use of repeating downscaling of the in-
put image with the help of max-pooling layers and upscaling
with a deconvolutional layer. Additionally, before and after
each of the up-/downscaling layers, the convolutional lay-
ers which extract the feature maps are used with an activa-
tion function which introduces a nonlinearity into the model.

Each of the extracted and downscaled features are concate-
nated to the same size of the upscaled features, in order to
force the output pixels to be located at reasonable locations
(see Fig. 4).

The images which were used for training were cropped
into small tiles. This cropping had to be performed due to
memory limitations (see Sect. E1). This caused each tile to
contain varying characteristics, which also introduced diffi-
culty in training a model while taking these different charac-
teristics into account. In order to cope with this problem, the
normalization layer, which zero-centers the histogram of the
data in the range of−1 to 1, was used previously to insert the
data into the model. This was essential to deal with the tiles
with ring-shape artifacts, which were induced during the re-
construction of the XRCT data. Without this layer, the model
might not have been able to identify the fractures in such re-
gions due to the different profiles they bear in comparison to
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Figure 4. The schematic of the used 2D U-net model. The input image was down-/upsampled with the help of max-pooling and upsampling
layers. The features were extracted by convolutional layers. Those features extracted during downsampling were concatenated to correspond-
ing upsampled features (skip connection).

the other regions, since the artifacts affect the histogram and
shape of the features.

For the sake of accuracy, the data augmentation technique
was applied on the training dataset. This allowed us to enrich
the training dataset by employing a modification to the data;
thus, the model could be trained with sufficient data of dif-
ferent variations. This contributed to the prevention of over-
fitting, which made the model only capable of dealing with a
specific case. In our application, we varied the brightness of
the training data. Thus, the model was able to be trained by
data with variation. This was necessary to get good predic-
tions from all cropped tiles.

The implementation of the model was done by means of
the keras library in Python (Chollet et al., 2015), which in-
cludes useful functions for CNN, such as convolutional and
normalization layers. With the given model details, the input
data were separated into small pieces (splitting) and trained
with GT data (training), and finally they were merged back
to the size of the original image (merging). For more infor-
mation on these processes, please refer to Appendix E.

3 Results and discussion

We successfully conducted the segmentation of the data
acquired by the µXRCT scanning of a quenched Carrara
marble sample, with all the above-mentioned segmentation
schemes. By performing 2D segmentation on each slice of
scanned data and stacking the segmentation results, the full
3D segmented fracture network was able to be acquired for
the entire scanned domain.

Parameters like standard deviation, offset, and smoothing
factors for active contouring, of the methods based on con-
ventional schemes, such as the local threshold (Sect. 2.3.1),
Sato (Sect. 2.3.2) and active contouring (Sect. 2.3.3), were

fine-tuned empirically. It was time-consuming to decide
these parameters, since we had to find the appropriate pa-
rameters which would give the best results along the entire
data stack, while some slices contained different histogram
profiles or artifacts. Since the conventional schemes showed
a tendency to be very sensitive to artifacts, and the corre-
sponding outputs varied significantly with the applied pa-
rameters, applying noise reduction (Sect. 2.2) with carefully
chosen parameters was a fundamental step before applying
any conventional method, in order to minimize the error and
obtain good results. In the case of machine-learning-based
segmentation, the applied methods had the ability to classify
the fracture networks within the original data. Since these
machine-learning-based algorithms do not require any noise
reduction, this was one of the biggest advantages which not
only reduced the computation time, but also reduced the in-
put parameters tuning time.

In Fig. 5, the segmentation results of the top-viewed spec-
imen (x− y planar size of 2940× 2940 pixels) are shown.
We were able to acquire sufficiently good segmented results
for the whole x− y plane despite the beam-hardening ef-
fect at the edges and the ring artifacts in the middle of the
sample. We selected the 1000th slice of the scanned data
on the z axis, which is located at the middle of the sam-
ple. Note that this slice was never used as training data for
the machine-learning-based methods. In Fig. 6, the segmen-
tation results from the side-viewed sample (x− z planar size
of 2940×2139 pixels) are demonstrated. These images were
obtained by stacking the 2D segmentation results from x−y

planar images along the z axis and extracting the 1400th slice
on the y axis. By showing the results from the side and top,
we demonstrate that there was no observable discontinuity of
the segmented fractures, which could be caused by perform-
ing 2D segmentation and splitting.
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Figure 5. x− y-plane data extracted from the 1000th slice along the z axis (total 2139). The segmentation results from the (a) original data,
(b) LT, (c) Sato, (d) active contouring, (e) random forest and (f) U-net are shown.

Figure 6. x− z-plane data extracted from the 1400th slice along the y axis (total 2940). The segmentation results from the (a) original data,
(b) LT, (c) Sato, (d) active contouring, (e) random forest and (f) U-net are shown.

Based on the 2D results in both Figs. 5 and 6, we were
able to identify some advantages and limitations for each
segmentation method. With the local threshold method, we
were able to obtain the segmented results, which included
most of the features within the dataset. The method defi-
nitely has the benefit of easy implementation and short com-
putation time. Additionally, it was consistent in providing
a continuous shape for the fracture network. However, the
thickness of the segmented fracture was unrealistically large.
Also, due to the small contrast of the features, the method
faced challenges distinguishing the features precisely when
the fractures were located close to each other. In the case of
the Sato method, there was no significant benefit observed.

The method was able to capture some of the fractures which
had an elevated contrast; however, it was not able to iden-
tify the faint fractures which had a lower contrast. In addi-
tion, the method also showed a limitation in classifying the
fractures at the points where multiple fractures were bifurcat-
ing. This was expected as a characteristic feature of a Hes-
sian matrix-based method. Additionally, the pores detected
by this method tended to appear narrower than their real size.
Please note that the outer edges between the exterior and in-
ner part of the specimen were excluded with this method.

With the help of the active contouring method, we were
able to obtain better results than the other conventional seg-
mentation methods. The fractures were detected with thinner
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Figure 7. An extracted sub-volume from (1400, 1400, 1000) with a size of 6003 voxels is shown in (a). The segmentation results from
(b) local threshold, (c) Sato, (d) active contouring, (e) random forest and (f) U-net are shown. The 300th slice in the x− y plane is also
shown, as well as the 300th slices in the x− z and y− z plane. Each result is overlaid on the corresponding histogram-enhanced original
image for a clear comparison.

profiles, and pores were also identified accordingly, despite
the ring artifacts at the central area of the image (as shown
in Fig. 5). However, the fractures close to the outer rim still
appeared thicker. This was caused by the beam-hardening ef-
fect, which induces spatially varying brightness. Addition-
ally, some parts which contained faint fractures were rec-
ognized with a weak connection, which meant that the seg-
mented fractures were not well identified. This was induced
due to a variation of contrast of the fractures within the region
of interest. Although we cropped the images into small tiles
before applying the method, the fractures with low contrast
tended to be ignored when the fractures of larger contrast
were mostly taken into account. Despite the observed draw-
backs, the output of the method gave us sufficiently well-
segmented fractures; thus, we adopted this result as a “true”
image for the machine-learning-based models.

In the case of the random forest method, where training
happens with the use of a single slice of output of the ac-
tive contouring method, the trained model was able to detect
the fractures with finer profiles, better than any other con-
ventional method. More specifically, it was able to detect the
fractures well when two fractures were located close to each

other, which were identified as a merged one with the con-
ventional methods. However, as shown in Figs. 5 and 6, it
seems that the method is sensitive to ring artifacts based on
a significant number of fuzzy voxels classified as fractures at
the central part of the image, while this was not the case.

The segmentation results of the U-net method outper-
formed any other method employed in this comparison. With
the help of the trained model, we were able to obtain clear
segmentation results despite beam hardening and ring arti-
facts. In Fig. 5, all the fractures which were of high and low
contrast were efficiently classified while maintaining their
aperture scale. In addition, with the help of the overlapping
scheme, we obtained continuous fractures, even though we
trained the model and computed the predictions with cropped
images.

For the sake of detailed visualization, we demonstrate the
segmentation results in a 3D sub-volume (6003 voxels) in
Fig. 7, with overlaid results on the contrast-enhanced original
image on the x−y and x− z planes in the middle (300th) of
the sub-volume. The contrast of images was improved using
the histogram equalization method, which adjusted the in-
tensities of the image by redistributing them within a certain
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range (Acharya and Ray, 2005). In the 3D visualized struc-
ture with each of the adopted methods in Fig. 7, we were
able to obtain an overview of their unique responses. The
segmented fractures from each method are marked in red. In
the case of the local threshold method, as mentioned earlier,
the method was able to recognize all the features; however,
the fractures were identified with a broader size compared
to those in the original data. In addition, the outlines of the
results were captured with rough surface profiles. Although
the segmentation result with the method showed sufficiently
well-matched shapes in general, from the middle of the x−z-
plane overlaid image, we could conclude that the method was
not so appropriate in detecting sophisticated profiles, espe-
cially when the fractures were next to each other, since these
features were identified as a cavity. In the case of the Sato
method, as we showed in Figs. 5 and 6, we were able to con-
clude from the 3D visualized data that the method was not
so efficient in detecting the fractures. The roughness of the
surface was not able to be accounted for, and an unrealis-
tic disconnection between the fractures was observed due to
unidentified fractures with this method.

In the 3D visualized result with the active contouring
method in Fig. 7, the fractures were generally well classified
and visualized. However, as is shown in the overlaid images
in the top right corner, some fractures were not detected due
to their low contrast. In addition, the outlines of the fractures
with sophisticated shapes were not able to be classified well.

Although we show in Figs. 5 and 6 that the result with the
random forest method had challenges in dealing with ring
artifacts, the result in general showed accurate fracture pro-
files, as is demonstrated in Fig. 7 with an overlaid x−y-plane
image. The segmentation results showed that the method was
able to detect fractures with both high and low contrast. How-
ever, in the overlaid x− z-plane image, we can observe that
the bottom left side contained a lot of defects, which were
also found in the 3D visualization from the rough surface in
the left corner. Thus, we were able to conclude that the seg-
mentation was not performed well at some locations.

In the case of the U-net model, the segmented fractures
were well matched with the fractures in the original data.
Consequently, a clear outlook of fractures was also obtained
in the 3D visualized data.

Based on the environment mentioned in Appendix A, the
noise reduction took 8 h for the entire dataset. The total com-
putation time to obtain the segmentation results was 1.3 h
with local threshold, 35.6 h with Sato, 118.2 h with active
contouring, 433.7 h with random forest and 4.1 h with the U-
net method. Note that the merging and cropping steps which
were necessary in order to employ the active contouring,
random forest and U-net method are included in this time
estimate (approximately 40 min). The training times for the
machine-learning-based methods were 3.5 h for the random
forest and 2 h for the U-net method.

By counting the number of fracture-classified voxels and
dividing this by the total number of voxels, we were able to

Table 1. Summary of the estimated porosity for all adopted segmen-
tation methods in comparison to experimentally determined value

Methods Estimated Processing
porosity (%) time (hours)

Local threshold 25.00 1.3
Sato 11.42 35.6
Chan–Vese 15.41 118.2
Random forest 14.67 433.7
U-net 14.16 4.1
Experimental measurement 3 –

compute an approximated porosity out of the images. A sum-
mary of the estimated porosity from all segmentation meth-
ods is shown in Table 1. In this estimation, the outer rim was
excluded in the counting by applying a mask which was ob-
tained by the combination of the Otsu method for binariza-
tion and the fill and erosion method (Vincent and Dougherty,
1994). With the help of this evaluation, we acquired the
porosity of the local threshold method (25.00 %), Sato
method (11.42 %), active contouring method (15.41 %), ran-
dom forest method (14.67 %) and U-net method (14.16 %).
These values were significantly larger than the porosity ob-
tained from measurements of the sample, which was around
3 %. The porosity of the thermally treated sample was ob-
tained from measurements of volume changes before/after
quenching.

This mismatch between the numerically estimated values
and the measurement for porosity was expected. The resolu-
tion of the scanned data was not high enough to accurately
estimate the size of a single fracture aperture, although we
adopted the highest resolution we could achieve (Ruf and
Steeb, 2020a), which was this of 2 µ per voxel, since this
resolution is comparable to the aperture of a fracture. In ad-
dition, our intention was to obtain geometrical information
of fracture networks from a wide field of view. Nevertheless,
we used these results to speculate about the comparative ac-
curacy of the segmentation techniques, without emphasizing
on the accurate prediction of porosity, at this stage.

As we showed in Fig. 7, the apertures in the result of the
local threshold method were significantly overestimated. In
the case of the random forest and active contouring method,
although the methods were able to recognize fractures with
thin profiles, the porosity was exaggerated due to poorly clas-
sified pixels. For the porosity estimation based on the Sato
method, which showed the lowest value, we demonstrated
that there were many undetected features. By considering
these facts, the result from the U-net method again gave us
the best result among the compared methods.
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4 Conclusions

In this work, we demonstrate the segmentation workflows
for three different conventional segmentation methods and
two machine learning methods for µXRCT data from a dry-
fracture network, which was induced by thermal quenching
in Carrara marble. Despite the low contrast of the fractures
in the available data, due to their aperture being very close to
the resolution of the µXRCT, we were able to successfully
segment 3D fracture networks with the proposed segmenta-
tion workflows.

With the acquired segmentation results, we conducted a
quality and efficiency comparison and showed that the re-
sults with the U-net method were the most efficient and ac-
curate ones. Among the applied conventional segmentation
schemes, we were able to obtain the best quality of results
with the active contouring method, and the best time effi-
ciency with the local threshold method. For the adopted ma-
chine learning schemes, we trained the models with results
from the active contouring method. This was advantageous
compared to manual labeling, especially since manual label-
ing was far from being the best option, given that the frac-
tures were of low contrast. Manual labeling work would be
too arduous to obtain sufficient and accurate training data.
In addition, we also showed that the defects which were de-
tected with the conventional methods were improved with the
trained machine learning methods.

In order to perform the segmentation with conventional
methods, the application of the adaptive manifold non-local
mean filter, which is one of the noise reduction techniques,
was a fundamental step due to the inherent noise of the
scanned data. However, with the machine learning methods,
this step was not necessary. We were able to obtain fully seg-
mented data by providing fewer filtered data to the training
model. This was quite advantageous compared to conven-
tional approaches since the computation time and resources
requirements were significantly reduced. Additionally, the
fine-tuning of the input parameters, which was mandatory
for the conventional methods, did not play a significant role
in the attempt to get good segmentation results.

We showed that obtaining a full 3D structure of segmented
data can be performed efficiently by employing the proposed
segmentation workflows in 2D images. Thus, the big volume
of data could be dealt with a conventional workstation with-
out requiring any advanced properties of a specific image-
analysis workstation. Although we showed that the resolu-
tion of the data to estimate the exact size of apertures of
fracture networks was not sufficient, by comparing with the
actual measurement of porosity, the geometrical information
was acquired without demanding any additional procedure.
For future work, we intend to correlate the acquired geomet-
rical information regarding fractures with measurement re-
sults obtained from (mercury) porosimetry. In addition, char-
acterization of fractures in terms of length and angle will be
further investigated.

Appendix A: Technical specifications

An open micro-focus tube, FineTec FORE 180.01C TT, with
a tungsten transmission target from Finetec Technologies
GmbH, Germany, in combination with a Shad-o-Box 6K HS
detector with a CsI scintillator option from Teledyne DALSA
Inc., Waterloo, Ontario, Canada, with a resolution of 2940×
2304 pixels and a pixel pitch of 49.5 µm and 14-bit depth
resolution was employed. For more details about the system,
please refer to Ruf and Steeb (2020a). The highest achiev-
able spatial resolution with this system is about 50 line pairs
per millimeter at 10 % of the modulation transfer function
(MTF), which is equal to a resolvable feature size of about
10 µm. To achieve this, we use a geometric magnification of
24.76, which results in a final voxel size of 2.0 µm. With these
settings, the field of view (FOV) is about 5.88 mm in the
horizontal direction and 4.61 mm in the vertical one. Con-
sequently, the sample could be scanned over the entire di-
ameter of 5 mm. The overall physical size of the FOV and
consequently the 3D volume is required for the definition
of an appropriate representative elementary volume (REV)
for subsequent digital rock physics (DRP), which is at the
same time the challenge between a sufficient large FOV and
a high spatial resolution to resolve the fractures. For fur-
ther details about the image acquisition settings, see Ruf and
Steeb (2020a, b). In order to reduce the beam-hardening ef-
fect, the aluminum plate, 0.5 mm thick, was used as a filter
during the acquisition. The reconstruction was performed us-
ing the filtered backprojection (FBP) method implemented
in the software “Octopus Reconstruction” (Version 8.9.4-64
bit). With the same software, the simple beam-hardening
correction and ring artifact removal were conducted after
employing FBP. The reconstructed 3D volume consists of
2940×2940×2139 voxels, saved as an image stack of 2139
16-bit *.tif image files of 2940× 2940 resolution. Noise re-
duction was deliberately omitted in the reconstruction pro-
cess in order to provide an interested reader with the pos-
sibility to use their own adequate noise filtering methods.
The 3D dataset with an extraction to better show the homo-
geneous fracture network is illustrated in Fig. 1. The bright
gray area represents the calcite phase, whereas the dark gray
area in between the calcite phase shows the initiated micro
fractures which were generated by the thermal treatment.
As a consequence of the thermal treatment, a bulk volume
increase of about 3.0 % under ambient conditions can be
recorded if a perfect cylindrical sample shape is assumed.
The noise reduction and segmentation workflows were per-
formed with the hardware specification of Intel® Core™ i7-
8750H CPU @2.2GHz, 64 GB of RAM and Nvidia Quadro
P1000 (4 GB).
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Appendix B: Noise reduction schemes

The AMNLM filter operates in two parts: (1) creation of ma-
trices (manifolds), which are filled with weighted intensities
by coefficients, and (2) iterative processing on created ma-
trices. In the first part, in order to reduce the complexity and
increase the efficiency of the filter, Gastal and Oliveira (2012)
applied the principal component analysis (PCA) (Pearson,
1901) scheme on the created matrices. In the second part,
sequential steps were presented to adjust intensities of pix-
els based on components of created and PCA-treated matri-
ces. These procedures are called splatting, blurring and slic-
ing. Splatting and blurring are iterative steps on components
of created matrices with numerical modifications (adaptive
manifolds). After these iterative procedures, slicing is per-
formed, which consists merely of summing the outputs from
the iteration and normalizing them.

From the creation of manifolds, the coefficients to weight
intensities were designed to have the shape of a Gaussian dis-
tribution in the kernel. A typical two-dimensional isotropic
Gaussian kernel can be derived as follows:

G((x ,y);αf)= Aexp
(
−

x2
+ y2

2α2
f

)
, (B1)

where A is an arbitrary chosen amplitude of the Gaussian
profile, x and y are input vectors which have a mean value
of zero, and αf is the standard deviation of Gaussian distribu-
tion.

Using the above profile and input vectors, a finite-sized
Gaussian kernel (GK) could be defined. With the created
Gaussian kernel, the manifolds of weighted intensities fA
could be created as follows:

fA = vec(GK)T · vec(I), (B2)

where vec(·) is a vectorization operator, which transforms a
matrix into a column vector, and I is the 2D image matrix,
which contains intensities.

Each dimension of fA contains weighted intensities from
the image. The dimensionality of the PCA scheme was re-
duced in order to boost the computation efficiency while min-
imizing the loss of information (Jollife and Cadima, 2016).
This could be achieved by finding the principal components
which would maximize the variance of data in dimensions
of fA. The principal components could be obtained by com-
puting eigenvalues and their corresponding eigenvectors of
covariance matrix C. The covariance matrix C of fA is ac-
quired as follows:

C= (fA− E(fA))T (fA− E(fA)), (B3)

where the E operator is used to compute means of its argu-
ments.

Among the eigenvalues of the obtained C, the bigger ones
indicate higher variances of the data in the corresponding

eigenvector space (Jollife and Cadima, 2016). Thus, after
sorting the corresponding eigenvectors in order of magni-
tude of eigenvalues, by performing multiplication with these
eigenvectors and fA, the manifolds fA could be sorted in or-
der of significance. Based on this, the user-defined number
of dimensionality s is adopted, and the manifold fA is recast
into fS by extracting s number of principal components.

B1 Splatting

With the given extracted manifolds fS , the Gaussian
distance-weighted projection is performed as follows:

90 = exp
(
−

∑S
i=1|fi − ηi |

2

2αr2

)
, (B4)

with 90 being the coefficients to weight the original im-
age (projection), αr being a chosen filtering parameter which
states the standard deviation of filter range, and ηS denoting
the adaptive manifolds, which are noise-reduced responses
by a low-pass filter (Eq. B5) at the first iteration. These adap-
tive manifolds will be further updated via an iteration pro-
cess. Consequently, the Euclidean distances between both fS
and ηS are computed and integrated into 90 by considering
the standard deviation αr.

In order to obtain adaptive manifolds, the numerical de-
scription of the low-pass filter for a 1D signal in the work of
(Gastal and Oliveira, 2012) is as follows:

Sout[i] = Sin[i] + exp
(
−

√
2
αs

)
(Sin[i− 1] − Sin[i]), (B5)

where Sout is the response of the filter, Sin is the signal input,
and αs is a filtering parameter which states the spatial stan-
dard deviation of the filter. i denotes the location of a pixel in
the image. Note that this low-pass filter has to be applied to
each direction in an image due to its non-symmetric response
corresponding to the applied direction. With this relation, the
collected response has a smoother profile than the original
signal.

By performing element-wise multiplication on the ac-
quired 90 and the original image I, the weighted image 9
could be obtained such as

9 =90 ◦ I, (B6)

where ◦ denotes the Schur product (Davis, 1962).

B2 Blurring

In the computed weighted image 9 and the adaptive mani-
folds ηS , recursive filtering (RF) (Gastal and Oliveira, 2011)
is applied so that the values of each manifold in ηS can be
blurred accordingly in 9 and 90. Gastal and Oliveira (2011)
proposed to conduct this procedure in a downscaled domain
so that further smoothing could be expected after the follow-
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ing upscaling interpolation. The downscaling factor df is cal-
culated as (e.g., df = 2 states a half-scaled domain)

df =max(1,2blog2(min(αs/4,256αr))c), (B7)

by taking into account the adopted spatial/intensity filter
range of standard deviations αs and αr.

B3 Slicing

As mentioned above, the splatting and blurring steps are per-
formed in an iterative manner, and, at each iteration step, a
weight projection matrix90 and a weighted image9 are cre-
ated. By defining the blurring responses of these with RF as
9blur(k) and 90

blur(k), where k represents iteration number,
the final normalized result of the filter If is as follows:

If =

∑K
k=19

blur(k) ◦90(k)∑K
k=190

blur(k) ◦90(k)
, (B8)

where K is the total number of created adaptive manifolds.
Note that upscaling is performed by bilinear interpolation on
every 9blur and 90

blur to recover the domain size from the
downscaled one due to the blurring step.

B4 Adaptive manifolds

In the first iteration, the ηS values are obtained from the
low-pass filter response of fS with the use of Eq. (B5).
The responses of the low-pass filter locally represent the
mean value of the local intensities, which reflects the ma-
jority of intensities within the subdomain well, while it lacks
variation. By taking this drawback into account, Gastal and
Oliveira (2011) introduced a hierarchical structure to include
more representative information from additionally created
dimensions. These additional dimensions are created by clus-
tering the pixels of fS . By taking the ηS values as default
points, the pixels which had intensities above and below ηS
are classified accordingly.

This type of clustering, i.e., finding which pixels are lo-
cated above and below ηS , could be acquired by the eigenval-
ues of the covariance matrix of (fS−ηS)with Eq. (B3). From
the dot product of the obtained eigenvalues and (fS−ηS), the
clustered pixels are{
pi ∈ C−, if J < 0,

pi ∈ C+, otherwise,
(B9)

where J is the dot product, pi is pixel i, and C− and C+
denote the clusters with pixels below and above the manifold,
respectively.

Based on the computed clustersC− andC+, adaptive man-
ifolds are calculated as follows:

ηS− = Lp(C− ◦ (1−90) ◦ fS ,αs)�Lp(C− ◦ (1−90),αs), (B10)

and

ηS+ = Lp(C+ ◦ (1−90) ◦ fS ,αs)�Lp(C+ ◦ (1−90),αs), (B11)

where Lp indicates the low-pass filter in Eq. (B5), and� is an
element-wise division operator (Wetzstein et al., 2012). Note
that the low-pass filter is performed on a downscaled domain
such as the step in blurring. Thus, in order to match the size
of matrix, ηS is upscaled before it is applied to the splatting
step. These steps are performed iteratively (compare Eq. B8).
Thus, K = 2h− 1 numbers of manifold are created, while h
is defined as follows:

h= 2+max(2,d(blog2αsc− 1)(1−αr)e). (B12)

Appendix C: Sato filtering

The filter consists of two fundamental parts: a Gaussian filter
and a Hessian matrix. In the Gaussian filtering part, with the
Gaussian shape profile in Eq. (B1), a finite-sized kernel w
is designed by defining the input vectors (x ,y)= [−lw, lw]

with a mean value of zero and lw being a positive integer
defined by the standard deviation αf and truncate factor tf,
e.g., (lw = tf×αf+ 0.5). For the sake of stability of the ker-
nel behavior, the kernel is normalized by dividing it by the
sum of all of its elements. Finally, the Gaussian filter can be
expressed by means of the kernel with a convolution operator

as

If(X)=G(w(x ,y);αf) I(X), (C1)

where I is an intensity matrix (input image). In the spatial
domain, X and If are the Gaussian-filtered image.

The Hessian matrix is a matrix of second-order partial
derivatives of intensities in the x and y directions and is often
used to trace local curvatures with its eigenvalues. By bring-
ing this concept to an image, we can deduce a local shape at
selected pixels while observing the changes of intensity gra-
dients. The numerical description of a Hessian matrix with
a Gaussian-filtered image at selected pixel positions z is as
follows:

∇
2If(z)=

[
∂2

∂x2 If(z)
∂2

∂x∂y
If(z)

∂2

∂y∂x
If(z)

∂2

∂y2 If(z)

]
. (C2)

With Eq. (C1), we can rewrite the elements of the matrix
as the convolution of the input image and the second partial
derivatives of the Gaussian shape function. For example, the
first element of the Hessian matrix is

∂2

∂x2 If(z)=
∂2

∂x2G(w(x ,y);αf) I (zw), (C3)

where zw is the kernel which has its center at z and the same
size asG. In this way, we obtain a scalar element by convolu-
tion. Note that the second derivatives of the Gaussian shape
function are conventionally used for reducing the noise while
reinforcing the response of the signal with a specific standard
deviation (in this case αf) (Voorn et al., 2013). Thus, the el-
ements in Eq. (C3) represent an enhanced intensity response
of the aperture of the fracture in the original input image.
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Defining the local structure at pixel z with the help of
second-order partial derivatives could be done by calculating
the eigenvalues of the obtained Hessian matrix. In this case,
since ∂2

∂x∂y
If and ∂2

∂y∂x
If are identical, the matrix is symmetric

with real numbers; thus, the eigenvalues of the matrix can be
assured to be real numbers, and its eigenvectors have to be
orthogonal (Golub and Van Loan, 1996).

By defining the eigenvalues as λ1 and λ2, the line-like
shape curvature have a relation of |λ1| ≈ 0, |λ2| � 0 or vice
versa. This is because each eigenvalue states an amount of
gradient change at the selected pixel to each eigenvector di-
rection (orthogonal when λ1 6= λ2). Then, in the case of line-
like shape (long and thin), one must have a very small value
of |λ1|, while the other has a relatively bigger value of |λ2|.
Voorn et al. (2013) proposed to replace the intensity value
at pixel z to |λ2| under the above-mentioned line-like shape
condition and to zero otherwise. Finally, the maximum re-
sponses from the output images were accumulated in a range
of different αf to maximize the effects for various fracture
apertures.

Based on this scheme, the multi-scaled Sato filtering
method was applied on the noise-reduced data with the sato
function from the Python skimage library. Since the output of
this method is an enhanced response of a string-like shape
while minimizing the responses from the other shapes of
structures, a further binarization method has to be applied
to the output of the Sato method in order to obtain logical
type of results. Here, we adopted the local threshold method
(see Sect. 2.3.1) which was able to effectively distinguish
the enhanced responses out of the output. As we mentioned
in Sect. 2.3.1, before applying the binarization method, the
outer part of the scanned data was eliminated since the con-
trast between the outer and inner part is bigger than the con-
trast of the fractures in the data.

After applying the binarization scheme, the remaining arti-
facts were eliminated with the use of morphological schemes
such as erosion and remove_small_object, which
are also supported in the Python skimage library.

Appendix D: Active contouring

By employing the method which was introduced in the work
of Chan and Vese (2001), we were able to obtain finer pro-
files from the segmented images. The method requires an ini-
tial mask which is a roughly segmented binary image and
preferably contains most of the features of interest. Thus, we
adopted the result of LT (see Sect. 2.3.1) as the initial mask.
From the given initial mask and the corresponding original
image, we proceeded with the method to obtain a segmented
image. This could be done by minimizing the differences be-
tween the mean intensities of in-/outside areas, defined by
the boundaries of the initial mask C, and the intensities from
the original images I (x ,y) based on a modified version of

the Mumford–Shah functional (Mumford and Shah, 1989):

F(c1,c2,C)= µL(C)+ νA(in(C))+ λ1∫
in(C)

|I (x ,y)− c1|
2 dxdy+ λ2

∫
out(C)

|I (x ,y)− c2|
2 dxdy, (D1)

where F is the functional of c1 and c2, which are the aver-
age intensities within the region of in-/outside of C, L is the
length and A is the inside area of C. The term µ, ν, λ1 and
λ2 are input parameters.

In order to derive the numerical description within the
common domain (x ,y) ∈�, the level set scheme, which is
able to describe the boundaries of a feature of interest and its
area by introducing higher dimensional manifold (Osher and
Tsai, 2003), was combined in this relation. By following this
scheme, the boundaries of the initial mask C and inner-/outer
areas of it can be defined as
C :8(x ,y)= 0,

in(C) :8(x ,y) > 0,
out(C) :8(x ,y) < 0,

(D2)

where 8(x ,y) is a Lipschitz continuous function to assure
that it has a unique solution for a given case.

With the help of the scheme and a Heaviside step function
H , Eq. (D1) could be rewritten within the common domain
� as follows:

F(c1,c2,8)= µ

∫
�

|∇H(8(x ,y))|dxdy

+ ν

∫
�

H(8(x ,y))dxdy

+ λ1

∫
�

|I (x ,y)− c1|
2H(8(x ,y))dxdy

+ λ2

∫
�

|I (x ,y)− c2|
2(1−H(8(x ,y)))dxdy. (D3)

For fixed 8, the intensity averages of interior c1 and exterior
c2 of the contour could be obtained as

c1(8)=

∫
�
I (x ,y)H(8(x ,y))dxdy∫
�
H(8(x ,y))dxdy

(D4)

and

c2(8)=

∫
�
I (x ,y)(1−H(8(x ,y)))dxdy∫
�
(1−H(8(x ,y)))dxdy

. (D5)

Based on these relations, in order to minimize F , the au-
thors used the following scheme by relating it with an Euler–
Lagrange equation. By applying the artificial time t ≥ 0, the
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descending direction of 8 is
∂8

∂t
= δ(8) [ µdiv

(
grad(8)
|grad(8)|

)
− ν− λ1(I (x ,y)− c1)

2

+ λ2(I (x ,y)− c2)
2 ] , (D6)

where δ is the dirac delta function, which is the first deriva-
tive of the Heaviside function H in one-dimensional form;
thus, only the zero level-set part could be considered. From
the initial contour 8(x ,y, t = 0), a new contour was able to
be defined using the above relation till it reached a stationary
state via iteration of the artificial time t .

Based on the theory, the method was applied on the orig-
inal data which had not been dealt with through the noise
reduction technique. Additionally, the same masking crite-
ria which were applied before the local threshold method
(Sect. 2.3.1) were employed before using the method. This
is because the method is not able to cope with the image data
which contain a large contrast between the inner and outer
part of the sample, as mentioned before. Thus, by covering
the exterior part with a manually extracted mean intensity
of the non-fracture matrix, an effective segmentation of the
fracture was able to be performed. Furthermore, in order to
capture faint fractures which had a lower contrast than the
other fractures, the method was applied on the cropped im-
ages with a size of (400×400 voxels). These segmented small
tiles were merged later into the original size of the image (see
Fig. 5).

Appendix E: Splitting, training and merging for the
U-net model

The schematic of the used U-net model is shown in Fig. 4.
We adopted a 2× 2 kernel for max-pooling and deconvolu-
tional layers. The kernel size of the convolutional layers was
decided to be 3× 3. The adopted activation function for the
convolutional layer was the rectifier linear unit (relu), which
has a range of output from 0 to ∞. It returns 0 for nega-
tive inputs and has a linear increment up to infinity for pos-
itives. On the final output layer, the sigmoid activation func-
tion was chosen, which has a nonlinear shape and an output
range from 0 to 1. Consequently, the obtained output was a
probability map where a number close to 1 was considered as
the fracture, and the rest was accounted for as non-fracture.
The workflow of data processing is described in Fig. E1, and
the same principle holds for the random forest scheme.

E1 Splitting

Due to the in-house computer’s memory limitations, the big
size of the complete dataset could not be dealt with the
adopted machine learning model. This was because of the
data which would be used for training and the model itself
had to be allocated in the random-access memory (RAM);
thus, a training dataset which exceeded its memory limita-
tions could not be applied. With the given information, the

size of the applicable data for training was decided by means
of non-/trainable parameters, induced by the number and size
of the layers within the model. The size of the images and the
batch size of the training data indicated the number of train-
ing data per one iteration of training (see Sect. E2). In our ap-
plication, moreover, since we wanted to take advantage of the
GPU, which could boost the training and processing time, the
limitation of usable memory was even more restricted within
the memory size of a GPU, which is normally smaller than
the RAM and is not easily able to be expanded.

Consequently, due to these facts, the original size of 2D
image data was split into small tiles. The original image size
of 2940× 2940 pixels was cropped into multiple 400× 400
smaller images. We already knew that this could potentially
induce some disconnection of the segmented fractures along
the tiles, since the segmentation accuracy of the U-net model
is low at the edges of given data due to the inevitable infor-
mation loss during up-/downscaling. In order to overcome
and compensate this drawback, the overlapping scheme was
applied, splitting the tiles to have 72 pixels of overlapping re-
gion at their borders. In this manner, 81 tiles were produced
per one slice of a 2D original image. In addition, the format
of the images which was “unsigned int 16” originally, was
normalized into “unsigned int 8” after cutting the evaluated
mean minimum and maximum intensities. This helped to re-
duce the memory demand caused by training data while pre-
venting an oversimplification of the inherent histogram pro-
files.

E2 Training

Training was performed with the training dataset mapping
the cropped original image and GT. Only few data (60 slices)
of scanned data (where the data were located at the top part
of the sample) were used as the training dataset. In case of
the training of the U-net model, this number of slices corre-
sponded to 4860 cropped tiles. Among the dataset, 80 % of
the data (3888 tiles) were applied for updating the internal
coefficients of the model, and the rest of the data (972 tiles)
were used to evaluate the performance of the trained model
by comparison between the predictions and GT.

The batch size in machine learning defines how many
training data are to be used for updating the inner parame-
ters of the model during training. This implies that the batch
size would directly affect the memory usage since the de-
fined number of training data would be held on the memory.
Therefore, in this case, this number was selected carefully as
5 so as to not reach our GPU memory limitation. The steps
per epoch was set at 777, estimated based on the following
relation: ≈ training data: 3888

batch size: 5 – in a way that all the provided
trainable data could be applied on each epoch. Finally, the
model was trained with 100 epochs so that the segmentation
accuracy could be enhanced along the iterations.

We adopted a “binary cross entropy” loss function in order
to deal with the binarization of images (classification of non-
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Figure E1. The workflow of the machine-learning-based model. The green grid indicates the edges of the diced tiles (400×400 voxels) from
the original image (2940× 2940 voxels). After inputting each fragment into the trained model, we obtained the corresponding predictions.
By applying the threshold (≈ 0.5 in the most cases) obtained by the Otsu method, the tiles were binarized and merged to shape the original
size of the image.

/fractures). The loss function L is defined such as

L=−gt log(p)− (1− gt) log(1−p), (E1)

where gt is the given truth, and p is the predicted probability
of the model. Thus, the model was updated in a way that the
difference between truths and predictions could be narrowed
down. The “Adam” optimizer (Kingma and Ba, 2017) was
used for this optimization. The adopted fixed learning rate
was 1× 10−4.

E3 Merging

After training the model by following the procedure men-
tioned earlier (Sect. E2), the model was able to predict the
non-/fractures within the given tiles. In order to obtain the
same size of output with the original image, we performed
this merging procedure, which was basically placing every
prediction tile at their corresponding locations after collect-
ing the predictions from the entire dataset from the model.
Since we applied the overlapping scheme Sect. E1 in order to
prevent disconnections between tiles, 36 pixels at the edges
were dropped for each tile which were considered as inaccu-
rate predictions before merging. After the merging, the pre-
dictions which were in the range of 0 to 1 due to the out-
put layer of the training model were binarized with the Otsu
method (Otsu, 1979) for the final segmentation output. The
pixels which were classified as zeros in the predictions were
excluded from this binarization by assuming that these pixels
were certainly non-fractures.

Code availability. The first version of the fracture network segmen-
tation used for classification of sophisticated shapes of fracture net-
work from quenched Carrara marble data (Ruf and Steeb, 2020b)
is preserved at https://doi.org/10.18419/darus-1847, available via
no registration and Creative Commons Attribution conditions, and
developed publicly at Python (https://www.python.org/ (Python,
2020, last access: 4 September 2022), MATLAB (https://www.
mathworks.com/, Natick, 2018, last access: 4 September 2022) and
BeanShell (https://beanshell.github.io/, Beanshell210, 2020, last ac-
cess: 4 September 2022).

Data availability. The tomographic data of quenched Carrara mar-
ble (Ruf and Steeb, 2020b) used for validation efficiency and test-
ing effectiveness of adopted segmentation methods of in the study
are available at DARUS (“micro-XRCT data set of Carrara mar-
ble with artificially created crack network: fast cooling down from
600 ◦C”) via https://doi.org/10.18419/darus-682, with no registra-
tion and Creative Commons Attribution conditions.
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