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Abstract. We study the time series of vertical ground dis-
placements from continuous global navigation satellite sys-
tem (GNSS) stations located in the European Alps. Our goal
is to improve the accuracy and precision of vertical ground
velocities and spatial gradients across an actively deform-
ing orogen, investigating the spatial and temporal features of
the displacements caused by non-tectonic geophysical pro-
cesses. We apply a multivariate statistics-based blind source
separation algorithm to both GNSS displacement time se-
ries and ground displacements modeled from atmospheric
and hydrological loading, as obtained from global reanaly-
sis models. This allows us to show that the retrieved geodetic
vertical deformation signals are influenced by environment-
related processes and to identify their spatial patterns. Atmo-
spheric loading is the most important process, reaching am-
plitudes larger than 2 cm, but hydrological loading is also im-
portant, with amplitudes of about 1 cm, causing the peculiar
spatial features of GNSS ground displacements: while the
displacements caused by atmospheric and hydrological load-
ing are apparently spatially uniform, our statistical analysis
shows the presence of N–S and E–W displacement gradients.

We filter out signals associated with non-tectonic defor-
mation from the GNSS time series to study their impact on
both the estimated noise and linear rates in the vertical di-
rection. Taking into account the long time span of the time
series considered in this work, while the impact of filtering
on rates appears rather limited, the uncertainties estimated
from filtered time series assuming a power law plus white
noise model are significantly reduced, with an important in-
crease in white noise contributions to the total noise budget.
Finally, we present the filtered velocity field and show how
vertical ground velocity spatial gradients are positively cor-
related with topographic features of the Alps.

1 Introduction

The increasing availability of global navigation satellite sys-
tem (GNSS) observations, from both geophysical and non-
geophysical networks, pushed forward the use of ground dis-
placement measurements to study active geophysical pro-
cesses on land and ice and in the atmosphere, with appli-
cations for a broad range of Earth science disciplines (e.g.,
Blewitt et al., 2018). Studies on active mountain building
in particular can now benefit from the use of GNSS vertical
ground motion rates to get new insights into the contribution
of the different processes at work to the formation and evolu-
tion of mountain reliefs (e.g., Faccenna et al., 2014a; Sternai
et al., 2019; Dal Zilio et al., 2021; Ching et al., 2011). Pro-
posed mechanisms of rock uplift rate include isostatic adjust-
ment to deglaciation, tectonic shortening, isostatic response
to erosion and sediment redistribution, isostatic response to
lithospheric structural changes, and dynamic adjustment due
to sub-lithospheric mantle flow (e.g., Faccenna et al., 2014b).
All of these processes come together to contribute to the ac-
tual vertical ground motion rates estimated from GNSS dis-
placement time series, and constraining their relative contri-
bution to mountain dynamics is challenging because of the
different spatial and temporal scales involved and the short
observational time period with respect to the characteristic
timescales of the mentioned processes.

The availability of long-lasting (i.e., > 8 years) GNSS po-
sition time series minimizes the impact of transient and sea-
sonal signals in the vertical rate estimates (Masson et al.,
2019). However, it is worth considering that GNSS measure-
ments record ground displacements due to a variety of mul-
tiscale processes (from continental-scale geodynamics and
loading to local-scale hydrology and tectonics), resulting in
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the presence of several deformation signals superimposed on
the main linear trend, which is commonly associated with
geodynamic processes at the scale of the current (decadal)
geodetic observation window.

Excluding tectonic and volcanological processes, and once
the effect of tides associated with solid earth, the poles
and the ocean is removed, variations in atmospheric pres-
sure loading and fluid redistribution in the Earth’s crust are
the main cause of vertical ground displacement recorded by
GNSS stations worldwide (Liu et al., 2015). Atmospheric
pressure and mass changes cause time-variable displacement
because of the elastic response of the Earth’s surface to these
load variations, with vertical displacements usually being
significantly larger than the horizontal ones, which appear
as spatially correlated signals with a dominant 1-year period
(e.g., Fu and Freymueller, 2012; Fu et al., 2012). Seasonal
displacements are also caused by non-tidal sea surface fluc-
tuations. This process is of particular relevance in areas near
the oceans, while inland its effect is significantly reduced
(van Dam et al., 2012).

The presence of spatially correlated signals in GNSS
time series can result from either the aforementioned large-
scale processes, generally described as common-mode sig-
nals (CMS), or processing errors, generally described as
common-mode error (CME), like the mismodeling of dis-
placements caused by solid Earth, ocean and atmosphere and
satellite orbit mismodeling, which induces draconitic signals
(Dong et al., 2006).

In the literature, the distinction between CMS and CME
is not always clear, and spatially correlated signals are often
removed from the time series as CME without attempts at
interpretation (e.g., He et al., 2017; Hou et al., 2019; Serpel-
loni et al., 2013; Kreemer and Blewitt, 2021). Depending on
the pursued goal, this approach can be fair. For example, if
we were interested in the study of long-term linear deforma-
tion, we might consider CMS as CME, but it is worth noting
that the “CME” definition for signals clearly associated with
geophysical processes might be misleading. The removal of
CME and CMS in GNSS position time series, which is also
known as time series filtering, can help improve the preci-
sion of the estimated linear velocities. Moreover, a better un-
derstanding of CMS and CME origin can also provide new
information about other deformation mechanisms.

Here we use the European Alps as a natural laboratory to
investigate the spatial and temporal contribution of different
geophysical processes, which we identify through a varia-
tional Bayesian independent component analysis (vbICA),
on the vertical ground displacements recorded by a dense
and spatially uniform network of continuous GNSS stations
in the 2010–2020 time span. The Alps represent the highest
and most extensive mountain range in Europe (see Fig. 1).
We focus on the vertical component, which is nominally less
accurate and precise than the horizontal component, because
this mountain belt is characterized by significant ground up-
lift and spatial vertical velocity gradients that are correlated

with topography (Serpelloni et al., 2013). The present-day
convergence between Adria and the Eurasian plate is largely
accommodated in the eastern Southern European Alps (e.g.,
Serpelloni et al., 2016), where the Adriatic lithosphere un-
derthrusts the Alpine mountain belt, and here part of the ob-
served vertical uplift is associated with active tectonics (An-
derlini et al., 2020). Conversely, in other Alpine domains,
positive vertical velocities most likely derive from a com-
plex interplay of deep-seated geodynamic and isostatic pro-
cesses (e.g., Sternai et al., 2019). In the Alpine framework,
more accurate and precise measurements of geodetic verti-
cal ground motion rates can provide new constraints on the
dynamics contributing to the ongoing vertical rates and their
spatial variations, with implications for the study of moun-
tain building processes, responses to deglaciation and active
tectonics.

The structure of this work is as follows. In Sect. 2 we
present methods commonly used for extracting spatially cor-
related signals in GNSS time series. In Sect. 3 we describe
the data and methods used in this work. In Sect. 4 we charac-
terize the spatiotemporal behavior of three different indepen-
dent datasets (GNSS vertical displacements and atmospheric
and hydrological loading model displacement time series)
applying a vbICA decomposition to each of them and study-
ing how they are related. This allows us to spatially and tem-
porally characterize the signals contributing to the measured
GNSS displacement time series and associate them with geo-
physical processes. We also estimate the vertical velocities
and the noise features of the GNSS stations after removing
the non-tectonic signals identified with the vbICA analysis.
In Sect. 5 we compare the results of different filtering meth-
ods and use the results of our time series analyses in order
to evaluate the effects of the signal filtering on the accuracy
and precision of the vertical velocities of the study region,
which are of particular importance to better characterize the
processes generating the Alpine uplift.

2 Methods for the extraction of spatially correlated
signals in GNSS time series

Two widely used techniques for extracting CMS from a
GNSS network are the stacking filtering method (SFM,
Wdowinski et al., 1997) and the weighted stacking filtering
method (WSFM, Nikolaidis, 2002), which differs from the
first because of a weighting factor based on the uncertainty
associated with the GNSS data at each epoch.

Examples of time series filtering with the WSFM are pro-
vided by Ghasemi Khalkhali et al. (2021) in northwestern
Iran, Jiang et al. (2018) in California and Zhang et al. (2020)
in China. The networks of the aforementioned studies span
less than 1000 km. However, when considering networks
covering larger areas, the assumption that the CMS has uni-
form spatial distribution throughout the network is not valid
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Figure 1. Map of the study area showing the location of GNSS stations. Colored circles show GNSS stations considered in the time series
analysis, with colors representing the length of the time interval for which data are available at each station (0–25 years). The grey circles
show GNSS stations not included in the time series analysis to reduce contamination of deformation processes not associated with the Alps.
Dark grey lines represent mapped faults from the Geodynamic Map of the Mediterranean (Morelli and Barrier, 2004). The dashed box
includes GNSS stations affected by anthropogenic deformation signals (Palano et al., 2020).

(Dong et al., 2006; Tian and Shen, 2016; Ming et al., 2017),
and the stacking methods become imprecise.

To take into account spatial heterogeneities, Tian and
Shen (2016) propose an alternative stacking approach: the
correlation-weighted spatial filtering (CWSF) method. Un-
like the SFM, CWSF includes the spatial variability of CMS
through a weighting factor, which depends on the correlation
coefficient between the residual position time series and the
distance between the stations. Zhu et al. (2017) use CWSF
to estimate the CMS of the Crustal Movement Observation
Network of China and discuss the effects of the thermal
expansion and environmental loading, which include atmo-
spheric pressure loading, non-tidal ocean loading and conti-
nental water storage. They find that while vertical CMS are
mainly associated with environmental loading, thermal ex-
pansion plays a minor role.

A filtering method similar to CWSF, called CMC imaging,
has been developed and used by Kreemer and Blewitt (2021)
in western Europe to extract common-mode components that
are as local as possible. The main difference between CWSF
and CMC imaging is that the former uses both the distance
and the correlation coefficient among the stations as weight-
ing factors, while the latter only uses the correlation coeffi-
cient, showing that it is representative of the distance among
the stations. While the authors do not explore the nature of
the extracted CMS, they show that the CMC imaging method
is very effective at filtering out CMS from GNSS time series,

increasing the accuracy and precision of the velocity estima-
tion. In particular, they show that the minimum length of a
time series needed to retrieve the long-term velocity, within
a given confidence limit, is almost halved after the filtering.

Multivariate statistical techniques like principal compo-
nent analysis (PCA) and independent component analysis
(ICA) are filtering techniques based on a completely differ-
ent approach than stacking. Since they allow researchers to
take into account the spatial variability of CMS (Dong et
al., 2006), ICA and PCA are used to characterize and inter-
pret them. Multivariate statistics techniques are also applied
to study spatially correlated seasonal displacements, which
have been the target of several pieces of research in the last
few years.

In California, Tiampo et al. (2004) associate a seasonal
signal, extracted through the Karhunen–Loeve expansion
technique, with the combined effect of groundwater and pres-
sure loading. In Taiwan, Kumar et al. (2020) find a close re-
lationship between atmospheric loading and CMS, extracted
using a PCA, while Liu et al. (2017) apply a ICA to show
that annual vertical displacements are associated with atmo-
spheric and hydrological loading in the Nepalese Himalaya
region.

Yuan et al. (2018) use three principal components (PCs)
for CMS filtering over China because of the presence of spa-
tial gradients related to the large extension of the study re-
gion. In that work, the authors show that environmental load-
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ing is one of the sources of the CMS and that vertical GNSS
velocity uncertainties are significatively reduced (54 %) af-
ter CMS filtering. Pan et al. (2019) find that the precision of
the GNSS velocities, especially in the vertical component,
increases after removing spatially correlated signals related
to draconitic errors and to climate oscillation (La Niña–El
Niño). The spatially correlated signals are identified by ap-
plying a PCA to the GNSS time series where the linear trend
and the seasonal signals are removed. Pan et al. (2019) is
a good example of how vertical displacements are more af-
fected by climate-related processes and data processing er-
rors than the horizontal displacements, demonstrating that
the vertical component is particularly worth analyzing with
care.

The application of the ICA also proved effective for time
series filtering, as shown by Hou et al. (2019): they identify
spatially correlated signals, and even though they do not pro-
vide an interpretation, they classify them as CME and show
that the precision of the time series significantly increases af-
ter the filtering by ICA. Liu et al. (2015) use both the PCA
and FastICA algorithms (Hyvärinen and Oja, 1997) to ex-
tract and interpret CMS as caused by atmospheric and soil
moisture loading in the UK and the Sichuan–Yunnan region
in China.

Other examples of the influence of the non-tectonic pro-
cesses on vertical velocity estimation are provided by Riddell
et al. (2020), who study the vertical velocities of the GNSS
stations in Australia to estimate the contribution of the glacial
isostatic adjustment. One of the results of Riddel’s work is
the reduction of the vertical velocity uncertainty, achieved
by first subtracting the displacements associated with atmo-
spheric, hydrological and non-tidal ocean loading from the
GNSS time series and then filtering the residuals by apply-
ing both PCA and ICA.

The vbICA method uses a multivariate statistics-based
blind source separation algorithm (Choudrey, 2002) imple-
mented by Gualandi et al. (2016) for solving the problem
of blind source separation of deformation signals in GNSS
position times series and has been successfully used to ex-
tract tectonic and hydrological transient deformation signals
in (e.g., Gualandi et al., 2017a, b; Serpelloni et al., 2018).
Larochelle et al. (2018) applied vbICA to study the relation-
ship between GNSS and Gravity Recovery and Climate Ex-
periment (GRACE)-derived displacements in the Nepalese
Himalaya and Arabian Peninsula, with the goal of extracting
seasonal signals and identifying the processes that generate
them. Serpelloni et al. (2018) and Pintori et al. (2021a) use
vbICA to characterize hydrological deformation signals as-
sociated with the hydrological cycle at a spatial scale not
resolvable by GRACE observations, separating groundwa-
ter storage signals from other surface mass loading signals,
while Silverii et al. (2021) perform a vbICA decomposition
on GNSS time series in the Long Valley Caldera region (Cal-
ifornia, USA) to separate volcanic-related signals from other
deformation processes, in particular those associated with

hydrology. This method has also recently been applied to
interferometric synthetic aperture radar (InSAR) data (Gua-
landi and Liu, 2021) to estimate the displacement caused by
sediment compaction in San Joaquin Valley (California) and
to separate a seasonal signal from the tectonic loading in the
central San Andreas Fault zone.

3 Data and methods

3.1 GNSS dataset and time series analysis

Particularly over the European plate, GNSS networks man-
aged by national and regional agencies provide a rather uni-
form spatial coverage (e.g., https://epnd.sgo-penc.hu/ and
https://gnss-epos.eu/, last access: 1 September 2021). Fig-
ure 1 shows the distribution of continuous GNSS stations
operating across the great Alpine area where, excluding
Switzerland for which raw observations are not accessible,
GNSS stations cover, rather uniformly, both the mountain
range and the European and Adriatic forelands. We analyze
the raw GPS observations using the GAMIT/GLOBK (ver-
sion 10.71) software (Herring et al., 2018), following the
standard procedures of the repro2 IGS reprocessing scheme
(http://acc.igs.org/reprocess2.html, last access: 1 Septem-
ber 2021). This is part of a large processing effort, including
> 4000 stations in the Euro-Mediterranean and African re-
gions (Serpelloni et al., 2022), where sub-networks, made up
of < 50 stations dynamically and optimally selected based
on daily data availability, are processed independently with
GAMIT and later tied together using common sub-net tie
sites and IGb14 core stations using the GLOBK software.
The details of the processing are given in Sect. S1 in the
Supplement. The result of our analysis is a set of ground
displacement time series, realized in the IGb14 reference
frame (ftp://igs-rf.ign.fr/pub/IGb14, last access: 1 Septem-
ber 2021). The resulting position time series (hereinafter
IGb14 time series) have been then analyzed in order to es-
timate and correct instrumental offsets due to changes in
the station’s equipment setup, as extracted from sitelog or
RINEX file headers.

We consider the vertical displacement time series of the
stations between longitude 0–21◦ and latitude 42–50◦ N (see
colored circles in Fig. 1) in the 2010–2020 time span, ex-
cluding the sites on the northern Adriatic coast, known to be
affected by anthropogenic deformation signals (dashed box
in Fig. 1) due to gas extraction (Palano et al., 2020) and the
stations located in the northern and central Apennines, where
other tectonic and geodynamic processes are going on. We
focus on the last decade in order to have the most uniform
set of continuous measurements possible over at least a 10-
year time span. We acknowledge that some of the stations
shown in Fig. 1 have much longer time series, but this time
interval maximizes the number of simultaneous observations
at many stations.
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The IGb14 vertical displacement time series are analyzed
with the blind source separation algorithm based on vbICA
(Choudrey and Roberts, 2003; Gualandi et al., 2016). This
technique falls under the umbrella of the so-called unsuper-
vised learning approaches, and it aims to find statistically
independent patterns that can be linearly combined to re-
construct the original dataset. Differently from other com-
monly used ICA approaches, like for example FastICA (Hy-
varinen and Oja, 1999), the adopted vbICA is a modeling
approach that uses a mix of Gaussians to reproduce the prob-
ability density functions (PDFs) of the underlying sources.
The variational Bayesian approach introduces an approxi-
mating PDF for the posterior parameters of the model, and
the cost function to be maximized is the negative free en-
ergy of the model, which can be explicitly calculated once
a specific form for the approximating posterior PDF is cho-
sen. This framework is particularly advantageous because it
allows for more flexibility in the description of the sources’
PDF, giving researchers a chance to model multimodal dis-
tributions and to take into account missing data in the input
time series.

The input time series contains a secular motion, roughly
representing the vertical rate in the IGb14 reference frame,
which is superimposed by a variety of signals of different
temporal and spatial signatures. The first step of our analy-
sis is to estimate a linear component to represent the secular
motion and remove it from the time series. This is required
by the fact that the vbICA is more effective in separating the
sources when the temporal correlation in the dataset is low.
Here, rather than using a classic trajectory model (e.g., Be-
vis and Brown, 2014) to model and detrend the original time
series, in order to avoid biases in the estimates of station ve-
locities due to the short length of the time series and the pos-
sible presence of strong nonlinear signals, we take this step in
a multivariate sense as in Pintori et al. (2021a). We perform
a first ICA decomposition considering eight components (or
ICs). The number of components is determined by applying
an F test to establish whether a more complicated model is
supported by the data at a 0.05 significance level (Kositsky
and Avouac, 2010). The results of this analysis are reported
in Fig. S1 in the Supplement and show that one component,
nominally IC2, contains a linear trend, with some cross-talk
with a seasonal (annual) signal, as shown in Fig. 2.

Before discussing the vbICA results, we briefly explain
how to interpret the temporal evolution and the spatial distri-
bution of the ICs to make it possible to retrieve the displace-
ments associated with them. The color of each GNSS site
in Fig. 2 represents the IC2 spatial response (U2), which in-
dicates the maximum displacement associated with the IC2,
while the temporal function V2 is normalized between 0 and
1. The displacement associated with IC2 between two epochs
(e.g., t1 and t2, with t2 > t1) at the station n is computed as
V1(t2) ·U1n−V1(t1) ·U1n(t1), where V1(t2) is the value as-
sociated with the temporal evolution of the IC at the epoch
t2. U1n depends on the site but not on the epoch; its unit of

measurement is millimeters, while V has no units of mea-
surement. As a result, V1 ·U1n is in millimeters. It follows
that if U1n is positive, as we observe for each station, and
V1 is increasing (V1(t2) > V1(t1)), the stations move up-
ward during the t2− t1 time interval. On the other hand, if
V1(t2) < V1(t1), the stations move downward during t2− t1.
As regards Fig. 2, assuming t1 = 2010.0 and t2 = 2020.0,
the displacements associated with IC2 are ∼ 30 mm upward
at the red GNSS stations, ∼ 30 mm downward at the blue
GNSS stations and ∼ 0 mm at the white GNSS stations.

We fit a linear trend to the temporal evolution of IC2 (V2)
using the following function:

V2(t)= q +m · t +A · sin(2π · t +ϕ). (1)

Once we have estimated m and q from Eq. (1) via a non-
linear least-squares approach, we compute the displacements
associated with IC2, considering as its temporal evolution the
function y= q +m · t . Following this, we remove the com-
puted displacements from each original IGb14 time series,
obtaining the detrended dataset used in the subsequent de-
composition step. The advantage of this approach compared
to a trajectory model is that it is not necessary to assume any
temporal evolution of the deformation signals a priori, except
for the limited number of functions that make up Eq. (1). This
is particularly advantageous in cases where either transients
of unknown origin or amplitude or phase fluctuations of the
seasonalities are affecting some stations and could lead to a
mismodeling by a trajectory model. Notice in particular how
signals potentially biassing the linear trend, like the multi-
annual ones in case of short time series, are separated from
the IC representing the stations’ velocities.

The results of the vbICA applied to the detrended time
series are shown and discussed in Sect. 4.1.

3.2 Meteo-climatic datasets

The results of the decomposition of the geodetic dataset
are compared with the results obtained from the analysis
of displacement time series associated with different meteo-
climate forcings. In particular, here we consider hydrologi-
cal atmospheric loading and precipitation from global grid-
ded models. These time series are analyzed with the vbICA
method already used for the geodetic dataset, and the results
are compared in Sect. 3.2.

The Land Surface Discharge Model (LSDM), developed
by Dill (2008), simulates global water storage variations of
surface water in rivers, lakes, wetlands, soil moisture, and
water stored as snow and ice. The LSDM is forced with pre-
cipitation, evaporation and temperature from an atmospheric
model developed by the European Centre for Medium-Range
Weather Forecasts (ECMWF). Using the Green’s function
approach, Dill and Dobslaw (2013) compute daily surface
displacements at 0.5◦ global grids caused by LSDM-based
continental hydrology (hereinafter HYDL) and by non-tidal
atmospheric surface pressure variations (hereinafter NTAL).
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Figure 2. Temporal evolution and spatial response of the IC2 of the GNSS decomposition. Time series have been corrected only for instru-
mental offsets.

We also considered the École et observatoire des sciences
de la terre (EOST) loading service, which provides a model
for the atmospheric and hydrological-loading-induced dis-
placements. Ground displacements are computed using the
load Love Numbers estimate from a spherical Earth model
(Gegout et al., 2010). The atmospheric loading is modeled
using the data of the ECMWF surface pressure, assuming an
Inverted Barometer ocean response; the hydrological load-
ing includes soil moisture and snow height estimated from
the Global Land Data Assimilation System (GLDAS/Noah;
Rodell et al., 2004). All the datasets we have considered are
provided in the center of figure reference frame, have daily
temporal resolution and spatial resolution of 0.5◦. It is worth
noting that neither LSDM-based nor EOST models consider
deep groundwater variations. GRACE data are often used
to study hydrologically induced deformation associated with

groundwater; in fact, through the analysis of the gravity field
variations, it is possible to retrieve changes through time of
the water masses. GRACE has the advantage of being influ-
enced by groundwater variations, which are not taken into
account by the HYDL model, but at the cost of a lower tem-
poral (i.e., monthly) and spatial (∼ 300 km) resolution.

The precipitation data we use are provided by the NASA
Goddard Earth Sciences Data and Information Services Cen-
ter (Huffman et al., 2019), and they are daily with a spatial
resolution of 0.1◦.
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4 Results

4.1 Decomposition of GNSS time series

Figure 3 shows the result of the vbICA decomposition on the
detrended displacement time series, using seven components
as suggested by the F test.

IC1 is a spatially uniform signal characterized by an an-
nual temporal signature, as shown by the power spectral den-
sity (PSD) plot in Fig. 3a.

The mean of the maximum amplitudes is 26 mm, while
the histogram showing the distribution of displacement am-
plitudes is shown in Fig. S4a.

IC2 shows a spatial response characterized by a clear E–
W gradient, but (differently from IC1) its temporal evolution
has not a dominant frequency. The spatial response U2 of
the eastern stations (in blue) is mainly negative, while the
U2 of the western stations (in red) is mainly positive. This
means that when V2 is increasing the western (red) stations
move up, while the eastern (blue) ones move down. The sites
in the central portion of the study area (in white) are very
slightly affected by the IC2 component. The features of IC3
are analogous to those of the IC2, with the exception that a
N–S gradient is present. The mean of the amplitude of the
absolute value of IC2 spatial distribution is 6.7 mm, and it is
5.6 mm for IC3. The histogram showing the distribution of
the absolute value is shown in Fig. S4b and c.

IC4 is an annual signal like IC1 but has a heterogeneous
spatial response: while some stations move upward, others
move downward. The mean of the absolute amplitude value
of the displacements is 2.7 mm; the relative histogram is
shown in Fig. S4d. The distribution of stations displaced with
this phase difference seems to be mostly affected by geo-
graphical features: the stations located in mountain regions
subside when V3 increases, whereas the stations far from
relief move upward. The remaining three components are
likely associated with local processes and discussed in the
Sect. S3.

4.2 GNSS vs. environmental-related displacements

As discussed in Sect. 1, atmospheric and hydrological load-
ing are likely the main sources of vertical displacement in the
greater Alpine region. Since they are both uniform in terms
of spatial response, showing smooth spatial variations, we
decided to check if the first three ICs of the GNSS decompo-
sition are associated with displacements due to atmospheric
and hydrological loading and their pattern of variability.

The vbICA analysis separates the data into statistically in-
dependent signals, which is useful because independent sig-
nals are often caused by different and independent sources
of deformation. Nonetheless, a single source of deformation,
such as atmospheric or hydrological loading, can be spatially
heterogeneous and characterized by peculiar spatiotemporal
patterns. In this case, the vbICA separates a single source of

deformation into different components associated with dif-
ferent spatiotemporal patterns. As a consequence, we de-
cided to apply a vbICA decomposition to HYDL and NTAL
model displacement time series in order to check if they
show any pattern and if they resemble the spatial distribu-
tion of IC1, IC2 and IC3 for GNSS decomposition. NTAL
and HYDL data have not been detrended.

We analyze the HYDL- and NTAL-induced ground dis-
placement models (EOST- and LSDM-based) with vbICA
in order to characterize the spatial pattern and temporal re-
sponse associated with these deformation sources and study
any possible link with the geodetic deformation signals de-
scribed in Sect. 4.1. We use the results of the global models to
estimate the hydrological loading, even though we are aware
that some local effects might not be captured. In fact, consid-
ering the extension of the study area, it is very complicated
to take into account the local features needed to estimate the
hydrological loading with a better precision than the one pro-
vided by the global models.

In particular, in this section we show the results obtained
using the LSDM-based models because they take into ac-
count the water stored in rivers, lakes and wetlands, while the
EOST models do not. The results obtained using the EOST
models are presented in the Sect. S2. Figures 4 and 5 show
the spatial response, the temporal evolution and the PSD of
the ICs obtained using three components to the NTAL (4) and
HYDL (5) ground displacements. We decided to use three
components to reproduce the displacement patterns of IC1,
IC2 and IC3 for the GNSS decomposition.

The first IC of both NTAL and HYDL shows a uniform
spatial response, as with IC1 of the GNSS dataset (Fig. 3a).
The maximum displacements associated with NTAL are very
similar to GNSS both in terms of mean and median ampli-
tude (Table S1a in the Supplement) and distribution (Fig. 6a),
while for the HYDL model the amplitude is about 2 times
smaller than NTAL.

IC2 and IC3 of both NTAL and HYDL show E–W and
N–S gradients in the spatial response, respectively, as ob-
served for IC2 and IC3 of the GNSS dataset (Fig. 3b, d).
Since the IC spatial responses of the NTAL and HYDL
decomposition are very similar, we also consider the sum
of the displacement associated with NTAL and HYDL
models, which can be considered “environmental loading”:
we use the notation NTAL+HYDL_ICn to indicate the
sum of the displacement associated with the nth compo-
nent of the NTAL and HYDL decomposition. The am-
plitude of NTAL+HYDL_IC1, NTAL+HYDL_IC2 and
NTAL+HYDL_IC3 are only slightly lower than the ones of
GNSS_IC1, GNSS_IC2 and GNSS_IC3, as shown in Fig. 6g,
h and i and in Table S1a.

Concerning the temporal evolution, IC1 of the HYDL
model is an annual signal, while the IC2 and IC3 PSD plots
indicate the presence of multi-annual signals. Unlike the
HYDL decomposition, all the ICs of the NTAL decomposi-
tion contain the annual frequency (especially IC2), whereas
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Figure 3. Temporal evolution, power spectral density and spatial response of (a) IC1, (b) IC2, (c) IC3 and (d) IC4.

IC3 also contains semiannual frequencies. It is also worth
noting that the temporal evolution of the ICs associated with
the NTAL model are much more scattered than the ones re-
sulting from HYDL, clearly indicating that the displacements
due to atmospheric pressure variations can show large fluc-
tuations at a daily timescale.

We also perform a vbICA decomposition on both datasets
using two and four components, and this is presented in the
Supplement (Figs. S6 and S7). When using only two ICs, the
results obtained (Fig. S6) are very similar to the first two ICs
of the three-component decomposition. The first three ICs of
the four-component decompositions (Fig. S7) have both tem-
poral evolution and spatial distribution that are very similar
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to what is shown in Figs. 4 and 5. IC4 of the NTAL model
has an annual signature and an E–W gradient with a shorter
wavelength compared to IC2, while IC4 of the HYDL de-
composition has a NW–SE gradient. This suggests that the
N–S and E–W spatial patterns associated with the meteo-
climatic datasets are a robust feature, being insensitive to
the number of components chosen in the decomposition. It
is also worth noting that the decompositions of the NTAL
and HYDL models explain 98.89 % and the 97.03 % of the
total variance when using three ICs, suggesting that increas-
ing the number of the ICs is not necessary. As a result, in the
following discussion we refer to the results obtained from
the three-component decomposition using the LSDM-based
models, but the results obtained using the EOST models are
fully comparable (Sect. S2).

In order to quantify the agreement between the displace-
ments associated with the hydrological and atmospheric
pressure loading and the ICs of the GNSS dataset displaying
consistent spatial patterns (IC1, IC2, IC3), we compute, for
each GNSS station, the Lin concordance correlation coeffi-
cient (Lin, 1989) between the displacement reconstructed by
the ICs associated with the different LSDM-based models.
Unlike Pearson’s correlation coefficient, Lin’s takes into ac-
count similarities regarding both the amplitudes and shapes
of the two time series.

The IC1 of the GNSS decomposition (GNSS_IC1) is com-
pared with the first component of both NTAL (NTAL_IC1)
and HYDL (HYDL_IC1) datasets by associating each GNSS
site with the nearest grid point where NTAL and HYDL dis-
placements are computed.

When considering the NTAL_IC1, we observe (Fig. S8a)
a high temporal correlation with GNSS_IC1, while the
correlation between GNSS_IC1 and HYDL_IC1 is signif-
icantly lower (Fig. S9a). In both cases the value of the
Lin correlation coefficient is quite uniform in the dataset
(∼ 0.59 for NTAL_IC1 and ∼ 0.35 for HYDL_IC1). The
Pearson correlation is similar to Lin’s (0.60 for NTAL_IC1
and 0.35 for HYDL_IC1), indicating that the amplitude
of both NTAL_IC1 and HYDL_IC1 is similar to the
GNSS_IC1 amplitude. It is worth noting that if we con-
sider NTAL+HYDL_IC1, the correlation with GNSS_IC1
increases to ∼ 0.73 (Fig. 7a). As a result, we can inter-
pret GNSS_IC1 as the combined contribution of NTAL and
HYDL, where NTAL plays the dominant role.

When considering IC2, we observe similar correlations
between GNSS_IC2 and either NTAL_IC2 or HYDL_IC2
(Fig. S8b, b). Nonetheless, in this case the correlation pat-
terns are less uniform than the IC1 case, and a few sta-
tions are even negatively correlated with both NTAL_IC2
and HYDL_IC2 displacements. The sites where GNSS_IC2
displacements are negatively or weakly correlated with
NTAL_IC2 are the ones with the lowest IC2 amplitude.
In fact, if we consider the stations whose maximum dis-
placements associated with GNSS_IC2 are larger than 3 mm,
which are 411 out of 545, their mean Lin correlation

with NTAL_IC2 is 0.52, while the stations with amplitudes
smaller than 3 mm have a mean correlation of 0.17. This is
due to the fact that, given the low displacements associated at
these stations, the correlation is more sensitive to noise. The
agreement between the GNSS_IC2 and NTAL_IC2 is also
confirmed by the Pearson correlation coefficient between
the temporal evolution of the two ICs, which is 0.63, while
the Pearson correlation between GNSS_IC2 and HYDL_IC2
is 0.28. The same pattern is observed when comparing
GNSS_IC2 with NTAL+HYDL_IC2 (Fig. 7b): using 3 mm
as threshold between large and small GNSS_IC2 maximum
displacements, the mean correlation is 0.57 for the stations
most affected by this signal and 0.14 for the remaining ones.
This suggests that GNSS_IC2 is also likely related to NTAL
and HYDL loading processes.

The Lin correlation between GNSS_IC3 and
NTAL+HYDL_IC3 resembles what was just shown
for IC2 (Fig. 7c): at sites where the GNSS_IC3 maximum
amplitude is larger than 3 mm, which are 414 out of 545,
the mean correlation with NTAL+HYDL_IC3 is 0.44,
while it is 0.10 for the remaining ones. As for IC1, both
GNSS_IC2 and IC3 displacements are best reproduced when
considering the combined effect of NTAL and HYDL (see
Figs. S8c, S9c compared to Fig. 7). The Pearson correlation
between GNSS_IC3 and NTAL_IC3 is 0.47, while between
GNSS_IC3 and HYDL_IC3 is 0.30.

To summarize, the three common-mode signals compo-
nents of the GNSS decomposition (IC1, IC2, IC3) are likely
due to the combined effect of the atmospheric and hydro-
logical loading. Due to the similarity between the spatial re-
sponse of displacements associated with these two processes,
it is possible that the vbICA technique is not able to separate
them in the geodetic data; nonetheless, it highlights their spa-
tial variability through IC2 and IC3.

Examples of comparisons between climate-related dis-
placements reconstructed at two different sites and the GNSS
decomposition are shown in Fig. 8.

Concerning IC4 of the GNSS decomposition, it describes
vertical motions in phase and is very well correlated with
the daily mean temperature of the investigated area (Fig. 9).
Temperature data are provided by the E-OBS dataset from
the EU-FP6 project UERRA (https://www.uerra.eu, last ac-
cess: 21 December 2020; Cornes et al., 2018). From the point
of view of the spatial distribution of this component, most
of the stations located in the mountain chain subside when
the temperature increases, while the remaining stations uplift
as the temperature increases. Figure S15 shows some cross
sections plotting the maximum vertical displacements asso-
ciated with IC4 together with topography, showing this pe-
culiar spatial pattern.

4.3 Vertical ground motion rates and noise analysis

We show the impact of the filtering on GNSS displacement
rates and uncertainties, where the filtered time series are the
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Figure 4. Temporal evolution, power spectral density and spatial response of IC1, IC2 and IC3 of the NTAL model.

result of subtracting the combined displacement associated
with the first four ICs discussed in Sect. 4.1, which represent
the combined effect of the seasonal processes in phase with
temperature and of the atmospheric and hydrological load-
ing, from the IGb14 time series. We refer to these corrected
time series as IC-filtered time series.

Velocities and uncertainties are estimated using the Hector
software (Bos et al., 2013) assuming a priori noise models.
Noise is commonly described as a power law process

Px(f )= P0(f/f0)
k, (2)

where Px is the power spectrum, f the temporal frequency;,
P0 and f0 are constants, and k is the spectral index and indi-
cates the noise type.

If the power spectrum is flat (i.e., all frequencies have the
same power), then the errors are statistically uncorrelated
from one another, the spectral index is zero and the noise
is called “white”. Otherwise the noise shows a dependency
with the frequency content and is referred to as “colored”. In
GNSS time series the presence of noise with a reduced power
spectrum at high frequencies has been typically observed,
with the most popular models being a mix of random walk or
“red” noise (k =−2) and flicker or “pink” noise (k =−1).
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Figure 5. Temporal evolution, power spectral density and spatial response of IC1, IC2 and IC3 of the HYDL model.

Red noise is typically associated with station-dependent ef-
fects, while pink noise can be associated with mismodeling
in GNSS satellites orbits, earth orientation parameters (Klos
et al., 2018), and spatially correlated large-scale processes of
atmospheric or hydrospheric origin (Bogusz and Klos, 2016).
A flicker plus white noise model is commonly used in the
analysis of GNSS time series (e.g., Ghasemi Khalkhali et al.,
2021 and references therein).

In order to select the best noise model for the input time
series, we test different combinations of noise models, choos-
ing the one with the lowest value of the Akaike informa-
tion criterion (AIC) and of the Bayesian information criterion
(BIC). In particular we consider the following combinations:

– flicker plus white noise,

– a general power law (k not assigned) plus white noise
(PL+WN),

– flicker plus random walk plus white noise.

Following the AIC and BIC criteria, the preferred noise
model is PL+WN, where the parameters of the noise model
(i.e., the spectral index k) are estimated by the software using
the maximum likelihood estimation (MLE) method. MLE is
also used to estimate the station’s rates and the associated
uncertainties.

We then compare the vertical velocities and their uncer-
tainties, as obtained before and after IC filtering (Fig. 10).
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Figure 6. Histogram of the maximum displacements associated with (a) IC1 of the NTAL decomposition (orange) compared with the IC1 of
the GNSS decomposition (blue). Panel (b) is the same as (a) but referring to IC2. Panel (c) is the same as (a) but referring to IC3. (d) IC1 of
the HYDL decomposition (orange) compared with the IC1 of the GNSS decomposition (blue). Panel (e) is the same as (d) but referring to
IC2. Panel (f) is the same as (d) but referring to IC3. (g) IC1 of the NTAL+HYDL decomposition (orange) compared with the IC1 of the
GNSS decomposition (blue). Panel (h) is the same as (g) but referring to IC2. Panel (i) is the same as (g) but referring to IC3.

Although annual and semi-annual signals are often included
in the time series modeling, the displacements associated
with the first four ICs already contain these seasonal terms
(Fig. 3). Consequently, the IC-filtered time series are mod-
eled only with the linear trend plus temporally correlated
noise, while in the unfiltered time series modeling annual and
semi-annual terms are also included.

Figure 11a shows histograms representing the differences
in the vertical velocity estimates obtained from filtered and
unfiltered time series. The differences are spatially quite ho-
mogeneous and of the order of tenths of a millimeter per year,
with a median value of −0.15 mm yr−1. The velocity differ-
ences are almost entirely caused by the displacements associ-
ated with IC1, which have a median rate of −0.12 mm yr−1.

Concerning the uncertainties associated with the vertical
velocity, the impact from IC filtering is much more important
(Figs. 10f and S17): the initial median error is 0.30 mm yr−1,
and the final error is 0.17 mm yr−1.

The IC filtering also has a strong impact on the noise char-
acteristics. In fact, while in the unfiltered time series the per-
centage of white noise of the PL+WN model is negligible in
most of the stations, it becomes dominant in the filtered ones
(Fig. 12). This indicates that a large portion of the power law
noise is associated with the displacements described by the
first four ICs, i.e., the atmospheric and hydrological loading
and temperature-related processes.
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Figure 7. Lin correlation coefficients between (a) GNSS-IC1 and NTAL+HYDL_IC1, (b) GNSS_IC2 and NTAL+HYDL_IC2, and
(c) GNSS-IC3 and NTAL+HYDL_IC3. Histograms of the correlation coefficients are also reported.

5 Discussion

5.1 Displacement time series filtering

Our goal is to estimate the vertical velocity of the GNSS
stations associated with long-term geodynamic and tectonic
processes. Following this, we seek to remove signals asso-
ciated with meteo-climatic processes. Instead of subtracting
the modeled displacements from the IGb14 time series, such
as those made available through loading services like GFZ,
we prefer to subtract the displacements associated with the
ICs. This approach minimizes biases due to the mismatch be-
tween the actual signal caused by atmospheric and hydrolog-
ical loading and the modeled ones. Larochelle et al. (2018)
reached similar conclusions by comparing GRACE measure-

ments and the results from ICA decompositions of GNSS
displacements, which turned out to be more accurate in
correcting GNSS from seasonal displacements than remov-
ing GRACE displacements, which smooths local effects in
the data acquisition and processing. In order to support the
approach followed, we estimated the scatter of the GNSS
displacement time series by computing the mean standard
deviation of (1) the time series given as input to vbICA
(IGb14-time series), (2) the IGb14 time series minus the
combined displacement associated with the first three ICs
and (3) the IGb14 time series minus the displacements due
to HYDL+NTAL from GFZ models. The resulting standard
deviation is 5.32, 4.10 and 4.73, respectively. This demon-
strates that removing the displacement associated with the
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Figure 8. Comparison at the GNSS LYSH site (lat: 49.55◦; long: 18.45◦) between the displacements associated with (a) GNSS_IC1 and
NTAL+HYDL_IC1, (b) GNSS_IC2 and NTAL+HYDL_IC2, and (c) GNSS_IC3 and NTAL+HYDL_IC3. Panels (d), (e) and (f) are the
same as (a), (b) and (c), respectively, for the STV2 (lat: 44.57◦; long: 6.11◦) site. A 30 d moving average filter is applied to better visualize
the data.

Figure 9. Comparison between the daily mean temperature of the
study area (orange) and the temporal evolution of IC4 (black dots).
The shaded area represents the time interval associated with the
maximum displacements shown in Fig. S15.

first three ICs is more effective at reducing the scatter than
removing the HYDL+NTAL contribution. Furthermore, in
Fig. S19 we show that the filtering with HYDL+NTAL re-
sults in a smaller increase in the white noise percentage in
the time series compared to the IC filtering.

Considering that the stacking methods are widely used to
estimate and remove CMS and CME from GNSS time series
(see Sect. 2), we compare the results obtained adopting the
SFM and WSFM methods with the output of vbICA, in par-
ticular with the displacements associated with IC1 (Fig. 3a),
which is clearly a CMS, given its homogeneity in its spatial
response. CMS with the stacking methods is estimated using
the GNSS_TS_NRS code (He et al., 2020), and it is com-
pared with the displacements associated with IC1 estimat-
ing the Lin correlation coefficient. Figure 13 shows that there
is an almost-perfect agreement between the IC1-related dis-
placements and the CMS extracted with both stacking meth-
ods, suggesting that even simple approaches, such as SFM
and WSFM, perform well at the scale of the study area.
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Figure 10. (a) Vertical velocities from the unfiltered GNSS time series. (b) Vertical velocities from IC-filtered time series, obtained after
subtracting the displacements associated with the first four ICs. (c) Difference between the velocities of (a) minus velocities of (b). Panels (d),
(e) (f) are the same as (a), (b) and (c), respectively, but showing the error associated with the vertical velocities.

We also estimate the vertical velocities of the GNSS sta-
tions after filtering the CMS using the two stacking methods.
The rate differences between unfiltered and filtered time se-
ries have a median value of−0.15 and−0.10 mm yr−1, using
the WSFM and SFM, respectively (Fig. 11b, c). These values
are close to the rates associated with IC1 displacements (me-
dian=−0.12 mm yr−1), which are the primary cause of the
velocity difference obtained from IGb14 and IC-filtered time
series, suggesting that the rate difference does not strongly
depend on the filtering method adopted. As already shown
in Sect. 4.3, the errors associated with the velocities of the
unfiltered and filtered time series, which have median values
of 0.30 and 0.17 mm yr−1, respectively, have about the same
value of the velocity difference between filtered and unfil-
tered time series. It follows that the velocity differences are,
from a statistical point of view, barely significant. Nonethe-

less, it is worth considering that, according to the LSDM-
based model, the displacements resulting from the combined
effect of hydrological and atmospheric loading have a nega-
tive rate (median=−0.11 mm yr−1; Fig. S16c) in agreement
with the rate observed for IC1 (V1 in Fig. 3), suggesting
that environmental loading may cause a small subsidence,
at least in the observed time span, which is captured by IC1.
However, the rates of the displacements due to hydrologi-
cal loading are model dependent: according to LSDM, they
show a negative linear trend (Fig. S16b), as opposed to what
is observed using the EOST model (Fig. S16e). As a result,
the rates of the displacements due to atmospheric and hy-
drological loading computed using the EOST model are not
in agreement with the rates of the IC1 displacements. This
is most likely a consequence of the differences in modeling
the hydrological-loading-induced displacements; in particu-
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Figure 11. Histogram of the difference between the velocity of the unfiltered time series and the filtered ones using (a) the displacements
associated with the first four ICs, (b) the weighted stacking filtering method and (c) the stacking filtering method.

lar, the EOST model takes into account only water stored as
snow and soil moisture, whereas the LSDM model also in-
cludes the contribution of rivers, lakes and wetlands.

The stacking methods used to estimate the CMS are easier
and faster to implement than the vbICA analysis. Depending
on the research target, these common-mode signals might be
worth removing in order to obtain a more precise, and even-
tually accurate, estimation of the GNSS linear velocities or
retained to study, for example, seasonal deformation. Multi-
variate statistics and/or source separation algorithms applied
to ground displacement time series allow one to extract and
interpret them in terms of the physics behind them through a
comparison with other displacement datasets or models. Fur-
thermore, time series can be filtered not only from CMS but
also from signals associated with spatially uncorrelated pro-
cesses, as we did in Sect. 4.3 estimating the vertical veloc-
ities filtered from non-tectonic processes related to the first
four ICs.

In Sect. 4.3 we also show that the colored noise in the time
series is significantly reduced by the IC filtering. This result
is in agreement with the results of recent studies conducted in

other regions, such as Antarctica (Li et al., 2019) and China
(Yuan et al., 2018). Both studies show that ICA or PCA fil-
tering of GNSS time series suppress the colored noise ampli-
tudes but have little influence on the amplitude of the white
noise. Furthermore, Klos et al. (2021) analyzes the effect of
atmospheric loading on the noise of GNSS stations in the Eu-
ropean plate, finding that the noise is whitened when NTAL
contribution is removed.

The description of atmospheric processes at the scale of
the Alps can be seen as small scale when compared, for ex-
ample, to the circulation in the Northern Hemisphere. Small-
scale processes are usually interpreted as noise, but they may
affect the large-scale dynamics (e.g., Faranda et al., 2017).
It follows that these small-scale processes should be repre-
sented with an appropriate stochastic formulation. Since the
CMS are typically characterized by PL+WN noise, the link
that we find between CMS and atmospheric and hydrologi-
cal signals could provide a hint as to the type of noise that
is more suitable to describe such small-scale perturbations
when modeling the large-scale dynamics of the atmosphere.
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Figure 12. Histograms of (a) white noise percentage in the unfiltered time series and (b) filtered time series. Panels (c) and (d) are the same
as (a) and (b) but for the spectral index. The filtering is done by subtracting the displacements associated with the first four ICs.

5.2 ICs interpretation

Our analysis supports the interpretation that the displace-
ments associated with IC1, IC2 and IC3 are likely due to
the combined effect of the hydrological and atmospheric
loading, whose spatial responses are not homogeneous over
the study area. In support of this interpretation we can re-
fer to Brunetti et al. (2006), who applied a PCA to pre-
cipitation data in the greater Alpine area. They highlighted
the presence of N–S and E–W gradients in the spatial re-
sponse of meteo-climate forcing processes. The authors sug-
gest that the main cause of the spatial and temporal vari-
ability of the precipitation is the North Atlantic Oscillation
(NAO), which also causes fluctuation of the atmospheric
pressure (Vicente-Serrano and López-Moreno, 2008). It is
then likely that weather regimes like the NAO and the At-
lantic Ridge influence both NTAL and HYDL, which is
mainly forced by precipitation, meaning that the spatial pat-
terns of the ICs associated with atmospheric and hydrolog-
ical loading are the same for the NAO (N–S) and Atlantic
Ridge (E–W). The vbICA algorithm is not able to separate

NTAL and HYDL because they are not independent from a
mathematical point of view. This emerges also from the re-
cent work by Tan et al. (2022), who performed an ICA on
GNSS time series in Yunnan Province in China and inter-
preted IC1 as the average effects of the joint patterns from
soil moisture and atmospheric-induced annual surface defor-
mations. Let us consider for example the case of IC2_NTAL
and IC2_HYDL. They have two different temporal evolu-
tions (V2_NTAL and V2_HYDL), but the spatial distribu-
tions (U2_NTAL and U2_HYDL) have the same pattern, i.e.,
they only differ for a weighting factor k. Thus, we can write
U2_NTAL= k ·U2_HYDL.

The displacement d resulting from the combined effect of
IC2_NTAL and IC2_HYDL is then

d = IC2_NTAL+ IC2_HYDL

= U2_NTAL ·V2_NTAL+U2_HYDL ·V2_HYDL
= U2_HYDL · (k ·V2_NTAL+V2_HYDL).

As a result, the displacement due to
IC2_NTAL+ IC2_HYDL is identified by a single spa-
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Figure 13. Comparison between the displacement associated with IC1 at the GNSS ZYWI site and the CME estimated with the stacking
filtering method (a) and the weighted stacking filtering method (c). We also show the histogram representing the Lin correlation between
the displacements associated with the IC1 and the CME estimated with the stacking filtering method (b) and the weighted stacking filtering
method (d) at each site. We point out that the CME computed with the aforementioned methods is, by definition, the same at each station,
whereas the displacements associated with IC1 have the same temporal evolution but (slightly) different amplitudes. We plot the station
ZYWI as an example.

tial distribution U2_HYDL and a temporal evolution
k ·V2_NTAL+V2_HYDL. Thus, if we do not make any
prior assumptions about V2_NTAL and V2_HYDL, it is
not possible to separate IC2_NTAL and IC2_HYDL from a
statistical point of view.

In Sect. 4.2 we show that not only IC2_NTAL and
IC2_HYDL have very similar spatial patterns but that
IC1_NTAL and IC1_HYDL, as well as IC3_NTAL and
IC3_HYDL, also have similar spatial responses. Thus, the
GNSS time series decomposition in the Alpine area does not
allow for separating the effect of the hydrological loading
from the atmospheric loading with an ICA approach.

We also performed a vbICA analysis on precipitation
data (RAIN) recorded over the study region using three ICs
(Fig. 14). The spatial pattern of the ICs is analogous to the
ones associated with NTAL and HYDL (Figs. 4 and 5).

This supports the hypothesis that precipitation, atmo-
spheric pressure, hydrological loading and ground displace-
ment are somehow interconnected and characterized by a
common climate-related forcing, whose characteristics of
spatial variability are described by the NAO and Atlantic
Ridge weather regimes.

We point out that HYDL, NTAL and GNSS are models or
measurements of vertical displacements, which are positive
when upward and negative when downward, while RAIN is
the amount of fallen rain per unit area.

Let us consider for the sake of simplicity the IC1 case, but
what we are going to discuss holds true also for IC2 and IC3.

The temporal evolution of NTAL_IC1 (NTAL_V1) is
correlated with the temporal evolution of RAIN_IC1
(RAIN_V1, Fig. 15g–i) and anti-correlated with the
time derivative of the temporal evolution of HYDL_IC1
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Figure 14. IC1, IC2 and IC3 of the RAIN decomposition.

(HYDL_V1, Fig. 15a–c). HYDL_V1 is also highly anti-
correlated with RAIN_IC1 (Fig. 15d–f).

Our interpretation of the correlations discussed above and
schematically represented in Fig. 16 is as follows: when the
weather goes from a low-pressure regime to a high-pressure
regime, the increasing pressure causes a downward dis-
placement of the ground (Fig. S8). Regardless, low-pressure
regimes are often associated with precipitation, which is why
IC1_RAIN and IC1_NTAL are correlated. It follows that
when we go from high-pressure conditions to low-pressure
conditions, the ground motion, if we assume a pure elas-
tic process, is affected by two forces acting in opposite di-
rections: the decreasing atmospheric pressure induces uplift,
while the precipitation load causes downward motion. Rain
also affects hydrological loading, increasing it and causing a
downward ground motion. As a consequence, the temporal
derivative of HYDL_IC1, which is more sensitive to small

but fast variation of hydrological loading than HYDL itself,
is negative and anti-correlated with IC1_RAIN.

Atmospheric pressure variations happen at fast temporal
scales, and thus the switch from high- to low-pressure con-
ditions (and vice versa) can happen in a few days and cause
quite large (centimetric) ground vertical displacements. Hy-
drological loading acts at longer timescales, and there are
several factors to consider besides precipitation, in particular
the temperature, which causes evapotranspiration. Nonethe-
less, computing the time derivative of the hydrological load-
ing allows us to detect “fast” variations due to the change of
the atmospheric pressure and the precipitation events often
associated with it.

The interpretation of IC4 is less straightforward, and the
pattern we see in the Alps (Fig. S15) is not easy to explain.
Air temperature increase can induce both positive and neg-
ative vertical displacements. One possible mechanism to ex-
plain negative vertical displacements associated with temper-
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Figure 15. (a) Cross correlation between the temporal evolution of the IC1 of the NTAL decomposition and the time derivative of the
temporal evolution of the IC1 obtained by decomposing HYDL. Panel (b) is the same as (a) but referring to IC2. Panel (c) is the same as (a)
but referring to IC3. (d) Cross correlation between the temporal evolution of the IC1 of the precipitation data decomposition and the time
derivative of the temporal evolution of the IC1 obtained by decomposing HYDL. Panel (e) is the same as (d) but referring to IC2. Panel (f) is
the same as (d) but referring to IC3. (g) Cross correlation between the temporal evolution of the IC1 of the NTAL decomposition and the
temporal evolution of the IC1 of the precipitation data decomposition. Panel (h) is the same as (g) but referring to IC2. Panel (i) is the same
as (g) but referring to IC3.

Figure 16. Schematic representation of the ground vertical displacement due to elastic deformation during high-pressure (a) and low-
pressure (b) conditions. Yellow arrows reflect displacements associated with atmospheric pressure, and blue arrows reflect displacements
associated with precipitation and evapotranspiration.

ature increase is that in the Alpine valleys the water content
increases as the temperature increases because of the snow
and ice melting. It follows that in those areas the elastic
response to hydrological load is higher during summertime
than winter, as observed by Capodaglio et al. (2017), mean-

ing that negative vertical displacements are measured when
the temperature increases. Thus, it is not surprising that in the
Alpine valleys the stations affected by large IC4-related dis-
placements move downward as temperature increases. This
may be an example of a small-scale hydrological process
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that is likely badly reproduced by the HYDL displacement
dataset, which does not have a spatial resolution fine enough
to represent hydrological loading displacements at the scale
of the Alpine valleys. Other site-dependent processes that
can potentially induce uplift during winter are the ice for-
mation and subsequent melting in the antenna and antenna
mount (Koulali and Clarke, 2020) and soil freezing (Beck et
al., 2015).

Conversely, positive vertical displacements as the temper-
ature increases can be caused by monument or bedrock ther-
mal expansion and the drying of the soil because of the re-
duction of the hydrological load. While HYDL takes into ac-
count the drying of the soil, we cannot exclude that some
local, unmodeled, environmental conditions can amplify this
effect at some sites. This might explain why most of the sites
affected by uplift during temperature increases are located in
plain areas, like the northern sector of the Paris Basin and in
the Po Valley, instead of the mountainous ones. The relation
between IC4 and local processes is also suggested by the het-
erogeneity of this signal in terms of its spatial distribution,
sign, amplitude and relevance in explaining the data vari-
ance. In fact, while ∼ 50 % of the stations have U4< 2 mm
(Fig. S3d) and explain < 1 % of the data variance, meaning
that IC4 is almost not useful to reproduce the original data,
there are a non-negligible number of stations (∼ 10 %) ex-
plaining > 10 % of the data variance and with U4> 6 mm.
Finally, possible sources of this seasonal signal might be sys-
tematic errors in GNSS observations and in their modeling
(Chanard et al., 2020). In Sect. 1 we mentioned the effects of
the non-tidal ocean loading on the vertical displacements and
both LSDM-based and EOST models provide estimation of
them. In the study region, this process induces displacements
that are significantly smaller than both atmospheric and hy-
drological loading, due to the distance from the oceans of the
study area, and thus we do not take it into account. According
to the estimation of the LSDM-based model, the maximum
amplitude of the spatial mean over the study region of the dis-
placements associated with it is 4.3 mm, while the maximum
amplitude of the displacements associated with atmospheric
and hydrological loading are 23.8 and 12.2 mm, respectively.
Figure S5 provides a comparison of the spatial mean of the
displacements associated with the three deformation mecha-
nisms.

5.3 Vertical velocity gradients across the Alps

The vertical velocity field of the IGb14 time series and of
the IGb14 time series with the contribution of the first four
ICs removed (IC-filtered data) do not differ much in terms
of uplift and subsidence patterns (see Fig. 11), with both
showing the belt of continuous uplift on the order of 1–
2 mm yr−1 along the Alpine mountain chain. As shown in
Fig. 11c, the vertical velocities from filtered time series show
barely faster positive rates, mainly as an effect of filtering out
hydrological and atmospheric displacements of IC1, as dis-

cussed above. Figure 17 shows the continuous vertical veloc-
ity field obtained from the discrete values adopting the multi-
scale, wavelet-based approach described in Tape et al. (2009)
and some vertical velocity and topographic profiles running
across the great Alpine area. The same figure obtained us-
ing velocities and uncertainties from unfiltered time series is
shown in the Supplement (Fig. S20). Despite the similarity in
the velocity patterns, the improvements in both the precision
and consistencies of vertical spatial gradients are apparent in
cross-sectional view. Profile E–E′ in Fig. 17 shows positive
vertical rates increasing from W to E, with the maximum up-
lift rates in the central Alps, and the positive correlation with
the topography along the chain axis, with decreasing rates
toward the east, changing to subsidence east of ∼ 14.5◦ E,
while entering the Pannonian Basin domain. The correlation
with topography is also clear in the chain-normal profiles (A–
A′, B–B′, C–C′ and D–D′). In the Western and Central Alps
(A–A′ and B–B′) the maximum uplift rates are located in
correspondence with the maximum elevation, whereas in the
Eastern Alps (C–C′ and D–D′) the maximum uplift rates are
shifted southward. The eastern Southern European Alps is
the region where the largest part of the Adria–Eurasia con-
verge is accommodated (1–3 mm yr−1) through active thrust
faults and shortening (Serpelloni et al., 2016). Here, maxi-
mum uplift rates are likely due to interseismic deformation,
and their position across the belt is driven by thrust fault
geometries, slip rates and locking depths (Anderlini et al.,
2020). Concerning the southern Alpine foreland in the Po
Valley and Venetian Plain, Fig. 17 shows a decrease in the
vertical velocities from west to east, with barely positive rates
in the western Po Valley and increasing subsidence rates in
the northern Adriatic and the northern Apennines foreland.

In the Alpine foreland, positive sub-millimeter-per-year
velocities are present in the Jura Mountains and the Molasse
Basin, but uplift extends further northward into the Black
Forest and the Franconian Platform in southern Germany and
into the southern part of the Bohemian Massif. Overall, in
the portion of central Europe investigated in this work, we
see two different patterns: prevalent stable to slowly subsid-
ing sites (< 1 mm yr−1) are present west of the Rhine graben,
whereas a prevalence of slowly uplifting sites (< 1 mm yr−1)
is present east of it. Profile F–F′ in Fig. 17 better highlights
this pattern. Across the Upper Rhine Graben, the weak uplift
signal in the graben’s shoulders, the Vosges Mountains and
Black Forest, is associated with subsidence of stations lo-
cated within the graben, according to Henrion et al. (2020).
To the east, uplift in the Franconian Platform and the Bo-
hemian Massif is only partially correlated with topography.
It is still debated whether uplifted regions across NW Europe
attest to lithospheric buckling in front of the Alpine arc or
were randomly produced by a swarm of baby plumes. Uplift
propagation by interferences with the western Carpathians
and possible mantle processes, as suggested by the positive
dynamic and residual topography (Faccenna et al., 2014b),
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Figure 17. Vertical velocities from filtered time series (colored circles), a continuous velocity field, and topographic and swath profiles
across the greater Alpine area. Each profile (green line) encompasses a 50+ 50 km swath. BG stands for Bresse Graben, JM stands for Jura
Mountains, VG stands for Vosges Mountains, BF stands for Black Forest, URG stands for Upper Rhine Graben, FP stands for Franconian
Platform, and MB stands for Molasse Basin.

may contribute to the observed uplift in the Bohemian Mas-
sif.

Sternai et al. (2019) investigated the possible relative con-
tribution of different geophysical and geological processes in
the actual vertical velocity budget over the Alps, suggesting

that the interaction among tectonic and surface mass redis-
tribution processes, rather than an individual forcing, better
explains vertical deformation in the Alps. Mey et al. (2016)
suggested that ∼ 90 % of the present-day uplift of the Alpine
belt is due to the melting of the Last Glacial Maximum

Solid Earth, 13, 1541–1567, 2022 https://doi.org/10.5194/se-13-1541-2022



F. Pintori et al.: Common-mode signals and vertical velocities in the greater Alpine area from GNSS data 1563

(LGM) ice cap. While it is difficult to independently con-
strain the patterns and magnitude of mantle contributions
to ongoing Alpine vertical displacements at present, litho-
spheric adjustment to deglaciation and erosion are by far the
most important ongoing process, but other authors suggest
that other processes are currently shaping the vertical ground
motion pattern. In the Western and Central Alps, active con-
vergence is inactive or limited, and the residual uplift rates,
after correction from isostatic contributions, are likely due to
deep-seated mantle processes, including detachment of the
western European slab and dynamic contributions related to
sub-lithospheric mantle flow (Chery et al., 2016; Nocquet
et al., 2016; Sternai et al., 2019). A tectonic contribution
to the ongoing uplift is instead more likely in the Eastern
Alps, and in the eastern Southern Alps in particular, where
the Adria–Europe convergence is accommodated. However,
Anderlini et al. (2020) observed that more accurate glacio-
isostatic models would be needed when interpreting tectonic
contributions to uplift at the edge of ice caps, as in the eastern
Southern European Alps.

6 Conclusions

The application of a blind source separation algorithm to ver-
tical displacement time series obtained from a network of
GNSS stations in the Great Alpine Area allows us to iden-
tify the main sources of vertical ground deformation. Be-
sides the linear trend, vertical displacements are influenced
by (1) atmospheric pressure loading, (2) hydrological load-
ing and (3) seasonal processes in phase with temperature.
The analysis of displacement time series of environmental
loading shows that the largest vertical motions are related to
variations in atmospheric pressure, in particular when con-
sidering daily or weekly timescales. Seasonal displacements
are more clearly associated with hydrological loading and
processes in phase with temperature. However, while defor-
mation associated with temperature is well isolated, we were
not able to clearly separate the atmospheric and hydrological
loading signals in the GNSS displacement time series.

We use the results of the time series decomposition to filter
the IGb14 time series and study the effect of removing sig-
nals associated with environmental loading and temperature-
related processes on the vertical velocities and uncertainties.
Removing these signals causes a quite uniform but limited
(∼ 0.1 mm yr−1) increase in the velocities, which we inter-
pret as being due to the small negative linear trend associ-
ated with the atmospheric and hydrological loading-induced
displacements. It is worth noting that the procedure used in
this work to estimate the station velocities does not allow us
to distinguish the tectonic velocities from the contribution to
the velocity induced by climate-related processes, in partic-
ular if the linear trend associated with NTAL and/or HYDL
time series is large. Furthermore, the filtering almost halves
the uncertainties associated with the velocities and changes

the noise spectra, increasing the white noise percentage to
the detriment of the colored one.

Although providing a geological and geophysical expla-
nation for the observed vertical velocity pattern is out of the
scope of this work, we can conclude that more precise and
accurate vertical velocities, such as the one presented in this
work, can be obtained by careful signal detection and filter-
ing. This can help develop better spatially resolved models
that are aimed at a more effective understanding of the rel-
ative contribution of the different ongoing geodynamic and
tectonic processes shaping the present-day topography of the
Alps.
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