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Abstract. The rapid characterisation of earthquake parame-
ters such as its magnitude is at the heart of earthquake early
warning (EEW). In traditional EEW methods, the robustness
in the estimation of earthquake parameters has been observed
to increase with the length of input data. Since time is a cru-
cial factor in EEW applications, in this paper we propose a
deep-learning-based magnitude classifier based on data from
a single seismic station and further investigate the effect of
using five different durations of seismic waveform data af-
ter first P-wave arrival: 1, 3, 10, 20 and 30 s. This is accom-
plished by testing the performance of the proposed model
that combines convolution and bidirectional long short-term
memory units to classify waveforms based on their mag-
nitude into three classes: “noise”, “low-magnitude events”
and “high-magnitude events”. Herein, any earthquake signal
with magnitude equal to or above 5.0 is labelled as “high-
magnitude”. We show that the variation in the results pro-
duced by changing the length of the data is no more than
the inherent randomness in the trained models due to their
initialisation. We further demonstrate that the model is able
to successfully classify waveforms over wide ranges of both
hypocentral distance and signal-to-noise ratio.

1 Introduction

The earthquake magnitude, defined as a logarithmic measure
of the relative strength of an earthquake, is one of the most
fundamental parameters in its characterisation (Mousavi and
Beroza, 2020). The complex nature of the geophysical pro-
cesses affecting earthquakes makes it very difficult to have
a single reliable measure for its size (Kanamori and Stewart,
1978), and hence, magnitude values measured in different
scales often differ by more than 1 unit. This is especially
true for larger events due to saturation effects (Howell Jr,
1981; Kanamori, 1983). Owing to the above-mentioned rea-
sons and the empirical nature of the majority of the magni-
tude scales, it is one of the most difficult parameters to esti-
mate (Chung and Bernreuter, 1981; Ekström and Dziewon-
ski, 1988). Some of the classical approaches to obtain first
estimates of earthquake magnitude have used empirical rela-
tions for parameters such as predominant period τ p

max (Naka-
mura, 1988; Allen and Kanamori, 2003), effective average
period τc (Kanamori, 2005; Jin et al., 2013) in the frequency
domain and parameters such as peak displacement (Pd) (Wu
and Zhao, 2006; Jin et al., 2013) in the amplitude domain
calculated from the initial 1–3 s of P waves. These relations
form the basis of existing earthquake early warning (EEW)
systems in Japan, California, Taiwan, etc. (Allen et al., 2009
and the references therein). The accuracy of such estimates
has been shown to increase with the duration of data used to
calculate them (Ziv, 2014).
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The recent developments in the area of deep learning (Le-
Cun et al., 2015), combined with the availability of afford-
able high-end computational power through graphics pro-
cessing units (GPUs), have led to state-of-the-art results in
image recognition (Krizhevsky et al., 2017; He et al., 2016),
speech recognition (Mikolov et al., 2011; Hinton et al., 2012)
and natural language processing (Peters et al., 2018; Col-
lobert et al., 2011). In fields such as seismology, where the
volume of available data has increased exponentially over the
last decades (Kong et al., 2018), deep learning has achieved
great success in tasks such as seismic phase picking (Zhu and
Beroza, 2019; Liao et al., 2021; Li et al., 2021), event de-
tection (Wang and Teng, 1995; Mousavi et al., 2020; Meier
et al., 2019), magnitude estimation (Mousavi and Beroza,
2020), event location characterisation (Perol et al., 2018;
Panakkat and Adeli, 2009; Kuyuk and Susumu, 2018) and
first-motion polarity detection (Ross et al., 2018).

Considering that timeliness is of the essence in rapid earth-
quake characterisation, it becomes important to find an opti-
mum duration for the input data that can provide a reliable
and statistically significant estimate for various earthquake
parameters while using a minimum amount of P-wave data.
In this study, we present a deep learning model to perform
time series multiclass classification (Fawaz et al., 2019; Aly,
2005) that classifies seismic waveforms as “noise”, “low-
magnitude” or “high-magnitude”. Here a local magnitude of
5.0 is taken to be the boundary between the low-magnitude
and high-magnitude classes. We further investigate the effect
of using different lengths of data on the model performance.
Please note that the boundary of 5.0 is arbitrarily chosen
and can be modified depending on the purpose of the model
and the local geology (which influences the correlation be-
tween earthquake magnitude and intensity). Magnitudes of 3
and 4 were also experimented with as decision boundaries,
and accuracy, precision and recall values in either case were
found to be similar to those for magnitude 5. Thus, the deci-
sion boundary in itself does not seem to influence the model
performance. Unlike Saad et al. (2020), who use data from
three seismic stations to characterise different earthquake pa-
rameters, the model discussed in this paper only uses three-
component data from a single station.

2 Methodology

2.1 Generating training and testing datasets

We use data from the STanford EArthquake Dataset
(STEAD) (Mousavi et al., 2019) (see “Data availability”) to
train and test our model. STEAD is a high-quality bench-
marked dataset created for machine learning and deep learn-
ing applications and contains seismic event and noise wave-
forms of 1 min duration recorded by over 2500 seismic sta-
tions across the globe. The waveforms have been detrended
and filtered with a bandpass filter between 1.0 and 40.0 Hz,

followed by a resampling at 100 Hz. Metadata consisting of
35 attributes for earthquake traces and 8 attributes for noise
traces are provided by the authors.

To ensure consistency in magnitude we only use traces
for which the magnitude is provided in “ml” (local mag-
nitude) scale (as this is the case for most of the traces in
the dataset). We also discard traces with signal-to-noise ratio
less than 10 dB for quality control. We divide the noise and
earthquake traces into training, validation and test sets in the
ratio 60 : 10 : 30. Care is taken to make sure that the three
aforementioned datasets are non-overlapping. This means
that traces corresponding to a particular earthquake (repre-
sented by the “source_id” attribute) but recorded at different
stations are included in only one of the three sets. For noise
traces, recordings from a particular seismic station are in-
cluded in only one of the three sets. In this paper, we propose
a classifier model for rapid earthquake characterisation. Fur-
thermore, we investigate the effect of using different lengths
of data after the first P arrival (1, 3, 10, 20 and 30 s) on
the performance of this classifier model. In each case the P-
wave data are preceded by 2.8–3.0 s of pre-signal noise, so
the model can learn the noise characteristics of the station
(Münchmeyer et al., 2020). The data labels 0, 1 and 2 are
used to denote the classes noise, low-magnitude and high-
magnitude, respectively.

As mentioned earlier, we take a local magnitude 5.0 to
be the decision boundary between high-magnitude and low-
magnitude events. However, the training dataset originally
has a magnitude distribution as shown in Fig. 1; this would
lead to a high imbalance between the low-magnitude and
high-magnitude classes (a ratio of nearly 3300 : 1). It is
widely agreed by the machine learning community that most
classifiers assume an equal distribution between the differ-
ent classes (Batista et al., 2004). Although examples from
some domains where models perform reasonably well, even
in highly imbalanced datasets, show that there are other fac-
tors at play, imbalanced datasets not only are a major hin-
drance in the development of good classifiers but can also
lead to misleading evaluations of the accuracy of the model
(Batista et al., 2004). To tackle this imbalance problem, we
apply resampling of the data (Krawczyk, 2016) as follows.

– Events with magnitude equal to or above 5.0 are repre-
sented 20 times in the dataset by using a shifting win-
dow starting from 300 samples to 280 samples before
the first P-arrival sample, the window being shifted by 2
samples for each representation. Each of these traces are
also flipped; i.e. their polarity is reversed, since it does
not affect the magnitude information of the data. Such
data augmentation techniques used for images have also
been found to be useful for time series data (Batista et
al., 2004; Wen et al., 2021).
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Figure 1. Original distribution (prior to data augmentation) of (a) local magnitudes and (b) hypocentral distances in the chunk of STEAD
(Mousavi et al., 2019) data used for training.

– For low-magnitude events the following strategy of ran-
dom undersampling is adopted.

1. All events with magnitude between 4.5 and 5.0 are
used.

2. A total of 1/3 of events with magnitude between
4.0 and 4.5 are used.

3. A total of 1/50 of events with magnitude between
2.0 and 4.5 are used.

4. A total of 1/100 of events with magnitude less than
2.0 are used.

– A total of 1/25 of the available noise traces are used.

Note that special care is taken to include more events close to
the decision boundary (magnitude 5.0) so that the model can
learn to differentiate between events of magnitude, say, 4.0
to 5.0, which is more difficult compared to differentiating be-
tween events of magnitude, say, 2.0 and 5.0. The correspond-
ing distribution of the different classes is shown in Fig. 2.
The validation and test datasets follow a similar distribution.
As one can see, in spite of the resampling techniques em-
ployed, the high-magnitude class is still under-represented in
the dataset, as compared to the other two classes. So, we ap-
ply a class weight (Krawczyk, 2016) of 1 : 1 : 10, chosen ex-
perimentally, for classes 0, 1 and 2 while training the model.
The data are used without instrument response removal. Un-
like Lomax et al. (2019) we do not normalise the data. Only
the waveform information is provided to the model. Since the
dataset includes waveforms from different types of instru-
ments, choosing only one type of instrument would signif-
icantly reduce the amount of training data, thereby limiting
the learning; therefore we use data from different instruments
to train the model.

2.2 Model architecture and model training

The model architecture (Chakraborty et al., 2021) consists of
two sets of 1D convolution (Kiranyaz et al., 2021), dropout

Figure 2. The distribution of classes in the training dataset ob-
tained by undersampling “noise” (represented by class 0) and “low-
magnitude” (represented by class 1) data and applying data augmen-
tation to “high-magnitude” (represented by class 2) events. A simi-
lar distribution of classes is seen in the validation and test datasets
as well.

(Srivastava et al., 2014) and max-pooling (Nagi et al., 2011)
layers, followed by three bi-directional long short-term mem-
ory (LSTM) layers (Hochreiter and Schmidhuber, 1997).
Convolutional neural networks have often been found to be
useful for seismological data analysis as they are capable of
extracting temporally independent patterns in the data (fea-
tures). When combined with LSTMs the temporal relations
between these features can be obtained. In applications such
as magnitude-based classification of earthquakes, this aids
in the effective analysis of signal features as compared to
the pre-signal background noise. The dropout layers are used
to prevent the model from overfitting, and the max-pooling
layer is a method to reduce the data dimensionality so that
only relevant features can be retained. The final layer is a
softmax layer (Goodfellow et al., 2016), which gives a three-
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element array of the form [P0,P1,P2], where Pi is the prob-
ability of the waveform belonging to the class i (Fig. 3). A
detailed description of the model architecture is provided in
the caption for Fig. 3.

The model is trained using an Adam optimiser (Kingma
and Ba, 2015), categorical cross-entropy loss (Murphy, 2012)
and a batch size of 256. Early stopping (Prechelt, 2012) is
used to prevent overfitting, whereby the validation loss is
monitored, and the training stops when there is no reduction
in it for 20 consecutive epochs. We start with a learning rate
of 10−3 and reduce it by a factor of 10 if the validation loss
does not reduce for 15 consecutive epochs until it reaches
10−6. The model for the epoch corresponding to the lowest
validation loss is retained.

3 Results

To analyse the effect of different lengths of data on the per-
formance of the classifier model, we use the metrics listed
below to evaluate the model performance. The metrics are
calculated in terms of true positive (TP), true negative (TN),
false positive (FP) and false negative (FN) samples.

– Accuracy. The accuracy of a classifier is the proportion
of testing samples that are correctly classified. Mathe-
matically, it can be defined as follows:

accuracy=
TP+TN

TP+FN+TN+FP
. (1)

– Precision. This is the ratio of the number of times the
model correctly predicts a class to the total number of
times it predicts that class. Mathematically it is defined
as

precision=
TP

TP+FP
. (2)

– Recall. This is the ratio of the number of times the
model correctly predicts a class to the total number oc-
currences of that class in the dataset. Mathematically it
is defined as

recall=
TP

TP+FN
. (3)

Figure 4 shows three waveforms (one from each class) that
have been correctly classified. The softmax probabilities, as
described in Sect. 2.2, are also shown. In each case the high-
est probability is predicted for the corresponding class. Fig-
ure 5 shows the softmax probabilities, predicted by the model
for different lengths of the same waveform. Although the
waveform is correctly classified in each case, the predicted
probabilities are different and show no dependence on the
length of input data.

4 Discussions

We investigated the possible factors that might be influenc-
ing the model performance. Figure 6a shows the variation
in the model performance with respect to the duration of P-
wave data used as an input. As we do not tune a random
seed during model training (Bengio, 2012; Madhyastha and
Jain, 2019), we also looked at the randomness in the perfor-
mance when the model is trained on the same data five times
(Fig. 6b). Thus, we can see that the variation in the results
caused by changing the length of data is comparable to the
randomness in the results due to random initialisation upon
retraining the model on the same data.

Figure 7 shows the classification statistics for one of the
iterations of the model trained on the 3 s data. The events
classified as noise tend to be of low magnitude, while the
misclassification of low-magnitude events as high-magnitude
and vice versa is most pronounced at the decision bound-
ary of 5.0. Another important observation is that the degree
of misclassification of low-magnitude events is much higher
than the reverse case; approximately 65 % of events with
magnitude between 4.5 and 5.0 and 35 % of events with mag-
nitude between 4.0 and 4.5 are classified as high-magnitude,
while fewer than 10 % of events with magnitude between
5.0 and 5.5 are classified as low-magnitude; this is inten-
tional as a missed alarm is considered more dangerous than
a false alarm in this context (Allen and Melgar, 2019) and
is achieved by giving the high-magnitude class more weight
during model training.

Figure 8 visualises the classification of events across dif-
ferent hypocentral distance (Fig. 8a) and signal-to-noise ra-
tios (Fig. 8b). We observe that there are instances of cor-
rect classification across a wide-range of hypocentral dis-
tances and signal-to-noise ratios (SNRs), which means that
the model is capable of learning the frequency characteris-
tics of waveforms to some extent and does not directly cor-
relate the amplitude or SNR with magnitude. We do observe
some clustering of low-magnitude events classified as noise
for SNRs below 20 dB. But for the demarcation between low-
magnitude and high-magnitude events the misclassification
seems to be close to the decision boundary and spread across
a wide range of hypocentral distances and signal-to-noise ra-
tios.

Despite maximising the amount of data on either side of
the decision boundary between low and high magnitude, we
find some incorrect classifications, most of which lie within
a range of 5.0± 0.5, as can be seen in Fig. 8. However, con-
sidering that sometimes even magnitudes of the same scale
reported by different agencies can vary by as much as 0.5
magnitude units (Mousavi and Beroza, 2020), it can be ex-
pected that the model would have difficulty in classifying
traces close to the decision boundary. In a future version
of the model, it might be helpful to treat this as a regres-
sion problem instead of classification, thereby providing the
model more information about the exact value of the magni-
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Figure 3. The architecture of the model used to perform the three-class classification. The input to the model is three-component seismic
waveform data from a single station. The example shown here corresponds to the case where 3 s of P-wave data is used (the total length
of data is, thus, 6 s). The 1D convolution layers have a kernel size of four and eight filters each; the drop rate for each dropout layer is
0.2, and each max-pooling layer reduces the size of the data by a factor of 4; the bi-LSTM layers have dimensions of 256, 256 and 128,
respectively. The final layer is a softmax layer that outputs the probability of the trace belonging to classes 0 (noise), 1 (low-magnitude) and
2 (high-magnitude), represented here as P0,P1 and P2, respectively. In this case a probability of 0.9933 is assigned to class 2 for an event
with magnitude 5.3; thus, this is a case of correct classification.

Figure 4. Examples of waveforms that have been correctly classified. In each case the highest probability corresponds to the respective class.

https://doi.org/10.5194/se-13-1721-2022 Solid Earth, 13, 1721–1729, 2022
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Figure 5. Softmax probabilities for different input lengths of the same waveform, predicted by the models trained on the corresponding
lengths of data. The waveform used here corresponds to an event of magnitude 2.8; although the maximum probability corresponds to class
1, the values of these probabilities are different for different data lengths, and there is no clear dependence between the length of the data and
this probability.

Figure 6. (a) Variation in classifier model performance when different durations (1, 3, 10, 20, 30 s) of P-wave data are used; (b) variation in
the classifier model performance when the same model is retrained on the same data (in this case 3 s of P-wave data used) five times. This
shows that the variations in the two cases are comparable.

tude. The model obtains an overall accuracy ranging between
90.04 % and 93.86 %, which is comparable to the magnitude
classification accuracy of 93.67 % achieved by Saad et al.
(2020) using data from three seismic stations. This shows
great potential in the area of single-station waveform analy-
sis for earthquake early warning.

5 Conclusions

In this study, we present a deep learning model that clas-
sifies seismic waveform into three classes: noise, low-

magnitude events and high-magnitude events, with events of
local magnitude equal to or above 5.0 categorised as “high-
magnitude”. We investigate the effect of using different du-
rations of P-wave data to perform the said task and demon-
strate that changing the length of the waveform (1, 3, 10, 20
or 30 s after P arrival) has no significant effect on the model
performance. We also find that the model classifies most of
the data above a magnitude of 4.5 as high-magnitude, even
though the decision boundary is chosen at 5.0, due to the
higher class weight assigned to high-magnitude events. We
obtain an overall accuracy of up to 93.86 %, and we expect
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Figure 7. The classification results for a model trained on the 3 s data. (a) The confusion matrix (Ting, 2017) for a model trained and
tested on the 3 s data. (b) The misclassification statistics for the same model, for different magnitude values. Note how the highest degree
of misclassification happens close to the decision boundary. The percentage of low-magnitude events classified as high-magnitude is much
higher than the percentage of high-magnitude events classified as low-magnitude. This is a result of the class weights we used while training
the model.

Figure 8. Classification of events with different (a) hypocentral distance and (b) signal-to-noise ratio (SNR). It is observed that the model can
correctly classify traces over a range of hypocentral distance and SNR, which exhibits its ability to learn from the frequency characteristics
and does not directly learn from amplitude or SNR to some extent. There seems some visible clustering of misclassification of low-magnitude
events as noise for SNR below 20 dB.

this to be very useful in the fast classification of seismologi-
cal data.
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