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Abstract. We reconstruct the 3D fault model of the structures
causative of the 2010-2014 Pollino seismic activity by inte-
grating structural-geological and high-resolution seismolog-
ical data. We constrained the model at the surface with fault-
slip data, and at depth, by using the distributions of selected
high-quality relocated hypocenters. Relocations were per-
formed through the non-linear Bayloc algorithm, followed
by the double-difference relative location method HypoDD
applied to a 3D P-wave velocity model. Geological and seis-
mological data highlight an asymmetric active extensional
fault system characterized by an E- to NNE-dipping low-
angle detachment, with high-angle synthetic splays, and SW-
to WSW-dipping, high-angle antithetic faults.

Hypocenter clustering and the time—space evolution of the
seismicity suggest that two sub-parallel WSW-dipping seis-
mogenic sources, the Rotonda—Campotenese and Morano—
Piano di Ruggio faults, are responsible for the 2010-2014
seismicity. The area of the seismogenic patches obtained
projecting the hypocenters of the early aftershocks on the
3D fault planes, are consistent with the observed magnitude
of the strongest events (My =5.2, and My, = 4.3). Since
earthquake-scaling relationships provide maximum expected
magnitudes of My, = 6.4 for the Rotonda—Campotenese and
M,, = 6.2 for the Morano-Piano di Ruggio faults, we may
suppose that, during the sequence, the two structures did not
entirely release their seismic potential.

The reconstructed 3D fault model also points out the rela-
tionships between the activated fault system and the western
segment of the Pollino Fault. The latter was not involved in
the recent seismic activity but could have acted as a barrier to
the southern propagation of the seismogenic faults, limiting
their dimensions and the magnitude of the generated earth-
quakes.

1 Introduction

In recent years, the reconstruction of 3D fault models (here-
inafter referred to as 3DFM), obtained by integrating surface
ad subsurface data, has become an increasingly practiced
methodology for seismotectonic studies (e.g., Lavecchia et
al., 2017; Castaldo et al., 2018; Klin et al., 2019; Ross et al.,
2020; Porreca et al., 2020; Barchi et al., 2021; Di Bucci et
al., 2021; SCEC, 2021). Detailed structural-geological data
are used to define the active faults geometry at the surface,
whereas high-quality geophysical data are needed to con-
strain the shape of the sources at depth. The 3DFM building
helps determine the spatial relationships and the interactions
between adjacent sources and identify any barriers hamper-
ing the propagation of the coseismic rupture at depth. More-
over, such an approach leads to accurately estimating the area
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of the seismogenic fault, and therefore the expected magni-
tude.

In Italy, reconstruction of 3DFM could lead to impor-
tant achievements in the Apennine active extensional belt,
which is affected by significant seismic activity (ISIDe,
2007; Rovida et al., 2020). This belt consists of ~ NW-SE-
striking Quaternary normal fault systems, and the related
basins, located just west of or within the culmination zone
of the chain (Calamita et al., 1992; Brozzetti and Lavec-
chia, 1994; Lavecchia et al., 1994, 2021; Barchi et al., 1998;
Cinque et al., 2000; Brozzetti, 2011; Ferrarini et al., 2015,
2021). Its structural setting is very complicated due to a
polyphase tectonic history characterized by the superposition
of Quaternary post-orogenic extension on Miocene—Early
Pliocene folds and thrusts and on Jurassic—Cretaceous sin-
sedimentary faults (e.g., Elter et al., 1975; Ghisetti and Vez-
zani, 1982, 1983; Lipmann-Provansal, 1987; Mostardini and
Merlini, 1986; Patacca and Scandone, 2007; Vezzani et al.,
2010; Ferrarini et al., 2017; Brozzetti et al., 2021).

Over time, detailed structural geological studies made
it possible to recognize several seismogenic faults in the
Apennine active extensional belt (Barchi et al., 1999; Gal-
adini and Galli, 2000; Maschio et al., 2005; Brozzetti,
2011) and, in some cases, to document, through paleo-
seismological data, their reactivation during the Holocene
(Galli et al., 2020). Furthermore, the increasing availabil-
ity of high-resolution imagery allows fault mapping at the
sub-meter scale (e.g., Westoby et al., 2012; Johnson et al.,
2014, Cirillo, 2020; Bello et al., 2021b, 2022), while accurate
geophysical prospections (e.g., ground-penetrating radar) al-
lows the fault surface to be investigated at shallow depths
(a few meters or tens of meters; e.g., Gafarov et al., 2018;
Ercoli et al., 2013, 2021). Conversely, the geometries of
the faults at depth are rarely available since high-resolution
deep geological and geophysical constraints are often lack-
ing (i.e., deep wells and/or seismic profiles). In fact, in re-
cent decades, seismic reflection prospecting and deep-well
exploitation for hydrocarbon research avoided the area af-
fected by active extension and focused on the eastern front of
the chain and on the Adriatic—Bradanic foreland basin system
(ViDEPI: https://www.videpi.com/videpi/videpi.asp, last ac-
cess: 19 April 2021).

This lack can be compensated with well relocated high-
resolution seismological datasets, to be integrated with ge-
ological ones. In Italy, datasets of highly precise re-located
hypocenters were collected during recent seismic sequences
(Chiaraluce et al., 2004, 2005, 2011, 2017; Totaro et al.,
2013, 2015). These sequences include thousands of earth-
quakes (in confined volumes of rock) which appear to
roughly connect with the fault traces at the surface. There-
fore, such distributions of earthquakes are generally referred
to as ongoing rupture processes affecting an entire seismo-
genic fault or wide portions of them.

In some cases, very high-resolution hypocenter locations
(Chiaraluce et al., 2017; Valoroso et al., 2017), as well as
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Figure 1. Seismotectonic context of the study area. (a) Active faults
of the southern Apennines with major historical and instrumen-
tal earthquakes from Parametric Catalogue of Italian Earthquakes,
CPTI15 v3.0 (Rovida et al., 2020, 2021). (b) Normal faults crop-
ping out between the Mercure, Campotenese, Morano Calabro, and
Castrovillari Quaternary basins (after Brozzetti et al., 2017a) with
distribution of the 2010-2014 Pollino seismic activity (contoured
areas) and focal mechanisms of the events with My, >4.0 (Totaro et
al., 2015, 2016).

seismic reflection lines, allow the seismogenic structures at
depth to be clearly highlighted (Sato et al., 1998; Bonini et
al., 2014; Lavecchia et al., 2011, 2012a, b, 2015, 2016; Gra-
cia et al., 2019; Porreca et al., 2018; Barchi et al., 2021).
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The study area of this work includes the northern sector
of the so-called “Pollino seismic gap” (Fig. 1), in which
paleo-earthquakes up to M =7 are documented (Michetti
et al., 1997; Cinti et al., 1997, 2002), whereas the loca-
tion and size of seismogenic sources are a matter of debate
(Michetti et al., 2000; Cinti et al., 2002; Papanikolaou and
Roberts, 2007; Brozzetti et al., 2009, 2017a). Brozzetti et
al. (2017a) mapped a set of active faults in the sector between
the Mercure, Campotenese, and Morano Calabro Quaternary
basins (Fig. 1a). During 2010-2014, this area was affected
by a low to moderate instrumental seismicity (Pollino seis-
mic activity), climaxing with the 25 October 2012 M,,5.2
Mormanno earthquake, and characterized by thousands of
recorded events (Totaro et al., 2013, 2015). During the se-
quence, two other moderate events occurred close to the vil-
lage of Morano Calabro: on 28 May 2012 (My4.3) and on
6 June 2014 (M4.0; Fig. 1b). According to Brozzetti et
al. (2017a), the whole seismicity was arranged in two ma-
jor clusters and a minor one. Each major cluster was as-
sociated with one moderate event and was generated by an
independent seismogenic structure. The pre-existence of a
seismic network, that was implemented after the beginning
of the sequence, provided a high-quality database of relo-
cated hypocenters (Totaro et al., 2013, 2015; Brozzetti et al.,
2017a).

In such context, we reconstruct the 3DFM involved in the
2010-2014 seismic activity to investigate, at depth, the cross-
cut relationships between the faults with different attitudes
and timing of activation. Furthermore, we provide the ge-
ometric parameters of the sources to estimate the expected
magnitudes. Finally, we discuss some 3D-seismotectonic
methodological aspects, which dwell on the improvements
that the proposed procedure provides to the definition of the
source model and on its limits.

2 Geological setting

The Mt. Pollino massif is located at the Calabrian—Lucanian
boundary (Fig. 1) in a sector of the Apennines structured dur-
ing the Middle—Late Miocene contractional tectonics, which
affected the western Adria Plate (D’ Argenio, 1992; Patacca
and Scandone, 2007; Ietto and Barilaro, 1993; Iannace et
al., 2004, 2005, 2007). The surface geology in this area is
characterized by the superposition of two main tectonic units
derived from different paleogeographic domains. These are
represented (from bottom to top), by (1) the “Apenninic”
units (or “Panormide”; Triassic—Early Miocene), which are
characterized by a carbonate platform, including the Ver-
bicaro and Pollino units, locally intruded by basaltic rocks
(Ogniben, 1969, 1973; Amodio Morelli et al., 1976; Ian-
nace et al., 2007; Patacca and Scandone, 2007; Vezzani et
al., 2010; Tangari et al., 2018) and (2) the “Ligurian” units
(Late Jurassic—Early Cretaceous), which consist of ophiolites
and deep-sea sedimentary deposits derived from the Western
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Tethys oceanic basin (Ogniben, 1969, 1973; Amodio Morelli
et al., 1976; Liberi et al., 2006; Liberi and Piluso, 2009; Fil-
ice et al., 2012, 2013, 2015).

During the uppermost Miocene and Pliocene times, the
folds and thrusts pile was displaced by WNW-ESE-striking
left-lateral wrench faults (Grandjacquet, 1962; Ghisetti
and Vezzani, 1982; Van Dijk et al., 2000). Subsequently,
regional-scale extensional fault systems, consisting of E- and
W-dipping conjugate normal faults, dissected the Tyrrhenian
side and the core of the orogen, which assumed a typical
basin and range relief. This Quaternary phase caused the re-
activation of the previous strike-slip structures such as the
Pollino fault (POL), whose normal to normal-oblique kine-
matics has been documented since the Early—Middle Pleis-
tocene (Ghisetti and Vezzani, 1982, 1983; Brozzetti et al.,
2017a).

At present, the age of onset of the extensional tectonic is
still under discussion; it is referred by some authors to the
Early Pleistocene (Ghisetti and Vezzani, 1982; Schiattarella
et al., 1994; Papanikolaou and Roberts, 2007; Barchi et al.,
2007; Mattei et al., 2007; Cifelli et al., 2007; Amicucci et
al., 2008; Brozzetti, 2011; Robustelli et al., 2014), while it
would not be older than the Middle Pleistocene, according to
others (Caiazzo et al., 1992; Cinque et al., 1993; Hippolyte
et al., 1995; Cello et al., 2003; Giano et al., 2003; Spina et
al., 2009; Filice and Seeber, 2019).

In the Campania-Lucania and northern Calabria sectors of
the southern Apennines, the active extensional belt includes
three main alignments of normal faults and Quaternary
basins, arranged in a right-lateral en echelon setting (Fig. 1a).
From north to south they are as follows: (i) the northern
alignment, including the Irpinia fault, the Melandro—Pergola
and Agri basins; (ii) the intermediate alignment, develop-
ing from the Tanagro—Vallo di Diano basins to the Mercure—
Campotenese and Morano Calabro basins; and (iii) the south-
ern alignment, developing from the Castrovillari fault to the
southern Crati basin (Pantosti and Valensise, 1990, 1993; As-
cione et al., 2013; Galli and Peronace, 2014; Ghisetti and
Vezzani, 1982, 1983; Barchi et al., 1999, 2007; Blumetti et
al., 2002; Amicucci et al., 2008; Maschio et al., 2005; Villani
and Pierdominici, 2010; Brozzetti, 2011; Faure Walker et al.,
2012; Brozzetti et al., 2009, 2012, 2017a, b; Robustelli et al.,
2014; Sgambato et al., 2020; Bello et al., 2021a).

All along the above alignments, the geometry and kine-
matics of the major normal faults are kinematically com-
patible with a SW-NE direction of extension (Maschio et
al., 2005; Brozzetti, 2011; Brozzetti et al., 2009; 2017a). A
similar orientation of the T axis is obtained from the focal
mechanisms of the major earthquakes from CMT and TDMT
databases (Pondrelli et al., 2006; Scognamiglio et al., 2006;
Montone and Mariucci, 2016; Totaro et al., 2016) and from
GPS data (Devoti et al., 2011; D’ Agostino et al., 2014, Ch-
eloni et al., 2017; Cambiotti et al., 2020). The recent activ-
ity of these normal fault systems is firstly suggested by the
control exerted on the distribution of seismicity, as shown by
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the location of upper crustal instrumental earthquakes (ISIDe
Working Group, 2007; Brozzetti et al., 2009; Totaro et al.,
2014, 2015; Cheloni et al., 2017; Napolitano et al., 2020,
2021; Pastori et al., 2021; Sketsiou et al., 2021; De Matteis et
al., 2021) and of destructive historical events (Fig. 1; Rovida
et al., 2021).

The area affected by the 2010-2014 seismicity extends
from the Mercure to the Campotenese and Morano Calabro
basins, along the intermediate extensional fault alignment
which, according to previous literature, consists of three
main sets of genetically linked normal and normal-oblique
active faults (Brozzetti et al., 2017a; Figs. 1b, 2; acronyms
list in the Supplement Sect. S1). The first one, referred to as
the Coastal Range Fault Set (CRFS; red lines in Figs. 1b,
2) dips E to NNE and encompasses four sub-parallel ma-
jor fault segments named, from west to east, Gada—Ciagola
(GCQG), Papasidero (PPS), Avena (AVN), and Battendiero
(BAT). Their strike varies southward from N-S to WNW-
ESE.

The other two fault sets strike ~NW-SE and dip ~SW
(blue lines in Figs. 1b, 2). The western one, developing
from Rotonda to Campotenese villages, consists of two main
right-stepping en echelon segments. They are referred to
as the ROCS system and include the Rotonda—Sambucoso
(RSB) and Fosso della Valle-Campotenese (VCT; Fig. 2).
The eastern set, including the en echelon Castello Seluci—
Piana Perretti-Timpa della Manca (CSPT), the Viggianello—
Piani del Pollino (VPP), and the Castrovillari (CAS) faults,
represents the break-away zone of the Quaternary exten-
sional belt. In the area between these two W-dipping sets, the
W- to NW-dipping Morano Calabro—Piano di Ruggio (MPR)
and Gaudolino (GDN) faults show evidence of Late Quater-
nary activity (Brozzetti et al., 2017a; Fig. 2).

GPS and DInSAR analysis demonstrated that the Pollino
area was affected by important deformation rates during the
2010-2014 seismic activity, with increasing and decreasing
slip values due to the temporal and spatial variation of the
recorded seismicity (Passarelli et al., 2015).

3 Seismotectonic setting

According to Michetti et al. (1997, 2000) and Cinti et
al. (1997, 2002), POL and the adjacent CAS faults were asso-
ciated with at least two strong earthquakes (M 6.5 and M7.0),
occurring in the period 2000410 B.C. and 500-900 A.D., re-
spectively. The epicenter of the 8 January 1693 earthquake
(M5.3, CPTI1S5, Rovida et al., 2020, 2021; Tertulliani et al.,
2014; Figs. 1b) is also located within the hanging wall of
the CAS and at the footwall of the MPR fault, some kilome-
ters eastward of the strongest 2012 and 2014 Morano Cal-
abro events. The epicenter locations of the 1708 M,,5.5 and
1894 M,,5.1 earthquakes (Tertulliani et al., 2014; Rovida et
al., 2021), close to the northern termination of the RSB and
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within its hanging wall, allow the latter fault to be hypothe-
sized as the possible seismogenic source.

The main instrumental event recorded in the Pollino area is
the My,5.6 Mercure earthquake (9 September 1998; Fig. 1b),
which was followed by some hundred aftershocks and that
was associated by Brozzetti et al. (2009) with the SW-
dipping CSPT (Figs. 1b, 2), located some kilometers to the
NE of the Mercure basin.

The focal mechanisms of the three strongest earth-
quakes (My5.2, 25 October 2012 — Mormanno; My4.3,
28 May 2012 — Morano Calabro; My4.0, 6 June 2014
— Morano Calabro) are consistent with extensional (upper
crustal) deformations (Montone and Mariucci, 2016; Mari-
ucci and Montone, 2020).

All the associated WSW-ENE-oriented T axes are also
quite parallel to the geological and seismological least com-
pressional axis, as provided by the tensorial analysis in the
neighboring Mercure area (Brozzetti et al., 2009; Ferranti et
al., 2017) or derived from borehole breakouts (Montone and
Mariucci, 2016; Mariucci and Montone, 2020) and GPS data
(Devoti et al., 2011; D’Agostino et al., 2014; Cambiotti et
al., 2020). As discussed by Totaro et al. (2015, 2016) and
Brozzetti et al. (2017a), the available focal solutions well
correlate with the Quaternary normal faults recognized in the
epicentral area, represented by N—S- to NNW-SSE-striking
(W-dipping) seismogenic sources.

Correlating the hypocenter distribution with the active
faults at the surface, the seismogenic source of the 25 Oc-
tober 2012 Mormanno Earthquake (My,5.2) is identifiable in
both the segments of the WSW-dipping ROCS system (RSB
and VCT in Figs. 1b, 2). These faults dip 70-75°, at the sur-
face, and would reach a dip of ~ 55° at depth (Brozzetti et al.,
2017a). Through similar reasonings, the WSW-dipping MPR
fault was suggested to be the causative fault of the eastern
Morano Calabro cluster (Fig. 1b) and of its two major events
(My4.3 on 28 May 2012 and My4.0 on 6 June 2014). The
fault extends for ~ 7km in a N170 direction and is co-axial
with the W-dipping nodal planes of the two main events of
the sequence (Fig. 1b). The partial reactivation of the CAS
could be invoked to explain the minor cluster of seismicity
recorded at the eastern side of the study area, although some
of the events seem to be located at its footwall.

4 Data and methods
4.1 Structural survey and fault kinematic analysis

We performed a series of fieldwork campaigns, at 1 : 25000
scale, in the study area and surrounding sectors, to collect
fault-slip data to be integrated with the geological—structural
observations reported in Brozzetti et al. (2017a). In addition
to traditional survey methods, we used the Fieldmove App
(PetEx Ltd., version 2019.1) installed on a tablet computer to
acquire the data in the field (e.g., Allmendinger et al., 2017;
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Figure 2. Structural map of the Calabrian—Lucanian boundary (after Brozzetti et al., 2017a) with location of fault-slip data measurements.
Fault key: CRFS: Coastal Range Fault Set; GCG: Gada—Ciagola fault; PPS: Papasidero fault; AVN: Avena fault; BAT: Battendiero fault;
ROCS: Rotonda—Campotenese fault system; VCT: Fosso della Valle-Campotenese fault; RSB: Rotonda—Sambucoso; CVN: Cozzo Vardo—
Cozzo Nisco fault; MPR: Morano Calabro—Piano di Ruggio fault; VPP: Viggianello—Piani del Pollino fault set; VPPa: Viggianello—Prastio
fault; VPPb: Vacquarro—Piani del Pollino fault; GDN: Gaudolino fault; POL: Pollino fault; CAS: Castrovillari fault; SDD: Serra Dolcedorme
fault; PAC: Monte Palanuda—Campolungo fault; Cast: Castelluccio fault; CSPT: Castello Seluci—Piana Perretti-Timpa della Manca fault;
CSPTa: Castello Seluci—Piana Perretti fault; CSPTb: Timpa della Manca—La Fagosa fault.

Novakova and Pavlis, 2017; Testa et al., 2019; Brozzetti et
al., 2020; Cirillo, 2020), and we managed them in ArcGIS
v.10.8 (ArcMap®©). Figure 2 shows the location of the survey
sites, considered structurally homogeneous outcrops falling
within a maximum distance of 500 m (see also Fig. S2 in
the Supplement). The overall fault-slip dataset was first sub-
divided into minor and local homogenous kinematic sub-
sets, the latter represented as pseudo-focal mechanisms us-
ing FaultKin 8 software (Marrett and Allmendinger, 1990;
Allmendinger et al., 2012; Fig. 3). The fault-slip data were
subsequently inverted (see following Sect. 4.3).
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4.2 Hypocenter location

To better characterize the 3D features of the tectonic struc-
tures located in the study area, we performed a high-quality
hypocenter location. We enlarged, with respect to previ-
ous works by Totaro et al. (2013, 2015) and Brozzetti et
al. (2017a), the time window for earthquake analyses (i.e.,
January 2010 and October 2018), selecting earthquakes with
local magnitude greater than 1.0 and hypocentral depth range
0-30km from the INGV and the University of Calabria
database (https://www.ingv.it/, last access: 19 April 2021;
http://www.sismocal.org, last access: 19 April 2021). Auto-
matic and manually revised P- and S-wave arrival time picks
have been selected for this dataset. The recording network,
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Figure 3. Kinematic analysis and pseudo-focal mechanisms obtained from fault-slip data using the FaultKin 8 software (Allmendinger et al.,
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including both temporary and permanent stations managed
by the University of Calabria and INGV (D’ Alessandro et
al., 2013; Margheriti et al., 2013), consisted of 61 stations
with a maximum epicentral distance of 150 km (Fig. S1 in the
Supplement). We computed accurate absolute hypocenter lo-
cations by applying first the non-linear Bayloc earthquake lo-
cation algorithm (Presti et al., 2004, 2008) and subsequently
the double-difference relative location method HypoDD (v.2;
Waldhauser, 2001) and using the 3D velocity model by Orec-
chio et al. (2011). The Bayloc algorithm gives for each earth-
quake a probability density cloud with shape and size related
to the main factors involved in the location process (e.g.,
network geometry, picking errors) and allows a generally
more accurate estimate of hypocenter parameters and loca-
tion uncertainties with respect to the more commonly used
linearized location methods (e.g., Lomax et al., 2000; Husen
and Smith, 2004; Presti et al., 2008). The application of the
Bayloc algorithm provides, on average, horizontal and ver-
tical errors of the order of 1.0 and 1.5 km, respectively, al-
lowing us to obtain a well-constrained database. As the sec-
ond step, we apply the HypoDD algorithm, which minimizes
phase delay-time residuals between pairs of events recorded
at common stations (Waldhauser and Ellsworth, 2000). We
compute the delay times from each event to its 30 near-
est neighbors within 10km distance, and to further ensure
the robustness of the double-difference inversion, only event
pairs with at least eight phases observed at common stations
were used. The final relocated dataset consists of 3109 events
(Figs. 4 and S1). During the decade before the 2010-2014
Pollino sequence, the instrumental data, available within a
range of nearly 75km from the Mercure basin, referred to
background seismic activity (Frepoli et al., 2005; Castello et
al., 2006; Brozzetti et al., 2009). A significant seismic ac-
tivity which affected the region was the moderate-magnitude
1998-1999 Mercure sequence that developed in the north-
ern part of the homonym Quaternary basin (Fig. S1; Guerra
et al., 2005; Arrigo et al., 2006; Brozzetti et al., 2009) and
showed some similarities to the recent Mercure-Pollino se-
quence (e.g., prevalent kinematics of focal mechanisms and
hypocentral depth range). We explored the data available for
this seismic activity to compute a high-quality earthquake
location, following the procedure described above for the
2010-2018 earthquake dataset. Since the recording network
operating during the 1998-1999 seismic phase was signifi-
cantly different from today, in terms of the number of sta-
tions deployed in the region and their spatial distribution,
the available data do not allow the high level of constraint
needed to perform the 3D structural model reconstruction to
be reached.

4.3 Geological and seismological stress tensor inversion
To investigate the coherence between the geological and the

seismological stress fields, we applied stress tensor inver-
sions to the available fault-slip data (Figs. 2, 3) and focal

https://doi.org/10.5194/se-13-205-2022

mechanisms (Fig. 4). We used the “TENSOR” program and
the inversion procedure proposed in Delvaux and Sperner
(2003). We applied it separately on the different datasets.
The procedure computes the orientation of the three princi-
pal axes of the stress ellipsoid (o1, 02, 03) and the stress
ratio ® = (62—03) /(01 —03) that optimize the misfit func-
tion (i.e., F5 in the “TENSOR” program, described as f3 in
Delvaux and Sperner, 2003). The latter is built (i) to mini-
mize the slip deviation between the observed slip line and re-
solved shear stress (30° misfit value is not expected to be ex-
ceeded) and (ii) to favor higher shear stress magnitudes and
lower normal stress to promote slip on the plane. The inver-
sion procedure provides for the preliminary (kinematic) anal-
ysis of data using an improved version of the Right Dihedron
method (Angelier and Mechler, 1977) to determine the start-
ing model parameters (e.g., the reduced stress tensor). The
stress ellipsoid is then computed through a 4D grid-search
inversion involving several runs during which the reduced
tensor is rotated around each stress axis with a decreasing
range of variability (from £45 to £5°), and the full range of
® values (0-1) is checked. Each step attempts to find the pa-
rameters that minimize the misfit function and that are used
as a starting point for the next run (see for details Delvaux
and Sperner, 2003).

The geological data input consists of 268 quality-
controlled fault-slip data measured in the study area (Figs. 2,
3). During the formal inversion, the same weight value was
assigned to each fault. The seismological data input is repre-
sented (initially) by both nodal planes of each focal mecha-
nism; afterwards, the plane that is best explained by the stress
tensor in terms of the smallest misfit function is considered
as the actual fault plane (Delvaux and Barth, 2010). The in-
verted seismological data are represented by focal mecha-
nisms from Totaro et al. (2015, 2016) and reported in Fig. 4.
An exponential weighting factor (corresponding to the earth-
quake magnitudes) has been assigned to account for the pre-
vailing kinematics of the most energetic events. The final in-
version (Fig. 5) includes only the fault and focal planes that
are best fitted by a uniform stress field (Gephart and Forsyth,
1984).

4.4 3D model building

Following the methodology defined by the Community Fault
Model of Southern California (Nicholson et al., 2014, 2015;
Plesch et al., 2014), also applied for recent Italian earth-
quakes (Lavecchia et al., 2017; Castaldo et al., 2018; Bello et
al., 2021a), we obtained the 3DFM of the Pollino area by in-
tegrating Quaternary fault mapping (Brozzetti et al., 2009,
2017a; this paper) with a high-quality seismicity dataset
(2010-2018), and by using the Move suite software v. 2019.1
(Petroleum Experts Ltd).

In particular, we created several sets of closely spaced
transects (distance: 2km) to cross and sample the seismo-
genic fault zones in different directions (Fig. 6). The set ori-
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Figure 4. Time—space evolution of the 2010-2018 seismic activity in the Pollino area. Each panel shows the distribution of focal mechanisms
(Totaro et al., 2015, 2016) and epicenters concentrated in a series of neighboring clusters numbered as C1 0, 1, 2, and 3 from west to east,
according to their activation time. See Sect. 5.2 for the sequence description. The focal mechanisms are classified following Frohlich (2001)
kinematics classification (blue beach ball: normal kinematics; light blue: normal strike kinematics). Small red circles represent the epicenters

of focal mechanism solutions.

ented SW-NE is approximately perpendicular (e.g., Fig. 6a
and b) to the ROCS (VCT and RSB). Differently, the set ori-
ented NW-SE is approximately sub-parallel to MPR active
faults (e.g., Fig. 6f). A further NNE-SSW-striking set of tran-
sects was traced approximately perpendicular to the active
fault alignment bounding the study area to the east, which
includes the CSPT and VPP faults (Fig. 6g and h).

The 3DFM building was carried out following three steps
graphically depicted in Fig. 7 and synthetically described be-
low.

Step 1 — Extrusion of fault traces to shallow depth

The traces of the Quaternary faults are “extruded” to a
pre-set depth of 2kmb.s.1., according to the fault-plane
dip measured in the field. In the absence of measured
dip angles, we assumed a fixed value of 60°. The ob-
tained so-called “fault ribbons” are rimmed upward by

Solid Earth, 13, 205-228, 2022

the topographic surface (a 10 m resolution DEM; Tar-
quini et al., 2012).

Step 2 — Down-dip extrapolation of the faults along seis-
mological sections

Starting from the analysis of the seismological transects
(Fig. 6), we traced the deep geometries by connecting
the fault ribbons with the seismicity clusters at depth
(Fig. 7b, ¢) downward to the base of the seismogenic
layer.

Step 3 — Building of 3D fault surfaces

This step allows the final 3D reconstruction (Fig. 7c,
d) to be reached by interpolating, through the Delau-
nay triangulation method (Delaunay, 1934), all the fault
lines as interpreted along the seismological cross sec-
tions (Step 2). The result is the fault plane surface that
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best approximates and connects the clusters of seismic-
ity and the surface geology (represented by the fault
traces extruded).

5 Results
5.1 Geological and seismological stress tensors

The computed geological stress tensor (Fig. 5) shows a rele-
vant percentage of fault-slip vector pairs (~ 53 %) consistent
with a uniform extensional stress field which is characterized
by a N244-trending and sub-horizontal ¢3. The stress ratio
® =0.22+£0.13, and the rank quality is QRw = A (ranking
as in Sperner et al., 2003). Nearly all the kinematic axes re-
lated to the inverted data belong to a normal-fault regime, as
also pointed out by the triangle in Fig. 5 (Frohlich, 2001).
The seismological stress tensor (Fig. 5b) obtained from in-
verting 50 actual fault planes (nt: 124 nodal planes) shows a
normal fault regime with an ENE-WSW-trending and sub-
horizontal 3 (N062/01 & 19). The stress ratio ® = 0.52 £+
0.3 and the quality ranking is QRfm = A (ranking as in Hei-

https://doi.org/10.5194/se-13-205-2022

dbach et al., 2010). Most of the nodal planes show normal-
fault kinematics (see Fig. 5b).

In both the inversions, a normal-fault regime with sub-
horizontal and collinear (~ SW-NE-trending) o3 axis has
been obtained. This result points out the coherence between
the geological (long-term) and the present-day stress field
and the persistence of this extensional regime at least since
the Middle Pleistocene (Brozzetti et al., 2017a).

In addition, it is worth noting that 76 % of the success-
fully inverted fault-slip vector pairs are related to the ac-
tive fault planes belonging to the E- and W-dipping domains
(Fig. 5a), while the remaining 24 % include data related to the
S-dipping system (CVN and POL). The evidence together
with the similarity between the computed stress tensors is
consistent with the prevalent activation, in the Late Quater-
nary, of the E- and W-dipping fault systems.

5.2 Time-space evolution of the Pollino sequence
The 2010-2018 seismic activity in the Pollino—Mercure area

followed a peculiar evolution over time (Fig. 4) with epicen-
ters concentrated in a series of neighboring clusters, num-
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Figure 6. Epicentral map (upper-right panel) and hypocentral distributions (a—i) of the 2010-2018 seismic activity that occurred in the Pollino
area. In the cross sections the earthquakes (grey dots) within a half-width of 1 km have been also reported as density contours computed using
Kernel Density Estimation. The histograms related to each section show the depth distribution of the hypocenters. The traces of all the serial
cross sections analyzed in this study are reported in map view (upper-right panel) as thin grey lines, while the bold lines relate to the sections
(a—i) shown in this figure.
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bered as Cluster 0, 1, 2, and 3, from west to east, according
to their activation time. Such clusters, independent and un-
connected to each other, are related to fault segments that are
not in an along-strike continuity.

Cluster 0 (30 January 2010-31 July 2011) includes low
magnitude (1.0 < My, <2.9) activity located in an NNE-
SSW-oriented sector at the western boundary of the epicen-
tral area. It is delimited westward by the more external seg-
ment of the E-dipping CRFS.

Cluster 1 started after 5 October 2011 and lasted for the
entire 2011-2014 seismic activity. It extended continuously,
both northward and southward, reaching a NW-SE length
of ~ 12km (Fig. 4a—c). It comprehends the higher num-
ber of earthquakes and is largely the major cluster as re-
gards the wideness (~ 60km?) and energy release. It in-
cludes 30 events with My, > 3.0 besides the strongest event
of all the Pollino seismic activity (25 October 2012). During
the 2015-2018 interval, Cluster 1 area was affected by low
seismic activity, mostly distributed in its northern and south-
ern portions; conversely, its central part, where epicenters
were particularly dense between 2011 and 2014, became less
active. Overall, the surface extent of Cluster 1, which partly
overlaps with Cluster 0, is limited eastward by the W-dipping
RSB and VCT faults. Its southern boundary nearly coincides
with the southeastern continuation of the AVN fault (PAC,
Fig. 4c).

Cluster 2 started in May 2012 in the sector between the
two WSW-dipping RSB and the MPR faults. It elongates
in the N-S direction, for ~ 7km to the northwest of the
Morano Calabro town. Afterward, it was nearly continuously
active, particularly during the periods May 2012—October
2014 (Fig. 4b, c); in the period 2015-2018, significant seis-
micity also persisted (Fig. 4d). Cluster 2 includes mainly
low-magnitude events besides the strongest ones of 28 May
2012 and 6 June 2014 and three other earthquakes with
3.0< My <35.

Further east, in the sector comprised between MPR and
the alignment VPP-SDD-CAS faults, a minor cluster of seis-
micity (Cluster 3) developed since December 2011 (Fig. 4a).
Since then (2011-2018), it was affected by poor and low-
magnitude seismicity, which, however, was clearly above
the threshold of background seismicity, with two M, = 3.0
events (Fig. 4a—d).

5.3 3D fault model of the Pollino area fault system

The obtained 3DFM (Fig. 8), which includes the seismogenic
fault system involved during and after the 2010-2014 Pollino
seismic activity (CRFS, ROCS, and MPR), also encompasses
those faults (GCG, PPS, AVN, BAT, CSPT, VPP, SDD, CAS)
that, while showing no direct evidence of recent seismic ac-
tivity, play a significant role in the seismotectonic frame of
the area.

The westernmost fault structures (i.e., GCG and PPS),
whose deep geometry is not strictly constrained by subsur-
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face data, have been interpreted according to the structural
extensional style proposed by Brozzetti et al. (2017a). The
latter is coherent with the reconstructions of the active exten-
sional belt of the southern and central Apennines described
in the literature (Barchi et al., 2007; Amicucci et al., 2008;
Brozzetti et al., 2011, 2017a, b; Lavecchia et al., 2017).
Overall, this style is characterized by an asymmetric exten-
sion driven by a low-angle (20 to 35°) E-dipping detachment
fault, which represents the basal decollement of all the other
extensional structures. In the model, all the faults are traced
at the surface with their dip angle as measured in the outcrop
and evolve downward with nearly listric geometries to join
the detachment at increasing depth from west to east. The
latter represents the structurally controlled base of the seis-
mogenic layer. The GCG (Figs. 1b, 8), which crops out at a
low angle and overcomes all the other east-dipping faults (in
terms of both slip and associate extension), is the currently
inactive break-away zone of such a detachment. The AVN
and BAT (Figs. 2, 8), which are the easternmost E-dipping
splays, are suggested to be active and seismogenic, being
possibly the causative structures of the Cluster O of hypocen-
ters (Fig. 4a). Cluster 1 and Cluster 2, which are confined
downward by the E-dipping detachment, confirm the activity
of the WSW-dipping ROCS and MPR faults, so that we con-
sider them the main geological structures involved during the
2010-2014 seismic activity (Figs. 4 and 8a, al). Further east,
the 3DFM has been widened to include the W-dipping CSPT
and VPP faults, considered the outer seismogenic front of
the extensional system. The along-strike continuity of POL
and CVN is interrupted by the W-dipping ROCS and MPR
faults (Fig. 8c, d), coherently with the cross-cut relationships
observed in the field (Fig. 2). The deep geometry of POL
and CVN is interrupted by the NNE-dipping AVN (Fig. 8d),
which acts as the southern and basal boundary of the entire
active fault system.

Finally, the 3DFM shows that almost all the 2010-2018
seismicity correlates with the W-dipping structures but with-
out affecting their southern termination zones. In other
words, no or very few events are located south of the inter-
section with POL and CVN faults. This latter observation
suggests that although the POL and CVN did not play an
active role in causing the considered seismicity, they play a
significant role in influencing its distribution.

5.4 From 3D fault model to expected earthquake
magnitude

Coherently with what is observed in most Apennine chains
(D’ Agostino et al., 2001; Ferranti et al., 2014; Montone and
Mariucci, 2016; Mariucci and Montone, 2020), the upper
crustal Pollino seismicity develops in response to WSW-
ENE-oriented extension. This is well constrained by the focal
solutions of the strongest events (My,5.2, 25 October 2012;
M4.3, 28 May 2012; and My4.0, 6 June 2014 earthquakes)
and of all the M, > 3.5 earthquakes that occurred during
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2010-2014, and with the results of the geological and seis-
mological inversion (Fig. 5). Such consistency suggests that
the present stress field is in continuity with the long-term one,
which has been set up at least since the Early-Middle Pleis-
tocene, as already suggested by previous works (Papaniko-
laou and Roberts, 2007; Brozzetti et al., 2009, 2017a).

Comparing the distribution of all 2010-2018 seismic ac-
tivity with the Late Quaternary structures mapped at the
surface, we maintain that the ROCS and the MPR faults
are suitable as the seismogenic sources for the Mormanno
(2012, M,5.2) and Morano Calabro (2012, My4.3 and 2014,
M,,4.0) earthquakes, respectively. In addition, our 3DFM al-
lows a parameterization of the sources and their seismogenic
potential assessment. The map view of the W-dipping faults
(Fig. 9a) depicts irregularly shaped seismogenic boxes which
are delimited to the east by the fault traces (at the surface) and
to the west by the branch line of each fault with the base of
the seismogenic layer. Some of these boxes include histor-
ical or instrumental earthquakes (Fig. 9b), while others are
not associated with any significant event.

The performed 3D reconstruction allowed us to estimate
the effective area extent of all the fault segments (Fig. 9c),
that, when inserted in the appropriate scaling relationships,
provide the expected magnitude possibly releasable in case
of entire rupture (Fig. 9c¢).

We also computed the magnitude values obtained using
the regressions as a function of the surface fault length
(Fig. 9¢). Using six different empirical relations (Wells and
Coppersmith, 1994; Wesnousky, 2008; Leonard, 2010; Stir-
ling et al., 2013), we compared the values determined for all
the investigated active normal faults (Fig. 9d, e).

It is evident that, for each fault, the expected magnitude
computed using fault area is lower than the one calculated
by using fault length. The range of variation is narrower for
the values calculated on the ground of fault-area regressions
(yellow bars in Fig. 9d, e).

Given the significant difference in the magnitude values
computed using area- or length-based scaling relationships,
we suggest that (where possible) the reconstruction of a 3D-
fault geometry should be pursued and preferred in order to
derive more reliable parameters to be used (Table S1). This
is even more essential in complex extensional systems such
as the one we investigated along the Calabrian—Lucanian bor-
der.

In fact, the 3DFM highlights that the areal extension of the
W-dipping faults depends on their position within the hang-
ing wall of the detachment (see Sect. 5.3). This implies that
faults with comparable length at the surface may have signif-
icantly different areas, depending on the depths reached. The
CSPT, VPP, and CAS crop out at the greatest distance from
the GCG break-away zone. Consequently, they intersect the
basal detachment at the higher depth and have the maximum
area extent among the W-dipping fault set (Fig. 9a, d).

By applying the aforementioned scaling laws (Fig. 9) to
the W-dipping faults identified to be involved during the
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CUN-POL

Figure 8. 3D fault model of the extensional system at the Calabrian—Lucanian boundary extrapolated down to ~ 10-12km. In panels (a, b,
¢) the geological—structural map (from Brozzetti et al., 2017a) is superimposed over a 10 m resolution DEM (from Tarquini et al., 2012). The
reconstruction of the fault systems is discussed in the paper. In (a), the lower right inset (al) shows the detail of the main faults involved
during the 2010-2018 seismic activity. (d) 3DFM of all extensional fault realized through the Move software. For the acronyms, see Sect. S1.
The faults belonging to the E-NE-dipping CRFS fault set are represented in red and violet, whereas the antithetic ROCS and MPR faults are
shown as blue surfaces (fault acronyms as in Fig. 2). The yellow surface is the three-dimensional surface of the POL and its westernmost
segment (CVN) bounding, to the north, the Campotenese basin.
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2010-2014 seismic activity, we calculated the expected mag-
nitude of ~ My = 6.1 for the VCT and the RSB, and of
~ My, = 6.2 for the MPR. Since the two faults (RSB 4+ VCT)
of the W-dipping ROCS have been interpreted to join at
hypocentral depth to form a single structure (thus a unique
seismogenic patch was reconstructed — Fig. 10a), a value of
~ My, = 6.4 could be reached in the case of complete and
concurrent ruptures on both the segments. The aforesaid val-
ues are sensibly higher than the magnitudes of the earth-
quakes recorded to date in the Mercure—Campotenese area
(Figs. 1b, 9b), thus suggesting that the considered faults may
have only partially released their seismogenic potential dur-
ing historical times.

This inference also agrees with the distribution and evo-
lution of the 2010-2018 seismic activity. The clusters of the
relocated hypocenters concentrated in the deepest parts of the
ROCS and MPR faults (Fig. 6) confirm that only a portion of
such faults ruptured during the sequence, without the rupture
reaching the surface.

6 Discussion
6.1 Seismogenic patches activated during 2010-2014

The seismogenic patches activated on the ROCS and MPR
faults during the 2010-2014 seismic sequence are considered
as the reasonable approximation of the actual portion of the
faults which broke during the mainshock and the sequence
of the early aftershocks. We obtained them by projecting the
relocated hypocenters on the reconstructed fault surface and
depicting their distribution using the Kernel density geosta-
tistical analyst, available as a tool of the ESRI ArcGIS soft-
ware package. The delimitation of each seismogenic patch
and its parameterization allowed us to verify the correlation
between its dimensions and the magnitude released by each
fault during the mainshocks.

The temporal analysis of the sequence shows that their
overall extent was already well defined within the first 72h
after the major events. In any case, inside the surrounding
volumes, some seismicity had started before the mainshock
and continued to persist constantly throughout the develop-
ment of the entire sequence so that they include > 70 % of all
hypocenter locations. The along-strike elongation and area
extent of the patches obtained over the VCT and MPR fault
surfaces can be assumed respectively as the effective sub-
surface rupture length and rupture area (RLD and RA in
Fig. 10b, and c, respectively, according to Wells and Cop-
persmith, 1994) associated with the M,,5.2 Mormanno (on
VCT fault) and M,4.0 and 4.3 Morano Calabro (on MPR
fault) earthquakes.

The parameters obtained for the VCT fault are
RLD=49km and RA=8.3km?, while RLD=12km
and RA =3.6km? are assessed for the MPR fault. Intro-
ducing the aforesaid parameters in the appropriate scale
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relationships (Fig. 10b, c), we observe a good agreement
between the theoretical magnitudes based on the subsurface
rupture length and the magnitudes of the mainshocks. The
value obtained for the VCT fault (causative of the M5.2
Mormanno earthquake) is M,5.3, whereas for the MPR
fault (causative of the My4.0 and 4.3 Morano Calabro
earthquakes) it is My, = 4.5. The magnitude calculated using
the RA-based relationships provides values slightly lower
than expected for the VCT (4.9<My<5.0) and slightly
higher for the MPR (4.5< M, <4.6). In both cases, however,
the magnitude values obtained using the scale relationships
differ from those observed by an amount <0.3.

6.2 Possible geometric restraints to coseismic rupture
propagation

The seismological dataset we used demonstrates that the two
main clusters of earthquakes of the 2010-2018 seismicity
were generated by as many independent sources related to
the sub-parallel, 10 to 15 km long, ROCS and MPR faults.

Brozzetti et al. (2017a) highlighted that the above seismo-
genic style, characterized by a perpendicular-to-fault strike
evolution of the seismic activity, is unlike from those which
followed the major instrumental earthquakes recorded in the
Apennine Extensional Belt of Italy in recent years, such as
the Colfiorito 1997 (M6.0), L’ Aquila 2009 (M,6.3), and
Norcia 2016 (M,6.5) events (Chiaraluce et al., 2011, 2017;
Lavecchia et al., 2011, 2012a, 2016). They also speculated
that this peculiar behavior could have been controlled by the
geometric fault pattern of the area, which is characterized
by WSW-dipping faults bounded southward by nearly E-W
pre-existing structures. These latter are genetically related to
the regional-scale, long-lived, “Pollino lineament s.1.” (Bous-
quet, 1969, 1971; Ghisetti and Vezzani, 1982, 1983; Knott
and Turco, 1991; Van Dijk et al., 2000) and determine the
abrupt contact between the Apennine carbonate platform unit
and the San Donato metamorphic core complex (Grandja-
quet, 1962; Servizio Geologico Nazionale, 1970; Amodio
Morelli, 1976). The cross-cut relationships detected in the
field between the ROCS-MPR set and POL-CVN, high-
lighted in our 3D model, lead us to exclude the latter fault
to have a present seismogenic role, as also supported by the
distribution of the instrumental earthquakes which cluster-
ized along with N-S-striking crustal volumes. However, this
significant structural-geological boundary could exert an in-
fluence on the southward propagation of the currently active
seismogenic faults, driving the eastward transfer of the active
extensional deformation belt. This inference is confirmed by
the spatial distribution of the hypocenters of all 2010-2018
relocated seismicity which is confined within the CVN foot-
wall (Fig. 8d).
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Figure 9. (a) Seismotectonic 3D fault model in map view. (b) Box representation of the W-dipping seismogenic faults belonging to the
3DFM with a detailed segmentation pattern. Fault traces are numbered according to the table of (c). The associated historical earthquakes
from CPTI15 v3.0 (4.5< M <6.0; Rovida et al., 2020, 2021) and the epicentral distribution of the 2010-2018 seismic activity that occurred
in the Pollino area (1.0<My <5.2) are also reported. (¢) Expected magnitude according to scaling laws (Wells and Coppersmith, 1994;
Wesnousky, 2008; Leonard, 2010; Stirling et al., 2013) and calculated based on fault area (A) and length (L). (d, ¢) Comparison of magnitude
values calculated for all the investigated active faults, using fault-area-based (d) and fault-length-based (e) scaling relationships.
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Figure 10. (a) Seismogenic patches activated during the 2010-2014 seismic activity on VCT and MPR faults. Their along-strike elongation
and area extent, shown by black arrows, are assumed to be the effective subsurface rupture length and rupture area (RLD and RA, according
to Wells and Coppersmith, 1994). The association of the patches’ rupture with the My 5.2 Mormanno of the 25 October 2012 (on VCT fault)
and My4.3 and 4.0 Morano Calabro (on MPR fault, 28 May 2012 and 6 June 2014, respectively) earthquakes is suggested. Panels (b) and
(c) show the RLD and RA, respectively, obtained for both the VCT and MPR faults.

7 Conclusions

We reconstructed in detail the 3D geometry and kinemat-
ics of the interconnected fault pattern responsible for the
moderate-magnitude earthquakes which recently affected the
Pollino area (Calabrian—Lucanian boundary).

The main original outcomes are summarized as follows:

— The geological and seismological stress tensors com-

puted using geological and seismological data demon-
strated that they are consistent with a uniform nor-
mal faulting regime characterized by an ENE-WSW-
trending, sub-horizontal 3. This result confirms the
coherence between the long-term and the present-day
stress field and the persistence of this extensional
regime at least since the Middle Pleistocene.

Solid Earth, 13, 205-228, 2022

The 2010-2018 seismic activity which affected the
study area followed a peculiar evolution characterized
by the concentration of epicenters in a series of sub-
parallel ~ NNW-SSE elongated clusters, independent
and unconnected, which can be related to two ma-
jor near-coaxial WSW-dipping faults possibly splaying
from a common east-dipping basal detachment and con-
currently releasing seismicity.

The accurate hypocenter re-locations provided a seis-
mological dataset that was correlated with the active
faults mapped at the surface. The hypocenter spatial
analysis allows the geometry (3DFM) of the seismo-
genic sources to be reconstructed, which released seis-
micity during 2010-2014 and through 2018. This re-
construction, extrapolated down to the depth of ~ 10—
12km, was the interpretative key to obtain the over-
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all model of the Quaternary and active extension in
the northern Calabria—Lucania Apennines. The 3DFM
model includes all the faults playing a significant role,
(either direct or indirect), on the seismogenesis of the
study area.

— The western segment of the Pollino Fault (CVN), de-
spite not being currently active, seems to maintain
a significant seismotectonic role. In fact, juxtaposing
crustal sectors with different structures and compo-
sitions (Apennine platform domain to the north and
San Donato metamorphic core to the south) may act
as a barrier to the southern propagation of the seis-
mogenic faults of the Mercure-Campotenese sector
(ROCS, MPR), limiting their dimensions and seismo-
genic potential.

— Based on the dimension and shape of all the active faults
of the Pollino area, we estimated the expected magni-
tudes using appropriate scaling relationships. The com-
plete rupture of individual W-dipping faults, which are
recognized to have been causative of the 2010-2014
seismic activity, is expected to release a magnitude of
~ My, = 6.1 for the VCT and the RSB, and of ~ My, =
6.2 for the MPR. Higher values, up to M,, = 6.4, could
be reached in the case of the complete and concurrent
rupture on both RSB and VCT. The estimated values
exceed the magnitudes of the associated earthquakes
which struck the area to date, leading to the hypothe-
sis that the aforesaid faults only partially released their
seismogenic potential.

— The delimitation of the fault patches involved during
2010-2014 and their geometrical parameterization sup-
port the consistence between the theoretical magnitudes
based on the subsurface rupture length and the magni-
tudes of the mainshocks.

— The estimates provided My, = 5.3 for the VCT fault
(which released the M,,5.2 Mormanno earthquake) and
My, = 4.5 for the MPR fault (which released the M,4.0
and 4.3 Morano Calabro earthquakes)The magnitudes
calculated using the relationships based on the subsur-
face rupture area (M, ~ 5.0 for the VCT and M, ~ 4.6
for the MPR), show slightly greater deviation from the
observed values.

This study pointed out that even in the case of low-to-
moderate seismic activity, like the Pollino 2010-2014 one,
the approach based on the three-dimensional reconstruc-
tion of the Quaternary fault surfaces (both directly involved
and neighboring in the extensional system) represents a real
breakthrough in the seismotectonic analysis and, ultimately,
in the cognitive path that leads to a better assessment of the
seismic hazard of a tectonically active area.
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