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Abstract. Geodynamical simulations over the past decades
have widely been built on quadrilateral and hexahedral fi-
nite elements. For the discretization of the key Stokes equa-
tion describing slow, viscous flow, most codes use either the
unstable Q1×P0 element, a stabilized version of the equal-
order Q1×Q1 element, or more recently the stable Taylor–
Hood element with continuous (Q2×Q1) or discontinuous
(Q2×P−1) pressure. However, it is not clear which of these
choices is actually the best at accurately simulating “typical”
geodynamic situations.

Herein, we provide a systematic comparison of all of these
elements for the first time. We use a series of benchmarks
that illuminate different aspects of the features we consider
typical of mantle convection and geodynamical simulations.
We will show in particular that the stabilized Q1×Q1 el-
ement has great difficulty producing accurate solutions for
buoyancy-driven flows – the dominant forcing for mantle
convection flow – and that the Q1×P0 element is too unsta-
ble and inaccurate in practice. As a consequence, we believe
that the Q2×Q1 and Q2×P−1 elements provide the most
robust and reliable choice for geodynamical simulations, de-
spite the greater complexity in their implementation and the
substantially higher computational cost when solving linear
systems.

1 Introduction

For the past several decades, the geodynamics community’s
workhorse for numerical simulations of the incompressible
Stokes equations has been the use of (continuous) piecewise
bilinear and/or trilinear velocity and piecewise constant (dis-
continuous) pressure finite elements, often in combination
with the penalty method for the solution of the resulting lin-

ear systems (e.g., Donea and Huerta, 2003). This velocity–
pressure pair is often referred to as the Q1×P0 Stokes el-
ement and sometimes as the Q1×Q0 element (Gresho and
Sani, 2000). It is used, for example, in the ConMan (King
et al., 1990), SOPALE (Fullsack, 1995), SLIM3D (Popov
and Sobolev, 2008), CitcomCU (Moresi and Gurnis, 1996;
Zhong, 2006), CitcomS (Zhong et al., 2000; McNamara and
Zhong, 2004; Zhong et al., 2008), Ellipsis (Moresi et al.,
2003; O’Neill et al., 2006), UnderWorld (Moresi et al.,
2003), DOUAR (Braun et al., 2008), and FANTOM (Thieu-
lot, 2011) codes and has therefore been used in hundreds of
publications.

The popularity of this element can be explained by its very
small memory footprint and ease of implementation and use.
On the other hand, it has a rather low convergence order that
makes it difficult to achieve high accuracy; maybe more im-
portantly, the element is known not to satisfy the so-called
Ladyzhenskaya–Babuška–Brezzi (LBB) condition condition
(e.g., Donea and Huerta, 2003) and is therefore unstable.
This instability noticeably manifests itself through oscilla-
tory pressure modes (e.g., Fig. 18 of Thieulot et al., 2008
or Fig. 36 of Thieulot, 2014) and makes it not suited for
large-scale three-dimensional simulations coupled to itera-
tive solvers (May and Moresi, 2008). The unreliability of the
pressure also makes this element a dubious choice for mod-
els in which some of the parameters – e.g., the density or the
viscosity – depend on the pressure.

The more modern alternative to this choice is the Taylor–
Hood element that uses (continuous) polynomials of degree
k for the velocity and of degree k−1 for the pressure, where
k ≥ 2.1 This element is not only LBB-stable, but owing to its

1Strictly speaking, Taylor and Hood (1973) only introduced the
Q2×Q1 element on quadrilaterals. However, finite-element practi-
tioners use the term “Taylor–Hood” for both the 2D and 3D cases,
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higher polynomial degree is also convergent of higher order.
It is therefore widely used in commercial flow solvers and
is also the default element for the ASPECT code in geody-
namics (Kronbichler et al., 2012; Heister et al., 2017). This
element is obviously more difficult to implement, and build-
ing efficient solvers and preconditioners is also more com-
plicated (Kronbichler et al., 2012; Clevenger et al., 2020).
However, these drawbacks can be mitigated by building on
one of the widely available finite-element libraries that have
appeared over the past 20 years; for example, ASPECT in-
herits all of its finite-element functionality from the deal.II
library (see Bangerth et al., 2007; Arndt et al., 2020). We
will note that one can also use a number of variations of the
underlying idea of the Taylor–Hood element, for example on
quadrilaterals and hexahedra by usingQk×P−(k−1) (see, for
instance, May et al., 2015, Lechmann et al., 2011, and Thiel-
mann and Kaus, 2012) in which the pressure is discontinuous
and of (total) polynomial degree k− 1, but missing the part
of the finite-element space on every cell that distinguishes the
space Qk on quadrilaterals and hexahedra from the space Pk
that is typically used on triangles and tetrahedra.2 Another
variation is to enrich the pressure space by a constant shape
function on each cell (see, for example, Boffi et al., 2011,
and the references therein). All of these alternatives are sta-
ble for k ≥ 2, and in keeping with common usage of the term,
we will also refer to all of these variations as Taylor–Hood
or Taylor–Hood-like elements even though they are strictly
speaking not what Taylor and Hood proposed in Taylor and
Hood (1973).

A third option is the use of Q1×Q1 elements with both
velocity and pressure using bilinear or trilinear shape func-
tions. This combination of elements is not LBB-stable by
default, but numerous stabilization techniques – typically
adding a pressure-dependent term to the mass conservation
equation – have been proposed in the literature (see, e.g.,
Norburn and Silvester, 2001; Elman et al., 2014; Gresho
et al., 1995). Herein, we will discuss in particular the vari-
ation by Dohrmann and Bochev (2004) that is simple to im-
plement and does not involve any tunable parameter. This ap-
proach is used in the Rhea code (Burstedde et al., 2009, 2013)
in conjunction with adaptive mesh refinement (AMR), al-

for the case of both simplex and quadrilateral–hexahedral meshes,
and for all cases with k ≥ 2. See also John (2016, p. 98).

2The discontinuous space P−(k−1) for the pressure can be inter-
preted in two incompatible ways: first, one can map the correspond-
ing space from the reference cell to each of the cells of the mesh,
as one also does for the velocity; or, one can define shape functions
directly in the global coordinate system, without mapping from the
reference cell. The two agree on cells that are parallelograms but not
on more general meshes. Since our experiments are all on meshes
where all cells are rectangles, the distinction does not matter for the
current paper, but we point out that the error estimates (Eq. 4) stated
in Sect. 3.1 only hold for the latter definition. See Boffi and Gastaldi
(2002), Matthies and Tobiska (2002), and John (2016, Sect. 3.6.4)
for more information.

lowing for the numerical solution of whole Earth models at
high resolutions (Stadler et al., 2010; Alisic et al., 2012).
Another example of the use of this method is the work of
Leng and Zhong (2011), also using AMR, to study thermo-
chemical mantle convection. Both the ELEFANT code with
an application to the 3D thermal state of curved subduction
zones (Plunder et al., 2018) and the GALE code (Moresi
et al., 2012), with application to the 3D shapes of metamor-
phic core complexes (Le Pourhiet et al., 2012) or oceanic
plateau subduction (Arrial and Billen, 2013), use the stabi-
lized Q1×Q1 method. Finally the ADELI code was cou-
pled to a stabilized Q1×Q1 flow solver in the context of
lithosphere–asthenosphere interaction studies (Cerpa et al.,
2014, 2015, 2018).

The availability of all of these options leads us to the main
question of this paper: which element should one use in geo-
dynamics computations based on the Stokes equations? Or,
in the absence of clear-cut conclusions, which ones should
not be used? On the face of it, this seems like a simple
question: the consensus in the computational science com-
munity is that using moderately high-degree elements (say,
k = 3 or k = 4) yields the best accuracy for a given compu-
tational effort (measured in CPU cycles) unless one wants
to change the solver technology to use matrix-free methods
whereby even higher polynomial degrees become more ef-
ficient. This conclusion is based on the higher convergence
order of higher-degree methods but balanced by the rapidly
growing cost of matrix assembly and linear solver effort for
higher-degree methods. On the other hand, the recommen-
dation to use higher-degree methods is predicated on the as-
sumption that the solution is smooth enough – say, the ve-
locity is in the Sobolev space H k+1 of functions that have,
loosely speaking, at least k+ 1 derivatives – that one can
actually achieve a convergence rate of O(hk) in the energy
norm and O(hk+1) in the L2 norm, where h is the mesh size.
This assumption generally requires that all coefficients, such
as density and viscosity, are sufficiently smooth on length
scales resolvable by the mesh. This may not be the case in
realistic geodynamics problems given that density and vis-
cosity often depend discontinuously on the solution variables
(velocity or strain rate, pressure, temperature, and composi-
tional variables); indeed, in many models, the viscosity may
vary by orders of magnitude on short length scales.

Such considerations put into question whether higher-
order methods are really worth the effort for actual geo-
dynamics simulations. Given these divergent theoretical
thoughts, the only way to resolve the question is by way of
numerical comparisons. We have consequently extended AS-
PECT so that it can use all of the element combinations above,
and we will use these implementations in the comparisons in
this paper.

Goals of this paper. Having outlined the conflict between
the expected superiority of higher-degree elements for the
Stokes equation on the one hand and the expected lack of
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smoothness of solutions in realistic geodynamic cases, our
goals in the paper are as follows.

1. Quantitatively compare the solution accuracy of the var-
ious options (Q1×P0, Qk ×Qk−1, Qk ×P−(k−1) and
stabilizedQ1×Q1) using a variety of analytical bench-
marks for which the exact solution is known. As we
will see below, there is little point working with k > 2
in geodynamics applications, and so the only cases we
consider for Taylor–Hood-like elements are Q2×Q1
and Q2×P−1.

2. Extend these numerical comparisons to cases in which it
is known that the stabilizedQ1×Q1 demonstrates prob-
lematic behavior that may make it unusable in many
practical situations. In particular, we will consider the
case of buoyancy-driven flows.

3. Conclude our considerations by comparing the available
options using a realistic geodynamical application. This
will allow us to draw conclusions as to what element
one might want to recommend for geodynamics appli-
cations.

While we have approached this study with an open mind
and without a strong prior idea of which element might be
the best, let us end this Introduction by noting that mem-
bers of the crustal dynamics and mantle convection commu-
nities have occasionally expressed a dislike of the stabilized
Q1×Q1 element for its inability to deal with large lithostatic
pressures and free surfaces absent special modifications of
the formulation. For example, Arrial and Billen (2013) com-
ment on the need to modify the physical description of the
problem due to the stabilization (with references replaced by
ones listed at the end of this paper).

All the models were run with the open source code
Gale. [. . . ] Gale uses Q1–Q1 elements to describe
the pressure and the velocity. However, this formu-
lation is unstable and a slight compressible term
is added in the divergence equation to stabilize it
(Dohrmann and Bochev, 2004). Ideally, this term
should be applied on the dynamic pressure and not
on the full pressure. To fix this, a hydrostatic term
corresponding to the reference density and temper-
ature profile, is subtracted from the full pressure
and the body force vector.

Few other negative comments concerning theQ1×Q1 el-
ement appear on record in the published literature, although
one can find the following quote in Lehmann et al. (2015).

We do not consider the Q1×Q1/stab element
(Dohrmann and Bochev, 2004; Bochev et al.,
2006; Burstedde et al., 2009), as stabilization of
this element is achieved by introducing an artificial
compressibility that dominates for flows mainly

driven by buoyancy variations (May et al., 2015).
In geophysical flow models this yields unphysical
pressure artifacts for cases where both the free sur-
face of the Earth and mantle flow are considered,
because the driving density contrast between cold
sinking plates and the warmer surrounding Earth’s
mantle is much smaller than the density difference
between rocks and air (Kaus et al., 2010; Popov
and Sobolev, 2008; Mishin, 2011). In our experi-
ence, this results in artificial “compaction” of the
Earth’s mantle if Q1×Q1/stab element is used,
which makes them unsuitable for these purposes.

Indeed, our numerical experiments will encounter a simi-
lar issue; see Sect. 6.

We are not aware of any other significant publications in
the geodynamics literature that specifically discuss the rel-
ative trade-offs between the elements we consider herein,
specifically between theQ1×P0 and Taylor–Hood elements,
and consequently believe that our discussions here are useful
for the community.

2 The governing equations

For the purpose of this paper, we are concerned with the ac-
curate numerical solution of the incompressible Stokes equa-
tions:

−∇ · [2ηε(u)]+∇p = ρg in �, (1)
−∇ ·u= 0 in �, (2)

where η is the viscosity, ρ the density, g the gravity vec-
tor, ε(·) denotes the symmetric gradient operator defined by
ε(u)= 1

2 (∇u+∇uT ), and�⊂ Rd ,d = 2 or 3 is the domain
of interest. Both the viscosity η and the density ρ will, in
general, be spatially variable; in applications, this is often
through nonlinear dependencies on the strain rate ε(u) or the
pressure, but the exact reasons for the spatial variability are
not of importance to us here: what matters is that these coef-
ficients may vary strongly and on short length scales.

In applications, the equations above will be augmented by
appropriate boundary conditions and will be coupled to addi-
tional and often time-dependent equations, such as ones that
describe the evolution of the temperature field or of the com-
position of rocks (see, for example, Schubert et al., 2001;
Turcotte and Schubert, 2012). This coupling is also not of
interest to us here.

3 Discretization using finite-element methods

3.1 Formulation and basic error estimates

For the comparisons we intend to make in this paper,
Eqs. (1)–(2) are discretized using the finite-element method.
A straightforward application of the Galerkin method yields
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the following finite-dimensional variational problem: find
uh ∈ Uh,ph ∈ Ph so that

(ε(vh),2ηε(uh))− (∇ · vh,ph)= (vh,ρg),

−(qh,∇ ·uh)= 0, (3)

for all test functions vh ∈ Uh,qh ∈ Ph. Here, (a,b)=∫
�
a(x)b(x)dx. For simplicity, we have omitted terms in-

troduced through the treatment of boundary conditions. The
finite-dimensional, piecewise polynomial spaces Uh and Ph
can be chosen in a variety of ways, as discussed in the In-
troduction. In particular, if they are chosen as Uh =Qk and
Ph =Qk−1 – i.e., the Taylor–Hood element – then the dis-
crete problem is known to satisfy the LBB condition and the
solution is stable (Elman et al., 2014). Here, Qs is the space
of continuous functions that are obtained on each cell K of
a mesh T by mapping polynomials of degree at most s in
each variable from the reference cell [0,1]d . Likewise, the
problem is stable if one chooses Uh =Qk and Ph = P−(k−1),
where now P−s is the space of discontinuous functions ob-
tained by mapping polynomials of total degree at most s from
the reference cell. In both of these cases, we expect from
fundamental theorems of the finite-element method (see, for
example, Elman et al., 2014) that the convergence rates are
optimal, i.e., that the errors satisfy the relationships

‖∇(u−uh)‖L2 =O(hk),

‖u−uh‖L2 =O(hk+1),

‖p−ph‖L2 =O(hk), (4)

where h is the maximal diameter over all cells in the mesh T.
On the other hand, if one chooses Uh =Q1 and Ph = P0,

i.e., the unstableQ1×P0 element with piecewise linear con-
tinuous velocities and piecewise constant discontinuous pres-
sure, then the best convergence rates one can hope for would
satisfy the following relationships based solely on interpola-
tion error estimates:

‖∇(u−uh)‖L2 =O(h),

‖u−uh‖L2 =O(h2),

‖p−ph‖L2 =O(h). (5)

In practice, if the numerical solution shows pressure oscil-
lations (see for instance Sani et al., 1981a, b), one will not
even observe the rates shown above but might in fact obtain a
worse pressure convergence rate, for example ‖p−ph‖L2 =

O(h1/2).
Finally, if one uses Uh =Q1 and Ph =Q1, then this unsta-

ble element combination can be made stable if one replaces
the discrete formulation (3) by the following stabilized ver-
sion due to Dohrmann and Bochev (2004):

(ε(vh),2ηε(uh))− (∇ · vh,ph)= (vh,ρg),

(qh,∇ ·uh)−

(
(I −π0)qh,

1
η
(I −π0)ph

)
= 0. (6)

Here, I is the identity operator and π0 is the projection onto
piecewise constant functions – i.e., π0f is the function that
on each cell is equal to the mean value of f on that cell. For
this element, the rates one might hope for are as follows (see
again Dohrmann and Bochev, 2004):

‖∇(u−uh)‖L2 =O(h),

‖u−uh‖L2 =O(h2),

‖p−ph‖L2 =O(h). (7)

Dohrmann and Bochev (2004) report that for some test cases,
one might in fact obtain ‖p−ph‖L2 =O(ht ) with t ≈ 1.5,
though it is not clear whether this rate can be obtained for all
possible applications. We also observe this improved rate in
one of our benchmarks in Sect. 5.

We end this section by noting that in many of the setups
we use in Sect. 5, the boundary conditions we impose lead
to a problem in which the pressure is only determined up
to an additive constant. The same is then true for the lin-
ear system one has to solve after discretization. As a conse-
quence, we can only meaningfully compute quantities such
as ‖p−ph‖L2 if both the exact and the numerical solution
are normalized; a typical normalization is to ensure that their
mean values are zero. ASPECT enforces this normalization
after solving the linear system.

3.2 A closer look at the error estimates

A comparison of Eq. (4) with Eqs. (5) and (7) would suggest
that the Taylor–Hood element can obtain substantially bet-
ter rates of convergence if one only chooses the polynomial
degree k large enough.

However, this is an incomplete understanding because the
O(hm) notation hides the fact that the constants in this be-
havior depend on the solution. More specifically, a complete
description of the error behavior would replace Eq. (4) by the
following statement: there are constants C1,C2,C3 <∞ so
that

‖∇(u−uh)‖L2 ≤ C1 h
k
‖∇

k+1u‖L2 ,

‖u−uh‖L2 ≤ C2 h
k+1
‖∇

k+1u‖L2 ,

‖p−ph‖L2 ≤ C3 h
k
‖∇

kp‖L2 . (8)

The validity of these statements clearly depends on the so-
lution being regular enough so that ∇k+1u and ∇kp actu-
ally exist and are square-integrable – in other words, that u ∈

H k+1 and p ∈H k , where H k represents the usual Sobolev
function spaces. 3 On the other hand, all that is guaranteed by

3For a concise definition of the Lebesgue space L2 and the
Sobolev spaces of functions H k , see Elman et al. (2014). Loosely
speaking, L2 is the set of all functions f for which the integral
of the square over the domain,

∫
�|f (x)|

2 dx, is finite. We say that
such functions are “square-integrable”.H k is the set of all functions
whose kth (weak) derivatives are square-integrable.
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the existence theory for partial differential equations is that
u ∈H 1 and p ∈ L2 =H

0; any further smoothness should
only be expected if, for example, the domain � is convex
and if viscosity η and right-hand side ρg are also smooth.
Indeed, this is the case for many artificial benchmarks for
which these functions are chosen a priori; on the other hand,
in “realistic” geodynamics applications, one might expect η
and ρ to be discontinuous at phase boundaries and poten-
tially vary widely. In such cases, one needs to accept that the
solutions only satisfy u ∈H q and p ∈H q−1 with q ≥ 1 but
possibly q < k+ 1. Numerical analysis predicts that in such
cases, the best-case rates in Eq. (8) will be replaced by the
following:

‖∇(u−uh)‖L2 ≤ C1 h
min{q−1,k}

‖∇
min{q,k+1}u‖L2 ,

‖u−uh‖L2 ≤ C2 h
min{q,k+1}

‖∇
min{q,k+1}u‖L2 ,

‖p−ph‖L2 ≤ C3 h
min{q−1,k}

‖∇
min{q−1,k}p‖L2 . (9)

Similar considerations apply for the Q1×P0 and the sta-
bilized Q1×Q1 combinations; a closer examination yields
the following rates that would replace Eqs. (5) and (7):

‖∇(u−uh)‖L2 ≤ C1 h
min{q−1,1}

‖∇
min{q,2}u‖L2 ,

‖u−uh‖L2 ≤ C2 h
min{q,2}

‖∇
min{q,2}u‖L2 ,

‖p−ph‖L2 ≤ C3 h
min{q−1,1}

‖∇
min{q−1,1}p‖L2 . (10)

In other words, we will only benefit from the added ex-
pense of the Taylor–Hood element with k ≥ 2 if the solution
is sufficiently smooth, namely if at least q > k ≥ 2. The ques-
tion of whether q > 2 indeed for a given situation is one of
partial differential equation (PDE) theory and difficult to an-
swer in general without using particular knowledge of η, ρg,
and�. On the other hand, one can observe convergence rates
experimentally for a number of cases of interest, so in some
sense, it would be legitimate to ask the following question:
what is the regularity index q of typical solutions in geody-
namics applications? At the same time, this requires careful
convergence studies on problems that are already typically
quite challenging to solve on any reasonable mesh, let alone
several further refined ones. As a consequence, we cannot
answer this question in the generality stated above. Instead,
we will approach it below by considering a number of bench-
marks that illustrate typical features of geodynamic settings
in an abstracted way (in Sect. 5), followed by a model ap-
plication (in Sect. 6). In particular, the examples in Sect. 5.2
and 5.3 will illustrate cases in which the exact solution is not
smooth enough to achieve the optimal convergence rate.

We end this section by noting that all of the estimates
shown above guarantee that the error on the left of an in-
equality decreases at least at the rate shown on the right side,
but they do not state that on a given sequence of meshes,
the rate might not in fact be better. Indeed, this often hap-
pens: for example, if one aligns meshes with a discontinu-
ity in coefficients (as we do for the SolCx benchmark dis-
cussed in Sect. 5.2), one often observes optimal rates – or

convergence rates between the minimal theoretically guar-
anteed and the optimal ones – for some elements even if the
solution lacks regularity. Actually observing the minimal the-
oretically guaranteed convergence rate for solutions lacking
regularity often requires choosing randomly arranged meshes
– a case we will not consider herein.

4 Comments about the use of the Q1 × Q1 element in
geodynamics computations

Before delving into the details of numerical experiments,
let us consider one other theoretical aspect. An interesting
complication of geodynamics simulations compared to many
other applications of the Stokes equations is that the hydro-
static component of the pressure is often vastly larger than
the dynamic pressure, even though only the dynamic com-
ponent is responsible for driving the flow. As we will dis-
cuss in the following, this has no importance when using the
Q1×P0 or the Taylor–Hood elements, but it turns out to be
rather inconvenient when using a stabilized formulation that
contains an artificial compressibility term. This issue is also
mentioned in the quote from Arrial and Billen (2013) repro-
duced in the Introduction and in May et al. (2015).

To illustrate the issue, consider the force balance equation
(Eq. 1). We can split the pressure into hydrostatic and dy-
namic components, p = ps+pd , where we define the hydro-
static pressure via the relationship

∂

∂z
ps = ρref(z)gz(z), (11)

coupled with the normalization that ps = 0 at the top of
the domain. In defining ps this way, we have made the as-
sumption that the vertical component gz of the gravity vector
dominates its other components. Furthermore, we have intro-
duced a reference density ρref that somehow reflects a depth-
dependent profile. As we will discuss below, there is really
no unique or accepted way to define this profile, though one
should generally think of it as capturing the bulk of the three-
dimensional variation in the density via a one-dimensional
function.

By splitting the pressure in this way, Eq. (1) can then be
rewritten as follows:

−∇ · [2ηε(u)]+∇pd = ρg− ρrefgzez in �.

Since this is the only equation in which the pressure ap-
pears, it is obvious that the velocity field so computed is
the same whether or not one uses the original formulation
solving for u and p or the one solving for u and pd . More
concisely, the observation shows that the velocity field so
computed does not depend on how one chooses the refer-
ence density ρref. The original formulation is recovered by
using the simplest choice, ρref = 0. As a consequence, many
geodynamics codes use formulations that only compute the
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dynamic pressure pd using a reference density ρref(z). Im-
portantly, however, there is no canonical way for this defini-
tion: one might choose a constant reference density, a depth-
dependent adiabatic profile, or one computed at each time
step by laterally averaging the current three-dimensional den-
sity field ρ(x,y,z, t); each of these options – and likely more
– have been used in numerical simulations one can find in
the literature. In any case, pressure-dependent coefficients
such as the density or viscosity are then evaluated by using
ps +pd , where pd is computed as part of the solution of the
Stokes problem and ps is the hydrostatic pressure defined
by Eq. (11) using the particular choice of reference density
used by a code. On the other hand, the ASPECT code no-
tably always computes the full pressure instead of splitting it
in hydrostatic and dynamic components (see the discussion
in Kronbichler et al., 2012) corresponding to the particular
choice ρref = 0.

The problem with the stabilized Q1×Q1 formulation –
different from the use of the other element choices – is that
the velocity field computed from the Stokes solution is not
independent of the choice of the reference density. This is
because the mass conservation equation is modified by the
stabilization term and – in the simple case of a constant vis-
cosity – reads

−∇ ·u−
1
η
5pd = 0. (12)

Here, 5= (I −π0) is the operator that corresponds to the
stabilization term in Eq. (6). 4

The point of these considerations is that different choices
of ρref (including the choice ρref = 0 that leads to the orig-
inal formulation) do have an effect here because they lead
to different pd = p−ps for which 5pd is different: that
is, the amount of artificial compressibility depends on the
splitting of the pressure into static and dynamic pressures.
In other words, the discretization errors ‖u−uh‖L2 and
‖∇(u−uh)‖L2 discussed in the previous section will in gen-
eral depend on the choice of the reference density profile, and
the latter will need to be carefully defined in order to lead to
acceptable error levels. As we will show in the benchmarking
section, the specific choice of ρref in fact has a rather large ef-
fect. This is in line with the previously quoted comments in
Arrial and Billen (2013).

Let us end this section by commenting on two aspects of
why this issue may not be as relevant in other contexts in
which stabilized formulations have been used. First, in many
important applications of the Stokes equations, the flow is not

4To arrive at this form for the operator, one needs
to rewrite Eq. (6) using

(
(I −π0)qh,

1
η (I −π0)ph

)
=(

qh,
1
η (I −π0)

∗(I −π0)ph

)
, where the asterisk denotes the

adjoint operator. One then shows (I −π0)
∗
= (I −π0) and finally

that 5= (I −π0)
2
= I −π0, which follows by recalling that

projection operators are idempotent.

driven by buoyancy effects but by inflow and outflow bound-
ary conditions (e.g., Turek, 1999; Zienkiewicz and Taylor,
2002). Indeed, in those conditions both the density and the
gravity vector are generally considered spatially constant,
and the choice of reference density and hydrostatic pressure
is then obvious and unambiguous. In these cases, computa-
tions are always performed with only the dynamic pressure
because the hydrostatic pressure does not enter the prob-
lem at all except in the rare cases of fluids with pressure-
dependent viscosities.

Second, while we have here considered the stabilization
first introduced in Dohrmann and Bochev (2004), earlier sta-
bilized formulations used a pressure Laplacian in place of the
operator 5 above. (See, for example, Brezzi and Pitkäranta,
1984, or the variation in Silvester and Kechkar, 1990, as well
as the analysis in Bochev et al., 2006.) That is, instead of
Eq. (12) they used a formulation of the form

−∇ ·u− ch21p = 0, (13)

where c is a tuning parameter that also incorporates the vis-
cosity. If one uses this formulation for cases in which the ref-
erence density is chosen as a function that is constant in depth
– as was often done in earlier mantle convection codes con-
sidering the Boussinesq approximation – and if one computes
in a Cartesian box with a constant gravity vector g = gez,
then ps is a linear function, and consequently 1ps = 0. In
other words,1p =1(p−ps)=1pd , which implies that the
computed velocity field again did not depend on the exact
choice of ρref as long as it was chosen constant. This property
does not hold for the formulation of Dohrmann and Bochev
because 5p 6=5(p−ps)=5pd for linear pressures ps be-
cause 5ps 6= 0: 5 subtracts from ps the average value on
each cell, leaving a piecewise linear discontinuous function.

Of course, whether one uses the Dohrmann–Bochev for-
mulation (Eq. 12) or the addition of a pressure Laplace as in
Eq. (13), the formulation is consistent. That is, as the mesh
size h goes to zero, the added stabilization term also goes to
zero. In the limit, the numerical solution therefore satisfies
the original mass conservation equation. In other words, the
limit is independent of the choice of ρref, even though the
solutions on a finite mesh are not.

5 Numerical results for artificial benchmarks

In this section, let us present computational results for three
analytical problems and a buoyancy-driven flow community
benchmark. While the first of these (Sect. 5.1) is simply used
to establish the best convergence rates one can hope for in
the case of smooth solutions, the remaining test cases were
chosen because they illustrate aspects of what we think “typ-
ical” solutions of geodynamic applications look like in an
abstracted, controlled way. In particular, the “SolCx” bench-
mark in Sect. 5.2 demonstrates features of solutions in which
the mesh can be aligned with sharp features in the viscos-
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ity, and the “SolVi” benchmark in Sect. 5.3 does so in the
more common case in which the mesh cannot be aligned. Fi-
nally, the “sinking block” case in Sect. 5.4 shows a buoyancy-
driven situation in which all of the discussions of the previ-
ous section on the choice of a reference density will come
into play. All of these cases are simple enough that we know
(quantitative or qualitative features of) the solution to suffi-
cient accuracy to investigate convergence rigorously.

While these benchmarks provide us with insight that al-
lows us to conjecture which elements may or may not work in
practical application, they still are just abstract benchmarks.
As a consequence, we will consider an actual geodynamic
application in Sect. 6.

All models are run with the ASPECT code. We have lim-
ited ourselves to two-dimensional cases as we do not expect
that three-dimensional models would shed any more light on
the conclusions reached. Although ASPECT is built for adap-
tive mesh refinement (AMR), we have chosen not to use this
feature in order to reflect the fact that the majority of existing
codes use structured meshes.

5.1 The Donea and Huerta benchmark

Let us start our numerical experiments with the simple 2D
benchmark presented in Donea and Huerta (2003). The ex-
act definition involves lengthy formulas not worth repeat-
ing here, but in short it consists of the following ingredients:
(i) the domain is a unit square, (ii) the viscosity and density
are set to 1, and (iii) velocity and pressure fields are cho-
sen to correspond to smooth polynomials describing circular
flow with no-slip boundary conditions. We then choose an
(unphysical) gravity vector field that produces these velocity
and pressure fields. This setup produces the smooth solution
shown in Fig. 1 for which we would expect that the higher-
order Taylor–Hood element is highly accurate.

We verify this in Fig. 2 for the four element choices of
interest in this work:Q1×P0, stabilizedQ1×Q1,Q2×Q1,
and Q2×P−1. Looking at the velocity error, we recover a
cubic convergence rate (q = 3) for theQ2×Q1 andQ2×P−1
elements and a quadratic convergence rate (q = 2) for those
choices using the Q1 elements for the velocity. The pressure
error is of linear rate for theQ1×P0 element and of quadratic
rate for theQ2×Q1 andQ2×P−1 elements. All of these are
as expected. For the stabilizedQ1×Q1, we obtain the better-
than-expected rate of 1.5 already mentioned in Dohrmann
and Bochev (2004); see also Sect. 3.

Figure 3 shows the root mean square velocity as a function
of the mesh size as obtained with the four elements in ques-
tion. Again, the second-order elements are more accurate.

These results are not surprising: the solution is smooth,
and consequently one would expect to obtain optimal order
convergence in all cases. One can carry out similar experi-
ments for the SolKz benchmark (Zhong, 1996), which also
has a smooth solution; we have obtained identical error con-
vergence rates.

Finally, we also investigate the cost associated with solv-
ing this problem using the various elements. Fig. 3 shows
the number of outer FGMRES iterations (Kronbichler et al.,
2012) iterations of the Stokes solver as a function of the mesh
size.5 This number is nearly constant with increasing reso-
lution for the stable or stabilized elements, while it becomes
exceedingly large for the unstableQ1×P0 element, reflecting
the fact that lack of LBB stability corresponds to the smallest
eigenvalue of the system matrix tending to zero – and thereby
driving the condition number to infinity. Indeed, our linear
solver does not converge in the 1000 iterations we chose as a
limit for the smallest mesh sizes.

5.2 The SolCx benchmark

The SolCx benchmark is a common benchmark found in
many geodynamical papers (e.g., Zhong, 1996; Duretz et al.,
2011; Kronbichler et al., 2012; Thielmann et al., 2014). It
uses a discontinuous viscosity profile with a large jump in
the viscosity value along the middle of the domain, result-
ing in a discontinuous pressure field. The domain is a unit
square, boundary conditions are free-slip on all edges, and
the gravity vector points downwards with |g| = 1. The den-
sity for SolCx is given by ρ(x,y)= sin(πy)cos(πx) and the
viscosity field is such that

η(x,y)=

{
1, if 0≤ x ≤ 0.5

106 if 0.5< x ≤ 1.

We show the velocity and pressure fields in Fig. 4. The
discontinuous jump of the viscosity field by a factor of 106

results in separate convective cells on the left and right sides
of the domain, though with vastly different strengths. The
pressure also reflects this disjoint behavior.

As in the Donea and Huerta benchmark, we compute the
velocity and pressure error convergence for all four elements.
Those are shown in Fig. 5. As documented in Kronbich-
ler et al. (2012), the second-order element with discontinu-
ous pressure Q2×P−1 performs better (pressure error con-
vergence is O(h2)) than its continuous pressure counterpart
Q2×Q1 (convergence is only O(h1/2), but the better con-
vergence order with the discontinuous pressure can only be
obtained if the discontinuity in the viscosity is aligned with
cell boundaries – which is the case here. Also of interest here
is the fact that the Q1×P0 outperforms the Q1×Q1 ele-
ment for both velocity and pressure. All of these observa-
tions are readily explained by the fact that a discontinuous
pressure can only be approximated well when using discon-
tinuous pressure elements with cell interfaces aligned with
the discontinuity in the viscosity.

Figure 6 shows the number of outer FGMRES iterations of
the Stokes solver as a function of the mesh size. We find this

5The concrete number of iterations of course depends on the
preconditioner used – here the one described in Kronbichler et al.
(2012). The important point of the figure, however, is how the num-
ber of iterations changes (or does not) with the mesh size h.
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Figure 1. Donea and Huerta benchmark. Velocity (a) and pressure (b) fields obtained on a 32× 32 mesh with Q2×Q1 elements.

Figure 2. Donea and Huerta benchmark. Error convergence as a function of the mesh size h. (a) Velocity error ||u−uh||L2 . (b) Pressure
error ||p−ph||L2 . The two leftmost points are missing for Q1×P0 since the solver failed to converge; the data points for Q2×Q1 and
Q2×P−1 are on top of each other.

time that this number is nearly constant with increasing res-
olution for all four elements. Unsurprisingly the Q1×P0 el-
ement requires more iterations than all the others but by less
than a factor of 2. The quadratic elements require the same
number of iterations, while the stabilized Q1×Q1 requires
only half their number: this is surprising, but the conclusions
from the previous paragraph remain about it being the least
accurate of all four elements here.

5.3 The SolVi (circular inclusion) benchmark

The SolCx benchmark in the previous section allows for
aligning mesh interfaces with the discontinuity in the vis-
cosity. This is an artificial situation that will, in general, not
happen in actual large-scale geodynamics applications for
which the interfaces between materials may be at arbitrary
locations and orientations in the domain and may also move
with time. An example is the simulation of a cold subducting
slab (with correspondingly large viscosity) surrounded by
hot low-viscosity mantle material. Consequently, it is worth
considering a situation in which it is impractical to align
mesh and viscosity interfaces. This is done by the SolVi in-
clusion benchmark, which solves a problem with a viscosity
that is discontinuous along a circle. This in turns leads to
a discontinuous pressure along the interface, which is diffi-

cult to represent accurately. Using the regular meshes used
by a majority of codes, the discontinuity in the viscosity and
pressure then never aligns with cell boundaries. Even though
ASPECT can use arbitrary unstructured meshes (and can also
use curved cell edges), we will honor the setup of this bench-
mark by only considering regular meshes.

Schmid and Podlachikov (2003) derived a simple analyti-
cal solution for the pressure and velocity fields for such a cir-
cular inclusion under pure shear, and this benchmark is show-
cased in many publications (Deubelbeiss and Kaus, 2008;
Suckale et al., 2010; Duretz et al., 2011; Kronbichler et al.,
2012; Gerya et al., 2013; Thielmann et al., 2014). The veloc-
ity and pressure fields are shown in Fig. 7.

A characteristic of the analytic solution is that the pres-
sure is zero inside the inclusion, while outside it follows the
relation

p = 4ε̇
ηm(ηi− ηm)

ηi+ ηm

r2
i
r2 cos(2θ), (14)

where ηi = 103 is the viscosity of the inclusion, ηm = 1 is
the viscosity of the background medium, r =

√
x2+ y2, θ =

arctan(y/x), and ε̇ = 1 is the applied strain rate if one were
to extend the domain to infinity. The formula above makes it
clear that the pressure is discontinuous along the perimeter
of the disk, with the jump largest at θ = 0,±π2 ,π .
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Figure 3. Donea and Huerta benchmark. (a) Root mean square velocity as a function of the mesh size h. The dotted line is the analytical
value. (b) Number of FGMRES solver iterations as a function of the mesh size h.

Figure 4. SolCx benchmark. Velocity (a) and pressure (b) fields obtained on a mesh with a resolution of 32× 32 grid with the Q2×Q1
element.

Deubelbeiss and Kaus (2008) thoroughly investigated this
problem with various numerical methods (FEM, FDM), with
and without tracers, and conclusively showed how various
schemes of averaging the density and viscosity lead to differ-
ent results. Heister et al. (2017) also come to this conclusion
and also considered how averaging the coefficient on each
cell affects the number of iterations necessary to solve the
linear systems. We repeat these experiments here but with our
larger set of different elements. Specifically, results obtained
with no averaging inside the element (“No”), arithmetic av-
eraging (“Arith”), geometric averaging (“Geom”), and har-
monic averaging (“Harm”) are shown in Fig. 8. We see that
(i) all four elements show the same rate of convergence: O(h)
for velocity errors and O(h0.5) for pressure errors; (ii) har-
monic averaging always yields lower errors, validating the
findings of Heister et al. (2017); (iii) the number of iterations
in the Stokes solver is the lowest for the stabilized Q1×Q1
element; and (iv) this number is not strongly affected by the
method of averaging (with the exception of theQ2×P−1 el-
ement). The observation that none of the elements reach their
optimal convergence rate also supports our decision, briefly
mentioned in the “Goals of this paper” part of the Introduc-
tion, to not further investigate higher-order Taylor–Hood ele-
mentsQk×Qk−1 orQk×P−(k−1) with k > 2: we know from

experiments such as the current one that these elements will
not yield better convergence orders despite their additional
cost.

Since harmonic averaging yields the lowest errors we se-
lect this averaging and now turn to the pressure field for all
elements as shown in Fig. 9. We find that the recovered pres-
sures on the line y = 1 follow the analytical solution outside
the inclusion but are less accurate inside the inclusion where
it should be identically zero (Fig. 10).

5.4 The sinking block

As discussed in Sect. 4, the stabilized Q1×Q1 element is
sensitive to the choice of a reference density profile as not
only the computed pressure, but also the computed veloc-
ity field, depends on this choice. This is only relevant for
buoyancy-driven flows, but because none of the benchmarks
shown previously are driven by buoyancy effects in the pres-
ence of a background lithostatic pressure to any significant
degree, let us next consider a setup in which this is the dom-
inant effect. To this end, we perform an experiment based
on a benchmark similar or identical to the ones presented in
May and Moresi (2008), Gerya (2019), Thieulot (2011), and
Schuh-Senlis et al. (2020).
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Figure 5. SolCx benchmark. Error convergence as a function of the mesh size h. (a) Velocity error; (b) pressure error.

Figure 6. SolCx benchmark. Number of FGMRES solver iterations
as a function of the mesh size h.

It consists of a two-dimensional 512× 512 km do-
main filled with a fluid (the “mantle”) of density ρ1 =

3200 kg m−3 and viscosity η1 = 1021 Pa s. A square block of
size 128× 128 km is placed in the domain and is centered at
location (xc, yc)= (256, 384 km) so as to ensure that its sides
align with cell boundaries at all resolutions, avoiding cases
in which the quadrature within one element corresponds to
different density or viscosity values. It is filled with a fluid
of density ρ2 = ρ1+ δρ and viscosity η2. The gravity vector
points downwards with |g| = 10 m s−2. Boundary conditions
are free-slip on all sides. The pressure null space is removed
by enforcing

∫
�
p dV = 0, and only one time step is carried

out. The benchmark then solves for the instantaneous pres-
sure and velocity field for this setup.

In a geodynamical context, the block could be interpreted
as a detached slab (δρ > 0) or a plume head (δρ < 0). As
such its viscosity and density can vary (a cold slab has a
higher effective viscosity than the surrounding mantle, while
it is the other way around for a plume head). The block den-
sity difference δρ can then vary from a few to several hun-
dred kilograms per cubic meter (kg m−3) to represent a wide
array of scenarios. As shown in Appendix A.2 of Thieulot
(2011), one can independently vary η1, ρ2, and η2 and mea-
sure |vz| for each combination: the quantity ν = |vz|η1/δρ is
then found to be a simple function of the ratio η? = η2/η1.
At high enough mesh resolution all data points collapse onto
a single line.

In the following, we will denote as Method 1 the approach
whereby we do calculations with the density field as specified
above. Method 2 consists of a “reduced” density field from
which the quantity ρ1 has been uniformly removed so that
the block has a density δρ, while the surrounding fluid has
zero density. As discussed above, the two choices will result
in different pressure but the same velocity fields.

We have carried out measurements for all four elements
with η? ∈ [10−4

: 106
] and δρ/ρ1 ∈ {0.25%,1%,4%} cor-

responding to δρ ∈ {8,32,128} kg m−3. Results for ν =

f (η?) for all elements, the three block density values, and
five different mesh resolutions are shown in Fig. 11 for the
two methods.

When using the full density, we see that all elements, with
the exception of the stabilizedQ1×Q1 element, yield results
which align on a single curve on the plots once sufficient res-
olution is reached. We find that measurements pertaining to a
given resolution but different δρ are always collapsed onto a
single line. It is worth noticing that theQ2×P−1 element re-
sults seem to be the least resolution-dependent. On the other
hand, the stabilized Q1×Q1 element yields very anomalous
results which are orders of magnitude off at all resolutions,
especially for η1/η2� 1. In addition, we find that for this
element, the value of δρ strongly affects the measurements,
as expected based on the discussions in Sect. 4; as a result,
the curves for the same mesh resolution but different δρ2 no
longer coincide (see Fig. 11b).

When reduced densities are used results are unchanged
for the stable elements (only Q2×Q1 results are shown in
Fig. 11e), and the results for the stabilized Q1×Q1 results
are substantially improved. For values η1/η2 < 1 we see that
all results align on the expected curve, but this is far from
true for η1/η2� 1 even at high resolution.

In Fig. 12 we show the velocity field in the case η? =
10−4 (i.e., the viscosity of the block is 10 000 times smaller
than the surrounding mantle) and δρ = 8 kg m−3. When the
Q2×Q1 element is employed in conjunction with Method
1 we see in Fig. 12a that the velocity field is strongest in-
side the block with a maximum value of about 5 mm yr−1 in
its center. We see that the Q2×Q1 and Q2×P−1 elements
yield nearly identical results (Fig. 12b), so we consider this to
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Figure 7. SolVi benchmark with inclusion of radius 0.2. Velocity (a) and pressure (b) fields obtained on a 256× 256 mesh using Q2×Q1
elements.

Figure 8. SolVi benchmark. Left to right: Q1×P0, stabilized Q1×Q1, Q2×Q1, and Q2×P−1. Top to bottom: velocity error, pressure
error, and number of FGMRES iterations for the Stokes solve. The individual lines in each graph correspond to different ways of averaging
coefficients on each cell: dotted lines use the correct unaveraged values of coefficients at each quadrature point; dash-dotted lines compute
the arithmetic average of the values at the quadrature points on a cell and use the average for all quadrature points; dashed lines use the
geometric average; solid lines use the harmonic average. The gray dotted line in the first two rows indicates O(h) convergence for velocity
and O(h0.5) for pressure.

be the correct solution of the physical experiment. The same
setup with the stabilizedQ1×Q1 (left half of Fig. 12c) yields
a velocity field that is also maximal in the middle of the block
but nearly 1000 times larger in amplitude. If we now switch
to Method 2 (right half of Fig. 12c) the amplitude of the ve-
locity is reduced by 2 orders of magnitude, but it is still much
too large compared to the true solution.

These observations illustrate the unreliable nature of the
results obtained with stabilizedQ1×Q1 elements in the con-
text of buoyancy-driven flows. Looking at Fig. 11f we see
that increasing the resolution to 512× 512 or 1024× 1024

would probably yield the expected curve, but such resolu-
tions are intractable in three dimensions and better results can
be obtained at much lower resolutions with other elements.

Finally, in Fig. 13 we plot the normalized pressure p? =
p/(δρ gLb) at the center of the block (where Lb is the size
of the block) as a function of the viscosity ratio η? in the case
in which a reduced density field is used. For theQ2×Q1 and
the stabilized Q1×Q1 elements, the pressure at this point is
uniquely defined since the elements have continuous pres-
sures. For the other two elements the pressure is discontinu-
ous across element edges, and it is therefore not uniquely de-
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Figure 9. SolVi benchmark. Pressure field for the Q1×P0, stabilized Q1×Q1, Q2×Q1, and Q2×P−1 elements from left to right and
top to bottom at resolution 128× 128 with no averaging. Note the different color scales, illustrating the differing size of overshoots and
undershoots for the different discretizations.

Figure 10. SolVi benchmark. Pressure on the horizontal ray starting
from the center of the inclusion at x = 1.

fined at our measurement point. We have then chosen to mea-
sure it at four locations corresponding to (xc± δx,yc± δy),
where δx = δy = 0.1 m, and show the normalized pressures
at all four of these locations in the figure. For the Q2×P−1
element, the difference between these values is negligible but
not so for the Q1×P0 for which the pressure is a stairstep
function with very different values depending on which step
an evaluation point is on. The distance between the two lines
for theQ1×P0 element decreases with mesh refinement (in-
dicating convergence of the pressure to the true value), but

only slowly and, matching the observation in Sect. 5.1, at the
cost of not only a fine mesh but also very large numbers of
linear solver iterations.

In addition to the slow convergence of the Q1×P0 el-
ement, the most striking conclusion of this benchmark is
that for buoyancy-driven flows, the solution obtained using
the stabilized Q1×Q1 element on typical meshes not only
strongly depends on the choice of the otherwise arbitrary ref-
erence density, but is also almost entirely unreliable even on
meshes that are already quite fine.

6 Numerical results for a model application

While the previous sections have built our intuition for which
element may actually work in the context of geodynamics
applications, they have only done so through abstract and
idealized benchmarks. It is therefore interesting to investi-
gate what one would find in more realistic setups, and conse-
quently we have also investigated convergence for a situation
still sufficiently simple that numerical simulations can reach
reasonably high accuracy but that has more of the complex-
ity one would generally find in “real” simulations. Given that
the previous examples have highlighted the fact that the sta-
bilized Q1×Q1 element has difficulties with the pressure
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Figure 11. Sinking block benchmark. (a–d) ν = |vz|η1/δρ as a
function of η? = η2/η1 as obtained with the four elements with
full density; (e, f) same with reduced density for only two element
types. Legend: • 16×16 resolution,� 32×32 resolution,� 64×64
resolution, 4 128× 128 resolution, N 256× 256 resolution. Colors
represent the element used. For each mesh resolution, we show sep-
arate curves for δρ/ρ1 ∈ {0.25%,1%,4%}; for all but the stabilized
Q1×Qq element, these curves coincide. Note the different y axis
used for the stabilized Q1×Q1 element in (b) and (f).

approximation, we are specifically interested in a situation in
which the material behavior is pressure-dependent.

To this end, we consider an example of continental ex-
tension here. The setup is similar to ones that can be found
in Huismans and Beaumont (2002), Jammes and Huismans
(2012), Naliboff and Buiter (2015), and Brune et al. (2017),
and we specifically use the one that can be found in the “con-
tinental extension” cookbook of the manual of the ASPECT
code (Bangerth et al., 2022). The situation we model here
is characterized by the following building blocks: on a do-
main of size 400 km× 100 km, we impose an extensional
horizontal velocity component of±0.25 cm yr−1 on the sides
and a vertical upward velocity of 0.125 cm yr−1 at the bot-
tom. The tangential components are left free. At the top,
we allow for a free boundary. More interestingly, we use a
pressure- and temperature-dependent viscoplastic rheology
of Drucker–Prager type with parameters for viscous defor-

mation based on dislocation creep flow laws:

ηdisl = A
−1/nε̇−1+1/n exp

(
Q+pV

nRT

)
, (15)

where A is a material constant, n is an index typically be-
tween 3 and 4, Q is the activation energy, V is the activation
volume, R the gas constant, T the temperature, and ε̇ is the
effective strain rate (the square root of the second invariant of
the corresponding tensor). Stresses are limited plastically at a
yield stress σy = C cos(φ)+P sin(φ) via a Drucker–Prager
criterion where C is the cohesion and φ the angle of fric-
tion. We use distinct values for some of these parameters in
the initially 20 km thick upper crust (wet quartzite), an ini-
tially 10 km thick lower crust (wet anorthite), and the mantle
(dry olivine), which initially occupies the remaining 70 km
in depth. Deformation is seeded by a weak area within the
mantle lithosphere. We only carry out a single time step as
obtained with a CFL number of 0.5.

A complete and concise description of this setup has more
parameters than are worth spelling out in detail here. For a
detailed description, see Naliboff and Buiter (2015) and the
section of the ASPECT manual along with the corresponding
input files. For the purposes of this paper, the important part
is that both the yield stress and the dislocation creep rheology
depend on the pressure; as a consequence, we can anticipate
that elements that result in poor pressure accuracy may not
yield accurate simulations in general.

This setup produces localized shear zones that accommo-
date the majority of the deformation. Figure 14 illustrates
the structure of the resulting solution. Each panel of the fig-
ure shows in its left half the solution produced by the stabi-
lizedQ1×Q1 element and its right half that produced by the
Taylor–HoodQ2×Q1 element. Because the solution is sym-
metric, the two halves should be mirror images. It is, how-
ever, clear from several of the panels that this is not the case:
the Q1×Q1 element produces large artifacts at depth where
the pressure is large and the pressure dependence of the ma-
terial strong.

This effect is also demonstrated in a different way in
Fig. 15 where we show laterally averaged quantities for
the different elements and different mesh resolutions. Even
though it is clear from Fig. 14 that lateral averaging should
result in a better approximation (than pointwise evaluations)
of the correct quantities for a given depth, Fig. 15 shows that
even the average is far from correct. On the other hand, the
figure shows that with increasing mesh resolution, the solu-
tions produced by the Q1×Q1 seem to converge to the so-
lutions generated by the other elements – albeit very slowly
and at what one might consider an unacceptable cost.

To investigate the origin of these convergence problems of
theQ1×Q1 element, one should recall that the model is non-
linear. As a consequence, the artifacts may be related to the
discretization or to a failure of the nonlinear iteration – and
the two may be connected. All of the solutions we show were
taken after 100 Picard iterations to resolve the nonlinearity
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Figure 12. Sinking block benchmark with δρ/ρ = 0.25 % and η? = 104 on a 256× 256 element mesh. (a) Viscosity and velocity field.
(b) Velocity field obtained with the Q2×Q1 element (left of vertical white line) and Q2×P−1 element (right of vertical line), both using
full density; (c) velocity field obtained with stabilized Q1×Q1 with full density (left) and stabilized Q1×Q1 with reduced density (right).

Figure 13. Sinking block benchmark. Normalized pressure
p/(δρ gLb) in the center of the block as a function of the viscosity
ratio η?. These computations use a 256× 256 mesh and the reduced
density. For theQ1×P0 andQ2×P−1 elements with their discon-
tinuous pressure spaces, we show the normalized pressures at sev-
eral slightly displaced points (xc± δx,yc± δy). For the Q2×P−1
element, the difference is not visible, but for theQ1×P0 this yields
the two very different red curves; this is due to the fact that the pres-
sure for this element forms a stairstep function for which two of the
evaluation points are on a lower and two on a higher step.

of the model, with nonlinear convergence shown in Fig. 16.
(One could accelerate convergence by using a Newton solver
– Fraters et al., 2019 – but this is not relevant for the work
herein.) Looking at the evolution of the nonlinear residual
during these iterations, we see that it decreases quickly and
for most element choices then plateaus at about 10−5 rel-
ative to the starting residual. In contrast, for the stabilized
Q1×Q1 element, increasing the mesh resolution yields lower
nonlinear residuals – but even on the finest mesh, the nonlin-
ear residuals are still substantially worse than for any of the
other elements, with no apparent progress after about 20 iter-
ations. Of course, we are not the first to observe that conver-
gence is hard to come by for these sorts of problems (see, for
example, Spiegelman et al., 2016), and recent approaches to
regularize visco(–elasto)–plastic deformation by Duretz et al.
(2020) and Jacquey et al. (2021) have been found to improve
the convergence behavior of the nonlinear solvers.

Our interpretation of this experiment is that the inability
of the Q1×Q1 element to generate accurate pressure fields
leads to values for the pressure-dependent rheology that are
so far away from their correct values – and, indeed, from the
values on nearby cells – that they greatly increase the con-
dition number of the linear systems that have to be solved
in each nonlinear iteration. The resulting difficulty of solv-
ing these Picard steps accurately then affects the speed with
which the nonlinear residual is reduced by the Picard itera-
tion to the point at which the condition number is so large
that convergence can no longer be achieved. Only mesh re-
finement, with the attendant increased accuracy of the pres-
sure solution (and, consequently, a more accurate viscosity),
helps to restore the ability to actually solve this problem to
small nonlinear residuals.

7 Conclusions

In this contribution, we have provided a side-by-side compar-
ison of the most widely used quadrilateral finite elements. As
outlined in the Introduction, most finite-element solvers used
in the geodynamics community rely on one or the other of
these. At the same time, we are not aware of a comprehensive
comparison of their relative strengths – or their weaknesses,
as they may be.

Using the artificial linear benchmarks discussed in Sect. 5,
we can infer that when the solution is smooth, the Taylor–
Hood variations Q2×Q1 and Q2×P−1 provide far better
accuracy than the lower-order elements Q1×P0 and the sta-
bilized Q1×Q1. This advantage is largely lost when one
considers problems in which the viscosity is discontinuous.
Since we believe that the real Earth has relatively narrow
phase transition zones where the viscosity may jump by large
factors, benchmarks like the SolVi one in Sect. 5.3 are rele-
vant and illuminate important aspects.

From these considerations, one may conclude that the
Taylor–Hood variations are too expensive – in terms of their
number of degrees of freedom and the attendant memory and
CPU time cost. However, we believe that this is not so.
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Figure 14. Application example. (a) Vertical component of the velocity field; (b) pressure field; (c) effective viscosity field; (d) effective
strain rate field. In all panels, the left half (left of the vertical line) shows data obtained with the stabilized Q1×Q1 element, whereas the
right half shows results obtained with the Q2×Q1 element. Note the large deviations between the two towards the bottom of the domain.
All results were obtained on an 800× 200 mesh with a cell size of 0.5 km.

– For buoyancy-driven flows such as the sinking block
benchmark in Sect. 5.4, the stabilizedQ1×Q1 element
is largely unable to reproduce the correct solution and,
furthermore, depends on using a formulation in which
one subtracts a reference density from the actual den-
sity; this is equivalent to defining a hydrostatic pressure
profile and only attempting to solve for the “dynamic”

component of the pressure. Crucially, however, there are
many ways of defining such a reference density, neither
of which is canonical and “obviously right” in complex
mantle convection simulations. Since the solution ob-
tained with the stabilizedQ1×Q1 element strongly de-
pends on the specific choice of reference density, we
conclude that the element cannot be made robust for the
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Figure 15. Application example. (a) Laterally averaged effective viscosity; (b) laterally averaged velocity magnitude. The line styles chosen
become increasingly assertive (dotted to solid lines) as mesh resolution is increased.

Figure 16. Application example. Nonlinear residual as a function of nonlinear iteration step for all four elements and for different mesh
resolutions.

kinds of flows we encounter in real mantle convection
situations. We have also verified this assertion using an
application in which we consider continental extension
(Sect. 6) and in which the inability to produce accurate
pressure solutions also greatly affects the convergence
of the nonlinear solver to the point at which the com-
puted solution must be considered unusable. We have
shown that these errors can be reduced when choosing
very fine meshes, but the attendant cost is unacceptable
when compared with that of using other elements on far
coarser meshes.

There are other considerations to believing that the pro-
cedure of trying to subtract a reference density (or a
hydrostatic pressure) cannot be a successful strategy.
For example, simulations of free or deformable surfaces

(at the Earth’s surface as well as at the core–mantle
boundary) require accurate knowledge of the total pres-
sure. This is true for coupled formulations of flow and
surface deformation (Rose et al., 2017) as well as ap-
proaches such as the “sticky air” method (Crameri et al.,
2012). But similar considerations also apply to nonlin-
ear material laws in which the pressure enters the vis-
cosity or, more commonly, phase computations that de-
termine the density and other thermodynamic material
properties from the pressure and the temperature. In-
deed, one could conjecture that the stabilized Q1×Q1
element would also fail for compressible Stokes simu-
lations, though we have not verified this here.

We conclude from these thoughts that the stabilized
Q1×Q1 element is not a viable choice for mantle con-
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vection simulations. It is important to point out that
the cases we consider to be crucial here – buoyancy-
driven flows, large hydrostatic pressures, and pressure-
dependent rheologies – are uncommon in most of the
engineering applications for which the Q1×Q1 was
originally developed; as a consequence, it is not sur-
prising that what we find here contradicts substantial
parts of the engineering literature wherein the element
remains widely used.

– We believe that theQ1×P0 element is also not a viable
choice. As shown by several of the analytical bench-
marks, the errors that result from using this element can
be orders of magnitude larger than the corresponding
errors that result from the Taylor–Hood-type elements.
This is no longer the case once we consider discontin-
uous viscosity profiles (see Sect. 5.3), but this element
is also unable to accurately solve the buoyancy-driven
case discussed in Sect. 5.4. Furthermore, as pointed out
before, this element is not LBB-stable, which, despite
considerable efforts in the past decades, has limited its
use in combination with iterative methods: because of
the corresponding condition number increase, the num-
ber of iterations is found to grow in a somewhat un-
predictable manner with an increase in resolution. This
may explain why, despite the Citcom codes’ success
over 2 decades with studies based on models count-
ing up to ∼ 100 million elements on several hundred
processors (e.g., Jadamec and Billen, 2012), the current
generation of massively parallel codes relies on either
stable (Kronbichler et al., 2012; May et al., 2015) or
stabilized elements (Burstedde et al., 2013), or they use
the finite-difference method (Kaus et al., 2016).

In summary, we think that the Taylor–Hood variations
Q2×Q1 and Q2×P−1 present the best compromise for
robust mantle convection and crustal dynamics simulations
based on the finite-element method. This is not because these
elements are “obviously better” than the others but due more
to a “last man standing” argument: the other choices sim-
ply disqualified themselves by failing to provide adequate
accuracy in one situation or another. At the same time, the
lack of regularity one expects of typical scenarios also im-
plies that we should not expect higher-order Taylor–Hood
elements Qk+1×Qk or Qk+1×P−k with k > 2 to provide
substantially better accuracy compared to their much higher
computational cost. Although we have only shown results for
two-dimensional simulations, experience – including the ex-
perience with the ASPECT code used here that solves two-
and three-dimensional problems within the same framework
– suggests that all of these considerations would also apply
to the three-dimensional (hexahedral) analogs of the ones we
have used.

The experiments we have shown do not provide clear guid-
ance on whether one should use the Q2×Q1 or Q2×P−1
element. But other considerations can provide such guidance.

Most notably, the elements with discontinuous pressure ele-
ments (namely, theQ2×P−1 but also theQ1×P0 elements)
have the “local conservation” property for which the velocity
satisfies∫
K

∇ ·uh =

∫
∂K

n ·uh = 0

on every cell K of the mesh, a property also satisfied by the
exact solution. Local conservation is useful when consider-
ing that the velocity computed in geodynamics models is of-
ten used in a second step to advect both the temperature field
and chemical compositions (see, for example, Schubert et al.,
2001). A comprehensive investigation of the interplay of lo-
cal conservation and transport can be found in Dawson et al.
(2004).

Of course, the choices we have considered here are not
the only ones. One could, for example, consider “simplicial”
(triangular and tetrahedral) elements instead of the quadrilat-
eral and hexahedral ones we have used here. Indeed, some
existing mantle convection codes use this strategy. One suc-
cessful example is the TERRA-NEO code that uses equal-
order linear tetrahedra (Gmeiner et al., 2015; Weismüller
et al., 2015) stabilized by means of a pressure-stabilization
approach based on the addition of linear least-squares terms
(the “PSPG” approach, see Brezzi and Douglas, 1988; El-
man et al., 2014); other examples include Fluidity (Davies
et al., 2011), MILAMIN (Dabrowski et al., 2008), and La-
CoDe (de Montserrat et al., 2019). While we have not evalu-
ated simplicial elements, one might conjecture that many of
the same conclusions would also hold: the unstable P1×P0
provides low accuracy and is unstable, the stabilized P1×P1
has difficulties with buoyancy-driven flows and large hydro-
static pressures, and the Taylor–Hood element P2×P1 is ex-
pensive but robust.

Finally, there are other more exotic elements one could
work with. Examples include the Rannacher–Turek element
(Rannacher and Turek, 1992), the Crouzeix–Raviart element
(Crouzeix and Raviart, 1973; Dabrowski et al., 2008), or the
DSSY element (Douglas et al., 1999). We have not inves-
tigated these kinds of choices for four reasons: (i) the pa-
per at hand is long enough as it stands; (ii) these elements
are not widely used, both within and outside our commu-
nity; (iii) many of these elements are difficult to implement in
one regard or another, including complications with bound-
ary conditions and with dealing with unstructured and possi-
bly curvilinear cells; and finally, (iv) the elements mentioned
above are not as widely available or completely implemented
in common software frameworks, and their use thus requires
substantial additional implementation work.

While we have not investigated these two possible direc-
tions for alternatives to the elements we have considered, we
think that such studies would be interesting. We hope that
our careful choice of test cases might also be useful to such
studies.
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