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Abstract. In Europe, formation of the Palaeozoic Variscan
orogenic belt, and the Mesozoic–Cenozoic Alpine–
Carpathian orogenic belt led to a widespread inversion
events within forelands of both orogenic domains. We
used legacy 2-D seismic data together with the newly
acquired 3-D seismic data that, for the first time, precisely
imaged sub-Zechstein (i.e. sub-evaporitic) upper Palaeozoic
successions in NW Poland in order to develop a quanti-
tative, balanced 2-D model of the late Palaeozoic–recent
evolution of this area, characterised by a complex pattern
of repeated extension and inversion. Four main tectonic
phases have been determined: (1) Late Devonian–early
Carboniferous extension and subsidence possibly related
to extensional reactivation of Caledonian thrusts, (2) late
Carboniferous inversion caused by the Variscan orogeny,
(3) Permo-Mesozoic subsidence related to the development
of the Polish Basin and (4) its Late Cretaceous–Paleogene
inversion. Variscan and Alpine structures form a superim-
posed multilayer inversion system, mechanically decoupled
by the Zechstein evaporites.

1 Introduction

Inversion tectonics has been intensely studied since the early
1980s, when a fully developed concept of sedimentary basin
inversion, exemplified by a tectonic graben bounded by

deeply rooted normal faults subsequently reactivated as re-
verse faults or thrusts, was formulated (Glennie and Boegner,
1981; Bally, 1984). During this period, numerous papers and
two dedicated volumes were published in which the geome-
try and evolution of inversion structures in different geody-
namic settings were discussed (Cooper and Williams, 1989;
Buchanan and Buchanan, 1995). Published case studies, doc-
umented by surface and/or subsurface data and supported by
results of analogue and numerical modelling studies, dealt
with the geometry of inversion systems, the role of differen-
tial lithologies in the formation of inversion structures, the
evolution of fracture systems and syn-inversion sedimenta-
tion (e.g. Bonini et al., 2012; Buiter and Pfiffner, 2003; Buiter
et al., 2009; Cloetingh et al., 2008; Dooley and Hudec, 2020;
Henk and Nemčok, 2008; Jagger and McClay, 2018; Mc-
Clay, 1995; Mitra and Islam, 1994; Panien et al., 2005, 2006).

Thanks to all this work, the scene for inversion tectonics
seems to be fairly well set; there are, however, still some
aspects that require further clarification. They include cru-
cial topics of inversion tectonics such as definition of inver-
sion structures and their key characteristics. In fact, inversion
structures come in various shapes and forms, and, despite
all the studies briefly mentioned above, inversion tectonics
could be quite differently understood. To some, it might be
regarded as a very general process that leads to reduction of
the accommodation space and, eventually, cessation, i.e. in-
version, of the entire sedimentary basin. The process that re-
duces tectonic subsidence, eventually bringing it to a halt and

Published by Copernicus Publications on behalf of the European Geosciences Union.



640 P. Krzywiec et al.: Together but separate: decoupled Variscan and Alpine inversion tectonics

causing uplifts, might include reversal of basement normal
faults that controlled localised tectonic subsidence as pro-
posed in the classic model by Bally (1984). However, inver-
sion tectonics could also involve other, sometimes very dif-
ferent processes such as salt movements, lithospheric buck-
ling or isostatic adjustments (cf. Dewey, 1989; see also Kley,
2018; Krzywiec et al., 2018). Another, more “conservative”
approach to inversion tectonics relies on the classic model by
Bally (1984) that assumes (1) formation of tectonic graben
bounded by normal fault(s) during extension and (2) com-
pressional reactivation of graben-bounding fault(s) and up-
lift of sedimentary infill deposited during extension (cf. also
Cooper et al., 1989; Cooper and Warren, 2010, 2020; Tari
et al., 2020; Williams et al., 1989; Fig. 1). In this model, a
master normal fault is deeply rooted in the crystalline base-
ment so its reactivation under regional compression could
be regarded as “thick-skinned inversion tectonics” (cf. Brun
and Nalpas, 1996). An extensional phase is documented by
divergent pattern of the growth strata that thicken towards
the master fault. During inversion, formation of growth
strata, characterised by local thinning, is focused above in-
version anticlines that develop above the tip of inverted
master fault (Fig. 1a). Well-documented examples of such
deeply rooted inversion structures include the Precambrian
Calvert and Isa basins from NE Australia (Gibson and Ed-
wards, 2020), the Devonian–Carboniferous Dnipro–Donetsk
Basin (Maystrenko et al., 2003), the Triassic–Jurassic Lau-
taro Basin in northern Chile (Martínez et al., 2012) or the
Paleogene Song Hong and Beibuwan basins in northern Viet-
nam (Fyhn et al., 2018).

There are, however, numerous departures from this classic
model of inversion tectonics. The most important difference
is the location of main basal detachment that can develop not
within the crystalline basement, as proposed by Bally (1984),
but within the pre-extensional sedimentary cover (Fig. 1b
and c). A common situation in which such a location of the
main detachment of an extensional–inversion system could
be encountered is related to foreland thin-skinned fold-and-
thrust belts, where major thrusts could be first reactivated as
normal faults and then inverted due to regional compression
(e.g. Di Domenica et al., 2014; Tavarnelli, 1999; Withjack
et al., 2010). Thin-skinned rather than thick-skinned char-
acter of inversion tectonics is in this case determined by a
thin-skinned nature of the fold-and-thrust belt that undergoes
reactivation. It is worth noting here that extensional reactiva-
tion of thrusts is often referred to as a “negative inversion”,
in contrast to “positive inversion” associated with reverse re-
activation of normal faults that was briefly described above
(e.g. Chadwick and Smith, 1988; Del Ventisette et al., 2021;
Krantz, 1991; Tari et al., 2021; Tortorici et al., 2019). In this
case, however, “inversion” seems to be used as an equiva-
lent of “extensional reactivation”, which is a much broader
term that does not fully comply with the original concept
of “inversion tectonics” coined by Bally (1984) (see also
Holdsworth et al., 1997). Bally’s original model was not fo-

cused on inversion, i.e. reactivation, of basin-bounding faults
but on inversion, i.e. partial or full destruction, of a sedimen-
tary basin. Destruction of a sedimentary basin (half-graben)
in Bally’s model is genetically linked to reactivation (reverse
in this case) of a basin-bounding fault(s), but fault reacti-
vation is a secondary process here, while the main empha-
sis is on demise of a half-graben formed during the exten-
sional phase (Bally, 1984). On the other hand, negative inver-
sion might be related to formation, not destruction, of a new
basin that develops above extensionally reactivated thrust
(e.g. Babaahmadi et al., 2018; Constenius, 1982, 1996; Deng
et al., 2021; Powell and Williams, 1989; Tari et al., 2021;
Velasco et al., 2010). Taking this into account, it seems ap-
propriate to delimit usage of the term “inversion tectonics” to
“positive inversion” as originally proposed by Bally (1984),
and to abandon the term “negative inversion” that in fact
is related to a rather different tectonic scenario. At the end
of the day, however, this is all a matter of terminology and
definitions, and general consensus (or lack thereof) around
them. Different opinions on that issue have been already ex-
pressed; for example, Cooper and Warren (2020) in their re-
cent chapter provided a short overview of various opinions
on the term “negative inversion” and explicitly stated that it
should be discarded. On the other hand, there are recently
published important papers in which the term “negative in-
version” has been successfully used to describe regional tec-
tonic evolution of particular regions and formation of vari-
ous structures within the Earth’s crust (e.g. Tari et al., 2021;
Connors and Houseknecht, 2022). In this paper, we follow
our line of reasoning described above and report inferred ex-
tensional reactivation (not negative inversion) of Caledonian
thrusts in northern Poland, the formation of upper Palaeozoic
half-grabens and their subsequent inversion (see below).

The classic and relatively simple thin-skinned inversion
scenario shown in Fig. 1b could be further complicated by
lithological variations of the sedimentary infill formed prior
to onset of inversion, i.e. prior to, during and after extension.
The most obvious example of influence exerted by lithol-
ogy on inversion tectonics is the presence of ductile evap-
orites that leads to partial or full mechanical decoupling and
formation of sub- and supra-salt/evaporitic structures, often
of different geometries and kinematics (e.g. Brun and Nal-
pas, 1996; Jackson and Larsen, 2008; Jackson et al., 2013;
Dooley and Hudec, 2020; Hansen et al., 2021). A model of
thin-skinned inversion system detached above evaporites is
shown in Fig. 1c. One important conclusion might be drawn
from comparison of “classic” thick-skinned inversion system
(Fig. 1a) and two thin-skinned inversion systems, one with-
out evaporites (Fig. 1b) and one with evaporites (Fig. 1c) is
that despite their fundamentally different structural charac-
teristics at depth, they all have the same shallower tectono-
sedimentary expression with identical key elements of the
inverted extensional system such as inversion anticline and
syn-inversion growth strata. Taking this into account, it could
be postulated that the “classic” inversion scenario of exten-
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Figure 1. (a) Classic thick-skinned model of inversion of half-graben with master listric fault rooted within the crystalline basement, based
on Bally (1984); see also Cooper and Warren (2010, 2020) and Tari et al. (2020). (b) Thin-skinned model of inversion of half-graben with
master listric fault rooted within the thick pre-extensional sedimentary cover. (c) Thin-skinned model of inversion of half-graben with master
listric fault detached above pre-extensional evaporites. Note that all three models, despite their different structural characteristics at depth,
have the same shallower tectono-sedimentary expression with identical key elements of the inverted extensional system such as inversion
anticline and syn-inversion growth strata.

sional graben (sedimentary basin) should not be restricted
to basins with their bounding faults rooted within the crys-
talline basement and could equally well also be applied to
thin-skinned systems, either developed above ductile evapor-
ites or simply located above thick pre-extensional sedimen-
tary cover that prevented faulting deeply rooted within the
crystalline basement during extension and subsequent inver-
sion (see also Cooper and Warren, 2020).

In Europe, formation of the Palaeozoic Variscan orogenic
belt, and then the Mesozoic–Cenozoic Alpine–Carpathian
orogenic belt, led to a widespread inversion events within
forelands of both orogenic domains. Variscan (i.e. late Car-
boniferous) inversion is well documented in areas where
either suitable outcrops of deformed Palaeozoic rocks are
present or deeper seismic imaging is not hampered by a
thick upper Permian (Zechstein) evaporitic cover, for exam-

ple, the southern UK, Belgium or northern Germany (e.g.
Chadwick and Evans, 2005; Pharaoh et al., 2020; Deckers
and Rombaut, 2021; von Hartmann, 2003). On the other
hand, Alpine (i.e. Late Cretaceous–Paleogene) inversion is
well documented by seismic reflection data that image usu-
ally complex supra-salt/supra-evaporitic thin-skinned struc-
tures that are, however, characterised by not-always-clear re-
lationships to the sub-salt/sub-evaporitic deformations (e.g.
Chadwick and Evans, 2005; Mazur et al., 2005; Krzywiec,
2006b).

In this paper, we analyse complex inversion tectonics in
NW Poland, where the superimposed effects of Variscan
and Alpine foreland compression led to the formation of
a multilayer decoupled inversion system. Our analysis is
partly based on a newly acquired high-quality 3-D seis-
mic data that provided unique, so-far-unavailable insight into
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the pre-Zechstein sedimentary cover. Geometry, kinemat-
ics and causal links between consecutive phases of exten-
sion/subsidence and compression/inversion are discussed in
the context of the regional Palaeozoic and Mesozoic evolu-
tion of central and eastern Europe.

2 Geological setting

The study area in NW Poland (Figs. 2–5) is located in re-
gion where crystalline basement is buried to depths exceed-
ing 11 km, as documented by deep seismic refraction data
and gravity-magnetic modelling studies (Grad et al., 2002;
Guterch et al., 1999, 2010; Guterch and Grad, 2006; Grad
and Polkowski, 2016; Mazur et al., 2021). This is also com-
patible with the results of deep seismic reflection surveying
in the area adjacent to the east that documented the Caledo-
nian orogenic front thrust over the undeformed lower Palaeo-
zoic foreland and underlain by a lower plate that gradually
descends towards the SW to a depth of at least 10 km (Krzy-
wiec et al., 2014; cf. also Lazauskienė et al., 2002; Mazur et
al., 2018; Poprawa, 2019; Poprawa et al., 2020, 1999). Struc-
tures analysed in this paper evolved above the frontal part
of this deeply buried Caledonian thin-skinned orogenic belt
(Mazur et al., 2016), below which the Precambrian suture of
the Teisseyre–Tornquist Zone is located (Mazur et al., 2015).

The Caledonian orogenic belt in northern Poland ceased
to exist due to Early Devonian uplift and widespread de-
nudation (Dadlez, 1978; Poprawa, 2019). In the Variscan ge-
ological framework, the study area is located approximately
150 km NE from the front of the Variscan orogen that extends
from the south-western UK across northern France, Belgium,
northern Germany to Czechia, Poland and western Ukraine,
and then on to Romania, Bulgaria and Turkey (Fig. 2; e.g.
Martínez Catalan et al., 2020; Franke, 2014; Kröner et al.,
2008; Krzywiec and Kufrasa, 2022; Laurent et al., 2021;
Mazur et al., 2020; Okay and Topuz, 2017; Warr, 2012). The
most external part of the Variscan orogen, i.e. the Rhenoher-
cynian zone, forms a foreland fold-and-thrust belt built of
the deformed Devonian–Carboniferous sedimentary succes-
sion deposited along the southern margin of Laurussia and
subjected to progressive thrusting and folding (Oncken et al.,
1999). The final emplacement of the Variscan fold-and-thrust
belt onto its foreland plate took place in the late Carbonifer-
ous (Kröner et al., 2008; Mazur et al., 2010, 2020). It led to
the regional flexure of the foreland plate and formation of ex-
tensive Carboniferous foreland basin filled with a thick syn-
orogenic sedimentary succession (Burgess and Gayer, 2000;
Deckers and Rombaut, 2021; Franke, 2014; Kombrink et al.,
2010; Leveridge and Hartley, 2006; Maynard et al., 1997;
McCann, 1999; McCann et al., 2008; Narkiewicz, 2007,
2020; Opluštil and Cleal, 2007; Tomek et al., 2019). Final
stages of evolution of the external Variscan fold-and-thrust
belt were associated with a widespread inversion of Palaeo-
zoic basins located within its foreland (e.g. Corfield et al.,

1996; Glen et al., 2005; Peace and Besly, 1997; Pharaoh et
al., 2020; Shail and Leveridge, 2009; Smith, 1999; von Hart-
mann, 2003). Until recently, no Variscan inversion structures
have been recognised within the NE part of the Variscan fore-
land, including NW Poland, mainly because of low quality of
sub-salt seismic imaging of the sub-Zechstein interval. Rela-
tively intense compressional deformations were documented
in the area devoid of the Zechstein evaporitic cover in SE
Poland and western Ukraine within the Lublin–Lviv Basin
(Krzywiec et al., 2017a, b; Kufrasa et al., 2020; Tomaszczyk
and Jarosiński, 2017; Zayats, 2015) and adjacent areas in-
cluding the Holy Cross Mountains (e.g. Czarnocki, 1957;
Lamarche et al., 1999; Konon, 2006, 2007). However, they
have been recently interpreted as belonging to the frontal
Variscan fold-and-thrust belt rather than being foreland in-
version structures (see Krzywiec et al., 2017a, b; Kufrasa et
al., 2020; Mazur et al., 2020, and references therein).

The upper Palaeozoic sedimentary cover within the study
area consists of the (upper Emsian–?) Middle Devonian
to lower Carboniferous (Mississippian) sediments deposited
within the western Pomeranian Basin (Figs. 2, 3). This suc-
cession is composed of mainly clastic and carbonate sed-
iments, with subordinate evaporites (Lipiec and Matyja,
1998; Narkiewicz, 2007, 2020; Narkiewicz et al., 1998;
Matyja, 1993, 1998, 2006, 2008; Muszyński et al., 1996).
Late Devonian–early Carboniferous formation of sedimen-
tary cover of western Pomerania could be associated with
regional extension and subsidence along the Laurussia south-
ern margin (Smit et al., 2018).

The Pennsylvanian in the western Pomeranian Basin is de-
veloped only locally in the northern part of the basin (Żeli-
chowski, 1995; Matyja, 2006; Kuberska et al., 2007). Also
locally, uppermost Carboniferous to lowermost Permian vol-
canic rocks have been encountered by wells (Maliszewska et
al., 2016).

The Variscan foreland basin ceased to exist in the latest
Carboniferous due to regional post-orogenic uplift and ero-
sion (Edel et al., 2018; McCann et al., 2006; Ziegler, 1990).
This was followed by renewed subsidence and sedimenta-
tion related to formation of an extensive Permo-Mesozoic
basin that covered the large part of Europe (Doornenbal
and Stevenson, 2010; Littke et al., 2008; Pharaoh et al.,
2010; Scheck-Wenderoth et al., 2008; van Wees et al., 2000;
Ziegler, 1990). The Polish Basin, together with its axial most
subsiding part, the Mid-Polish Trough, formed the eastern-
most segment of this vast sedimentary basin (Dadlez et al.,
1995; Stephenson et al., 2003; Ziegler, 1990). The Polish
Basin underwent long-term Mesozoic thermal subsidence,
punctuated by three major pulses of extension-related ac-
celerated tectonic subsidence: during late Permian to Early
Triassic times, in the Late Jurassic (Oxfordian to Kimmerid-
gian) and in the early Cenomanian (Dadlez et al., 1995;
Stephenson et al., 2003). Evolution of the NW and central
segments of the Polish Basin, where a thick Zechstein evap-
oritic cover developed, was characterised by regional me-
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Figure 2. Regional map showing main elements of the Variscan orogenic belt and its foreland between the UK/France and Poland/Ukraine
(adopted from Krzywiec and Kufrasa, submitted, compiled after Mazur et al., 2020; Narkiewicz, 2007, 2020; Opluštil and Cleal, 2007;
Ziegler, 1990; Martínez Catalan et al., 2020). Grey area: present-day post-erosional extent of the Carboniferous basin. WPB: western Pomera-
nian Basin, LLB: Lublin–Lviv Basin. Variscan orogenic front (thick dark violet line) is shown as a foreland-verging thrust but it should be
kept in mind that this is regional generalisation meant to illustrate general vergence of the entire thrust belt and that along that front also
backthrusting and wedging could be observed. HCM: Holy Cross Mountains.

Figure 3. Geological map of NW Poland without Permian, Meso-
zoic and Cenozoic (after Poprawa, 2019, supplemented).

chanical decoupling between the sub-Zechstein Rotliegend
and older substratum and the Mesozoic supra-Zechstein
cover (cf. Krzywiec, 2006a, b; Krzywiec et al., 2019, 2021,
2006). This led to formation of a system of peripheral exten-
sional structures located above the basin margins’, includ-
ing grabens or half-grabens detached in evaporites, and salt
structures (Krzywiec, 2002a, 2012; Rowan and Krzywiec,
2014; Warsitzka et al., 2021).

Deposition in the Polish Basin started with the Rotliegend
(Wordian–Wuchiapingian) continental clastic sediments that,
however, are not present in the study area as it was located
within the marginal part of the basin (Kiersnowski, 1998;
Kiersnowski and Buniak, 2006; Krzywiec et al., 2017c).
The Permian sedimentary cover of the area analysed in this

paper is restricted to Zechstein (Wuchiapingian to Chang-
shingian) evaporites (Wagner, 1994, 1998; Krzywiec et al.,
2017c). They are overlain by a Triassic to Cretaceous clastic–
carbonate sedimentary succession (cf. Dadlez and Marek,
1997; Krzywiec, 2006a; Ziegler, 1990).

The Polish Basin was inverted in the Late Cretaceous–
Paleogene (Dadlez et al., 1995, 1997; Głuszyński and Alek-
sandrowski, 2021; Krzywiec, 2002b, 2006b; Krzywiec et
al., 2009; Resak et al., 2008). This was associated with
widespread inversion of the European foreland triggered by
the Alpine–Carpathian collision and Iberian–European con-
vergence (cf. Kley, 2018; Kley and Voigt, 2008; Kockel,
2003; Kossow and Krawczyk, 2002; Voigt et al., 2021;
Mazur et al., 2005). Inversion was associated with substan-
tial uplift and erosion of the axial part of the Polish Basin, i.e.
the Mid-Polish Trough, which presently forms a regional an-
ticlinal structure referred to as the Mid-Polish Anticlinorium
(Swell), outlined by the Cenozoic subcrop of the Lower Cre-
taceous and older rocks (Fig. 4). Inversion commenced in the
late Turonian and lasted until the Maastrichtian–Paleocene
(e.g. Krzywiec, 2002a, b, 2006b; Krzywiec et al., 2018; Re-
sak et al., 2008). Due to regional inversion-driven uplift of
the Mid-Polish Anticlinorium, the Upper Cretaceous mostly
syn-inversion succession is presently preserved only along
its flanks. Increased Late Cretaceous subsidence, related to
flexural bending of both flanks of the uplifted Mid-Polish
Anticlinorium (cf. Hindle and Kley, 2021) and combined
with globally high Cretaceous sea level, created relatively
large accommodation space filled by syn-kinematic Upper
Cretaceous strata. On the other hand, progressive growth of
particular inversion structures, including also compression-
ally reactivated salt diapirs, led to localised reduction of ac-
commodation space and erosion, associated with formation
of growth strata characterised by thickness reductions, pro-
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Figure 4. Schematic extent of the Late Cretaceous–Paleogene foreland inversion in western and central Europe, compiled after Kley (2018),
Krzywiec et al. (2021), Voigt et al. (2021), Ziegler (1990) and Ziegler et al. (2002).

Figure 5. Geological map of NW Poland without Cenozoic (after
Dadlez et al., 2000, simplified).

gressive unconformities and facies changes (Leszczyński,
2012, 2002; Krzywiec, 2002a, 2006b, 2012; Krzywiec and
Stachowska, 2016; Krzywiec et al., 2009, 2018). Inversion-
related uplift of the Mid-Polish Anticlinorium was associated
with compressional reactivation of peripheral thin-skinned
structures formed above the basin’s flanks (e.g. Burliga et
al., 2012; Krzywiec, 2002a, b). The Koszalin–Chojnice Zone
(structure), located within the NE flank of the NW segment
of the Mid-Polish Anticlinorium (Figs. 5, 6) and analysed
in this paper (see below), is one of these peripheral struc-
tures that underwent substantial inversion well documented
by seismic data (cf. Krzywiec, 2006a, b).

The Cenozoic unconsolidated, mostly clastic sediments
of small thickness, generally not exceeding 200 m, uncon-
formably cover the inverted and eroded Polish Basin (Pi-
wocki and Kramarska, 2004; Jarosiński et al., 2009).

3 Data and methods

3.1 Seismic and well data

The seismic data used in this study included legacy 2-D
data and newly acquired 3-D data. The regional seismo-
geological transect shown in Fig. 6 was assembled from
several 2-D profiles and then depth converted using veloc-
ity data from deep wells. The studied NE segment of this
transect imaged the NE edge of the Mid-Polish Anticlino-
rium and the Koszalin–Chojnice structure – a peripheral
structure developed within the NE flank of the Mid-Polish
Trough/Anticlinorium. The 2-D seismic data in this part of
the basin, characterised by a relatively thin Zechstein cover,
did image some structures within the sub-Zechstein succes-
sion, although relatively poor quality of seismic imaging did
not allow constructing a reliable geological model for the
deeper substratum (Fig. 7a; cf. Antonowicz et al., 1994).
A major breakthrough was related to acquisition of high-
quality 3-D seismic data that provided a clear sub-Zechstein
image in the study area (Trela et al., 2011; Fig. 7b). The seis-
mic data were available in the depth domain and calibrated
by several wells that, however, drilled the entire Permo-
Mesozoic cover but encountered only the topmost part of
the sub-Permian (i.e. sub-Zechstein) substratum, providing
rather limited stratigraphic information on deeper seismic
horizons within the Drzewiany Graben, excellently imaged
by the new 3-D seismic data. The D-2 well and some indirect
evidence were used to estimate the age of the sedimentary in-
fill of this graben as Upper Devonian (Frasnian–Famennian?)
to lower Carboniferous (Tournaisian; see also below).

3.2 Structural restoration

Structural restoration was carried out along the cross-section
that was located perpendicular to the strike of main structures
imaged by the seismic data (Fig. 6). It was constructed using
the NE part of the regional seismo-geological transect and
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Figure 6. (a) Regional seismo-geological transect illustrating structure of the Mid-Polish Anticlinorium (swell) in NW Poland (cf. Krzywiec,
2006a; Krzywiec et al., 2006). Red rectangle: part of the regional transect that was used to construct balanced model shown in Fig. 8.
(b) Schematic model of a decoupled sedimentary basin developed above a thick salt layer during thick-skinned sub-salt extension (modified
after Withjack and Callaway, 2000; see also Krzywiec, 2006b, 2012). Peripheral structures developed within the supra-salt sedimentary
cover during decoupled extension often focus thin-skinned compressional deformation during ensuing basin inversion (cf. Burliga et al.,
2012; Krzywiec, 2002a, 2012).

two inlines extracted from the 3-D survey that was located in
the central part of the cross-section.

Standard kinematic algorithms such as fault-bend fold-
ing and simple shear were used in order to obtain the pre-
deformational geometry of key seismic horizons. Within the
Drzewiany Graben, a shear angle was set to 50◦ and corre-
sponds to the plane of maximum shear oriented parallel to
minor normal fault surfaces (Dula, 1991; Xiao and Suppe,
1992). The relative timing of faults’ activity was constrained
based either on the presence of growth strata or cross-cutting
relationships.

A maximum thickness of the syn-kinematic Upper
Devonian–lower Carboniferous sedimentary sequence is de-
duced from the Drzewiany Graben, where it attains up to
4 km. Given that the most complete stratigraphic profile of
the syn-kinematic strata is preserved within the SW part
of the graben, it was used to approximate the currently
missing portion of the Devonian–Carboniferous sedimen-
tary rocks within the graben. Since little is known about a
pre-deformation extent, geometry and thickness of the syn-
tectonic strata at graben flanks, deposition of 50 m thick hor-
izontal strata was assumed at each pre-inversion restoration
step. It should be stressed though that, due to scarcity of
data and widespread post-inversion erosion, reconstruction
of the Devonian–Carboniferous cover outside the Drzewiany
Graben was not the aim of this balancing exercise. The cross-
sectional shape of the unconformity at the base of Permian
was approximated by a regional trend line that connects the
local depressions along this horizon. Flattening of the refer-
ence line resulted in preserving morphology of the uncon-
formity. The initial thickness of Cretaceous sedimentary se-
quence eroded after the Alpine inversion was reconstructed
using published palaeothickness maps (Leszczyński, 2002,
2012).

Modifications and improvements of the initial seismic in-
terpretation were iteratively introduced until a satisfactory
fit of the kinematic model to seismic and well data was
achieved. The quality of the restored cross-section was ver-
ified via forward modelling by successively adding strain to
the restored bed geometry, until the present-day shape of the
horizons was obtained.

4 Results

4.1 Seismic and well data

Well D-2 calibrated the Permian succession and provided
partial stratigraphic information about the upper Palaeozoic
infill of the Drzewiany Graben (Fig. 7c). It drilled Tour-
naisian strata within the hangingwall of the master fault
of the graben, went through the fault, and encountered
Frasnian–Famennian within the footwall. Upper Devonian
was interpreted within the axial part of the graben using sim-
ilarity of seismic horizons from the footwall and the hang-
ingwall. Thickening of the large part of the sedimentary in-
fill of the Drzewiany Graben towards the master fault sug-
gests its syn-depositional activity during extension, similarly
to the model shown in Fig. 1. On the other hand, the present-
day geometry of the infill, in particular an anticline above the
master fault, suggests substantial inversion (cf. Fig. 1).

The 2-D seismic data provided information on the re-
gional present-day geometry of the Permian succession along
the NE edge of the Mid-Polish Anticlinorium (Fig. 6).
The Koszalin–Chojnice structure was interpreted as a thin-
skinned anticlinal structure developed above the listric re-
verse fault rooted within the Zechstein evaporites, which is
compatible with an overall geometry of this structure imaged
by a large number of good-quality seismic data (cf. Krzy-
wiec, 2006b, 2012; see also below).
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Figure 7. Comparison of recently reprocessed vintage 1977 2-D
seismic data (a) and recently acquired 3-D seismic data (b). Signif-
icant improvement in sub-salt (i.e. sub-Zechstein) seismic imaging
is clearly visible. (c) The inverted Drzewiany Graben. Dotted brown
lines: upper Devonian (Frasnian–Famennian?) horizons; dotted blue
horizons: lower Carboniferous (Tournaisian) horizons calibrated by
the D-2 well. Devonian stratigraphy within the Drzewiany Graben
is conjectural only and based on similarity to the seismic character-
istics of the Upper Devonian strata drilled by the D-2 well within
the footwall of the Drzewiany master fault.

4.2 Cross-section balancing

Cross-section restoration permitted us to distinguish four
major deformation events in the tectonic evolution of the
Drzewiany Graben (Fig. 8). According to the most plausi-
ble scenario, the Drzewiany Graben formed in response to
Late Devonian–early Carboniferous NE–SW-oriented hori-
zontal extension (Fig. 8b–i). Tectonic activity of the two
conjugate, oppositely dipping graben-bounding normal faults
created accommodation space successively filled with syn-
tectonic deposits. A heterogeneous displacement along the
master faults resulted in vertical variation in the geometry
of growth strata within the graben: antithetic rotation and
thickening toward the northeast is the most pronounced at
the basal section of the syn-kinematic sedimentary sequence,
as opposed to the youngest subparallel layers maintaining al-
most constant thicknesses (Fig. 8g–h). During the final stage
of the extensional evolution of the Drzewiany Graben, the
syn-tectonic strata were disrupted by secondary normal faults
(Fig. 8i; cf. Jagger and McClay, 2018; McClay, 1995; Mc-
Clay and Scott, 1991). The estimated total amount of the Late
Devonian–early Carboniferous horizontal extension respon-
sible for formation of the Drzewiany Graben was as high as
10 km (Fig. 8). However, this should be regarded as a min-
imum value as thickness of the post-Tournaisian strata that
could have been deposited in this area is not known. In addi-
tion, the assumed thickness of the Tournaisian is a minimum
estimate.

The following phase of the Variscan structural inversion
affected only the SW-dipping master fault by inducing 2 km
of reverse displacement (Fig. 8j). The remaining normal
faults do not show any seismic-scale signs of compressional
reactivation. The syn-extensional sedimentary infill of the
Drzewiany Graben, occupying a proximal portion of the
hanging wall was then folded due to material translation over
the underlying concave master fault. As a result, an asymmet-
ric, open anticline with approximately 1.3 km of structural
relief was produced (Fig. 8j). Its topmost part, together with
growth strata that might have been deposited during inver-
sion, was removed due to syn- to post-inversion erosion.

The subsidence centre of the Polish Basin, illustrated in
Fig. 8l–o, developed SW from the analysed profile, within
the Mid-Polish Trough, i.e. in the area where currently the
Mid-Polish Anticlinorium, formed by the second inversion
event, is located (cf. Fig. 6). Subsidence within the Mid-
Polish Trough led to tilt of the pre-Permian strata by approx-
imately 4◦ to the SW. It generated accommodation space that
was successively filled in with sedimentary rocks thickening
to the SW (i.e. towards the basin depocentre). Normal fault-
ing related to the basin formation only slightly affected the
study area by growth of new SW-dipping faults beneath the
Zechstein evaporitic cover. It should be noted that faults out-
lining the inverted Drzewiany Graben were not reactivated
during this tectonic phase. This deformation event yielded
up to 500 m of horizontal stretching.
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Figure 8. Balanced model constructed for the NE part of the regional transect from Fig. 6a. It illustrates Late Devonian (Frasnian–
Famennian?)–early Carboniferous (Tournaisian) extension and subsidence (a–i), late Carboniferous inversion followed by post-inversion
erosion (j–k), Permo-Mesozoic subsidence within the peripheral part of the Mid-Polish Trough (l–o), Late Cretaceous–Paleogene inversion
and uplift (p–q), and present-day geometry (r). K-Ch structure: the Koszalin–Chojnice structure.
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Evolution of the Permian–Mesozoic basin was termi-
nated by the Late Cretaceous–Paleocene inversion that is the
youngest major deformation stage discernible in the study
area. It was caused by the NE–SW-oriented compression and
formation of the thin-skinned anticlinal Koszalin–Chojnice
structure (Fig. 8q; cf. Krzywiec, 2006a; Krzywiec et al.,
2021). Its location might have been triggered by a buttressing
effect of the sub-Zechstein basement steps related to small
normal faults that were not reactivated during the inversion.
Growth of the fault-related anticline was associated with ap-
proximately 500 m of horizontal shortening. Post-inversion
erosion removed the topmost part of the Koszalin–Chojnice
structure and part of the Upper Cretaceous syn-inversion
cover. The Cenozoic post-inversion strata in this area are of
negligible thickness and are not considered in this model.

5 Discussion and conclusions

The quantitative, balanced model that was prepared using
seismic and well data from NW Poland depicted four main
tectonic phases: (1) Late Devonian–early Carboniferous ex-
tension, (2) late Carboniferous inversion, (3) Permian subsi-
dence and (4) Late Cretaceous–Paleogene inversion. Decou-
pling between two inversion events was caused by Zechstein
evaporites. All these four phases will be discussed below in
a regional context of geological evolution. A regional con-
ceptual model depicting pre-Permian Palaeozoic evolution of
the study area is shown in Fig. 9. Its eastern part is based on
regional seismic profile Pl-5400 of the PolandSPAN® survey
acquired above the Caledonian foredeep, i.e. the Baltic Basin
(Krzywiec et al., 2014; Mazur et al., 2016); its western part
is based on seismic data presented in this paper.

Two questions could be formulated regarding
phase (1), i.e. the Late Devonian–early Carboniferous
extension: (a) why was it focused in this area, and (b) what
was the causal regional mechanism that led to this event? As
it was described above, the western Pomeranian Basin devel-
oped above the frontal part of the thin-skinned Caledonian
orogenic belt (Krzywiec et al., 2014; Mazur et al., 2016; see
also Dadlez, 1978; Katzung et al., 1993; Podhalańska and
Modliński, 2006; Poprawa, 2006; Znosko, 1965; Żaba and
Poprawa, 2006). Reactivation of thrust structures as normal
faults has been well documented in various orogenic belts
(e.g. Corti et al., 2006; Deng et al., 2021; Faccenna et al.,
1995; Fazlikhani et al., 2022; Tari et al., 2021; Withjack
et al., 2010). Often, such reactivation is associated with
formation of half-grabens with syn-kinematic deposition
focused above hangingwall of such asymmetric extensional
system, and formation of growth strata characterised by
divergent stratal pattern and thickening towards the master
fault, as shown in the middle panels of Fig. 1a, b and c (cf.
Babaahmadi et al., 2018; Constenius, 1982, 1996; Powell
and Williams, 1989; Tari et al., 2021; Velasco et al., 2010).
As described by, e.g. Ivins et al. (1990), dips of many normal

Figure 9. Regional conceptual model showing four main stages of
Palaeozoic tectono-stratigraphic evolution of northern Poland.

faults shallowing with depth are caused by the reactivation of
pre-existing thrust faults of underlying thrust belts. All these
features are compatible with characteristics of extensional
Late Devonian–early Carboniferous half-grabens illustrated
in Fig. 8b–i, including both their syn-kinematic sedimentary
infill as well as geometry of the master fault. This fault
could have been inherited from the Caledonian thrust belt
although unequivocal seismic evidence of that is currently
lacking. Late Palaeozoic extensional grabens have been
widely documented in different parts of the extensionally
reactivated Caledonides (e.g. Coward et al., 1987; Fossen,
2010; Koehl et al., 2018; Norton et al., 1987; Osmundsen and
Andersen, 2001; Rowan and Jarvie, 2020; Scisciani et al.,
2021; Séranne et al., 1989; Stemmerik, 2000). Such grabens,
very similar to the Drzewiany Graben, located above the
Caledonian thin-skinned fold-and-thrust belt, have been also
documented using deep seismic data in the south-western
Baltic Sea, NW from the western Pomeranian Basin (Lassen
et al., 2001). In NW Poland, extensional reactivation of
low-angle thrusts of the Caledonian thin-skinned orogenic
wedge, characterised by rather large thickness (cf. Krzywiec
et al., 2014; Mazur et al., 2016), explains both a listric
geometry of the master fault that governed the evolution of
the Drzewiany Graben as well as its thin-skinned character
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(Fig. 9; see also Fig. 1b). Late Devonian–early Carbonifer-
ous extension that reactivated Caledonian orogenic wedge in
NW Poland coincided with a regional extensional phase that
affected the southern margin of Laurussia (cf. Smit et al.,
2018).

Inversion tectonics and reactivation of basement faults and
fracture zones within the forelands of orogenic belts is a well-
known process (cf. Ziegler et al., 2002). Well-documented
examples include the Apennines (Costa et al., 2021; Scis-
ciani, 2009), the Andes (Delgado et al., 2012; Bilmes et
al., 2013; Iaffa et al., 2011) and the Alps (Schori et al.,
2021). Deformation within the Variscan orogenic belt also
have expressions within the Variscan foreland – a whole ar-
ray of inverted faults and basins in front of the Variscan
belt have been documented in the southern UK (Chadwick
and Evans, 2005; Corfield et al., 1996; Glen et al., 2005;
Peace and Besly, 1997; Shail and Leveridge, 2009; Smith,
1999). Figure 10 shows an interpreted seismic profile across
the Eakring anticline that documents substantial Dinantian
(Tournaisian–Visean) extension and subsidence, followed by
late Carboniferous Variscan inversion, post-inversion erosion
and Permo-Triassic sedimentation. In this case, there was no
Late Devonian extension although the lack of deep wells and
inferior seismic imaging at deeper level probably does not
preclude this. The Eakring anticline could be directly com-
pared to the inverted Drzewiany Graben, both in terms of an
overall geometry and main stages of development of Variscan
inversion structures. There are also similar sub-Zechstein
Variscan structures imaged on seismic data in northern Ger-
many (von Hartmann, 2003).

Late Cretaceous inversion in the vicinity of NW Poland
has been documented by numerous authors (Deeks and
Thomas, 1995; Krzywiec et al., 2003, 2021; Mazur et al.,
2005; Meissner et al., 2002; Sopher et al., 2016; Seidel et
al., 2018; Deutschmann et al., 2018). Seismic examples from
areas without Zechstein evaporites show deeply rooted re-
verse faults, along which basement blocks have been up-
lifted. However, different geometries are observed in the ar-
eas where Zechstein evaporites were deposited. The evapor-
ites led to regional mechanical decoupling between the sub-
evaporitic basement and supra-evaporitic cover, both during
extension as well as inversion (e.g. Ahlrichs et al., 2020; Betz
et al., 1987; Burliga et al., 2012; Dooley and Hudec, 2020;
Lohr et al., 2007; Marsh et al., 2010; Soto et al., 2007; Stew-
art, 1999; Withjack and Callaway, 2000). In our study area,
a thin-skinned inversion structure – the Koszalin–Chojnice
structure – has been documented by seismic data. Due to
deep post-inversion erosion, the top of this inversion anticline
and associated inversion-related growth strata were removed.
Better examples of the same structure are provided by seis-
mic data from its more south-eastern segment, where rela-
tively thick Upper Cretaceous succession is still preserved
(Fig. 11a; cf. also Krzywiec, 2006b, 2012). Similar struc-
tures have been documented in the southern UK (e.g. Chad-
wick and Evans, 2005; Cosgrove et al., 2021). One of them

Figure 10. Interpreted seismic profile across the Eakring anticline
located approximately 150 km towards the north from the Variscan
orogenic front in the southern UK (based on Chadwick and Evans,
2005).

is the Weymouth anticline, shown in Fig. 11b. It evolved
from Early Jurassic to Early Cretaceous due to detached
thin-skinned listric normal faulting above the morphologi-
cally varied sub-salt basement. For this structure, Cenozoic
(Miocene) inversion was postulated (Chadwick and Evans,
2005).

As it was described and illustrated above, the area anal-
ysed in this paper underwent two phases of inversion. Re-
peated extension and compression occurring along the same
faults have been described by many authors (e.g. Bosworth
and Tari, 2021; Dichiarante et al., 2020; Minguely et al.,
2010). In our case, the presence of Zechstein evaporites
resulted in mechanical decoupling between the Devonian–
Carboniferous and Triassic–Cretaceous levels, and, despite
their proximity to one another, both inversion structures
evolved independently. Variscan inversion was associated
with compressional reactivation of a listric normal fault that
might have originally originated as a Caledonian thrust.
Alpine (Late Cretaceous–Paleocene) inversion was associ-
ated with listric thin-skinned reverse faulting detached within
the Zechstein evaporites. Both inversion structures are com-
patible with certain elements of the classic inversion model
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Figure 11. Thin-skinned inversion structures detached within the Zechstein evaporites: the Koszalin–Chojnice structure from NW Poland (a;
cf. Krzywiec, 2006b, 2012) and the Weymouth anticline from the southern UK (b; based on Chadwick and Evans, 2005, partly reinterpreted).
Both seismic lines are displayed with the same horizontal and vertical scale so certain structural features could be directly compared.

by Bally (1984) but collectively form a complex, superim-
posed multilayer decoupled inversion system.
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Lazauskienė, J., Stephenson, R., Šliaupa, S., and van Wees,
J.-D.: 3-D flexural modelling of the Silurian Baltic Basin,
Tectonophysics, 346, 115–135, https://doi.org/10.1016/S0040-
1951(01)00231-1, 2002.
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wowego Inst. Geol., 148, 97–100, 1995.

Solid Earth, 13, 639–658, 2022 https://doi.org/10.5194/se-13-639-2022

https://doi.org/10.1016/S0264-8172(99)00052-5
https://doi.org/10.1016/S0264-8172(99)00052-5
https://doi.org/10.1016/j.tecto.2009.05.010
https://doi.org/10.5194/se-12-1443-2021
https://doi.org/10.1017/S0016774600020722
https://doi.org/10.1002/9781118274064.ch15
https://doi.org/10.5194/se-12-1987-2021
https://doi.org/10.1144/GSL.SP.1989.044.01.02
https://doi.org/10.1306/c9ebce73-1735-11d7-8645000102c1865d
https://doi.org/10.1306/c9ebce73-1735-11d7-8645000102c1865d
https://doi.org/10.1029/2010TC002744
https://doi.org/10.1306/bdff8858-1718-11d7-8645000102c1865d
https://doi.org/10.1306/bdff8858-1718-11d7-8645000102c1865d
https://doi.org/10.5194/smsps-1-17-2002
https://doi.org/10.5194/smsps-1-17-2002

	Abstract
	Introduction
	Geological setting
	Data and methods
	Seismic and well data
	Structural restoration

	Results
	Seismic and well data
	Cross-section balancing

	Discussion and conclusions
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

