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Abstract. Several alternative gravity forward modelling
methodologies and associated numerical codes with their
own advantages and limitations are available for the solid
Earth community. With upcoming state-of-the-art litho-
sphere density models and accurate global gravity field data
sets, it is vital to understand the opportunities and limita-
tions of the various approaches. In this paper, we discuss
the four widely used techniques: global spherical harmon-
ics (GSH), tesseroid integration (TESS), triangle integration
(TRI), and hexahedral integration (HEX). A constant den-
sity shell benchmark shows that all four codes can produce
similar precise gravitational potential fields. Two additional
shell tests were conducted with more complicated density
structures: laterally varying density structures and a crust–
mantle interface density. The differences between the four
codes were all below 1.5 % of the modelled gravity sig-
nal suitable for reproducing satellite-acquired gravity data.
TESS and GSH produced the most similar potential fields
(< 0.3 %).

To examine the usability of the forward modelling codes
for realistic geological structures, we use the global litho-
sphere model WINTERC-G that was constrained, among
other data, by satellite gravity field data computed using a
spectral forward modelling approach. This spectral code was
benchmarked against the GSH, and it was confirmed that
both approaches produce a similar gravity solution with neg-

ligible differences between them. In the comparison of the
different WINTERC-G-based gravity solutions, again GSH
and TESS performed best. Only short-wavelength noise is
present between the spectral and tesseroid forward modelling
approaches, likely related to the different way in which the
spherical harmonic analysis of the varying boundaries of the
mass layer is performed. The spherical harmonic basis func-
tions produce small differences compared to the tesseroid
elements, especially at sharp interfaces, which introduces
mostly short-wavelength differences. Nevertheless, both ap-
proaches (GSH and TESS) result in accurate solutions of the
potential field with reasonable computational resources. Dif-
ferences below 0.5 % are obtained, resulting in residuals of
0.076 mGal standard deviation at 250 km height.

The biggest issue for TRI is the characteristic pattern in
the residuals that is related to the grid layout. Increasing
the resolution and filtering allow for the removal of most of
this erroneous pattern, but at the expense of higher computa-
tional loads with respect to the other codes. The other spatial
forward modelling scheme, HEX, has more difficulty in re-
producing similar gravity field solutions compared to GSH
and TESS. These particular approaches need to go to higher
resolutions, resulting in enormous computation efforts. The
hexahedron-based code performs less than optimal in the for-
ward modelling of the gravity signature, especially with a lat-
erally varying density interface. Care must be taken with any
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forward modelling software as the approximation of the ge-
ometry of the WINTERC-G model may deteriorate the grav-
ity field solution.

1 Introduction

Dedicated gravimetric satellite missions such as NASA’s
GRACE and ESA’s GOCE missions have generated unprece-
dented views of the Earth’s gravity field (Pail et al., 2015).
One of the latest global gravity field models, XGM2016 (Pail
et al., 2018), depicts a detailed map of the gravity anomalies
caused by density variations in the Earth’s interior. Such vari-
ations provide information on the density distribution within
the Earth with homogeneous (global) quality that can be used
in joint inversion studies of the subsurface combining gravity
data with petrological and seismological constraints (Kaban
et al., 2014), such as the latest global lithosphere and up-
per mantle model WINTERC-G (Fullea et al., 2020). How-
ever, the different spatial parameterizations used in seismol-
ogy and potential field studies raise the question of compat-
ibility between the various approaches to forward-model the
gravitational attraction of the density models.

The recent global model WINTERC-G (Fullea et al.,
2020) is based on the thermochemical approach LitMod,
which has been used previously for forward calculation
(Afonso et al., 2008; Fullea et al., 2009) and inversion in the
regional context (Afonso et al., 2013a, b, 2016). The global
WINTERC-G model (Fullea et al., 2020) is the result of a
two-stage coupled inversion process consisting of a 1-D stage
followed by a 3-D stage. In the first stage, the model is rep-
resented as independent lithospheric–upper mantle columns
that are laterally distributed on a spherical triangular grid
(Wang and Dahlen, 1995). In this stage, the model has no
explicit lateral structural information other than that con-
tained in the geophysical observable (surface wave disper-
sion curves, surface elevation, and heat flow). In the second
stage, the model is rendered in 3-D as a collection of 13 lay-
ers with varying layer thickness and laterally varying density
gradient (see also Appendix C). The gravity effect of the lay-
ered representation is calculated using a spherical harmonics
approach and used to drive the linearized density inversion
in order to fit the gravity field signal from XGM2016 (Ful-
lea et al., 2020). The choice of forward modelling approach
to represent the model’s potential field is in principle arbi-
trary, and it is unclear what effect a different decision would
have on the resulting density structure. Furthermore, for cer-
tain applications a user might want to change to a different
parameterization, for example when WINTERC-G is used
as a starting point for more detailed regional modelling. We
are thus motivated by the results of Fullea et al. (2020) to
benchmark the effect of parameterization and discretization
on lithospheric gravity calculation. Ultimately we are driven
by the need to quantify the effect of different discretization

and numerical approaches used to represent the real distribu-
tion of the Earth’s 3-D density distribution and its associated
gravity field.

Forward gravity field modelling discretization can be clas-
sified as space domain or spectral domain (Hirt and Kuhn,
2014). The two classes differ in how a continuous mass dis-
tribution ρ(Q)×6(Q) is derived from the discrete numbers
given in the density model. Such a continuous distribution
is required to evaluate Newton’s integral and determines the
gravitational potential V outside the mass body6 at location
P (e.g. Rummel et al., 1988):

V (P )=G

∫ ∫ ∫
6

ρ(Q)

`(P,Q)
d6(Q), (1)

where G is the universal gravitational constant, ρ is the
mass density distribution within the body 6, and `(P,Q)
is the Euclidean distance between the computation point
P(r,�) and the infinitesimal volume element d6(Q) at lo-
cation Q(r ′,�′). Space domain forward modelling meth-
ods evaluate Newton’s integral directly, whereby an arbi-
trary mass object is approximated by certain elementary vol-
ume elements, like triangle-based, tesseroids, or hexahedra
(Forsberg, 1984; Werner and Scheeres, 1996; Nagy et al.,
2000; Heck and Seitz, 2007; Kuhn et al., 2009; Grombein
et al., 2014; D’Urso, 2014). The summation of individual
volume elements multiplied with their density distribution
is used to calculate a gravitational potential field. Any mass
shape that can be approximated by the elementary bodies
can be forward-modelled into a gravitational potential. This
technique is widely used, especially to model regional ar-
eas (Forsberg, 1984; Kaban et al., 2010; Holzrichter and
Ebbing, 2016). For global models, the computational time
can become a complication because higher resolution in-
creases the amount of numerical integration rapidly (Hirt and
Kuhn, 2014) unless multi-core computers are employed. The
spectral forward modelling evaluates the Newton mass inte-
gral comparatively much faster by a transformation into the
spherical harmonic domain (Lachapelle, 1976; Rapp, 1982;
Rummel et al., 1988; Pavlis and Rapp, 1990; Novák and Gra-
farend, 2006; Root et al., 2016). The fast spectral method
(FSM) (Rummel et al., 1988) has mostly been used for topo-
graphic and isostatic mass reductions of the Earth to compute
isostatic anomalies. Root et al. (2016) showed that the tech-
nique, with minor modifications, could be used to model any
mass layer inside the Earth.

We present a benchmark study comparing three space do-
main (triangles, tesseroids, hexahedra) and one spectral do-
main approach applied to the layered WINTERC-G 3-D den-
sity model, in order to assess the usability of the model in-
cluding the uncertainty resulting from different forward mod-
elling approaches. While the focus of this benchmark is the
different parameterizations, we also need to address the ap-
proximations and inaccuracies of each individual method to
better appraise the differences between the methods. There-
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fore, we have carried out different tests, ranging from sim-
ple shell tests to a more complex upper mantle model. We
present the forward modelling scheme used in WINTERC-G
and compare it to different forward modelling codes. Finally,
the full 3-D upper mantle model WINTERC-G is used as an
encompassing benchmark of the various forward modelling
schemes in comparison to the XGM2016 gravity model that
was used in the construction of WINTERC-G (Fullea et al.,
2020).

2 Methods: gravity integration techniques

The inversion code used to construct WINTERC-G relies on
a spectral forward gravity modelling approach. The math-
ematical description of that method can be found in Ap-
pendix A. This choice of algorithm allowed for fast for-
ward modelling but tailored the density solution towards
the spherical harmonic basis functions. To assess the ap-
plicability of this choice we select four different forward
modelling codes to understand the differences in forward-
modelled gravitational potential resulting from WINTERC-
G: the global spherical harmonics spectral code based on
Root et al. (2016), a tesseroid forward modelling code based
on Uieda et al. (2016), a triangle-element forward modelling
code by Sebera et al. (2018), and a hexahedron-element code
incorporated in geodynamical ASPECT modelling software
(Kronbichler et al., 2012; Heister et al., 2017). This section
will discuss the different forward gravity modelling schemes
and their motivation to be included in this benchmark.

On the sphere, there is a wide range of point distributions
that can represent the geometry of the shell (Kimerling et al.,
2008). The selected type of distribution is usually a trade-off
between the number of points on a given domain (e.g. spe-
cific vs. homogeneous coverage), ease of manipulation (sym-
metries usually allow for a significant speed-up), and the na-
ture of data (e.g. nodal vs. volumetric). None of the spherical
distributions are suitable for all the types of data that are used
in geophysical and planetary sciences. For example, seismic
models that rather represent nodal information may require
a uniform distribution on the sphere to provide users with a
minimal number of points in this domain – typically, trian-
gular grids satisfy such needs. On the contrary, when density
distribution models are to be used along with gravity, a com-
mon choice is to use grids that allow for accurate and fast
volume integration – this especially holds for equi-angular
grids as surface elements can easily be translated into vol-
ume elements (tesseroid). Note that the choice of the data
representation on the sphere for different data types is still a
subject of active research in fields like geophysics (Thieulot,
2018), astrophysics, computer visualization, and mathemat-
ics.

2.1 Description of the GSH approach

The GSH code bench-marked here is based on the fast spec-
tral method described in Root et al. (2016). The code is writ-
ten in MATLAB and is similar to the spectral method used
in the development of WINTERC-G. The GSH code is ca-
pable of transforming a 3-D density layer with non-spherical
boundaries into a gravitational potential signal. To process a
multi-layered density model (e.g. WINTERC-G) the derived
Stokes’ coefficients of the different layers are summed up be-
fore the total coefficients are used to synthesize the potential
field of the entire density model.

The main difference between the GSH code and the spec-
tral approach used in the development of WINTERC-G is
the way the non-spherical boundary and laterally varying
density are added. The GSH code adds these together be-
fore performing a spectral analysis on the combined func-
tion, whereas the WINTERC-based code performs the spec-
tral analysis on the individual components of the boundaries
(Eq. A12 in the Appendix). This different choice of perform-
ing the spectral analysis has consequences for the precision
of the solution, as the spectral analysis is based on a least-
squares fitting. The finite precision of this fitting process
therefore results in slightly different solutions in the spectral
codes. Nevertheless, the GSH code is expected to approach
the WINTERC-G original code closest.

Another requirement of the GSH code is that the bound-
aries and density should be on an equi-angular grid, similar
to the WINTERC-G grid. Root et al. (2016) showed that the
fast spectral method had convergence issues for crustal and
lithosphere layers and showed how to solve this problem. The
GSH code corrects for these divergences such that the solu-
tion remains accurate. For more information on this feature,
see Root et al. (2016).

2.2 Integration by tesseroid elements

In the geoscientific community, the tesseroid algorithm of
Uieda et al. (2016) has gained widespread popularity, as
it is freely available and has been thoroughly tested. The
work of Uieda et al. (2016) is based on the adaptive subdivi-
sion algorithm of Asgharzadeh et al. (2007), which guaran-
tees reasonable accuracy by splitting tesseroids into several
smaller tesseroids based on the distance between the calcu-
lation point and the tesseroid. Once the tesseroids are small
enough, the gravity effects are calculated using second-order
Gauss–Legendre quadrature of the gravity integral and then
summed up for all tesseroids.

A tesseroid is a spherical prism that is described by six
values: the boundary coordinates in east, west, north, south,
top, and bottom. Equi-angular tesseroids have a prismatic
shape at low latitudes but degenerate into increasingly trian-
gular shapes closer to the poles. In terms of Newton’s integral
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Figure 1. Sketch of the triangular grid on the sphere – grid or data
points (red circle with black contour), triangle centre of mass (blue
pentagon), and side midpoints (green circle).

(Eq. 1) the tesseroid approximation can be written as

V (P )≈G
∑
i

ρiK̃(Qi,P ). (2)

The index i goes over all tesseroids used to discretize the
model, ρi is the constant density value of each tesseroid,
and Qi denotes its centre. K̃ is a value of the kernel func-
tion derived from the adaptive Gauss–Legendre integration
(Grombein et al., 2013). While there is no closed analytical
expression for the gravity field of a tesseroid (Heck and Seitz,
2007), a number of techniques can be used to approximate it
with high accuracy (Wild-Pfeiffer, 2008). For large-scale ap-
plications, it can be sufficient to use a truncated Taylor ex-
pansion of the integrand, but in practice this is limited to
large calculation heights, since higher-order expansions are
cumbersome to determine and the expansions to second or-
der are highly inaccurate close to the tesseroid (Heck and
Seitz, 2007).

2.3 Integration of the triangular grids

Numerical integration of the triangular grids in this work also
satisfies Eq. (2), where the kernel function K̃ links the sur-
face (and thus volume) element of a triangular shape with a
computational point. Here, the kernel is computed with re-
spect to the centre of mass of the spherical triangle; see Se-
bera et al. (2018). The density values are given for the nodes
of the triangular grid and not for the triangles themselves.
This leads to a significant degree of freedom in the way the
volume element is set up around each node. The user has
to decide where the element starts and ends with respect to
surrounding triangles. The key problem is that the spherical
triangles do not have the same area. Hence, the surface and
volume elements have different values and the elements pro-
vide unequal weights to data in the numerical integration. To
simplify the situation, here we assume the triangular sides are
great circles so that the spherical geometry can be employed
for computing both the distance between the nodes and the
area of the element.

Figure 1 shows the situation for a single spherical trian-
gle and its neighbourhood. The red circles with black con-
tour define the grid (the given density) of the WINTERC-G

model (step 1), while the blue pentagons denote a midpoint
of each triangle. A centre of mass is an ideal input if the den-
sity was given for the whole triangle and not for the nodes in
red circles with black contour. Although the area is uniquely
defined for each triangle, the triangle vertices may provide up
to three different density values because of the lateral density
variation. Then, there are basically two ways to proceed be-
fore the integration: either to interpolate (average) the three
density values located at red circles with black contour to
obtain a single density for each triangle or to build up an
alternative area–volume element around the original nodes
(around the red circles with black contour). The first option
leads to averaging of the physical information, while the sec-
ond requires choosing the geometry rules for setting up the
surface–volume elements. In this work, we follow the second
option to preserve the original density distribution from the
benchmark model. The area associated with nodal informa-
tion is thus given as a local mean of the surrounding triangles
according to Fig. 1. However, this value must be scaled to the
number of points since the number of triangles is compared
twice with the number of nodes in the global (4π ) domain.

Figure 2 presents the triangular area variation for two dif-
ferent triangle grids on the sphere. The spline triangular grid
used in WINTERC-G (Wang and Dahlen, 1995) is compared
to an icosahedron grid (Pasyanos et al., 2014). For both we
can see a variation of up to 20 % in the area, whereas the grids
significantly differ in the area gradient (smooth vs. sharp
variation). The triangle grid used in WINTERC-G shows
more smooth transitions than the icosahedron grid.

In the first step WINTERC-G development uses a triangu-
lar grid to invert seismic tomography, surface heat flow, and
isostasy data, whereas in the second step the gravity field is
modelled based on a spherical equi-angular grid to accom-
modate the fast spectral code. The specific challenge is the
calculation of gravity from a triangular grid because there
is no triangular grid that would be perfectly uniform on the
sphere. The nodes associated with larger triangles thus pro-
duce a larger signal so that the results are then systematically
affected by the triangular patterns.

2.4 Description of the gravity post-processor in the
ASPECT code

ASPECT (short for Advanced Solver for Problems in Earth’s
ConvecTion) is a code originally intended to solve the equa-
tions of conservation of mass, momentum, and energy in the
context of convection in the Earth’s mantle and lithosphere
dynamics (Kronbichler et al., 2012; Heister et al., 2017). It is
a massively parallel finite-element (FE) code which relies on
the p4est library (Burstedde et al., 2011) for the handling of
the adaptive mesh refinement based on quadtrees and/or oc-
trees. As part of any finite-element code the Gauss–Legendre
quadrature (GLQ) algorithm is central to the code.

Given a density field in the computational mesh, ASPECT
can also compute the gravity acceleration vector, the gravi-
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Figure 2. (a) Triangle area for the spline triangular grid (Wang and Dahlen, 1995) and (b) the icosahedron grid (Pasyanos et al., 2014). Both
grids were evaluated in terms of geodesics (triangle sides are treated as great circles on the sphere) and both panels shows the area variation
in percent (%) with respect to the largest triangle.

tational potential, and the gravity gradients on any point in
space. Since the integrand of the integral equations is not a
polynomial the GLQ-based computed integral will not be ex-
act. Nevertheless, we expect that an increase in the number
of quadrature points inside the elements leads to a more ac-
curate calculation. ASPECT relies on quadratic elements for
velocity and temperature, and an array of 3× 3× 3 quadra-
ture points is used in each element by default. After careful
testing, we have chosen to use a 6× 6× 6 quadrature rule
in each element, since an increase did not yield a substantial
change in the results. Each integral equation is approximated
by Eq. (3):

I (r)=

∫ ∫ ∫
�

f (r,r ′,ρ(r ′))dr ′ '
∑
e

∑
q

f (r,r ′q ,ρ(r
′
q))|Je|qωq , (3)

where the first summation runs over the elements e, the sec-
ond summation runs over the quadrature points q inside ele-
ment e, ωq is the weight of the quadrature point, |Je|q is the
Jacobian of the mapping of the element onto the reference
element, and f is a function of space (the integrand).

The (default) topology of the mesh in ASPECT is shown
in Fig. 3, which is based on a decomposition of the sphere
into six identical regions as described in Thieulot (2018). In
the case of the shell tests described in the following section, a
single element is used in the radial direction. The total num-
ber of elements in the mesh is then simply nel = 6× (2m)2,
where m is the lateral refinement parameter, with m= 6 be-
ing default. Figure 3 also shows the variable radial layering
parameterization for the full WINTERC-G benchmark. An
increased number of layers is chosen up to 80 km depths to
have more radial resolution to capture the laterally varying
density interfaces of the crust.

3 Preliminary single shell comparisons

The most basic shell test is a spherical shell with finite thick-
ness and a constant density. Here, we mainly assess the
volumetric-based approaches and their resolution because
spectral-type codes have an exact solution for a homoge-
neous density shell down to machine precision. Therefore,
two other shell tests have been proposed: an equal-thickness
shell with laterally varying density and a shell with a depth-
varying density discontinuity. The WINTERC-G model is
described by layers with laterally varying density as well as
laterally varying density interfaces (e.g. surface topography,
basement, Moho discontinuity).

3.1 Shell test 1: equal thickness and homogeneous
density

The gravity field of a homogeneous spherical shell can eas-
ily be calculated analytically because due to symmetry the
relationship only depends on the radial distance of the com-
putation point:

g(r)=
4
3
πGρ

R3
2 −R

3
1

r2 , (r ≥ R2), (4)

where G stands for the gravitational constant, ρ for the den-
sity of the shell, R1 and R2 for the inner and outer radii of
the shell, respectively, and r for the point of evaluation. This
simple geometry provides a suitable means for testing the
performance of the different integration schemes. We place a
spherical shell at a mean depth of 100 km with respect to the
Earth’s 6371 km reference sphere and model different thick-
nesses of 2, 5, and 10 km. The density of the shell is equal to
3300 kg m−3, and the altitude of calculation is 250 km above
the 6371 km reference surface. The results are summarized
in Table 1 rounded to 3-digit precision. We observe that all

https://doi.org/10.5194/se-13-849-2022 Solid Earth, 13, 849–873, 2022



854 B. C. Root et al.: Reconstructing WINTERC-G

Figure 3. (a) Topology of the ASPECT mesh composed of six blocks. (b) Cross section of the mesh with radial refinement as used in Sect. 4
(here with 30 elements in the top 80 km and 20 elements below 80 km depth).

numerical schemes can provide gravity values that are very
close to those of the analytical solution.

As expected, the GSH code produces a solution similar to
the analytical value within machine precision, with a stan-
dard deviation of roughly 10−9 mGal, independently of the
thickness of the layer. The spherical harmonic analysis ap-
plied to a shell of constant density returns an exact value of
the density at the monopole coefficient (single frequency).

For the tesseroids, a small bias was found at the fifth sig-
nificant digit, indicating a very good overall performance
across all the latitudes. There is only a negligible variation
close to the poles as seen in Fig. 4. The solution deterio-
rates due to the degenerated tesseroid shape approaching the
poles. However, such error is not expected to cause problems
in the integration of real global density distribution models
since the uncertainty of such models is orders of magni-
tude larger than this numerical issue. For example, the typi-
cal posterior uncertainties in crustal density in WINTERC-G
range from 5 to 25 kg m−3 (Fullea et al., 2020). The tesseroid
code calculates signals with sub-mGal differences with re-
spect to the analytical solution. The increasing thickness of
the shell seems to improve the precision slightly. There is a
slight under-determination of the analytical signal, indicating
a small volume loss in the tesseroid code. This is related to
the limitations of the numerical integration of that approach.

The triangle-based approach seems to perform slightly
better than the tesseroid approach, but it does show differ-
ent behaviour depending on the lateral resolution of the tri-
angle grid. At a roughly 2◦ grid, the root mean square (rms)
value is close to the analytical signal, but the solutions ex-
perience large variations. The 1◦ grid does reduce this vari-
ation slightly, with the cost of larger differences in the rms
value. The 0.25◦ grid reduces the variation and differences in
the rms and obtains a precision at several µGal. The triangu-
lar elements differ in volume and, because the kernel asso-
ciated with the volume elements is related to a single point
(the midpoint of the volume element), some irregularities are
expected.

The ASPECT code outperforms the triangle and tesseroid
approach concerning precision and lateral resolution. It
achieves µGal precision at 5◦ resolution and the increase in
resolution improves the solution with respect to the analyti-
cal case. For a higher-resolution grid the solution of the AS-
PECT code approaches the analytical solution, with 1.4◦ hav-
ing residuals of less than 10−7 mGal.

So, all four codes are able to obtain the gravity signal up
to µGal precision, concluding that the volume losses can be
neglected between the four forward modelling schemes for
density models with typical geophysical uncertainties.

3.2 Shell test 2: equal thickness and laterally varying
density

The following shell test examines the capability of the dif-
ferent forward modelling schemes to handle lateral density
variations. We will first show that the GSH code is capable
of producing similar results compared to the WINTERC-G-
based code. Then, we discuss the difference between the four
modelling approaches in this benchmark.

The mass shell in this scenario is described by the outer
radius, located at 56 km depth, and the inner radius, located
at 80 km depth. The density values within the layer corre-
spond to typical lithospheric-scale lateral density variations
in WINTERC-G model, as presented in Fig. 5a.

The densities range between 3286 and 3419 kg m−3 and
still show some correlation with the geological crustal struc-
tures above. In the comparison with the WINTERC-G-based
code, we compute the geoid anomaly for a cut-off degree of
Stokes potential coefficients (jmax) at 240◦ and order. The
geoid is defined as

N(�)= R

jmax∑
j=1

j∑
m=−j

(R
r

)j=1
V
ρ
jmYjm(�). (5)

Notice that the summation starts at j = 1 to obtain the geoid
undulation.
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Figure 4. Deviation of the tesseroid integration from the analytical shell result as a function of latitude. This is for the case of the 2 km thick
shell with a 1◦ lateral resolution.

Table 1. Summary of the homogeneous density shell test at the target height h= 6371+ 250= 6621 km with G= 6.67428×
10−11 m3 kg−1 s−2. The numbers indicate average residuals and their maximum variation. Note that ASPECT uses by default G=
6.67430× 10−11 m3 kg−1 s−2 so that the values reported in the table are rescaled for the chosen value of G.

Thickness (km) 2 5 10

Shell formula (mGal) 496.574771345 1241.43698361 2482.87436182

GSH (1◦) 496.574771345, σ = 10−10 1241.43698361, σ = 10−9 2482.87436182, σ = 10−9

Tesseroid (1◦) 496.540± 0.005 1241.348± 0.006 2482.696± 0.007
Triangles (∼ 2◦, opt. 2) 496.576± 0.2 1241.441± 0.5 2482.883± 1.0
Triangles (∼ 1◦, opt. 2) 496.535± 0.05 1241.334± 0.11 2482.674± 0.23
Triangles (∼ 0.25◦, opt. 2) 496.572± 0.003 1241.431± 0.007 2482.862± 0.014
ASPECT (m= 4, ∼ 5.6◦) 496.575± 0.0243 1241.437± 0.068 2482.875± 0.12
ASPECT (m= 5, ∼ 2.8◦) 496.575± 3.5× 10−5 1241.437± 8.8× 10−5 2482.874± 1.8× 10−4

ASPECT (m= 6, ∼ 1.4◦) 496.575 ±1.0× 10−7 1241.437 ±1.0× 10−7 2482.874 ±1.0× 10−7

The forward-modelled geoid differences of this layer be-
tween the WINTERC-G code and GSH code are shown in
Fig. 5b. The total geoid undulations vary ±300 m. The peak-
to-peak residuals are maximum±2 cm geoid differences, but
with a standard deviation of around ±1 cm. This difference
is generated by the variation of the spherical harmonic anal-
ysis that produces the spherical harmonic coefficients in both
codes. This procedure is not exact, differs slightly due to nu-
merical precision (Sneeuw, 1994), and when applied at a dif-
ferent part of the integration leads to small errors, especially
at locations where the density is varying. Nevertheless, the
spectral forward modelling schemes are able to represent po-
tential fields that are well within the geophysical uncertain-
ties. And the GSH approach can be considered to be equal to
the WINTERC-G-based approach.

This same shell is processed with the other forward mod-
elling approaches. The radial component of the gravity field
is computed at 250 km height above the mean sphere, as this
was the height at which the satellite gravity data for the devel-
opment of WINTERC-G were used. Shell test 1 showed that

the mean gravity uncertainty between the different numer-
ical codes, which is linked to the zero-degree coefficients,
was insignificant. Therefore, the spherical harmonic coeffi-
cients 2–179 were used to focus more on the anomalies of the
gravity solution. This meant that the solutions had to be post-
processed by the GSH code to ensure that a similar spectral
signature is used in the comparison. This introduced some
errors at machine precision level.

Figure 6 visualizes the differences of the various forward
modelling results. The total radial gravity anomalies of this
shell model vary ±50 mGal, and the spatial pattern matches
the density pattern in Fig. 5a. Continental (cratonic) regions
are characterized by cooler and denser rocks than oceans
in general, resulting in positive gravity anomalies. In con-
trast, oceanic regions are associated with negative anomalies.
The differences between all four codes mostly fall ±1 mGal,
which is around 2 % of the total gravity signal. These differ-
ences are larger than the difference between the two spec-
tral codes. The lowest residuals are found between GSH and
TESS for which a residual of ±0.6 mGal (around 1 %) with
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Figure 5. (a) WINTERC-G density variations in the mantle at a depth of 110 km from the WINTERC-G model to ensure only typical mantle
density anomalies. These were used in the spectral shell comparison as radially constant density variations between 56 and 80 km depths.
(b) Geoid differences of the laterally varying density from Fig. 5a between the WINTERC-G-based code and the GSH code.

no apparent geologic pattern is observed. The north–south-
oriented pattern present in the residual anomalies is mostly
situated in the Equator region and points to a small mismatch
in the interpolation of the density structures between GSH
and TESS codes. Larger residuals are seen in the comparison
with respect to the other codes. The most prominent erro-
neous features are the triangle-related pattern of ±1.0 mGal
in comparisons with TRI and any other code. Such global
patterns are related to imperfect volume representation by
the triangles of the spherical shell in the triangulation al-
ready discussed in Sect. 2.3. The characteristic north–south-
oriented anomalies are also seen around the Equator region in
the TESS–TRI comparison (but not in the GSH–TRI compar-
ison), suggesting that these anomalies are generated by TESS
density interpolation. The ASPECT code produces slightly
smaller differences than TRI. The difference between AS-
PECT and the GSH and TESS approaches seems to have
some correlation with the input density model, although this
is not obvious everywhere. A pattern that correlates with the
mid-Atlantic ridge in the North Atlantic Ocean suggests im-
proper modelling of this geologic structure by the ASPECT
approach. However, there are also areas (e.g. eastern Pacific)

where no apparent correlation with the density distribution is
seen. Furthermore, the residuals seem to be more east–west-
oriented than in the case of the TESS solution.

Table 2 lists the statistical analysis of the gravity solu-
tion differences of shell test 2. The absolute variations in
residuals with the ASPECT solution contain the largest out-
liers, despite the fact that the standard deviations of the AS-
PECT comparisons are slightly better than for the TRI ap-
proach. However, they are small and both ASPECT and TRI
could be said to perform at similar precision (±0.2 mGal
standard deviation). The superior performance of the GSH
and TESS approaches is noticeable in the standard deviation
(±0.055 mGal) as well as the minimum and maximum dif-
ferences between the two solutions (< 1 mGal).

3.3 Shell test 3: density contrast at the Moho

High-resolution lithosphere–upper mantle models combined
with increasing computing capabilities offer new possibili-
ties in relation to dynamic studies like mantle convection,
glacial isostatic adjustment (GIA), and geo-hazards. Geo-
metric boundaries within the crust and mantle that vary in
depth and thickness are difficult to represent in numeri-
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Figure 6. Radial gravity component comparisons at 250 km height for shell test 2, wherein a 24 km thick shell is modelled with laterally
varying density structure. A grid resolution of 1× 1 equi-arc degree was used for GSH, TESS, and TRI. ASPECT was run on an L7 mesh,
i.e. an average lateral resolution of less than a degree.

Table 2. Statistical results from shell test 2: a density shell of equal
thickness is modelled with laterally varying density structure.

Solution (mGal) Mean SD Min Max

Total signal 1.4921 17.7815 −31.9188 53.3946

GSH–tesseroid 0 0.055214 −0.46545 0.82247
GSH–triangle −0.02539 0.21548 −0.97375 0.55155
GSH–ASPECT 0.001365 0.21479 −1.6873 3.7413
Tesseroid–triangle −0.02540 0.22492 −1.4898 0.81721
Tesseroid–ASPECT 0.001365 0.19245 −1.3774 2.9231
Triangle–ASPECT 0.026764 0.30615 −1.8461 4.3829

cal models. Nevertheless, such discontinuities produce large
gravitational signals, and hence density boundaries need to
be represented as perfectly as possible as slight changes to
their depths could have noticeable effects in the full litho-
spheric gravitational signal. In particular, the top and bot-
tom boundaries of the crystalline crust (basement and Moho
boundaries, respectively) are of importance. In this test, we
model a single density interface, representing the crust–
mantle interface taken from the CRUST1.0 crustal model
(Laske et al., 2013). The shell thickness is 80 km. The crustal
density (2900 kg m−3) and mantle density (3300 kg m−3)

are homogeneous, resulting in a gravitational signal coming
solely from the interface geometry.

Shell test 3 assesses the precision of the different codes
in modelling a geometrically varying density interface. The
results are depicted in Fig. 7. The total signal of the shell
model is ±400 mGal, representing the gravitational signal as
a result of the Moho density contrast. The continental re-
gions are characterized by negative gravity anomalies be-
cause of the thicker crustal mass with lower density. Most
of the oceanic regions show positive gravity anomalies in
virtue of their shallow Moho depth. The GSH–TESS differ-
ences are again the smallest, with values ranging±0.1 mGal.
The largest differences seem to be related to the locations
where the Moho boundary changes abruptly (e.g. ocean–
continental interfaces). This observed difference can be re-
lated to the fact that TESS and GSH methods approximate
the boundary with different basis functions and are highest at
locations with steep boundary variations. The residual signal
calculated with the TRI code shows a similar characteristic
structure as in shell test 2. A clear triangle-related pattern is
present as shown in Fig. 6. The largest observed amplitude in
the residual of −4.3 mGal is in this case 1 % of the total sig-
nal. This is relatively smaller than in shell test 2 (< 2 %) with
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Figure 7. Radial gravity component comparisons at 250 km height for shell test 3, wherein a density shell of equal thickness is modelled
with a density contrast at the CRUST1.0 Moho boundary.

the laterally varying densities, and this smaller effect is due
to the larger shell thickness of test 3 (80 km> 24 km). The
GSH and TESS methods are more compatible, representing
laterally varying density discontinuities rather than laterally
varying density fields. The difference between ASPECT and
the other codes is roughly about ±4 mGal, but some larger
outliers go up to −15.5 mGal (listed in Table 3). The dif-
ferences using the ASPECT code show some more correla-
tion with the input density and geometry structure; for exam-
ple, in the Pacific Ocean correlations with the tectonic plate
boundaries are seen in the residuals. Because the ASPECT
code performed better in shell test 2, these larger residuals
suggest that the ASPECT results tend to be limited by the
representation of the geometry of the density interface. The
chosen lateral resolution (L7) results in variations similar to
the triangle-based code, so it can be pinpointed to the radial
resolution. Because the ASPECT code can only incorporate
equal-thickness layers, it needs to represent the Moho geom-
etry with different equal-thickness layers. For this particular
result the 80 km thick shell was divided into 40 layers, which
results in a radial resolution of 2 km. This is further discussed
in Sect. 5.

Table 3. Statistical results from shell test 3: a density shell of equal
thickness is modelled with a density contrast at the CRUST1.0
Moho boundary.

Solution (mGal) Mean SD Min Max

Total signal −27.7221 150.7689 −408.1635 261.9314

GSH–tesseroid 0 0.026893 −0.13836 0.16555
GSH–triangle −0.072622 0.75468 −4.3124 1.9582
GSH–ASPECT 0.0053177 1.4619 −14.1503 11.547
Tesseroid–triangle −0.072622 0.75392 −4.3593 1.9709
Tesseroid–ASPECT 0.0053177 1.4546 −14.0777 11.4364
Triangle–ASPECT 0.07794 1.688 −15.5443 11.3065

The results in Table 3 agree with the observations from
Fig. 7 and highlight the outliers in the ASPECT code
comparison. Overall, the standard deviation of all com-
parisons falls well below the 1 % of the actual signal to
model and the mean signals are quite consistent with each
other. The ASPECT code seems to be the least capable
of forward-modelling density contrasts of boundaries with
varying depths, which is related to the limited radial reso-
lution. Together with the observed performance of laterally
varying densities, we expect that the ASPECT code will be
least able to predict the main gravity field features associated
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with WINTERC-G lithospheric–upper mantle density model
because of this. Nevertheless, the differences between each
code under benchmark here can be considered a reliable as-
sessment of the general applicability of variable geometries
in lithosphere models using different techniques.

4 Whole WINTERC-G density model integration

The choice of forward modelling scheme and parameteriza-
tion of similar density models could lead to non-negligible
local differences in the modelled gravitational signal. This
could, if not properly understood, lead to erroneous inter-
pretation of geological structures. With increasingly high-
resolution gravity data sets and their associated density mod-
els this becomes an important technical modelling issue. In
this section, we study the forward gravity modelling of the
whole WINTERC-G model, and the data set can be found
in Fullea et al. (2021). We will solely focus on the density
and geometry assets of this model, as they are related to the
gravitational potential field.

WINTERC-G goes through different vertical and horizon-
tal parameterization during its two-stage inversion process
(Fullea et al., 2020). In the first inversion stage, the model
consists of a collection of 1-D columns distributed on the
sphere as a triangular grid according to Wang and Dahlen
(1995), also used in the phase velocity maps of Schaeffer
and Lebedev (2013). Vertically, the model has a hybrid pa-
rameterization that combines a 2 km step regular sampling
with variable depths for the surface, Moho, and lithosphere–
asthenosphere boundary (LAB). This hybrid approach is nec-
essary because the finite-difference thermal solver uses a reg-
ular vertical grid, but most of the modelled data sets (seis-
mic, gravity, isostasy) are very sensitive to the depth of phys-
ical discontinuities that must therefore be parameterized sep-
arately. In the second inversion stage, the density structure at
each column is simplified to accelerate the gravity calcula-
tion. A series of layers is defined by spatially variable tops
and bottoms, and the average density in that depth range cal-
culated from the 2 km spacing interval or a linear gradient
between the top and bottom values is used. Except for the
water–rock interface, the ice–rock interface, and the Moho
boundary depth, these layers are spherical shells with equal
thickness. The Moho depth is highly variable, so the crustal
layers may cut into the shells, leading to a more complicated
vertical structure in the upper 80 km. The depth and density
values from the columns are then interpolated onto an equi-
angular grid and used for gravity inversion.

Hence, from a gravitational point of view, the WINTERC-
G density model consists of 13 layers (see Table C1), which
are defined by top and bottom boundaries and density distri-
butions. The first seven layers of WINTERC-G have varying
thicknesses caused by the varying geometries of these bound-
aries with respect to the constant-radius surface. These layers
describe the structure of the model from the top of the to-

pography to the first 80 km depth (deepest Moho variations)
and contain the water and ice layer on top of a crustal layer.
The other layers cut the sub-Moho region up to 80 km into
four layers to have an increased radial resolution as this re-
gion was found to be of importance to the gravity field (Ful-
lea et al., 2020). The other six layers are computed using a
constant radius for the boundaries, making layers of equal
thickness. These mantle layers go up to a depth of 400 km,
comprising the whole upper mantle. A detailed description
of all layer discontinuities and density distributions can be
found in Fullea et al. (2020).

4.1 WINTERC-G model-based gravity signal

Here, we compute the WINTERC-G-associated gravity sig-
nal by means of an independent gravity approach in order
to assess the reproducibility. The calculated signal should
match the gravity data inverted to build WINTERC-G, which
is XGM2016. We use the GSH software for this, as it resem-
bles the spectral code used for WINTERC-G the most.

The GSH software produces a geoid solution by comput-
ing the potential field from WINTERC-G and then divides
this by 9.81 m s−2. The normal gravity field needs to be re-
moved from the observations by subtracting the fully normal-
ized coefficients from the GRS80 ellipsoid (Moritz, 1980):
C00 is 1.00, C20 is −4.842×10−4, C40 is 7.903×10−7, C60
is −1.687× 10−9, and C80 is 3.461× 10−12. Furthermore,
WINTERC-G does not use coefficients up to 4 degrees, so 0–
3 degrees are discarded in this comparison. The WINTERC-
G–GSH comparison needs to take the divergence criterion
into account (Root et al., 2016). The crustal layers of the
WINTERC-G model are therefore cut in four internal layers
for the GSH scheme. With this modification, the GSH code is
able to produce a geoid result that is as similar to XGM2016
observations as the WINTERC-G geoid by its own internal
code, as shown in Fig. 8.

The total signal of the WINTERC-G model gives ±100 m
geoid undulations, which resemble the observed geoid. The
difference between XGM2016 and WINTERC-G are mainly
long-wavelength variations of around ±2 m that are simi-
lar to the residuals reported in Fullea et al. (2020). Larger
magnitude differences around ±8 m are small-scale features
most prominent in the Polar, Himalayas, and Andes regions.
The difference between XGM2016 and the GSH result shows
that the GSH solution is slightly better approaching the
XGM2016 observations than the WINTERC-G results. The
residual between WINTERC-G and GSH is below the mis-
fit of XGM2016 with WINTERC-G and only shows small-
wavelength differences (approximately 359 SH degree and
order). Overall, this comparison shows that the GSH code
is able to represent the WINTERC-G model within similar
precision as the code used by Fullea et al. (2020) in the de-
velopment of WINTERC-G.
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Figure 8. Geoidal differences comparing the solutions made by the WINTERC-G-based code, the solution from GSH, and the observed
XGM2016 gravity field on which WINTERC-G is based. Spherical harmonic coefficients 4–359◦ and order are shown.

4.2 Forward modelling and comparison of the
WINTERC-G gravity fields

In order for WINTERC-G to be useful for independent
gravity-based research, the gravity field computed by our
different forward modelling approaches (covering most of
the commonly used techniques in solid Earth modelling)
should be below the differences between WINTERC-G and
XGM2016. In this section, the full WINTERC-G model is
forward-modelled into the gravitational field by the selected
methodologies. The approaches were kept free in selecting
the best parameters (e.q. resolution, meshing) for the forward
modelling result. The resulting radial gravity vector compo-
nent would be examined at 250 km height above the refer-
ence sphere of 6371 km radius, and only SH degrees 2 to 179
were taken into account. The reduced spectral resolution of
179 degrees instead of 359 degrees was chosen because of
reduction in computation time. The signal above 179 degrees
has limited strength at 250 km altitude. This would result in
differences of WINTERC-G and XGM2016 with a standard
deviation of around 2 mGal, so all codes should be below
these values.

Figure 9 shows the radial gravity vector component of
the forward-modelled WINTERC-G density model (GSH re-
sult is depicted). The model produces gravity anomalies of
±50 mGal corresponding to the anomalies of the observed
gravity field (XGM2016). The difference between the GSH
and TESS solutions is ±0.3 mGal. These differences are be-
low 1 % of the actual signal, as could be expected from the
simple shell tests. Furthermore, these differences are well be-

low the data–model uncertainty (±2 mGal) of WINTERC-G
with respect to XGM2016. The residual signal reflects the ef-
fect of the volume approximation of the tesseroid and spher-
ical harmonics for the boundary geometries. The differences
are smaller than in the tesseroid–GSH code benchmark in
Root et al. (2016) using an earlier version of the GSH ap-
proach (the beta version is not publicly available). The dif-
ferences were around 10 %, showing that the GSH approach
(https://doi.org/10.4121/16764238) used in this study has
improved. The differences between the GSH and tesseroid
codes are largest in the continental regions and show some
correlation with crustal structures that have large density gra-
dient values. The active Pacific American margin and the
Himalaya region particularly experience noticeable residual
anomalies. This feature was seen in shell test 3 and was
attributed to dissimilar approximations of the geometrical
boundaries.

The triangle integration, similarly to the results from pre-
vious tests, yields a radial gravity component very close to
those from GSH and tesseroid codes: no apparent differences
are visible except for the characteristic triangle features also
seen in the shell tests. The residuals with GSH and tesseroids
show that the triangle integration probably got close to the
limit of this technique because we can see triangular artefacts
only (see the mid-latitudes in Fig. 9). These artefacts were
present in all previous results and come from the fact that the
global triangular grid is not perfectly regular on the sphere
(see Fig. 2). To some extent, the triangular effects can be re-
moved with the spectral filtering, but such a filter only helps
with short-wavelength effects (Sebera et al., 2018). The trian-
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gle technique is surprisingly accurate given the fact that the
integration kernels are calculated pointwise (one point value
for each volume element). The triangular integration even
helps identify small crustal-correlated effects in the GSH so-
lution; notice the anomalies around the Himalayan region in
the GSH–TRI comparison, which are not present in the TRI–
TESS comparison. Nevertheless, due to the volumetric dif-
ferences the triangle integration was performed with a stan-
dard deviation of < 1 mGal that is about 10 times larger than
the standard deviation between GSH and TESS; see Table 4.
For the triangles a spatial resolution of 0.5 arcdeg was used
(the so-called level 8 equipped with 196 002 nodes). Going
even higher would dramatically increase computation costs
and limit the performance of useful forward modelling.

This is also the case for the ASPECT code, which has the
largest differences (0.8 to 1 mGal standard deviation, with
outliers up to 10 mGal). Unless a high resolution is used, the
ASPECT code has difficulties in obtaining the correct gravity
signal, mostly related to representing the various boundaries:
surface, Moho, ice–bedrock, and other boundaries. This is
mainly attributed to a lack of adequate radial resolution, as
explained in Sect. 3.3. We have made use of a code feature
here which allows the user to prescribe the radii of the con-
centric layers of nodes making the mesh. The lateral resolu-
tion is still level 6 (i.e. 6× 642 elements per shell – approx-
imate 1.4◦ resolution), but a higher radial resolution is pre-
scribed in the first 80 km. The results shown in Fig. 9 were
obtained with 90 layers in the top 80 km (sub-kilometre reso-
lution) and as many below it (∼ 3.5 km resolution). A Python
code was written to convert or resample the WINTERC-G
data in a format readable by ASPECT (see the Supplement).
In the end the mesh counts about 4.4 million elements. Sev-
eral dozen gigabytes of RAM are then needed to run the code.

Table 4 depicts a numerical summary of the results of
the WINTERC-G benchmark for all the different codes. The
GSH and tesseroid codes produce similar results, although
there are some outliers of ∼ 2.3 mGal, which are mainly sit-
uated in the region of the Himalayan Mountains. Here, the
crustal structures experience the largest gradients in geome-
try, where we would logically expect the largest differences
between the two codes. The other codes show larger devi-
ations, with the GSH triangles having a standard deviation
of 0.7 mGal, which is 10 times larger than with the GSH–
tesseroid comparison. However, the outliers are similar at
approximately ±2.5 mGal. The errors due to the difference
in spherical harmonics representation of the boundaries are
similar to the error made by differences in tesseroid or trian-
gle choice. This shows that globally all three codes produce
an overall similar solution of the WINTERC-G gravitational
signal well within the typical uncertainty of global gravity
data. GSH–ASPECT has a standard deviation of 0.83 mGal
that indicates rather non-computational differences like data
use. It is expected that higher-resolution computations will
let the solutions converge to similar precision as in the sim-

Table 4. Statistical results from the WINTERC-G-grav benchmark.

Solution (mGal) Mean SD Min Max

Total signal −0.80997 21.3321 −65.7293 73.699

GSH–tesseroid −0.0010525 0.075833 −0.90358 2.3141
GSH–triangle −0.10338 0.70749 −2.4532 2.4901
GSH–ASPECT −0.013693 0.8303 −7.6905 9.555
Tesseroid–triangle −0.10233 0.70519 −2.4069 1.7032
Tesseroid–ASPECT −0.012641 0.81045 −7.0426 8.9018
Triangle–ASPECT 0.089689 1.0221 −7.2182 8.071

ple shell tests but that the complexity of the WINTERC-G
model acquires higher-resolution settings.

5 Discussion

The gravity field is extremely sensitive to the volume of the
modelled masses and therefore the exact representation of
the boundaries of individual mass layers. Different gravity
signatures can be computed when you are not aware of this.
The WINTERC-G lithosphere model is constructed with a
spectral gravity forward modelling approach. This has conse-
quences for the inverted densities and other physical parame-
ters when the model is used as prior information in indepen-
dent studies using different codes and gravity forward mod-
elling and/or inversion approaches. This benchmark study
was performed to (i) assess the differences arising from us-
ing different available gravity forward modelling approaches
on a realistic global 3-D density distribution from the sur-
face down to the base of the upper mantle (WINTERC-G
model) and (ii) to independently assess the reproducibility of
WINTERC-G from a gravity field point of view. The differ-
ent tests devised in this study are summarized in Table 5.

The GSH code is able to forward-model the WINTERC-
G gravity signal to similar precision as the WINTERC-G
model is intended. The variations with the XGM2016 gravity
field data have similar variations as the WINTERC-G dedi-
cated solution. The difference of ±6.1 m in geoid between
the WINTERC-G code and GSH code solutions is mostly
high-wavelength signal. This spectral region is not well de-
fined in WINTERC-G and is mostly noise. Therefore, we
compared the forward-modelled solutions of the four inde-
pendent approaches at satellite height (250 km). This was
done because of the fact that no extra information but noise
is added by downward continuation of the satellite-observed
gravity field. The global gravity data used in WINTERC-
G were mostly obtained around this height. The raising of
the synthesis height suppresses shorter-wavelength features
in the model and therefore the differences in the various so-
lutions, explaining the lower relative changes (3.0 %). The
satellite altitude also guarantees that the distance from the
masses remains larger than the size of volume elements so
that the forward modelling is not affected by the discretiza-
tion error.
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Figure 9. Gravity radial component at 250 km height comparison of the forward-modelled WINTERC-G model by the different forward
modelling approaches. Spherical harmonic coefficients 2–179◦ and order are shown.

As a first “sanity check” we used a homogeneous spheri-
cal shell to show that all codes reproduce the gravity effect
of such a simple model well with an exact analytical solution
(Shell test 1). The largest errors are seen with the tesseroid
code, but even here the relative accuracy achieved is still on
the order of ≈ 10−4. Thus, there are no significant numer-
ical issues affecting any of the methods. A slight problem
is that the triangle approach artificially imprints minor spa-
tial patterns on the predicted gravity field. When we used
a slightly more intricate shell model (Shell test 2), which
contains an internal density variations, the disagreements be-
tween the methods increased. Taking the spherical harmon-
ics code as a reference, the differences are on the order of
1 %, although tesseroids and spherical harmonics agree even
better (0.3 %). The good agreement between spherical har-
monics and tesseroids compared to the two other methods
highlights the impact of the parameterization: the former
two methods are inherently adapted to equi-angular grids,
whereas the latter methods require some amount of interpo-
lation. When the gravity variations are due to an undulating
density interface (shell test 3), the disagreements are lower
compared to results of shell test 2. Tesseroids and spherical
harmonics see a reduction of relative difference by a factor
of 10, while the differences for triangles and ASPECT are re-

duced only slightly. The undulating density interface is less
challenging for the algorithms than the lateral density varia-
tions. Only the ASPECT residuals show similar performance
between shell tests 2 and 3. ASPECT is the only code that
does not support variable layer geometries and needs interpo-
lation from the WINTERC-G model onto an equi-thickness
grid.

The result for the complete integration of the WINTERC-
G model can now be interpreted due to the shell test re-
sults. Tesseroids and the spherical harmonic approach again
agree very well and consistently achieve a relative agree-
ment of 0.3 % with each other. This corresponds to the ac-
curacy achieved with the laterally variable density structure,
so this seems to be the limit in precision between these
two approaches. One caveat is the observation height of
250 km, which suppresses the short-wavelength differences.
If WINTERC-G were to be used as a starting model for a
more regional model, integrating airborne and ground grav-
ity data would be an important step. However, we have not
compared the two methods at or near ground level, since
this is computationally unfeasible for tesseroids on a global
scale due to the needed increase in resolution to get simi-
lar precision. Triangles could be a viable choice to model
WINTERC-G. However, at the resolution level 8 of the tri-
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Table 5. A summary of the various benchmark tests described in this paper.

Test GSH Tesseroid Triangle ASPECT

Case 1: homogeneous shell 2 km (mGal) 10−9 0.04 0.046 4× 10−6

Case 1: homogeneous shell 5 km (mGal) 10−9 0.10 0.035 4× 10−6

Case 1: homogeneous shell 10 km (mGal) 10−9 0.20 0.031 < 1× 10−6

WINTERC-G integration test

WINTERC-G–XGM2016 ±8.2 m (8.2 %)
GSH–XGM2016 ±8.0 m (8.0 %)
WINTERC-G–GSH ±6.1 m (6.1 %)

Comparison (standard deviation) Shell case 2 Shell case 3 WINTERC-G

GSH–tesseroid 0.055 mGal (0.3 %) 0.027 mGal (0.02 %) 0.076 mGal (0.36 %)
GSH–triangle 0.215 mGal (1.2 %) 0.755 mGal (0.5 %) 0.707 mGal (3.3 %)
GSH–ASPECT 0.215 mGal (1.2 %) 1.462 mGal (1.0 %) 0.830 mGal (3.9 %)
Tesseroid–triangle 0.225 mGal (1.3 %) 0.754 mGal (0.5 %) 0.7052 mGal (3.3 %)
Tesseroid–ASPECT 0.192 mGal (1.1 %) 1.455 mGal (1.0 %) 0.810 mGal (3.8 %)
Triangle–ASPECT 0.306 mGal (1.7 %) 1.688 mGal (1.1 %) 1.022 mGal (4.8 %)

angular refinement, the relative differences are still ∼ 3 %,
so the resolution needs to be increased further, which is un-
practical. If the accuracy of the triangle method could be fur-
ther increased, it would open up interesting possibilities to di-
rectly link gravity and seismological modelling. Seismologi-
cal models are often parameterized in terms of point values,
not volumes. The triangular integration provides a consistent
way to associate a gravity response with these point values
and would circumvent interpolation to volume elements in
a joint treatment of seismological and gravity data. The AS-
PECT modelling approach is not viable to represent the com-
plete WINTERC-G model at this stage. The main limitation
is that the layered WINTERC-G model needs to be voxelized
and the uppermost layers of WINTERC-G contain the topog-
raphy (associated with a large gravity signal), which leads
to unrealistic requirements for vertical resolution. It should
be noted that the voxelization approach was acceptable in
shell test 3, wherein the disagreements were merely ∼ 1 %.
However, when the entire WINTERC-G model was used, the
differences from the individual layers accumulated to a fi-
nal relative difference of approximately 5 %. The residuals
of the ASPECT solution with respect to the spherical har-
monics results clearly reflect water depth, topography, and
crustal structures. A considerable accuracy improvement is
therefore expected if the topography and bathymetry were
handled independently from ASPECT.

GSH’s ability to represent the laterally varying densities
as much as possible makes this approach most suitable for
forward modelling of global lithosphere density models. The
GSH software is built for global models with laterally vary-
ing parameters, e.g. boundaries and density, but is less suit-
able for regional models. It is most suitable for WINTERC-
G-like models based on spherical harmonic basis functions
to represent the gravity field. The GSH software would be

less suitable for models using a spatial forward modelling
approach in the inversion, like LITHO1.0 (i.e. triangles).
The resolution issue is mostly related to the Nyquist crite-
ria. So, if the information is distributed 1× 1 arcdeg on an
equi-angular grid, the software would only need 1◦× 1◦ res-
olution. So, increased lateral resolution is needed to improve
the precision of the solution. The radial resolution is dictated
by the number of layers the GSH has to model. However,
if there was a regional (higher) information resolution, the
global resolution would need to be increased to the high-
est resolution present in the model, increasing the computa-
tion cost. Here, spatial techniques are more favourable. An-
other disadvantage of spherical harmonics is modelling of
lateral jumps in the boundaries. Non-removable oscillations
in gravity field occur near such a high-gradient region (e.g.
Himalaya). The implementation of the WINTERC-G model
was very straightforward and resulted in high-precision re-
sults for the GSH approach.

The tesseroid parameterization offers a great deal of flexi-
bility, since each volume element is described explicitly. This
makes tesseroids ideally suited to represent more regional ge-
ological models, which are more complicated than a simple
layered structure. However, this flexibility comes at the ex-
pense of computation time because the gravity kernel needs
to be evaluated for each tesseroid–station pair. This leads to a
computation time scaling behaviour of O(Ns ·Nt), where Ns
is the number of stations and Nt is the number of tesseroids.
Since the number of stations and tesseroids increases rapidly
if the area of investigation is enlarged or the spacing is de-
creased, there are limitations to the achievable resolution on a
global scale. Computationally, the tesseroid calculations are
limited by CPU time but require negligible RAM. The cal-
culation is highly parallel, so the tesseroid calculation would
benefit strongly from parallelization. However, a more so-
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phisticated solution would make use of adaptive parameteri-
zations (Szwillus and Götze, 2017) to improve the numerical
complexity for layered models such as WINTERC-G.

Integration of triangular grids is affected by grid irregu-
larities so that there are multiple ways to define a volume
element for each node. Furthermore, there are possibly no
analytical expressions for the kernel functions (here, these
functions are said to relate the point of calculation to the
centre of mass of each triangle as a pointwise function). In
all tests except the one for the homogeneous shell, the den-
sity structure needed to be interpolated from the native equi-
angular grid into the triangular grid. Besides the differences
in the mass due to the triangulation itself, the differences thus
include the effect of the interpolation. The best result (com-
pared with other integration schemes) was achieved by using
the spline interpolation and the 0.5 arcdeg spatial resolution,
which reduced the largest triangular artefacts significantly.
What appeared very important was a vertical refinement of
the data. All 13 layers spanning 400 km of mass from the
surface downward were refined to thin slices with a thick-
ness of 2 km maximally. Handling the triangular grids rather
corresponds to the scattered data representation, while the in-
tegration can easily be done in parallel (here the integration
was performed on an ordinary PC) and the data indexing al-
lows for a multi-resolution approach (i.e. where possible the
triangles can be divided into smaller surface and/or volume
elements).

The ASPECT code is first and foremost a geodynamic
code designed to solve the mass, momentum, and energy
conservation equations on massively parallel architectures.
Forward gravity calculations based on Gauss–Legendre
quadrature were added to it as a post-processor. Despite its
relying on octree-based mesh refinement (Burstedde et al.,
2011), which allows increasing resolution in or around areas
according to user-prescribed criteria, we found this approach
to be very sensitive to density interfaces (as in shell test 3).
When adequate resolution was used the obtained results com-
pare favourably with the other methods but the memory re-
quirements as well as the computational time were found to
be prohibitive compared to other approaches showcased in
this work.

The biggest issue with the ASPECT approach is the inabil-
ity to accurately model a variable density interface. Codes
that cannot account for variable thickness in mass layers will
find the WINTERC-G model difficult to implement. This was
best seen in the ASPECT results. To investigate this more, we
have examined the effect of constant layer-based codes and
codes using variable geometry layers with respect to their re-
sulting gravity field solutions.

1. Representing the model with varying boundary between
the crust and the mantle, approximated by the spherical
harmonics functions.

2. Representing the model in equal-thickness layers by
changing the density laterally.

The densities of the model will only have ρcrust =

2900 kg m−3 and ρmantle = 3300 kg m−3 so that no interpola-
tion is needed. In the second approach, if the middle point of
the layer is above the geometric boundary (Moho), then the
density is that of the crust; otherwise, it will get the mantle
density assigned. So, when the number of layers is increased,
the radial resolution of the density interface is increased as
well. This test represents a simple way to model the dif-
ference between gridded models and geometrically bounded
models. The results for the gravity effect of the density in-
terface are shown in Fig. 10 by the black lines with circle
markers.

The difference between the two solutions is largest for
radial resolution of 10 km thick layers, which is already a
high radial resolution for fully global numerical models in
mantle convection studies. For example, the 400 km deep
WINTERC-G model is only represented by 13 layers. Dif-
ferences in geoid undulations of 55 m can occur, which is
more than 50 % of the observed geoid on Earth. Even with
a layer thickness of 1 km, the two approaches differ signifi-
cantly. The 100 m radial resolution produces sub-metre dif-
ferences. At 10 m thick layers the differences between the
two models become insignificant (≈ 10−11 m). Both of these
radial resolutions are too computationally expensive when
global modelling is used. A resolution of 100 m layers for
the first 400 km (typical high-resolution upper mantle model)
would result in 4000 layers having a lateral resolution of
0.5◦, which means 518.4 million elements for only the up-
per mantle. Working with such matrices is very challenging
even today.

Currently, the ASPECT code needs an equal-thickness
layer grid as an input file. Therefore, the WINTERC-G
model needs to be converted to a grid-cube file. This is done
by a Python parser script (attached to the paper). The grid
mass elements will be calculated by taking into account the
different volumes and densities in the layers of WINTERC-
G. The thickness of the mass cubes can be chosen in the
parser file by cutting up the WINTERC-G model in several
equi-thickness layers. For this test, we have investigated the
gravity difference for a cube grid of 50, 100, 200, 400, and
800 layers, equivalent to layer thicknesses of 8.109, 4.054,
2.027, 1.013, and 0.506 km. These mass cube grid models
are compared to the GSH solution of the WINTERC-G lay-
ered model. The results are plotted in Fig. 10 in red lines.
Similar to the Moho interface experiment, the WINTERC-G
model shows an increase in accuracy for small layer thick-
ness. Radial resolution plays a role in the ASPECT solutions
and for the full model is even more important than for a sin-
gle density interface. The WINTERC-G model constructed
in 8 km thick layers has differences of around 150 mGal
(SD 6.3 mGal), whereas the crust–mantle interface has <
50 mGal (standard deviation of 2.4 mGal) differences from
the GSH solution. Both become more accurate with the re-
duction of layer thickness. For layers approximately 1 km
thick, the WINTERC-G model has 4.8 mGal (standard de-
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Figure 10. (a) Maximum gravity error for the equal layered model versus the geometrically bounded model for the simple 80 km crust–
mantle model (black with circle marker) and the full WINTERC-G model by GSH (red with plus marker) and ASPECT (green with triangle
marker). (b) Similar to (a), but the standard deviation of the residuals is plotted. (c) Maximum (solid lines) and standard deviation (dashed
lines) residuals but plotted on a logarithmic scale.

viation of 0.11 mGal) differences with the GSH solution, and
similar results were seen in the Moho interface experiment.
The highest radial resolution for the WINTERC-G model so-
lution has layers 506 m thick (reproducing the model in 800
individual layers). This generates a 5.4 GB ASCII file, which
is much larger than the current 2 GB limit of ASPECT input
files (300 layers with a thickness of 1.35 km is around the
2 GB limit). The difference between the GSH solution and
the high-resolution parser data cube is maximum 2.3 mGal
(standard deviation of 0.042 mGal). So, the parser seems to
converge to a similar solution as the GSH code. However,
the high resolution is currently a problem for the ASPECT
code. Note that the 2 GB limit on input files was lifted af-
ter acceptance of this paper. Maybe a newer version of AS-
PECT will be able to load larger input files, but the question
arises of whether the code will then still be practical. This
high radial resolution will increase the computational effort
to get an accurate solution. It would be better to assess if
ASPECT would be able to adjust its mesh to the boundaries
of the WINTERC-G model, which means on equal-thickness
layered mesh. This is currently not yet possible in ASPECT.
Bearing these limitations in mind, all four codes seem to be
able to reproduce the gravity field of the complex 3-D upper
mantle model well within geophysical uncertainties.

Overall, the discussed approaches show similar attainable
precision but have several differences with respect to han-
dling the density models. But what about the practicality of

the algorithms? What are their demands on the RAM and
CPU time? How well can they be made suitable for paral-
lel computing, and are the algorithms able to have local en-
hancement? The figures discussed here differ by orders of
magnitude as the approaches have been implemented on dif-
ferent type of machines. Therefore, the exact figures for CPU
usage differ due to the different hardware setup. However, the
orders of magnitude already give an indication of the perfor-
mance and practicality of the different approaches.

The runtime of the GSH approach for the full WINTERC-
G model on a standard laptop is 3 min for the analysis of the
WINTERC-G coefficients and 7 min for the synthesis, in to-
tal 10 min. The runtimes for the several shell tests in the case
of GSH are negligible. The runtime of the tesseroid approach
(TESS) for the complete WINTERC-G model was approx-
imately 10 h, whereas for the simple shell tests a calcula-
tion took within 20 min. For the triangle code (TRI) orders
of magnitude of the runtime for a full WINTERC-G model
around are 0.5 d for modelling 204 layers and 192 000 nodes
(the model was vertically and laterally refined). The shell
tests took about 40 min to compute approximately 10 lay-
ers and 192 000 nodes. If the L7 resolution had been used,
which is the native WINTERC-G resolution, the shell tests
would have been about 5 to 10 times faster. The runtime for
the WINTERC-G model in ASPECT for the 90+ 90 model
on three cores (nq+ 3) was 210 000 s or around 7 d. Shell
test 1 on one core with 1536 elements took around 0.7 h. For
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6144 elements it took around 2.8 h and for 24 576 elements
around 11 h. This makes the current ASPECT forward mod-
elling part the slowest of the four. The GSH approach stands
out in performance and speed and is suggested to be the op-
timal choice for global inversion studies wherein, due to the
multiple runs, speed is of the essence.

For GSH, the memory usage scales with resolution, but
for the global 0.5× 0.5◦ resolution of WINTERC-G this can
be considered negligible (of the order of several megabytes).
The most demanding process is the least-squares fitting of
the SH coefficients and the calculation of the Legendre func-
tion, which are related to the resolution of the model. The
memory consumption of the tesseroid algorithm is negligi-
ble (on the order of a few megabytes), since the gravity ef-
fect of each tesseroid on all measurement locations is cal-
culated individually. The triangle algorithm has relatively
low demands on RAM (each calculation point is treated in-
dependently with respect to the whole input data matrix, a
sort of vectorization): nothing serious for 0.5 arcdeg resolu-
tion. However, RAM can be limited in the pre-integration
phase if naive algorithms are used for searching and/or in-
dexing. Large matrices can occur (for example, if columns
and rows of the matrix are dedicated to all data points), and
when finding neighbour points (all to all search), it might
create matrix sizes of 50000× 50000 elements for L7 and
190000× 190000 elements for L8. This is not an issue for
users but for developers of the grids (or those who inspect
them). In the current version of the ASPECT code, memory
consumption is a bottleneck. The input density grid file from
the Python parser is currently limited to 2 GB by the AS-
PECT code. This protects the user from enormous memory-
consuming runs with the code, but it limits the resolution of
the density model inserted into ASPECT. Especially for later-
ally varying density interfaces this proves to be a large source
of erroneous gravity solutions.

The GSH computation can be performed in parallel with
respect to the number of layers. The layers are independent
from each other and the corresponding coefficients are added
to obtain the total SH coefficients of the model. However,
laterally selected or regional modelling is not possible as the
GSH needs global information on the layer’s density distri-
bution and its geometry. The least-squares fitting could be
performed in parallel with proper numerical toolboxes. Lo-
cal enhancement is not possible for GSH, which is one of the
biggest drawbacks of the GSH code. Only an increase in the
number of spherical harmonic coefficients would improve
the resolution of the gravity output. For regional studies with
high resolution, spatial forward modelling approaches are
then advised. Parallelization of the tesseroid code would be
straightforward. Increasing the resolution adaptable is also
straightforward when tesseroids are combined with hierar-
chical subdivision methods like quadtrees (e.g. Szwillus and
Götze, 2017). In this manner, speed-ups without significant
loss of accuracy can be achieved. For the triangle approach
it is also easy to make the forward problem parallel; the in-

tegration loop that runs over all the calculation points can
be split into more “segments”. It can have easy vectoriza-
tion, but for the inverse problem the same drawbacks are en-
visioned as for other approaches. Local enhancements are
possible; large triangles can be replaced with smaller ones.
For the triangle approach, practically, enhancement means
removing one column per triangle element and adding a few
more for the smaller triangles in the input file. A limitation is
that it is crucial to perform an analysis before the grid is inte-
grated. After each enhancement the grid (or its part) must be
reanalysed (and the indexing or data ordering appropriately
updated) to get correct surface–volume elements (these num-
bers cannot come from the analytical formulas; they have to
be estimated because the triangle grids are irregular). Paral-
lelization is integral part of the ASPECT code since the mesh
is partitioned across all processors. ASPECT is ideal for lo-
cal enhancements, as it relies on adaptive mesh refinement
so that specific areas, geophysical features, or material inter-
faces can be more densely meshed. Mainly the laterally vary-
ing density interfaces prove difficult for the ASPECT code.
This would mean that if global density models of the Earth
did not use laterally varying density interface, but instead
used a more grid-type format, all four codes would perform
almost equally well in both precision and practicality.

6 Conclusions

This benchmark study is focused on the computation of the
gravitational potential field associated with the crustal and
upper mantle model WINTERC-G (Fullea et al., 2020). Four
independent forward modelling approaches and codes are
tested against the WINTERC-G-based spectral forward mod-
elling code used in the inversion. The four codes differ in the
methodology assumed: a global spherical harmonic solution
(GSH code; Root et al., 2016), a tesseroid-based code (Uieda
et al., 2016), an integration on triangle volume elements (Se-
bera et al., 2018), and a hexagon-based code inside the open-
source software ASPECT (Kronbichler et al., 2012; Heister
et al., 2017). The GSH, TESS, TRI, and ASP codes are able
to reproduce gravity fields that are significantly similar to the
WINTERC-G solution. WINTERC-G is successfully tested
to check the recovery of the input gravity data used to con-
strain it: XGM2016. Among all four tested codes, ASPECT
has more difficulty in computing the correct gravity solution
when radially varying density contrasts are present.

Simple shell tests show that all four codes can produce
similar gravitational potential fields suitable for modelling of
satellite-acquired gravity data. The differences between the
forward modelling schemes are all below 1.5 % of the mod-
elled signal, and the tesseroid and GSH codes produced the
most similar results (< 0.3 %). The biggest issue for the tri-
angle code is the characteristic pattern in the residuals that
illustrates the grid selection. Triangles provide a realistic
gravity signal with rms< 1 mGal, but compared to GSH and
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tesseroids these residuals are about 10 times larger. Increas-
ing the resolution and filtering are capable of removing these
imprints to some extent, but a major issue is use of point-
wise kernel values along with an irregular grid on the sphere
(there is no perfectly uniform triangular grid on the sphere).
The ASPECT-based code performs the worst in the simple
shell tests, especially in the forward modelling of the gravity
signature of a density contrast of a depth-varying boundary.

The GSH code shows that it can produce almost similar
potential fields as the internal spectral code that was used in
the development of the WINTERC-G model. Mainly short-
wavelength noise is seen between the two forward modelling
codes that can be attributed to the different way the spheri-
cal harmonic analysis of the varying boundaries of the mass
layer is performed. This produces small differences, espe-
cially at high gradient values of the boundary variations, in-
troducing mostly short-wavelength differences. The spatial
forward modelling schemes still have difficulty in reproduc-
ing similar gravity field solutions and would have to go to
unrealistically high resolutions, resulting in enormous com-
putation efforts. Care must be taken with any forward mod-
elling software as the approximation of the geometry of the
WINTERC-G model may deteriorate the gravity field solu-
tion if the density parameterization of this model is not taken
into account.

Appendix A: Mathematical description of the forward
modelling code used in the construction of WINTERC-G

The inversion code used to construct the WINTERC-G
model relies on spherical harmonic forward gravity mod-
elling code (Fullea et al., 2020). The approach is based on the
derivation of Stokes’ potential coefficients of a 3-D density
layer with non-spherical boundaries. The aim of this section
is to derive the formulae for computing the external gravita-
tional field generated by a mass layer of a 3-D density dis-
tribution bounded by non-spherical boundaries with the geo-
centric radii r = a(�) and r = b(�). Here, � stands for co-
latitude and longitude, �≡ (ϑ,ϕ). We assume that the two
boundaries do not intersect each other, i.e. a(�) 6= b(�) for
any�. We consider, for instance, a(�) < b(�), i.e. a(�) and
b(�), to be the bottom and top boundaries of the layer, re-
spectively.

Let the mass density %(r,�) above the boundary a(�) be
%a(�) and below the boundary b(�) be %b(�). Mathemati-
cally,

lim
r→a+

%(r,�)= %a(�),

lim
r→b−

%(r,�)= %b(�). (A1)

Let %(r,�) inside the layer change linearly with the radius r
of a mass density point, i.e.

%(r,�)= α(�)r +β(�) (A2)

for a(�)≤ r ≤ b(�). Functions α(�) and β(�) are given by
the boundary density values %a(�) and %b(�):

α(�)=
%b(�)− %a(�)

b(�)− a(�)
,

β(�)= %a(�)−α(�)a(�). (A3)

Let us now compute the gravitational potential V induced
by the mass density layer,

V (r,�)=G

∫
�0

b(�′)∫
r ′=a(�′)

%(r ′,�′)

L(r,ψ,r ′)
r ′

2
dr ′d�′, (A4)

where G is the Newton’s gravitational constant, �0 is the
full solid angle, d�′ = sinϑ ′dϑ ′dϕ′, L(r,ψ,r ′) is the spatial
distance between the computation point (r,�) and an inte-
gration point (r ′,�′),

L(r,ψ,r ′) :=

√
r2+ r ′2− 2rr ′ cosψ, (A5)

and ψ is the angular distance between geocentric directions
� and �′. For r > r ′, the reciprocal distance 1/L can be ex-
panded into a uniformly convergent series of Legendre poly-
nomials,

1
L(r,ψ,r ′)

=
1
r

∞∑
j=0

(
r ′

r

)j
Pj (cosψ). (A6)

Using the Laplace addition theorem (Varshalovich et al.,
1989), the potential V at the external point (r,�), that is for
r > R > b(�), can be expressed in terms of solid spherical
harmonics,

V (r,�)=
GM

R

jmax∑
j=0

j∑
m=−j

(
R

r

)j+1

VjmYjm(�), (A7)

where M is the mass of the Earth and Yjm(�) represents the
fully normalized scalar spherical harmonics of degree j and
order m, respectively (Varshalovich et al., 1989). The fac-
tor GM/R is used to express the potential V with respect to
the mean gravitational potential of the Earth. Consequently,
the potential coefficients Vjm are normalized by the average
density of the Earth, %mean, such that

Vjm =
3

%mean

σjm

2j + 1
. (A8)

The scaled potential coefficients σjm express the contribu-
tions of the various mass density distributions inside the
Earth to the external gravitational field. In the case of a mass
density layer with the density %(r,�) bounded by surfaces
r = a(�) and r = b(�), the potential coefficients σjm are

σjm =

∫
�0

b(�′)∫
r ′=a(�′)

%(r ′,�′)

(
r ′

R

)j+2

Y ∗jm(�
′)dr ′d�′, (A9)
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where the asterisk denotes the complex conjugation. Substi-
tuting for %(r ′,�′) from Eqs. (A2) into (A9) and integrating
the result with respect to r ′ gives

σjm =
1

Rj+3

∫
�0

{
α(�′)

j + 4

([
b(�′)

]j+4
−
[
a(�′)

]j+4
)

+
β(�′)

j + 3

([
b(�′)

]j+3
−
[
a(�′)

]j+3
)}
Y ∗jm(�

′)d�′. (A10)

In view of the last expression, it is convenient to express
the boundary topographies a(�) and b(�) in the form

a(�)= Ra + s(�),

b(�)= Rb+ t (�), (A11)

where Ra and Rb are mean radii of a(�) and b(�), and s(�)
and t (�) are undulations of a(�) and b(�) with respect to
the mean radii. The power of the boundary radii in (A10) will
now be expressed in terms of spherical harmonics (Martinec
et al., 1989; Fullea et al., 2015). For integer n, n≥ 1, and
using Eq. (A11), the nth power of the topography a(�) can
be written as a power series of s(�)/Ra by means of the
binomial theorem:

[
a(�)

]n
= Rna

[
1+

s(�)

Ra

]n
= Rna

n∑
k=0

(
n

k

)[
s(�)

Ra

]k
. (A12)

A similar expansion holds for
[
b(�)

]n. Substituting
Eqs. (A12) into (A10) and introducing the ratios

pa =
Ra

R
, pb =

Rb

R
, (A13)

the final expression for the scaled potential coefficients is

σjm =

∫
�0

[[
α(�′)

R

j + 4

j+4∑
k=0

(
j + 4
k

){
p
j+4
b

[
t (�′)

Rb

]k
−p

j+4
a

[
s(�′)

Ra

]k}

+β(�′)
1

j + 3

j+3∑
k=0

(
j + 3
k

){
p
j+3
b

[
t (�′)

Rb

]k
−p

j+3
a

[
s(�′)

Ra

]k}]]
Y ∗jm(�

′)d�′.

(A14)

In a particular case, when both bounding topographies are
spherical, s(�)= t (�)= 0 for any�, the only non-zero con-
tributions to the integrand in Eq. (A14) are for k = 0, and
Eq. (A14) reduces to

σjm =

∫
�0

[[
α(�′)

R

j + 4
(p
j+4
b −p

j+4
a

)
+β(�′)

1
j + 3

(
p
j+3
b −p

j+3
a

)]]
Y ∗jm(�

′)d�′. (A15)

If, in addition, the density does not change in the layer in
radial direction, %b(�)= %a(�). Then, (A3) implies that
α(�)= 0 and β(�)= %a(�), and (A15) further reduces to

σjm =

∫
�0

%a(�
′)

j + 3

(
p
j+3
b −p

j+3
a

)
Y ∗jm(�

′)d�′. (A16)

The last expression gives the solution for a spherical shell
of constant thickness, but with laterally varying densities
%a(�

′).

Appendix B: Effect of triangle area on the integration

Since there is no spherical triangular grid with constant-area
surface elements, the spherical triangles necessarily differ in
the sides and angles. When assigning an area to a node ac-
cording to Fig. 1, there are multiple options. We have studied
five different options using the spherical shell.

1. Constant size – each node is given the same area that is
proportional to a number of points on the sphere.

2. Local simple average – a node is given an average area
value estimated with the neighbouring triangles (see
Fig. 1).

3. Weighted local average - similar to previous but the
neighbouring triangles are weighted depending on the
magnitude of the inner angle or its sine.

4. Sum of thirds – each node is given an area equal to a
sum of thirds from surrounding triangles.

5. Centre of mass – each node is given the area according
to Fig. 1 – a sum of smaller spherical triangles delimited
by the centres of mass and the side midpoints.

The results for the spherical shell using these settings are dis-
cussed in terms of Table B1. Although options 3–5 nearly
reach the exact surface–volume of the sphere (4π ), the grav-
ity residuals compared with Eq. (4) are higher than for op-
tion 2 (local average). This is due to the fact that the irreg-
ular triangular grid always produces triangular patterns and
these cannot be reduced just by using more accurate surface–
volume elements. Thus, the most suitable option based on the
shell test seems to be option 2 even though only 5 significant
digits of the total surface are preserved. Note that there is a
2 order of magnitude improvement when options 1 and 2 are
compared, and if possible constant surface–volume elements
should not be used along with the triangular grids.

The differences in the volume with respect to tesseroids
are provided in Fig. B1. The rougher topography of the
layer, the larger the differences between the two integration
schemes that can be seen. However, the accuracy of the vol-
ume elements seems to be a less important driver of the tri-
angular patterns as already indicated by the shell test – even
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Figure B1. Relative volume differences per layer (from 400 km) of WINTERC-G with respect to the tesseroids.

Table B1. Surface element options in terms of the total spherical
area and gravity residuals. For option 1 the total area is exact since
the triangle area is calculated directly from 4π . Bold numbers are
the significant digits that are different from the spherical shell solu-
tion for the various model options.

Option Total sph. area rms of residuals
(mGal)

Sph. shell 12.56637061435917 –
1 12.56637061435917 10.9
2 12.56622208332847 0.08
3 12.56637061439066 0.72
4 12.56637061439047 0.46
5 12.56637061423496 0.46

nearly exact volume elements do not help reduce the large-
scale triangular patterns (even if mean kernels are used). Pos-
sibly, the largest artefacts come from the grid irregularity
for a given 2 arcdeg spatial resolution. These large triangular
patterns are basically an amplified gravity signal from close
source points – the triangles are smaller than some local av-
erage so the effect of its nodes is larger (or vice versa for the
opposite situation).
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Appendix C: WINTERC-G layering

The layering of WINTERC-G can be viewed in Table C1.

Table C1. The WINTERC-G layering structure used in this study.

Name layer Top boundary Bottom boundary Corresponding density

Varying thickness layers

Water Top continental ETOPO2 Top ice ETOPO2 1030 kg m−3 (constant vertically)

Ice Top ice ETOPO2 Top bedrock ETOPO2 910 kg m−3 (constant vertically)

Crust Top bedrock ETOPO2 Moho (Crust1.0) defined in file: rho_c_out.xyz (constant vertically)

Mantle 1 Moho (Crust1.0) Max. depth: 20 km defined in file: rho_submoho_out.xyz (top)
defined in file: rho_20km_out.xyz (bottom)

Mantle 2 Max. depth: 20 km Max. depth: 36 km defined in file: rho_20km_out.xyz (top)
defined in file: rho_36km_out.xyz (bottom)

Mantle 3 Max. depth: 36 km Max. depth: 56 km defined in file: rho_36km_out.xyz (top)
defined in file: rho_56km_out.xyz (bottom)

Mantle 4 Max. depth: 56 km 80 km depth defined in file: rho_56km_out.xyz (top)
defined in file: rho_80km_out.xyz (bottom)

Constant thickness layers

Mantle 5 80 km 110 km defined in file: rho_80km_out.xyz (top)
defined in file: rho_110km_out.xyz (bottom)

Mantle 6 110 km 150 km defined in file: rho_110km_out.xyz (top)
defined in file: rho_150km_out.xyz (bottom)

Mantle 7 150 km 200 km defined in file: rho_150km_out.xyz (top)
defined in file: rho_200km_out.xyz (bottom)

Mantle 8 200 km 260 km defined in file: rho_200km_out.xyz (top)
defined in file: rho_260km_out.xyz (bottom)

Mantle 9 260 km 330 km defined in file: rho_260km_out.xyz (top)
defined in file: rho_330km_out.xyz (bottom)

Mantle 10 330 km 400 km defined in file: rho_330km_out.xyz (top)
defined in file: rho_400km_out.xyz (bottom)

Solid Earth, 13, 849–873, 2022 https://doi.org/10.5194/se-13-849-2022



B. C. Root et al.: Reconstructing WINTERC-G 871

Code and data availability. The software and model that are
used in the study are all open-source. They can be found
at the following locations. The GSH approach is avail-
able at https://doi.org/10.4121/16764238.v1 (Root, 2021). The
tesseroid approached used the open-source package Tesseroids,
which is available at https://doi.org/10.5281/zenodo.15800 (Uieda,
2015). The MATLAB codes for the integration of the tri-
angle grid are available in the Supplement. ASPECT is
an open-source software project and can be obtained at
https://doi.org/10.5281/ZENODO.3924604 (Bangerth et al., 2020).
Version 2.4.0-pre was used. Spectral code (STOPOC) that was used
in the development of WINTERC-G is attached to the Supplement.
The WINTERC-G model that was used in this comparison can be
found in Fullea et al. (2021). The Python parser to change the lay-
ered WINTERC-G model into a density cube for the ASPECT im-
plementation is added to the Supplement.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/se-13-849-2022-supplement.
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