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Abstract. We present a gravity inversion method that can
produce compact and sharp images to assist the modeling
of non-smooth geologic features. The proposed iterative in-
version approach makes use of L0-norm-stabilizing func-
tional, hard and physical parameter inequality constraints
and a depth-weighting function. The method incorporates an
auto-adaptive regularization technique, which automatically
determines a suitable regularization parameter and error-
weighting function that helps to improve both the stability
and convergence of the method. The auto-adaptive regular-
ization and error-weighting matrix are not dependent on the
known noise level. Because of that, the method yields reason-
able results even if the noise level of the data is not known
properly. The utilization of an effectively combined stopping
rule to terminate the inversion process is another improve-
ment that is introduced in this work. The capacity and the ef-
ficiency of the new inversion method were tested by inverting
randomly chosen synthetic and measured data. The synthetic
test models consist of multiple causative blocky bodies, with
different geometries and density distributions that are verti-
cally and horizontally distributed adjacent to each other. In-
version results of the synthetic data show that the developed
method can recover models that adequately match the real
geometry, location and densities of the synthetic causative
bodies. Furthermore, the testing of the improved approach
using published real gravity data confirmed the potential and
practicality of the method in producing compact and sharp
inverse images of the subsurface.

1 Introduction

Gravity measurements have been used in a wide range of
geophysical prospecting and investigations, such as in min-
eral explorations, engineering and environmental problems,
and archeological site investigations (Hinze et al., 2013,
p. 20). In general, gravity inversion is a process that is used
to determine the density, size, shape and location of com-
plex subsurface causative bodies from an observed grav-
ity anomaly by using different mathematical modeling tech-
niques. Thus, inversion of gravity data constitutes an impor-
tant step in the quantitative interpretation, since the recon-
struction of density contrast models markedly increases the
amount of information that can be extracted from the gravity
data.

However, a principal difficulty with the gravity data inver-
sion is the inherent non-uniqueness and instability that also
exist in any geophysical method (Al-Chalabi, 1971; Blakely,
1996, p. 216). In other words, for the given observed gravity
data, there are many equivalent density distributions that can
reproduce the same field data. The standard approach used to
select acceptable solutions that are geologically reasonable
is to use additional information about the problem by mak-
ing assumptions about the following aspects: (1) the model
parameters (existing information on the subsurface structure
from geological or other geophysical hindsight) and (2) the
data parameters (statistical properties of the inexact data,
e.g., Gaussian distribution of errors). Based on these assump-
tions, there are two approaches in gravity inversion. The first
approach fixes the density and varies the geometry. This ap-
proach is nonlinear in nature and has been studied by many
authors, for instance, Lelievre et al. (2015), Camacho et al.
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(2002) and Camacho et al. (2011). The second approach,
which is the one used in this work, fixes the geometry and
varies the density. This approach is linear in nature and has
been investigated by many researchers (Li and Oldenburg,
1998; Boulanger and Chouteau, 2001).

In an effort to introduce more qualitative prior informa-
tion, Last and Kubik (1983) in particular developed a method
called compact gravity inversion. Their strategy utilizes the
compactness stabilizer to minimize the area (in 2D) or vol-
ume (in 3D) occupied by the causative body, which is equiv-
alent to maximizing its compactness. Barbosa and Silva
(1994) generalized the compact inversion method by mak-
ing use of compactness along several axes using Tikhonov’s
regularization. In 2006, Silva and Barbosa further developed
the compact inversion method with the so-called “interac-
tive inversion”, which estimates the location and geometry of
several density anomalies. They simplified their old method
(Barbosa and Silva, 1994) to improve computational perfor-
mance. The generalized compact and interactive inversion
strongly need a priori information to yield an accurate es-
timation.

The compactness stabilizer (Last and Kubik, 1983), also
known as the minimum-support stabilizer (Portniaguine and
Zhdanov, 1999), has been borrowed and implemented by
other researchers in various geophysical inversion meth-
ods (Ajo-Franklin et al., 2007; Stocco et al., 2009; Fei
et al., 2018; Feng et al., 2020; Varfinezhad et al., 2020).
As was demonstrated by a number of researchers (Zhdanov
and Tolstaya, 2004; Rezaie et al., 2017; Feng et al., 2020;
Varfinezhad et al., 2022), this stabilizer is known to yield a
compact or focused geophysical model with sharp bound-
aries. Apart from the inversion methods which produce fo-
cused images mentioned above, sparse geophysical inver-
sion approaches derived from Lp-norm (0≤ p ≤ 1) stabi-
lization have been developed by many researchers – for in-
stance, the sparse seismic reflectivity inversion method (Li
et al., 2017), direct current resistivity data inversion algo-
rithm (Singh et al., 2018), magnetic data sparse inversion
method (Li et al., 2018; Fournier et al., 2020) and sparse
gravity data inversion technique (Vatankhah et al., 2017;
Peng and Liu, 2021), to mention only a few.

Some instability of the original compact gravity inversion
algorithm of Last and Kubik (1983) was reported by Lewi
(1997, p. 87) when the data were contaminated with noise.
Then Lewi (1997, p. 89) improved the original compact in-
version by introducing a new approach to the 3D compact
gravity inversion. The problem with the method of Lewi
(1997, p. 89) arises when dealing with a multiple-source
model, where the inversion algorithm tends to concentrate
densities towards the surface regardless of the true depth
of the causative bodies. In overcoming this drawback, Ge-
bre and Lewi (2022) improved the compact gravity inversion
method by incorporating a new depth-weighting function. In
this paper, we present a gravity inversion method that can
produce compact and sharp images to assist the modeling

of non-smooth, blocky geologic features with sharp bound-
aries. The proposed approach is based on the authors’ pre-
vious work (Gebre and Lewi, 2022), to which the reader
is referred for further details, with the following two main
differences and advancements. The first is the proposal and
incorporation of an auto-adaptive regularization and error-
weighting function. This has improved the fast convergence
of the method while keeping its stability. The second is the
implementation of combined stopping criteria to terminate
the iteration after an appropriate number of steps. The de-
veloped method uses an iteratively reweighted least-squares
(IRLS) minimization algorithm in combination with an L0-
norm stabilizer, depth-weighting and physical parameter in-
equality constraint to estimate a compact and sharp density
contrast model of the subsurface.

2 Methodology

2.1 The 2D model

Most fixed-geometry gravity inversion algorithms, including
the one presented here, employ rectangular prismatic ele-
ments to discretize the subsurface, owing to their flexibility
in constructing complex models (Silva and Barbosa, 2006;
Commer, 2011; Grandis and Dahrin, 2014). A 2D model is
obtained by discretization of the subsurface under the sur-
vey area into a large number of infinitely long, horizontal,
rectangular prisms, with the infinitely long dimension ori-
ented in the invariant y direction, with variations in densities
only assumed for the x and z directions. The 2D model is
illustrated in Fig. 1. The density contrasts are constant in-
side each cell only and can vary individually. Here, we have
used equal dimensions for the cells. However, the algorithm
is flexible to accommodate non-regular-sized cells. Gravity
stations indicated by

`
symbols are located at the centers of

the upper faces of the rectangular blocks in the top layer. This
discretization scheme of the subsurface allows us to calculate
the gravitational attraction caused by each rectangular block
separately.

2.2 Forward modeling

After discretization of the modeling space into a set of el-
ementary rectangular blocks, the total vertical-component
gravity response calculated at the ith observation point gi is
the sum of the gravity contributions generated by each of the
individual rectangular elements on all points belonging to the
observation grid, and it is given by

gi =

M∑
j=1

aijρj + ei i = 1,2,3. . .N, (1)

where ρj is the density of the j th prism, N denotes the num-
bers of observations, aij is the contribution of j th prism to
the gravity value on ith observation point and ei is the noise
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Figure 1. A 2D model of the subsurface under a gravity profile.
Gravity stations (Xi ) are located at the centers of the blocks, indi-
cated by the

`
symbols.

associated with ith data point. The kernel aij is the forward
operator that maps from the physical parameter space to the
data space. The exact mathematical expression of the kernel
used here is presented by Last and Kubik (1983), which is
adopted from Nagy (1966), to which the reader is referred
for more detailed mathematical development. In matrix no-
tation, Eq. (1) can be written as

g = Aρ+ e, (2)

where g is an N -dimensional vector containing the gravity
values, ρ is an M-dimensional model vector of densities, A
is the N ×M kernel matrix and e represents the noise vec-
tor at data points. Equation (2) constitutes the gravity for-
ward modeling, that is used to calculate the predicted gravity
anomalies (theoretical data) for a known subsurface density
contrast (model ρ).

2.3 Inverse modeling

Our objective in solving gravity inverse problems is, given
the observed gravity data (g), we seek a solution that gives
a density distribution ρ which predicts the observed data
with a certain noise level and, at the same time, satisfies
certain constraints. For the model presented here, the den-
sity vector ρ is related to the predicted gravimetric field g
by the linear expression given in Eq. (2). Like the major-
ity of practical inverse problems arising in geophysical mod-
eling, gravity inversion is an ill-posed problem. Moreover,
usually we have a lesser number of observed gravity data
than we do model parameters, which makes the system an
under-determined problem. A standard way to solve such ill-
posed and under-determined problems, according to regular-
ization theory (Tikhonov et al., 2013), is minimization of the
following objective function (8), which is the combination

of data fidelity or the misfit functional (8d) and stabilizing
functional (stabilizer) terms (S(ρ)):

8=8d+ `
2S(ρ). (3)

Here, the misfit functional is 8d = ||We(Aρ−gobs)||22, and
We is the error-weighting diagonal matrix. In Eq. (3), ` is a
regularization parameter that controls the trade-off between
the data fidelity and the stabilizing term. Choosing a small
value improves the data fit, but the recovered models have
highly oscillatory artificial structures (which is equivalent to
under-regularization). On the other hand, a large value of `
leads to a large misfit value between the observed and pre-
dicted data and a small norm of the model (over-regularizing
the solution). Thus, the choice of a suitable value for ` is very
important.

The choice of the stabilizing functional, in Eq. (3), de-
pends on the desired model features that are to be recov-
ered. There are several types of stabilizers that have been de-
veloped and implemented in the inversion of potential field
data, which can roughly be divided into two categories: (I)
smooth stabilizers, which use the L2-norm of the model pa-
rameters or the gradient of the model parameters (Li and Old-
enburg, 1998; Cella and Fedi, 2012; Paoletti et al., 2013);
(II) non-smooth stabilizers, which use the L1-norm or L0-
norm directly on the model parameters or on the gradient
of the model parameters (Bertete-Aguirre et al., 2002; Sun
and Li, 2014; Li et al., 2018; Utsugi, 2019). Inversion meth-
ods that utilize a smooth stabilizer produce models typically
characterized by smooth features and hence have difficul-
ties in recovering blocky structures or non-smooth distribu-
tions that have sharp boundaries or abrupt changes in physi-
cal properties (Farquharson, 2008). To overcome this prob-
lem, non-smooth stabilizers that help to produce compact
and sharp models have been applied successfully (Zhdanov,
2009; Meng et al., 2018). Since we are interested in develop-
ing a gravity inversion method that can produce compact and
sharp models, we use a non-smooth stabilizer through the
L0-norm on the model parameters, which will be discussed
in the next subsection. In general, with all mentioned stabi-
lizers, Eq. (3) needs to be solved by using an iterative mini-
mization algorithm. In this work, we use the IRLS algorithm
to estimate the solution, and it is described below.

Using the classical weighted L2-norm stabilizing func-
tional S(ρ)= ||Wc(ρ− ρF)||

2
2 in the objective function 8

(Eq. 3) and minimizing by applying the standard weighted–
damped least-squares optimization, the estimated density
distribution in matrix notation can be given by the following
(Menke, 1989, p. 55):

ρk+1
= ρkF+

[
[Wk

c ]
−1AT

(
A[Wk

c ]
−1AT

+ `2
[Wk

e ]
−1
)−1

gkr

]
, (4)

where the superscript k denotes that variable at kth itera-
tion, and Wk

c is a combined weighting matrix; ρkF is refer-
ence density vector, which is from prior information or is
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calculated at each iteration; gkr = g
obs
−AρkF represents the

residual data vector computed at each iteration. Computation
of the regularization parameter ` in Eq. (4) will be described
in Sect. 2.3.3. In this work, the combined weighting matrix
(Wk

c) is defined as a product of three different diagonal ma-
trices: L0-norm constraint matrix (Wk

L0
), depth weighting

(Wz) and hard constraint matrix (Wk
h).

Wk
c =Wk

L0
WzWk

h (5)

2.3.1 L0-norm constraint

The L0-norm is commonly defined as the number of non-
zero elements in a vector. Because there is no analytical for-
mula that meets the mathematical requirement to be regarded
as L0-norm, the approximate expression is usually used to
convert the L0-norm into an equivalent norm for the suitabil-
ity of computation. In the literature (Zhao et al., 2016; Li
and Yao, 2020) that discusses the inversion of potential field
data, different L0-norm approximate stabilization functions
have been developed and implemented to obtain focused im-
ages and sharp boundaries. Meng (2016) used a hyperbolic
tangent function to approximate the L0-norm and applied it
to the 3D inversion of gravity gradient tensor data. Meng
et al. (2018) proposed an exponential mathematical func-
tion to approximate the L0-norm for 3D gravity sparse inver-
sion. In this paper, the minimum-support functional, which is
also called the compactness constraint, originally proposed
by Last and Kubik (1983) and then further extended by Port-
niaguine and Zhdanov (1999) to include a reference model,
is selected and can be expressed as follows:

L0(ρ)=

M∑
j=1

(ρj − ρ
apr
j )2

(ρj − ρ
apr
j )2+ ε

. (6)

In our case, to avoid the requirement of a prior model, we set
ρ

apr
j = 0, and hence, Eq. (6) can be rewritten as follows (Sun

and Li, 2014):

L0(ρ)=

M∑
j=1

ρ2
j

ρ2
j + ε

, (7)

where ε is a focusing parameter. Application of L0(ρ) as
L0(ρ) as a stabilizer in the minimization process of the ob-
jective function (Eq. 3) leads to the following choice of an
L0-norm constraint matrix WL0 , which is given by (Last and
Kubik, 1983):

[WL0 ]j = ([ρj ]
2
+ ε)−1. (8)

Based on Eq. (8), the kth iteration diagonal elements of the
L0-norm constraint matrix (Wk

L0
) can be formulated as fol-

lows:

[Wk
L0
]
−1
jj = [ρ

k−1
j ]

2
+ ε. (9)

Figure 2. Comparison of the minimum-support stabilizing function
for different values of ε.

The focusing parameter ε is a very important parameter. Its
main purpose is to avoid singularities when ρj → 0. The pa-
rameter ε is a small number, and in general, we are interested
in the case where ε→ 0 because a small value leads to very
compact models. However, this may introduce instability. On
the other hand, if ε has a large value, the L0-norm compact-
ness constraint has no influence on the compactness of the
model, which means it results in a smooth solution. Figure 2
shows the comparison of the minimum-support stabilizing
functional for different values of ε to demonstrate the impact
of the choice of different values of ε further. From Fig. 2,
one can see that as ε becomes larger, the minimum-support
stabilizing function loses its property and behaves more like
the minimum-length L2-norm stabilizer, which results in un-
desirable smoothness in the model, though it improves the
stability. Therefore, it is essential to choose an optimal value
of ε.

In previous investigations, e.g., Last and Kubik (1983) and
Guillen and Menichetti (1984), the parameter ε was assigned
a value close to machine precision (≈ 10−11 to 10−15). Alter-
natively, Zhdanov and Tolstaya (2004) introduced a trade-off
curve method, similar to the L-curve technique, to select ε
by computing the model objective for the current model esti-
mate over a range of values for ε. However, as pointed out by
Ajo-Franklin et al. (2007), setting ε to values near machine
precision results in severe instability, as ρj → 0 and the ap-
proach of Zhdanov and Tolstaya (2004) often yield trade-off
curves with corners that are not well defined. Therefore, it
is better to fix ε at a reasonable value determined by expe-
rience, typically between 10−4 to 10−7 (Ajo-Franklin et al.,
2007). Accordingly, in the present work, based on several nu-
merical simulation tests, the value 10−6 is assigned just for
the inversion examples presented in the paper. Note that the
developed method is flexible regarding the use of different
values of ε.

2.3.2 Error weighting

According to the compact inversion method proposed by Last
and Kubik (1983), the kth-iteration error-weighting matrix
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Wk
e is defined as

[Wk
e]
−1
= diag

(
A[Wk

L0
]
−1AT

)
. (10)

Even though Wk
e , expressed by Eq. (10), is applied by many

authors (Guillen and Menichetti, 1984; Barbosa and Silva,
1994; Ghalehnoee et al., 2017; Gebre and Lewi, 2022), some
instability was reported by Lewi (1997, p. 87) in using Wk

e
in scenarios such as complicated geological geometry and
when the data are contaminated with noise. To overcome this
problem, Lewi (1997, p. 90) proposed a weighting matrix
that makes use of the following equation:

[Wk
e]
−1
=

[
[σ 2
ρ ]
k

1+ [σ 2
e ]
k

]
I, (11)

where I represents identity matrix, and σ 2
ρ and σ 2

e are model
and error variances, respectively, that are given by

[σ 2
e ]
k
=

∑N
i=1{gi −

∑M
j=1aij [ρ

k−1
j ]}

2

N − 1
, (12)

[σ 2
ρ ]
k
=

∑M
j=1[ρ

k−1
j ]

2

M − 1
. (13)

The term in square brackets in Eq. (11) can be considered as
the regularization parameter (Silva and Barbosa, 2006; Lewi,
1997, p. 90). Based on several numerical experiments done
in the present work, it was observed that this term can some-
times end up with a larger value, which may result in over-
regularization of the solution. For this reason, in the present
study, a new error-weighting matrix Wk

ne is introduced, and
it is given as:

[Wk
ne]
−1
= diag

(
A

[
Wz(

[σ 2
ρ ]
k

1+ [σ 2
e ]
k
)Wk

h

]
AT

)
. (14)

Let us represent the terms in square brackets by Wk
n as fol-

lows:

Wk
n =Wz

(
[σ 2
ρ ]
k

1+ [σ 2
e ]
k

)
Wk

h, (15)

where Wz and Wk
h are diagonal depth and hard constraint

matrices respectively; these will be described in the next sub-
sections. Then the error-weighting matrix in Eq. (14), the one
introduced and implemented here, becomes

[Wk
ne]
−1
= diag

(
AWk

nAT
)
. (16)

2.3.3 Auto-adaptive regularization parameter
estimation

Choosing a suitable value for the regularization parameter is
a crucial part of the inversion process. The precise value of

the regularization parameter depends on the noise level as-
sociated with the observed data. Thus, the higher value of
` refers to the higher noise level of the data points. Several
methods have been proposed to choose the appropriate value
of regularization parameter and are reviewed in the literature
(Farquharson and Oldenburg, 2004; Vatankhah et al., 2014)
and standard texts, for example, Vogel (2002, pp. 97–109)
and Aster et al. (2018, p. 57). In particular, depending on the
noise level, a constant value of `, throughout the inversion,
has been chosen by many authors (Silva and Barbosa, 2006;
Ghalehnoee et al., 2017). In other works (for example, Zh-
danov (2009) and Rezaie et al. (2017)), the parameter ` has
been iteratively updated in each iteration.

As pointed out in previous works (Farquharson and Old-
enburg, 2004; Gholami and Aghamiry, 2017), instead of us-
ing a constant value of `, dynamic re-adjustment through-
out the iterative scheme might be a superior approach. Tak-
ing this into account, in the present work, ` is updated in
each iterative step. In our implementation, to select an opti-
mal regularization parameter at each iteration, we proposed
an auto-adaptive regularization method. This method leads to
an automatic update of the regularization parameter at each
and every iteration. The basic principle, including its pro-
cedure in relation to the formally known adaptive regulariza-
tion approach, which was proposed by Zhdanov (2002, p. 55)
and has been implemented by many authors (Zhdanov, 2009;
Rezaie et al., 2017), is as follows. In the adaptive regulariza-
tion approach, the initial value of the regularization param-
eter `1 is updated at each iteration step by Zhdanov (2002,
p. 55):

`k = `1qk, (17)

where q, as described by Zhdanov (2002, p. 55), is the damp-
ing factor which decreases from iteration to iteration. Its
initial value is empirically determined, having a value be-
tween 0 and 1. It is obvious that the trial-and-error selection
of the value for q requires computational work . The pre-
sented auto-adaptive regularization method overcomes this
problem, and the iterative values `k are determined by the
following formula:

`k = `k−1
[
|gobs
−Aρ|k−1

max

|gobs−Aρ|kmax

]
, (18)

where the term in the square bracket is an adjusting factor
that is automatically determined at each iterative step, and
|gobs
−Aρ|max is the maximum absolute value of the residual

data elements. In the auto-adaptive regularization method,
choosing a suitable initial value of (`o) is essential. Based on
a number of synthetic and real data simulations done in this
work, we recommend the following in choosing a reasonable
value of `o. Firstly, the initial value of ` should be within the
range 0< `o ≤ 1. Secondly, the precise value of `o depends
on the noise level related to the observed data. When the
probable or expected noise level of the data is higher, a larger

https://doi.org/10.5194/se-14-101-2023 Solid Earth, 14, 101–117, 2023



106 M. G. Gebre and E. Lewi: Gravity inversion method using L0-norm constraint

value `o is a reasonable choice to avoid unwanted and false
anomalies due to noise. In contrast, when the probable or ex-
pected noise level is less, a small value of `o should be cho-
sen. Once an appropriate initial value `o is given as an input,
Eq. (18) is used to determine `k for subsequent iterations.
The advantage of the auto-adaptive regularization scheme is
its capability to automatically determine a suitable regular-
ization parameter in the course of the optimization process,
depending on the automatically determined adjusting factor.

2.3.4 Physical parameter constraint

To produce a physically meaningful model from a gravity
inverse solution, the usage of lower- and upper-bound con-
straints on the recovered density contrast is beneficial (Silva
et al., 2001; Grandis and Dahrin, 2014). Lower and upper
bounds can be obtained from a priori information such as
geological investigations in conjunction with published den-
sity values of rocks, well logging and/or laboratory tests.
Many procedures such as the gradient projection approach
(Wang and Ma, 2007; Lelièvre et al., 2009), transform func-
tion approach (Pilkington, 2008) and logarithmic barrier ap-
proach (Li and Oldenburg, 2003) have been applied in differ-
ent inversion schemes to implement this constraint. However,
with regard to theL0-norm-stabilizer-based gravity inversion
methods, an effective method is the direct utilization of lower
and upper density constraints (Meng et al., 2018). Hence, in
this work, the direct density bound inequality constraint is
used – that is, at each iteration, the density contrast of each
rectangular block is bounded by the minimum and maximum
density constraint function given by

[ρk]j =


[ρmax]j if [ρk]j > [ρmax]j
[ρk]j if [ρmin]j < [ρ

k
]j < [ρmax]j

[ρmin]j if [ρk]j < [ρmin]j

. (19)

By using this function, if kth iteration ρj of any block ex-
ceeds one of its bounds, then it will be fixed at the violated
bound.

In each iteration step, the procedure to compute the hard
constraint matrix Wk

h (Boulanger and Chouteau, 2001) and
the reference density vector ρkF is determined as follows. The
diagonal elements of Wk

h are fixed at ε or 1.0. When a pri-
ori geological and geophysical information is able to provide
the initial value of the density contrast of the j th specific
cells, then these values are assigned to the corresponding
[ρkF]j . Simultaneously, the corresponding diagonal elements
of [Wk

h]jj are set to be ε. During the inversion process, if
the j th elements of estimated density values fall out of the
inequality constraint limits defined by ρmin and ρmax, then
[ρkF]j will be fixed at the violated bound density itself, and
[Wk

h]jj will be assigned to be ε. On the other hand, if the ele-
ments of the estimated density did not exceed its bounds (i.e.,
they lie between the limits), [Wk

h]jj and [ρkF]j are assigned
to be 1.0 and 0.0 respectively.

Using Wk
h, any blocks with a density known from a pri-

ori information or exceeding the density constraint limit will
be automatically frozen by the algorithm in the next iteration
by having a very small weight assigned to it, and ρkF is used
to remove the gravity effects of those cells that have crossed
the inequality constraint limit from the observed gravity data.
That is applied to compute the reduced-gravity data vector
gkr = g

obs
−AρkF in Eq. (4) of the inversion algorithm. In

other words, at each iterative step, the inversion of subse-
quent iterations will be performed using the reduced-gravity
data vector.

2.3.5 Depth weighting

It is well known that gravity data, like any potential field data,
have no inherent depth resolution. The model structures re-
constructed by the inversion process tend to concentrate near
the surface regardless of the true depth of the causative bod-
ies (Li and Oldenburg, 1996). This happens because the in-
verse solution of model construction is a linear combination
of kernels, whose amplitudes rapidly decay with depth. The
problem can be overcome by introducing a depth-weighting
matrix to counteract the natural decay of kernels with depth
(Li and Oldenburg, 1998). Depth weighting is designed to
ensure that all cells have equal likelihood of accommodating
the sources, not just those at shallow levels that are most sen-
sitive to the observed data. Depth weighting is used and its
effect is investigated by different authors (Pilkington, 2008;
Commer, 2011). Based on Gebre and Lewi (2022), the re-
cently proposed depth-weighting function is given as fol-
lows:

wzj = (aZj + co)
−τ , (20)

where Zj is the mean depth of the j th cell, and a, co and
τ are adjustable parameters. The values of the three ad-
justable parameters are computed by optimizing wz(z) to
match with the actual gravity kernel values utilizing nonlin-
ear least-squares minimization (Virtanen et al., 2020). Ac-
cordingly, for all inversions in this work, the depth-weighting
matrix similar to the one used by Gebre and Lewi (2022) is
employed (Eq. 21):

[Wz]jj = diag(wzj ), (21)

where Wz is diagonal M ×M depth-weighting matrix.

2.3.6 Stopping criteria

It is clear that if the iterations are stopped too early, then a
reasonable solution of the inverse problem may not be ob-
tained. On the other hand, too many iterations may waste
computer time without increasing the overall solution qual-
ities. Thus, an important aspect of any iterative inversion
method is to decide when the iterations should be termi-
nated. A number of stopping criteria have been proposed
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and employed to terminate iterative inversion algorithms
(Borges et al., 2015; Levin and Meltzer, 2017). Commonly
used stopping criteria are based on a norm of the residual
vector (i.e., the norm of the difference between estimated
and observed data). For instance, a noise level, i.e., χ2

=

||Wd(g
obs
−Aρ)||22, where a diagonal data-weighting matrix

Wd, whose ith element is the inverse of the standard devia-
tion of the noise at each data point, is used by Boulanger and
Chouteau (2001) and by Vatankhah et al. (2017). Other crite-
ria for stopping the gravity inversion procedure are based on
simple misfit or the root-mean-square error (RMSE) between
the observed data and predicted data produced by the recov-
ered model (see, for example, Rezaie and Moazam, 2017).
The expressions used to estimate these criteria are the fol-
lowing:

misfit=

(∑N
i=1(g

obs
i −g

cal
i )

2∑N
i=1(g

obs
i )2

) 1
2

, (22)

RMSE=
(
∑N
i=1(g

obs
i −g

cal
i )

2)
1
2

N
, (23)

Ekinci (2008) also introduced another possible criterion,
namely the parameter variation function (smy), which is de-
fined as follows:

smy=

(
M∑
j=1
(ρkj − ρ

k−1
j )2

) 1
2

. (24)

The most widely used approach is to quit the iterative process
when one of the above criteria are below a given tolerance
(the level of observational error). However, in practical ap-
plications, a precise value for such tolerance is rarely known;
rather, only some possibly vague idea of the desired quality
of the numerical approximation is at hand. Moreover, it has
been pointed out by Rao et al. (2018) that stopping iteration
based solely on the norm of the residual is neither safe nor
a robust solution. The non-uniqueness and instability of the
gravity inverse problem further complicates the usage of only
one of the aforementioned stopping criteria. To overcome
these issues, a combination of the misfit and smy has been
utilized in this paper. Therefore, the iterative procedure con-
tinues until one of the following stopping criteria is met: (I)
the maximum number of iterations (kmax) given by the user is
reached, or (II) the difference between two consecutive itera-
tion values of smy and misfit have reached the target values.
That means that for the second criterion, both the conditions
|smyk−1

− smyk| ≤ τ and |misfitk−1
−misfitk| ≤ µ must be

satisfied at the same time. In all demonstrations considered
in this work, after testing different values, the parameter τ is
assigned to

√
2M , and µ is assigned to 0.005, where M is

again the total number of model parameters. The effective-
ness of the proposed termination criteria will be illustrated
by using synthetic tests.

2.4 Computational procedure

The solution of the linear system of equations in Eq. (2) will
be carried iteratively using the information about the misfit
and density from successive iteration. The input parameters
for the inversion procedure are as follows: (1) kernel matrix
(A) and discretized subsurface model (mesh) and its initial
approximation reference density model ρF if it exists based
on a priori information; (2) observed gravity anomaly (g) at
measurement points (x); (3) maximum number of iterations
(kmax); (4) lower ρmin and upper ρmax density bounds and
initial `o value. In summary, the steps taken to carry out the
inversion process consist of the followings:

1. For k = 0, if there is no a priori information, WL0 , Wc,
Wn and Wh are identity matrices, ρF = 0. Wz and Wne
are computed through Eqs. (21) and (16) respectively;
after this, the first-iteration model parameters solution
is obtained by Eq. (4).

2. The elements of Wh and ρF are updated as explained
in the preceding section, then WL0 is calculated using
Eq. (9), and then Wc is calculated using Eq. (5).

3. The values of σρ and σe are computed using Eqs. (13)
and (12) respectively. Then Wn is calculated using
Eq. (15).

4. To remove the effect of those blocks that have crossed
the maximum target density, evaluate the reduced data
gkr = g

obs
−AρkF. Then compute the current ` with

Eq. (18) and Wne with Eq. (16).

5. The inversion is carried out through Eq. (4).

6. Application of inequality constraints on density are car-
ried out as discussed in the preceding section.

7. Now a forward-modeling procedure will be carried out
using Eq. (2) to compute the gravity anomaly gcal from
the estimated model in the previous iteration.

8. Data misfit (Eq. 22) and smy (Eq. 24) are computed us-
ing gcal from step 7 and the obtained model parameters
from the previous and current iteration.

9. Testing is carried out to confirm if the stopping criteria
are fulfilled. If the termination criteria are satisfied, the
iteration terminates, and obtained results are stored and
plotted. Otherwise, using the current estimated density
model, move to the next iteration k by going to the sec-
ond step and continue the iterative procedure until the
stopping criteria are fulfilled.

3 Synthetic model test

To evaluate the functionality and efficiency of the method,
the developed procedure was tested on several synthetic
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model examples. The examples presented here are randomly
chosen to demonstrate the following: (I) the applicability of
the proposed auto-adaptive regularization technique (Eq. 18)
and error-weighting function (Eq. 16); (II) the performance
of the method in producing compact and sharp images of the
causative bodies; (III) the effectiveness of the combined stop-
ping criterion. The forward and the inverse problem were
carried out using the procedure described in the preceding
sections. In the inversion of the synthetic examples, the same
subsurface discretization as the one used in generating the
synthetic data (forward modeling) is used. All the inversion
tests are performed on a desktop computer (11th Gen In-
tel(R) Core(TM) i7-11700, 2.50 GHz processor). For the first
and second synthetic examples presented in this work, (I) the
model region was discretized into 60× 15 rectangular cells,
and the dimensions of each cell were taken as 10× 10 m in
the x and y directions respectively; (II) the synthetic grav-
ity data were computed at 60 data points that are centered
in each cell at the top side of the model to produce data at
a 10 m sample interval; (III) the computed gravity data are
contaminated with Gaussian noise that has a standard devia-
tion that amounts to 4 % of the magnitude at each data point
with zero mean (Farquharson, 2008; Rezaie et al., 2017).

The first synthetic data inversion has been done for the
model presented in Fig. 3a. For this synthetic model, the
causative bodies are two rectangular structures elongated dif-
ferently in the horizontal and vertical directions and located
at different depths. The causative bodies have the same den-
sity contrast of 1000 kg m−3. The density of the causative
bodies are given relative to the zero density of uniform back-
ground. Figure 3a (upper panel) shows noise-free (solid line)
and noise-contaminated (star dots) gravity data. Separate in-
version runs for three different `o values (0.2, 0.3 and 0.4)
were performed with the developed inversion method. Note
that, for subsequent iterations, the proposed auto-adaptive
regularization technique (Eq. 18) is used to compute ` for
each case. At the beginning of the inversion, the iterations
are initialized with ρF = 0 and Wh =Wc =Wn =WL0 = I.
The lower-limit density contrasts of all cells is zero (ρmin =

0), and the upper bound ρmax = 1000 kg m−3.
The results of the inversion using the developed method

for three different `o values are shown in Figs. 3b and 4. The
corresponding data fit between the predicted (solid line) and
the actual contaminated (stars) gravity data is also shown.
Comparing the inversion results with the original synthetic
model in Fig. 3a, the inversion has sufficiently recovered
the true models. The depth, geometry and density distribu-
tions of the synthetic causative bodies were recovered ade-
quately. This can confirm the applicability of the proposed
auto-adaptive regularization technique (Eq. 18) and error-
weighting function (Eq. 16). Notice that the results also in-
dicate the robustness and stability of the developed inver-
sion method for different `o values. The average computation
time to finish the inversion is approximately 16.3 s.

The second synthetic model is more complicated and con-
sists of two causative bodies placed at various depths. The
bodies have different sizes, shapes and density contrasts.
The first causative body is a vertical rectangular block, with
density contrast 2000 kg m−3 and placed at 40 m depth, and
the second body is a dipping dike, with density contrast
3000 kg m−3 at 20 m depth. The synthetic model is shown in
the lower part of Fig. 5a, and the generated noise-corrupted
and noise free-gravity data are shown on the upper part.

Using the generated synthetic data, the inversion was ini-
tiated by assigning an initial zero density to each cell. We
set initial `o = 0.3. The density contrast limits are bounded
between the lower bound ρmin = 0 and the upper bound
ρmax = 3000 kg m−3. Even though a maximum iteration of
20 was set, the misfit and smy between two consecutive itera-
tions gradually fell below the threshold set after the 14th iter-
ation. The total computation time was approximately 15.73 s.

In Fig. 5b, the resulting model from the inversion of the
second synthetic model (Fig. 5a) using the proposed method
is presented. As can be seen in Fig. 5b (upper panel), the
modeled gravity data (solid line) fit adequately with the syn-
thetic data. The result, presented in Fig. 5b (lower panel),
indicates an acceptable reconstruction of the synthetic multi-
sources and multi-shape bodies that are located at different
depths. The true shape, location and density of the causative
bodies are recovered adequately. Like the first example, the
reproduced images of the localized multiple sources are com-
pact and sharp (Fig. 5b, lower panel).

For the third and fourth synthetic examples, (I) the subsur-
face model was discretized into 100× 20 rectangular cells;
each cell has a size of 50 m in x and z directions; (II) the syn-
thetic gravity data were computed on 100 data points with a
sample spacing of 50 m. The third synthetic model includes
two dipping dikes in opposite directions. The causative 2D
bodies have different sizes and the same density contrast that
amounts to 1000 kg m−3 in a homogeneous-background zero
density. The top part of the shallower dipping dike lies at a
depth of 200 m, and that of the deeper dike lies at a depth
of 250 m. The computed gravity data were contaminated by
uncorrelated Gaussian noise whose standard deviation was
equal to 4 % of the difference between the maximum and the
minimum anomaly and zero mean. The synthetic model and
the corresponding data are shown in Fig. 6 at the lower and
upper panels respectively.

The inversion process was commenced by setting the den-
sities of all cells to zero. The initial value of `o was set to
0.4. The bounding density ranges were set to a minimum
value ρmin = 0 and maximum value ρmax = 1000 kg m−3.
The maximum number of iterations was set to 20. Here, the
inversion converged after the 13th iteration, and the total
computation time was approximately 66.49 s. The resulting
model and the inverted data using the proposed method are
shown in Fig. 7b. For the sake of comparison, keeping all
inversion parameters the same, the synthetic data were also
inverted with the classical L2-norm-regularized inversion ap-
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Figure 3. The first synthetic model and the result of the inversion. (a) The lower panel represents the 2D synthetic model, which constitutes
two isolated rectangular bodies located at various depths, and the top panel shows the gravity anomaly due to these two subsurface rectangular
bodies. (b) The lower panel represents the subsurface as a result of the proposed inversion method using `o = 0.3, and the top panel shows
the synthetic data together with the data derived from the model.

Figure 4. Inversion results, using different `o values, for the first synthetic model given in Fig. 3a.

proach, and the obtained result is shown in Fig. 7a. As can
be seen from the lower panel of Fig. 7b, unlike the model in
Fig. 7a, the developed method was able to produce a compact
and sharp model successfully. The other concern, which can
be seen from the result in Fig. 7a, is that the target density
contrast values are underestimated in the case of the conven-
tionalL2-norm inversion. In contrast, the geometry, locations
and densities of both anomalous structures were adequately
recovered with the presented inversion method (see Fig. 7b).

The fourth synthetic model consists of two different
rectangular, anomalous bodies (Fig. 8a, lower panel). The
anomalous structures have different dimensions and are

buried at different depths. The top of the first rectangular
block is placed at a depth of 200 m, and its density contrast is
−1000 kg m−3, while the top of the second block is placed at
a depth of 250 m and has a density contrast of 1000 kg m−3.
Different density contrast, size and depth of adjacent struc-
tures have been considered to show the ability of the pre-
sented inversion method in reconstructing true parameters for
these models. In this synthetic example, the computed data
are contaminated by Gaussian noise with a standard devia-
tion of 3 % of the difference between the maximum and the
minimum anomaly.
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Figure 5. The second example synthetic model and the corresponding inversion result. (a) Synthetic model consisting of a dipping dike
and vertical rectangular block and the corresponding gravity data. (b) The density model obtained by inverting the gravity data using the
developed method. The predicted data as a result of inversion process are shown on the top panels (solid line).

Figure 6. The third synthetic model that comprises two dikes at various depths, with the density contrast that amounts to 1000 kg m−3 and
the corresponding gravity data.

For the current example, the inversion process was ini-
tialized by setting the initial value of `o = 0.5. The lower
bound for the density constraint ρmin =−1000 kg m−3, and
the upper bound ρmin = 1000 kg m−3. Similar to the previ-
ous examples, though the maximum number of iterations
was set to be 20, the iterative step terminated when the pro-
posed combined criterion was satisfied after 11 iterations.
The approximate running time required to finish the inver-
sion was 55.64 s. Figure 8b lower panel shows the recovered
density contrast model. The corresponding fits between syn-
thetic (stars) and predicted data (line) are shown in the up-
per panel of the same figure. We can see that the recovered

rectangular bodies are compact and have sharp boundaries.
The obtained results also indicate that the depth and density
contrast of the anomalous rectangular bodies have been de-
termined sufficiently.

Here, the effectiveness and the advantage of the proposed
combined stopping criterion are illustrated by comparing it
with another commonly used stopping condition. For this
reason, the inversion process was performed again with the
developed inversion method using only the misfit function
(|misfitk−1

−misfitk|) as a stopping condition. Note that, for
comparison purposes, all the other inversion parameters are
set to be the same, except for the stopping criterion. The re-
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Figure 7. Inversion results of the third synthetic example in Fig. 6 using (a) the conventional minimum norm (L2-norm) smooth stabilizer
and the corresponding data fit, and (b) the presented method.

Figure 8. The fourth synthetic model example and the corresponding inversion result. (a) Synthetic model consisting of two rectangular
bodies at various depths with different density contrasts and the corresponding noise-free and noise-contaminated gravity data. (b) The lower
panel shows the recovered density contrast model obtained by inverting the gravity data using the developed method, while the upper one
shows the associated fits between the synthetic data that are taken from (a) and the predicted response.

sulting recovered density contrast models and the data fit are
presented in Fig. 9. The corresponding values of the misfit
and smy as a function of iteration number are also shown
in Fig. 10a. For the sake of comparison, the misfit and smy
when using the proposed combined stopping criterion for the
same data set are also presented in Fig. 10b. The stopping
condition |misfitk−1

−misfitk| ≤ µ was reached after 5 itera-
tions, as shown in the curve of Fig. 10a, before the true den-

sity distribution had been recovered fully. In other words, the
estimated models are not satisfactory because densities lower
than the target density are observed around the edges of the
anomalous bodies (Fig. 9). This indicates that, unlike the re-
sult presented in Fig. 8b, where the proposed combined stop-
ping condition is used, quitting the iterative process only with
|misfitk−1

−misfitk| ≤ µ criterion produces a premature solu-
tion – that is, before the maximum compactness is achieved.
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Figure 9. Inversion result obtained using only the commonly used criterion (|misfitk−1
−misfitk |) and the corresponding data fit (upper

panels) for the synthetic example in Fig. 8a. The obtained density model shows that the compact and sharp model was not approximately
achieved due to the termination before the iterative procedure had reached convergence.

Figure 10. The progression of misfit and smy in the course of the iteration during the inversion of the fourth example’s synthetic data (a)
using the proposed combined stopping condition and (b) using only |misfitk−1

−misfitk | ≤ µ.

A number of other numerical experiments we carried out
showed that there are situations where either misfitk| or
|misfitk−1

−misfitk| fall below the given threshold values, at
earlier iterations, before the true density is fully recovered.
Thus, it is hard to take only one criterion as a termination
condition. As stated in Sect. 2.3.6, it has been mentioned
that the same has also be pointed out in a number of pre-
vious works (Rao et al., 2018). On the other hand, in the case
of the proposed criterion (that is, when both the conditions
|smyk−1

− smyk| ≤ τ and |misfitk−1
−misfitk| ≤ µ are satis-

fied at the same time), the inversion process yields an accept-
able model. This clearly illustrates the advantage of using the

proposed stopping criterion and its effectiveness in quitting
the iterative scheme after the optimal number of iterations.

To further illustrate the effectiveness of the proposed com-
bined criterion, the inversion process is allowed to continue
to the 16th iteration, and the model, as a result of this, is
presented in Fig. 11a. The progressions of the misfit and
smy in the course of the iterative procedure are also given
in Fig. 11b. As can be seen from the result (Fig. 11b), the
solution obtained at subsequent iterations after the 11th it-
eration, where the iteration is terminated with the proposed
stopping condition, remains virtually unaltered. This can also
be observed from the misfit and smy variation curves shown
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Figure 11. Late-iteration-termination (at 16th iteration) inversion result and the corresponding misfit and smy variations, with the iteration
number for the fourth example in Fig. 8. (a) The obtained recovered density model (lower panel) and the corresponding data fit (upper panel).
(b) Progression of misfit (top panel) and smy (lower panel) in the course of the iterative procedure.

in Fig. 11b, such that after the 11th iteration the misfit and
smy values remain literally unchanged. Moreover, the results
also indicate the appropriateness of the suggested thresh-
old values µ and τ used in the proposed stopping crite-
rion. The other thing one can observe from the results in
Fig. 11 is the stability of the developed inversion method.
This can also illustrate the effectiveness of the newly pro-
posed auto-adaptive regularization technique (Eq. 18) and
error-weighting function (Eq. 16).

In general, the presented method was tested with noise-
contaminated data that are generated from different geome-
tries, locations, sizes and density contrasts of causative bod-
ies, and it has successfully recovered all models. Moreover,
all the reconstructed images of the presented synthetic mod-
els are compact and sharp. Numerous synthetic data inver-
sions were performed to analyze the impact of the den-
sity contrast bounds. The obtained results, which are not
presented here, suggest that the values of density contrast
bounds have a significant effect on the results, and hence,
to recover a feasible model, a good knowledge of the density
bounds is vital. This has also been pointed out by number of
authors, for example, Vatankhah et al. (2017), Li et al. (2018)
and Utsugi (2019) in the case of inversion methods that use
non-smooth stabilizers (L1-norm or L0-norm). Provided that
the lower and upper density contrast bounds are chosen prop-
erly, this inversion technique produces acceptable solutions.
Therefore, as was demonstrated using synthetic examples,
the proposed method has effectively and efficiently recov-
ered the synthetic models. Generally, the tests performed on
different geometry synthetic models showed that the method

gives acceptable results for localized multi-sources anoma-
lies at different depths with sharp features.

4 Real data test

To test the method in the real world, where the gravity data
are contaminated with noise, the improved algorithm is im-
plemented on gravity data acquired on different published
geologic settings. The first one is taken from Green (1975)
by carefully digitizing the residual gravity data. As it was
given in Green (1975), the data were measured over the Gui-
chon Creek batholith in south-central British Columbia. For
the details about the measurements and geology, the reader
is referred to Ager et al. (1973) and Ager (1972). The resid-
ual gravity profile is digitized at regular intervals of 0.5 km
to produce a total of 64 data points, as shown in Fig. 12 (star
marks).

For the inversion, the source volume beneath the anomaly
was divided into 64× 22 square lattices, with the dimensions
of each cell being 0.5 km in both the x and z directions. Based
on the a priori information from Ager (1972), density values
were constrained between the limits ρmin =−150 kg m−3

and ρmax = 0.001 kg m−3. We start the inversion with a ho-
mogeneous initial model in which every block has the same
zero density and an initial `o value of 0.48. The inversion
was terminated after the ninth iteration because the stopping
criteria were fulfilled. The resulting model is presented in
Fig. 12b. For comparison, the results obtained by Ager et al.
(1973) and by Green (1975) are also included in Fig. 12b.
In addition, using the same inversion parameters, we have
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Figure 12. The observed gravity anomaly over Guichon Creek batholith in south-central British Columbia (after Green, 1975) and its
inversion results. Digitized data (star marks) with calculated data (solid line) are shown on the top panels of each subfigure. The corresponding
recovered density contrast models are shown on the bottom. For comparison, the results obtained by Ager et al. (1973), which were obtained
from drilling, and from Green (1975) are also presented. (a) Using the conventional minimum norm (L2-norm) smooth stabilizer. (b) Using
the presented method.

performed L2-norm-regularized inversion, and the obtained
result is shown in Fig. 12a. The shape, real extent of the
anomaly and depth to bottom from the developed method are
very close to the true geological feature (Ager et al., 1973),
which was obtained from drilling. That means the implemen-
tation of the presented method resulted in a better solution
compared to Green (1975) and the conventional L2-norm in-
version. Note that this reasonable result is obtained by using
only the density contrast limits as a priori information.

The second test on measured gravity data is carried out
using the published data by Last and Kubik (1983) over the
Woodlawn massive sulfide ore body, New South Wales, Aus-
tralia. The residual anomaly of the area, consisting of 61 data
measurements, sampled every 5 m, is digitized from Last and
Kubik (1983). The details about the data measurement and
the geology of the area are discussed in Whiteley (1981). The
model subsurface was divided into 61 by 30 blocks with a di-
mension of 5 m in both the x and z directions. Inverse mod-
eling was performed with bounding constraints ρmin =−600
and ρmax = 1000 kg m−3. The initial given value for `o was
0.6. The final solution was obtained after the 11th iteration.
The reconstructed model, including the final model of Last
and Kubik (1983), is shown in Fig. 13. The cross-section
of the ore body verified by drilling (Whiteley, 1981) is also
shown in the figure.

The recovered model is approximately coincident with the
shape, depth of burial and density of the known ore body. Ar-
eas of misfits in the current and previous works are believed
to be caused by the termination of the original data at both

ends before having reached the background level. Thus, this
can be additional evidence that the presented method can be
successfully applied to real data.

5 Conclusions

We have presented an alternative gravity inversion method
that can produce compact and sharp images by using the
L0-norm-stabilizing functional that helps to model geologi-
cal features with non-smooth, blocky geologic bodies. Phys-
ical parameter inequality constraints and depth weighting are
integrated into the procedure. The method also incorporates
an auto-adaptive regularization technique, which automati-
cally determines a suitable regularization parameter at every
iteration, and an error-weighting function that helps to im-
prove both the stability and convergence of the method. One
of the strongest sides of the proposed auto-adaptive regular-
ization and error-weighting matrix is that they are not de-
pendent on a priori knowledge of the noise level. Because
of that, the method can yield reasonable results even when
the noise level of the data is not known properly. We im-
plemented a combined stopping criteria and illustrated its
effectiveness to terminate the iterative inversion process af-
ter an optimal number of steps. To illustrate the efficiency
and the capacity of the proposed procedure, numerous syn-
thetic tests were done. From these, four synthetic examples
were presented. According to the results from these synthetic
examples, the method can be applied for multi-source lo-
calized bodies located at different depths and having differ-
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Figure 13. An observed gravity anomaly over the Woodlawn ore body, New South Wales (after Last and Kubik, 1983), and its inversion
result. The digitized data (star marks) are shown together with calculated data (solid line) on the top panel. The corresponding recovered
density contrast model after the 11th iteration is shown on the bottom panel, and the ore body proved by drilling is shown with the solid line.
The recovered body density contrast is represented by the color scale bar.

ent geometries with sharp features. Furthermore, the method
proved to be efficient in resolving causative bodies both verti-
cally and laterally and produced compact and sharp images.
The obtained results also indicate that the method behaves
well with different noise levels embedded in the data and still
retains its stability. This can confirm the robustness and sta-
bility of the developed inversion method for different noise
levels. The method was also tested on measured gravity data.
We obtained geologically acceptable models, and the results
showed that our approach is effective and reliable. From
a computational point of view, the method is efficient and
can be easily run on a personal computer in just a few sec-
onds. In conclusion, the developed method is advantageous
in that it is stable, efficient and resolves sharp subsurface fu-
tures with acceptable resolving capacity. In geophysical ex-
ploration, gravity data are more often used to image complex
3D structures of the subsurface; hence further development
of the method to 3D is crucial. Accordingly, future work will
deal with the extension of the presented method to a 3D grav-
ity inversion algorithm.
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