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Abstract. Understanding where normal faults are located is
critical for an accurate assessment of seismic hazard; the suc-
cessful exploration for, and production of, natural (includ-
ing low-carbon) resources; and the safe subsurface storage
of CO;. Our current knowledge of normal fault systems is
largely derived from seismic reflection data imaging, intra-
continental rifts and continental margins. However, exploita-
tion of these data sets is limited by interpretation biases,
data coverage and resolution, restricting our understanding
of fault systems. Applying supervised deep learning to one
of the largest offshore 3-D seismic reflection data sets from
the northern North Sea allows us to image the complexity of
the rift-related fault system. The derived fault score volume
allows us to extract almost 8000 individual normal faults of
different geometries, which together form an intricate net-
work characterised by a multitude of splays, junctions and
intersections. Combining tools from deep learning, computer
vision and network analysis allows us to map and analyse the
fault system in great detail and in a fraction of the time re-
quired by conventional seismic interpretation methods. As
such, this study shows how we can efficiently identify and

analyse fault systems in increasingly large 3-D seismic data
sets.

1 Introduction

Understanding the geometry and growth of normal fault sys-
tems is critical when assessing seismic hazard, when iden-
tifying suitable sites for subsurface CO, storage and when
exploring for natural resources (traditional and low-carbon).
For example, whereas probabilistic seismic hazard analy-
ses based on seismic event catalogues are extremely useful
when trying to forecast earthquake likelihood and location,
high-resolution fault mapping, preferably in 3-D, can help
us constrain the slip tendency of faults, where seismic cat-
alogues are discontinuous and/or incomplete (e.g. Morris et
al., 1996; Moeck et al., 2009; Yukutake et al., 2015). More-
over, faults can facilitate (or impede) fluid and gas migration
to the Earth’s surface; thus determining their geometry and
connectivity, as well as their hydraulic properties, is key for
assessing their role in the long-term subsurface storage of
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CO; (Bissell et al., 2011; Kampman et al., 2014). In both of
these examples, we need robust predictions of 3-D fault ge-
ometries over large areas and across a wide range of scales
(tens of metres to hundreds of kilometres).

Accurately mapping fault systems in 2-D and 3-D seis-
mic reflection data typically requires expertise and time
(e.g. Bond, 2015). While we can map fault systems in great
detail over small areas using 3-D seismic reflection data
(e.g. Lohr et al., 2008; Wrona et al., 2017; Claringbould et
al., 2020), we lack an understanding of the character of 3-
D fault populations at the scale of entire rift systems, as
regional studies are often limited to only sparse 2-D seis-
mic sections (e.g. Clerc et al., 2015; Fazlikhani et al., 2017,
Phillips et al., 2019). Three-dimensional numerical models
are now capable of simulating fault networks at the rift scale;
however, there are few observational data sets of the same
scale to test the predictions of these models and, therefore,
help refine them (e.g. Naliboff et al., 2020; Pan et al., 2021).

Supervised deep learning allows us to map faults in seis-
mic reflection data (e.g. Wu et al., 2019; Mosser et al., 2020;
Wrona et al., 2021b), but up until now, many studies have
laid the foundation by focusing on detecting faults rather than
studying their geometries. In this study, by applying super-
vised deep learning to newly acquired broadband 3-D seis-
mic reflection data, imaging much of the northern North Sea
rift (161 km wide in E-W, 266 km long area in N-S, 0-20 km
deep), we map the fault network associated with a conti-
nental rift basin at an unprecedented level of detail. Using
manually labelled data (< 0.1 % of data volume), we train a
deep convolutional neural network (U-Net) to predict faults
in our data set. The predicted score ranges from O (no fault)
to 1 (fault). Based on this score, which is available across
the entire 3-D seismic volume, we employ a second work-
flow to extract the normal fault system as a network (a set of
nodes and edges), allowing us to investigate the architecture
and growth of this extremely complex system consisting of
thousands of intersecting faults.

2 Geological setting

The study area is located in the northern North Sea (Fig. 1),
where continental crust consists of 10-30km thick crys-
talline basement overlain by as much as 12 km of sedimen-
tary strata deposited during, after and possibly even before
periods of rifting in the late Permian—Early Triassic (rift
phase 1) and Middle Jurassic—Early Cretaceous (rift phase 2)
phases (e.g. Whipp et al., 2014; Bell et al., 2014; Maystrenko
et al., 2017). The extension direction of these two phases has
long been debated. Whereas most studies agree that the late
Permian—Early Triassic rifting was driven by E-W extension
(Ferseth et al., 1997; Torsvik et al., 1997), Middle Jurassic—
Early Cretaceous rifting has been associated with both E-W
(e.g. Bartholomew et al., 1993; Brun and Tron, 1993) and
NW-SE extension (e.g. Ferseth, 1996; Doré et al., 1997;
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Ferseth et al., 1997) (Fig. 1b). This debate is further com-
plicated by the fact that some of the largest normal faults on
the Horda Platform developed during rift phase 1 but were
subsequently reactivated during rift phase 2 (e.g. Whipp et
al., 2014; Bell et al., 2014). The crystalline basement un-
derlying the sedimentary strata formed by terrane accretion
during the Sveconorwegian (1140-900 Ma) and Caledonian
(460-400 Ma) orogenies (Bingen et al., 2008). Several stud-
ies argue that this structural template, in particular the duc-
tile shear zones, controlled the location, strike and overall
pattern of rift-related faulting in the overlying sedimentary
successions being reactivated as normal faults by limiting
the along-strike propagation of faults (e.g. Fazlikhani et al.,
2017; Phillips et al., 2019; Osagiede et al., 2020; Wiest et al.,
2020).

3 Data and methods
3.1 3-D seismic reflection data

In this study, we use one of the largest offshore 3-D seis-
mic data sets ever acquired, which images a large part of the
northern North Sea rift across an area of 35410 km? and with
excellent depth imaging down to 22km (i.e. the middle to
lower crust) (Figs. 1, 2a and 3). The data set was acquired us-
ing eight streamers that were up to 8 km long and were towed
~ 40 m below the water’s surface. The BroadSeis technology
used for recording covers a wide range of frequencies (2.5—
155 Hz), providing high-resolution depth imaging. The data
were binned at 12.5 x 18.75 m, with a vertical sample rate of
4 ms. The data were 3-D true amplitude prestack depth mi-
grated. The seismic volume was zero-phase-processed with
SEG (Society of Exploration Geophysicists) normal polar-
ity; i.e. a positive reflection (white) corresponds to an acous-
tic impedance (density x velocity) increase with depth. More
details on data acquisition and pre-processing steps are pro-
vided by Wrona et al. (2019, 2021b).

3.2 Deep learning

Deep learning describes a set of algorithms and models
which learn to perform a specific task (e.g. fault interpre-
tation) on a given data set without requiring explicit feature
engineering (e.g. the calculation and calibration of seismic
attributes, such as coherence or variance). Deep learning al-
lows the derivation of a fault score volume that highlights
normal faults within the entire 3-D seismic volume. This ap-
proach requires a large number of examples of faults and un-
faulted strata to be labelled in the training seismic data. We
extract 80 000 such examples (2-D squares of 128 x 128 pix-
els) from 22 interpreted seismic sections oriented perpendic-
ularly to the N-S-trending rift (Figs. la and 2). Note that
these seismic sections only constitute < 0.1 % of the entire
3-D seismic volume. Next, we split these examples into three
groups: one set for training (80 %), one set for validation
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(a) Structural map of the northern North Sea
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Figure 1. (a) Structural overview map of the northern North Sea basin system (from Tillmans et al., 2021, after Faerseth, 1996). The bright
blue rectangle marks the outline of the seismic survey in this study. ESB is the East Shetland Basin, B—S is the Brent—Statfjord fault, G-V is
the Gullfaks—Visund fault, MS is the Malgy slope and HP is the Horda Platform. (b) The base rift surface (base Permo-Triassic rifting) time—
structure map in the northern North Sea rift (from Fazlikhani et al., 2017) and the geology of southwestern Norway, showing the general
onshore and offshore structural configuration in the study area. The bold black lines highlight major rift-related normal faults displacing
the base rift surface where all units older than upper Permian are considered basement. The black lines in the background show some of
the 2-D seismic reflection surveys used by Fazlikhani et al. (2017). NSDZ, Nordfjord—Sogn Detachment Zone; BASZ, Bergen Arc Shear
Zone; WGR, Western Gneiss Region; @C, @ygarden Complex (gneiss); @FS, @ygarden Fault System; HSZ, KSZ and SSZ: Hardangerfjord,
Karmgy and Stavanger shear zones respectively. (¢) Regional interpretation of the structure of the northern North Sea after Faerseth (1996).

(10 %) and one set for testing (10 %). We use the first of these
groups to train a deep convolutional neural network (U-Net)
designed to perform image segmentation tasks (Ronneberger
et al., 2015). Using the validation set, we track the accuracy
and loss of the model during training and stop once the val-
idation loss does not decrease further, resulting in a final bi-
nary accuracy of 0.83 and an F1 score of 0.76 (see Wrona
et al., 2021b). Finally, we apply the model to the entire 3-
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D seismic volume to derive a fault score volume (Figs. 3
and 4), which is an attribute that ranges from 0 (no fault)
to 1 (fault). All details of the workflow and the code are pro-
vided by Wrona et al. (2021a).

3.3 Automated fault network extraction and analysis

Extracting a fault network from the 3-D volume allows us
to perform a comprehensive geometric analysis of the fault
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Figure 2. (a) Example of a seismic section across the northern North Sea. Amplitudes are scaled for machine learning. (b) Example of fault
interpretation of the section used to train a deep convolutional neural network for fault prediction.

system using our fault analysis toolbox — fatbox (Wrona et
al., 2022). The basic idea is to describe a fault system in 2-D
as a network (or graph), i.e. sets of nodes and edges (Fig. 5).
Each node marks a location along the fault and each edge
connects two nodes. All nodes connected to one another by
edges are labelled as a (connected) component.

Our fault extraction workflow consists of the following
eight steps: (1) extracting a horizon, (2) Gaussian blur fil-
tering, (3) thresholding, (4) cleaning, (5) skeletonisation,
(6) connecting components, (7) adding nodes to the graph,
(8) adding edges to the graph and (9) splitting junctions.
While applying it to our North Sea target region, we first
attempt to capture as many faults as possible by extract-
ing the fault score along a horizon 500 m below Base Cre-
taceous Unconformity (BCU) (Fig. 1c). Here, we observe
a large number of faults, which were either formed in the
second rift phase or formed in the first rift phase and re-
activated in the second rift phase (Figs. 4 and 6a). Second,
we apply a Gaussian blur filter to increase lateral fault con-
tinuity (Fig. 6b), which allows us to extract long geologi-
cally plausible faults. Using a small filter (o = 2) results in
local smoothing without connecting distant faults with one
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another. Third, we apply a threshold of 0.35 to separate the
faults from the background in the fault score (Fig. 6¢). This
threshold is a tradeoff, which balances capturing as many
faults as possible (lower values) with identifying clearly re-
solvable faults (high values). Fourth, we further restrict this
threshold and essentially filter these points by removing ar-
eas smaller than 25 pixels (Fig. 6d). Fifth, we collapse these
faults to 1-pixel-wide lines using skeletonisation (Guo and
Hall, 1992) (Fig. 6e). Sixth, we label adjacent pixels in the
image as connected components (Wu et al., 2009) (Fig. 6f).
Each component consists of pixels which are connected to
each other. These components represent the faults in our net-
work. At this point, we can build our graph using these con-
nected components of the image (Fig. 6f). Each pixel that
belongs to a component becomes a node, whereas edges are
created between neighbouring nodes (Fig. 6g—i). This pro-
cess results in a number of faults with splays, junctions or
intersections being grouped into one connected component
(Fig. 7a). To correct this, we split up junctions (nodes with
three edges) based on the similarity of the strike; i.e. the
aligned branches remain connected (Fig. 7b and c). This fi-
nal network is compared with the base late Jurassic horizon
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Figure 3. Examples of seismic sections extracted from fault score volume of the 3-D seismic data set. Note that these sections were not part
of the training data but are actually 6.25km away from the closest interpreted seismic section (see Fig. 1a). To show the correspondence

between seismic data and fault score, we needed to define a cutoff value (0.5) below which the fault score becomes transparent and the
seismic data become visible.
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Figure 4. Surface capturing tectonic faults extracted from fault score volume. The surface was extracted 500 m below the Base Cretaceous
Unconformity, where we observe a large number of faults, which were either formed or reactivated in the second rift phase. The white
rectangle shows the area used for validation (Fig. 8) and the red rectangle indicates the area where we demonstrate our fault network
extraction workflow (Fig. 6). Note that this figure shows a whole range of values of the fault score [0, 1].

mapped by Tillmans et al. (2021) (Fig. 8). Additionally, we
perform the exact same workflow on 10 slices through the
fault score volume (1-10km depth) to capture 3-D fault ge-
ometries with depths (Fig. 9).

After extracting the fault system, we calculate a series of
typical fault properties by using our fault analysis toolbox
— fatbox (Wrona et al., 2022) (Fig. 10). First, we calculate
the fault length as the sum of the edge lengths of each com-
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ponent (Fig. 10b). Second, we calculate the strike along the
fault from neighbouring nodes (Fig. 10c). If we were to cal-
culate the overall fault strike, we would overlook along-strike
variations in the strike. If we were to calculate the strike as
the orientation of each edge, we would only obtain values
of 0,45 or 90°, because the nodes are closely spaced. Instead,
we calculate the strike from the third degree of the neighbour-
ing nodes (i.e. neighbours of neighbours of neighbours). This

https://doi.org/10.5194/se-14-1181-2023
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selection ensures a robust, high-resolution fault strike calcu-
lation. Combining the fault length and strike, we can generate
a length-weighted rose diagram (Fig. 10c). Finally, we calcu-
late the fault density as the fault length per area (Fig. 10d).

3.4 Comparison to conventional seismic interpretation

We can ask ourselves, “how good are our results compared
to a state-of-the-art fault interpretation from the same data
set using conventional fault mapping techniques?” (Fig. 8).
Tillmans et al. (2021) map the base late Jurassic (base of
syn-rift sediments associated with rift phase 2) on the east-
ern flank of the North Viking Graben (see Figs. 1a and 4 for
location), using a combination of manual picking and auto-
tracking on the same seismic data set. This horizon is cali-
brated with 40 exploration wells, which provide direct con-
straints on the depth of the surface. Tillmans et al. (2021)
highlight the fault system by computing the variance attribute
(Chopra and Marfurt, 2007) along the horizon (Fig. 7a). On
top of the horizon, we plot the fault network that was mapped
from the fault score extracted 500 m below the easily map-
pable Base Cretaceous Unconformity (BCU) (Fig. 8b). This
visual comparison shows that, while we are missing a few
faults in the southwest of the map, we are able to identify
and accurately represent most of the faults identified by Till-
mans et al. (2021). The missing faults are either overlooked
by our model (i.e. false negatives) or result from the differ-
ence between the horizons that we compare: Base Cretaceous
Unconformity (our study) versus base late Jurassic (Tillmans
etal., 2021).

4 Observations

Our fault extraction allows us to map a complex network con-
sisting of 7983 individual faults across an area approximately
161 km wide and 266 km long, covering 35410km? of the
northern North Sea rift (Fig. 7c).

4.1 Faultlength

Faults vary in length by 3 orders of magnitude — from 50 m
to 75.9 km — with some of the longest faults (> 30km) ex-
tending from the Stord Basin and Bjgrgvin Arch in the south
to the Uer and Lomre terraces in the north (Fig. 10b). In the
cross section, these faults have up to several kilometres of
displacement and bound rotated half-graben (e.g. Whipp et
al., 2014; Bell et al., 2014) (Fig. 3b and c). While we observe
some long (up to 20 km) faults in the Viking graben and Tam-
pen Spur, most faults (> 90 %) are closely spaced (< 5km)
and relatively short (< 10 km long) (Fig. 10b).

4.2 Fault strikes

In map view, we observe a complex network consisting of a
large number of variably trending faults that display a broad

https://doi.org/10.5194/se-14-1181-2023

Component 2
Component 1

® Node \

— Edge

Figure 5. Schematic illustration of fault network (or graph) with
nodes, edges and components. Each node marks a location along
the fault. Each edge connects two nodes and each (connected) com-
ponent indicates all nodes connected to one another by edges.

range of intersection styles (e.g. oblique and perpendicu-
lar). These faults show a large range of strikes, varying from
NW-SE to NE-SW (Figs. 9 and 10c). The length-weighted
rose plot shows that most faults strike NW-SE (light blue)
or NNE-SSW (light orange), with a large number of faults
showing intervening strike directions (Fig. 10c). This gen-
eral divide occurs between predominantly NW-SE-striking
faults along the eastern part of the rift and NE-SW-striking
faults in the central and northwestern part of the rift. This
divide becomes most evident when comparing the faults on
the Lomre Terrace (NE-SW) with the faults on the adjacent
Bjgrgvin Arch (NW=SE), at least at the structural level of the
Base Cretaceous Unconformity (Fig. 10c).

4.3 Fault density

In map view, we observe large variations in fault density
500 below the BCU (Fig. 10d). While dense networks of in-
tersecting faults result in high-density areas (e.g. the Lomre
Terrace and Bjgrgvin Arch), we observe low densities in
the Viking and Sogn grabens, where faults occur at greater
depths (e.g. Fig. 9¢).

4.4 Vertical continuity

The faults extracted at different depths are variable in their
vertical continuity (i.e. fault height; Fig. 8). Whereas some
faults, in particular in the Stord Basin, the Tampen Spur and
the Magnus Basin, show parallel fault traces from 1 to 10 km
depth (Fig. 9a), we also observe a large number of faults that
occur only at shallower (1-5 km) or greater depths (6—10km)
(Fig. 9b and c). Upon closer inspection, we observe that the
faults, which occur continuously from 1-10 km depth (e.g. in
the eastern Stord Basin and the Bjgrgvin Arch), are typically
large-displacement normal faults with tens of kilometres of
spacing (e.g. Fig. 3b and c), whereas the other faults, which
only occur from 6-10km depth (e.g. the northwestern Stord
Basin), are usually shorter and more closely spaced (a few
kilometres) (e.g. Fig. 9c).

Solid Earth, 14, 1181-1195, 2023
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splitting (see Fig. 6).

5 Discussion

5.1 Advantages of deep-learning-based fault
interpretation

When comparing our results to conventional interpretation
methods, we can ask ourselves, “what value does deep learn-
ing add?” Here, we highlight the advantages of the su-
pervised deep-learning-based fault interpretation workflow,
which we present in this study. First, we can predict faults
in a seismic section in a fraction of the time (5 s) required
by expert interpreters (~ 10 min). These differences accu-
mulate, in particular, when interpreting such a large data

Solid Earth, 14, 1181-1195, 2023

set with > 22000 inlines. A conventional fault interpretation
of such a large data set can take several months, whereas
a trained convolutional neural network can identify faults
across the entire volume within a day on a single GPU
(GeForce GTX 1080 ti). Note that this comparison does not
include the time required to label the training data (~ 2d),
train the initial model (~ 4h), and fine-tune and select the
final model (days—months). Second, after identifying faults
in the data, they also need to be mapped before we can per-
form the relevant fault analysis. Here, we map the fault net-
work using a series of tools from computer vision and net-
work analyses compiled in our fault analysis toolbox — fatbox

https://doi.org/10.5194/se-14-1181-2023
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Figure 8. Comparison of panel (a) base late Jurassic time—structure map interpreted by Tillmans et al. (2021) and panel (b) automatically
extracted fault network 500 m below Base Cretaceous Unconformity, using the same seismic data set. Faults are distinguished by colour.
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(Wrona et al., 2022) (Figs. 6 and 7). Our automated workflow
extracts the fault network in less than 5 min compared with
the several weeks to months that would have been required to
manually map the faults in this large data set. Furthermore,
once extracted, we can immediately conduct a number of typ-
ical fault analyses using predefined functions implemented in
fatbox (Wrona et al., 2022) (e.g. Fig. 10).

Third, conventional fault interpretations are often binary
(fault vs. no fault), but deep learning delivers a score rang-
ing from O (no fault) to 1 (fault). Although this score is
not a true fault probability (see discussion by Mosser and
Zabihi Naeini, 2022), the fault score nevertheless correlates
with the visibility of faults (i.e. the faults which are well re-
solved by the data are associated with higher fault scores).
This correlation allows users to qualitatively select the faults
that they want to analyse by using a threshold (as done
herein). This selection is particularly useful for assessing
the sealing potential of certain layers for CO, storage and
predicting fluid flow during geothermal exploration. Fourth,
seismic interpreters typically focus on the largest faults,
whereas our model performs the same prediction across the
entire data set, irrespective of the size of the faults encoun-
tered. Fifth, given the same data, labels, model and training,
our model and results are fully reproducible, which is not the
case for conventional fault interpretations, where the inter-
preter has to make a myriad of decisions in the process of
mapping a fault network.
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5.2 Complex fault system in the northern North Sea

Our study shows how to reveal the complex geometry of
normal fault systems in 3-D seismic reflection data, using
a combination of deep learning and automated fault extrac-
tion. We were able to map an intricate network consisting
of almost 8000 individual faults that cover an area approxi-
mately 161 km wide and 266 km long (e.g. Figs. 4, 6 and 10).
This fault network shows large variations in the fault length,
strike and density, with extremely complex splays, junctions
and intersections between these faults (Figs. 7-11). As such,
our work goes far beyond the typical seismic interpretations
in previous case studies, which covered only a fraction of
the rift (e.g. Duffy et al., 2015; Deng et al., 2017; Tillmans
et al., 2021), or regional studies that mapped < 100 of the
largest faults, using primarily sparse, 2-D seismic sections
(e.g. Fig. 1b; Fazlikhani et al., 2017; Phillips et al., 2019).

5.3 Uncertainties during fault mapping

While there are several advantages to our approach, it is
worth remembering the uncertainties associated with map-
ping faults in seismic reflection data. First, seismic reflection
data can only image faults with displacement above the seis-
mic resolution (and level of noise) of the data set. The seis-
mic resolution of our data set decreases from 15 m (vertical)
and 30 m (lateral) around 3 km depth down to 180 m (verti-
cal) around 20km depth (see Wrona et al., 2019; Tillmans
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Figure 10. (a) Structural elements of the northern North Sea Rift (NPD, 2022). (b) Fault lengths (500 m below BCU) on top of structural
elements. (c) Fault strikes (500 m below BCU) on top of structural elements with length-weighted rose diagram. (d) Fault density on top of
structural elements. Note that fault density was measured as fault length per square area. These squares have an edge length of 3.6km, a

value chosen for visual purposes.
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Figure 11. 3-D perspective of the northern North Sea rift showing the Base Cretaceous Unconformity overlain with faults (black) extracted
from 3-D seismic reflection data with deep learning and a vertical exaggeration of 5.

et al., 2021). Second, the labels we use to train our model
are derived from 22 interpreted seismic sections, which, like
any seismic interpretation, contain the expertise and biases
of the interpreter (e.g. Bond et al., 2007; Bond, 2015). Third,
our current model has not been trained and is, thus, unable to
distinguish between different fault types (normal, reverse and
strike-slip). We labelled all major faults in the training data,
which are predominantly normal faults (probably > 99 %).
A handful of these normal faults may show evidence of mi-
nor inversion, but they all remain in net extension; i.e. the
hanging wall has moved down relative to the footwall. While
strike-slip faults are notoriously difficult to resolve in seis-
mic reflection data, as they show little to no vertical off-
set of reflectors, the normal and reverse faults show differ-
ing offsets, which neural networks could learn to recognise
by correlating reflectors across the fault. Machine learning
models could, thus, be able to distinguish fault types based
on their seismic signature in the future. Fourth, the convolu-
tional neural network that we trained achieves an accuracy
of 83 %, implying that 17 % of the data are misclassified
(see Wrona et al., 2021b). A closer inspection reveals that
36 % are false positives (i.e. the faults that were overlooked)
and 5 % are false negatives (i.e. the faults that were misinter-
preted) (see Wrona et al., 2021b). Despite these limitations,
the robustness of our approach is evident when considering
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along-strike fault continuity across a large number of differ-
ent seismic lines (Figs. 10 and 11).

5.4 Future research on automated fault mapping

Based on our work, we can identify three related areas for
future research. First, conventional neural networks predict a
fault score from 0 to 1, which seems to correspond to the vis-
ibility of the fault in the data set. Bayesian neural networks,
on the other hand, allow the prediction of true fault proba-
bilities (e.g. Mosser et al., 2020). Predicting fault probabili-
ties in regional seismic data sets could significantly acceler-
ate the screening for, and risk assessment of, potential CO;
storage sites (see Wrona and Pan, 2021). Second, we cur-
rently map faults on seismic in- and crosslines, which may
contain redundant information regarding the faults. In the fu-
ture, it may be advantageous to maximise the diversity of
the training set (i.e. different fault types or levels of noise),
using uncertain estimates and active learning. Third, in ad-
dition to predicting where faults will occur, we can explore
the prediction of other fault properties, such as displacement,
fault zone permeability or even the time when they were ac-
tive. This would allow us to significantly study the spatial
and temporal evolution of fault systems in high resolution at
a regional scale. Fourth, while our fault extraction workflow
currently focuses on mapping fault networks in a series of
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2-D slices or horizons, we really need freely available meth-
ods to generate 3-D fault surfaces, which allow for complex
fault splays, junctions and intersections, as they could be ap-
plied to large 3-D seismic data sets but also to analogue and
numerical models.

6 Conclusions

This study shows that the combination of deep learning and
network analysis applied to 3-D seismic reflection data al-
lows us to map almost 8000 normal faults across the entire
northern North Sea rift, for the first time. These faults form
an intricate network with complex relationships (e.g. splays,
junctions and intersections) including large variations in the
fault length (50 m to 75.9 km) and strikes (NW-SE to NE-
SW). As such, this work goes far beyond previous seismic
studies by providing high-resolution fault maps at a regional
scale in a fraction of the time required by conventional inter-
pretation methods.
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