
Solid Earth, 14, 197–212, 2023
https://doi.org/10.5194/se-14-197-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

A corrected finite-difference scheme for the flexure
equation with abrupt changes in coefficient
David Hindle1 and Olivier Besson2

1Department of Structural Geology and Geodynamics, Georg-August-Universität Göttingen,
Goldschmidtstr. 3, 37077 Göttingen, Germany
2Institut de mathématiques, Université de Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland

Correspondence: David Hindle (dhindle@gwdg.de)

Received: 29 March 2021 – Discussion started: 9 April 2021
Revised: 9 December 2022 – Accepted: 6 January 2023 – Published: 1 March 2023

Abstract. The fourth-order differential equation describing
elastic flexure of the lithosphere is one of the cornerstones of
geodynamics that is key to understanding topography, grav-
ity, glacial isostatic rebound, foreland basin evolution, and a
host of other phenomena. Despite being fully formulated in
the 1940s, a number of significant issues concerning the ba-
sic equation have remained overlooked to this day. We first
explain the different fundamental forms the equation can take
and their difference in meaning and solution procedures. We
then show how numerical solutions to flexure problems as
they are currently formulated are in general potentially un-
reliable in an unpredictable manner for cases in which the
coefficient of rigidity varies in space due to variations of
the elastic thickness parameter. This is due to fundamen-
tal issues related to the numerical discretisation scheme em-
ployed. We demonstrate an alternative discretisation that is
stable and accurate across the broadest conceivable range of
conditions and variations of elastic thickness, and we show
how such a scheme can simulate conditions up to and includ-
ing a completely broken lithosphere more usually modelled
as an end-loaded, single, continuous plate. Importantly, our
scheme will allow breaks in plate interiors, allowing, for in-
stance, the creation of separate blocks of lithosphere which
can also share the support of loads. The scheme we use has
been known for many years but remains rarely applied or
discussed. We show that it is generally the most suitable
finite-difference discretisation of fourth-order, elliptic equa-
tions of the kind describing many phenomena in elasticity,
including the problem of bending of elastic beams. We com-
pare the earlier discretisation scheme to the new one in one-
dimensional form and also give the two-dimensional discreti-

sation based on the new scheme. We also describe a gen-
eral issue concerning the numerical stability of any second-
order finite-difference discretisation of a fourth-order differ-
ential equation like that describing flexure wherein contrast-
ing magnitudes of coefficients of different summed terms
lead to round-off problems, which in turn destroy matrix pos-
itivity. We explain the use of 128 bit floating-point storage for
variables to mitigate this issue.

1 Introduction

The elastic bending of the lithosphere under crustal loads
is a fundamental part of modern geodynamics describing a
swathe of processes including glacial isostatic adjustment
(Walcott, 1972), foreland basin formation in compression
(Beaumont, 1981), and the flexural response of the litho-
sphere to extension (Egan, 1992). The mathematical the-
ory as applied to vertical loads deflecting the Earth’s litho-
sphere was originally proposed in the pre-plate tectonic era
by Gunn (1943a, b, 1947), who was interested in the wider
question of compensation of loads by isostatic balance. The
original theory of elastic beam bending for engineering from
which it was derived is attributed to Leonhard Euler and
Daniel Bernoulli in the 1750s. Gunn (1943b) wrote his se-
ries of papers at the culmination of a many-decades-long
debate between geodesists and geologists concerning how
loads on the crust and lithosphere were compensated for by
displacement of mantle material (see Barrell, 1914; Gilbert,
1889; Fisher, 1895). Geodesists had long favoured the idea
that loads were all locally compensated for (Airy or Pratt
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Figure 1. The force balance across a segment of a plate,1x, and the
derivation of the fourth-order differential equation describing elastic
flexure. The segment is supported from below by mantle restoring
forces (k1x) and loaded from above by a distributed load q1x.
Shear stress V is equal to the first derivative of the moment M ′,
which in turn is equal to the coefficient D multiplied by the second
derivative of deflection of the plate u′′. Over the small distance,
between x− 0.51x and x+ 0.51x, the flexural bending equation
given above arises.

isostasy). Gunn (1943b) was the first person to fully realise
and formulate the necessary equations describing how a load
can be compensated for over a much greater distance than
its own width due to the elastic strength of the lithosphere.
Before him, it was clear that several authors (Barrell, 1914;
Gilbert, 1890) had very similar insights but were never able
to quantitatively demonstrate them (see Watts, 2001, for a
summary of the history of isostasy).

Gunn’s work transformed our understanding of litho-
spheric mechanics, establishing how loads on the crust were
balanced by elastic bending of the lithosphere as well as sug-
gesting how this compensation would affect measured grav-
ity anomalies. Subsequently, in the early post-plate tectonic
era, Walcott (1970a, b, c) published a series of manuscripts
on the question of the elastic thickness of the Earth’s litho-
sphere. Elastic thickness (h) is the key parameter in the flex-
ural coefficient D (the rigidity), which itself is related to the
bending moment of the lithosphere (Fig. 1). A high value
of D means less bending of the lithosphere under loading.
Following Walcott (1970a), estimating the value of elas-
tic thickness h, especially for continental lithosphere, be-
came one of the most strongly debated topics in geodynam-
ics (e.g. McKenzie and Fairhead, 1997; Watts, 2001; Au-
det and Mareschal, 2004; Kaban et al., 2018; Watts, 1992;
Pérez-Gussinyé and Watts, 2005; Burov and Watts, 2006). At
present, estimated values of h for the continents vary from 0
to 100 km, presumably due to a combination of factors re-
lated to thermal structure and tectonic history of a particular
region of the lithosphere.

The fundamental equation describing the elastic bending
of the lithosphere is our concern in this paper. Its original
form presented to geologists by Gunn (1943b) remains un-
changed. It describes the balance of forces (bending mo-

ment, vertical shearing forces, any added loads, and restoring
forces from the buoyancy of mantle below) in an elastic plate
resting on a fluid (inviscid) mantle, a so-called Winkler foun-
dation (Fig. 1). Moment and shearing forces are converted to
functions of the deflection of the plate (u(x) in this paper),
resulting in a fourth-order differential equation in u given as

Du′′′′+Pu′′− ku= q, (1)

where u(x) is the vertical deflection of an originally hori-

zontal surface of the plate due to loading, u′ =
du
dx

and so

on for higher derivatives; q(x) is a term describing the ap-
plied load; P is a plate-wide stress, which is actually a uni-
form, compressive load in the plane of section of a plate;
k = (ρM− ρF) · g is a constant allowing compensation of
plate deflection by displacement of underlying “fluid” sub-

strate (mantle); and D =
Eh3

12(1− ν2)
is the flexural rigidity

in which E is the elastic modulus, h the elastic thickness
of the lithosphere, and ν Poisson’s ratio. For many solutions
given in the literature D is assumed to be constant, meaning
h does not vary along a plate’s length. Should it be the case
that h(x) is variable, however, then a modified general form
of the equation above is

(Du′′)′′+Pu′′− ku= q. (2)

Equations (1) and (2) can be reformulated in the following
ways. We begin by rewriting them explicitly to show the
different components of the coefficients, while also setting
P = 0.

Du′′′′− (ρM− ρF)gu= ρLgq(x) (3)

We note that the load term (ρM− ρF)gu corresponds to two
body forces: ρMgu is the restoring force (per unit length and
width with units of Newtons) due to displacement of man-
tle by deflection of the plate, and ρFgu is a force exerted by
material assumed to infill any surface deflections of the plate
below an arbitrary reference level, but it is also clear that
without modification, any solution of this problem equally
assumes that infill forces are removed wherever there is a
positive deflection of the plate (Fig. 2). Such infill can range
from nothing (empty basins) to water (oceanic cases, for in-
stance) to sedimentary product (foreland basins) or a mixture
of any of the above in various combinations. We also note
that the load term ρLgq(x) defines a separate load of poten-
tially different density to that assumed for the infill.

Two versions of the equation can be developed from here.
The first one (Fig. 3a), which has rarely been explicitly dis-
cussed or used in geodynamics, involves separating the in-
fill load term from the mantle restoring force (see also Ap-
pendix A).

Du′′′′− ρMgu= ρLgq(x)− ρFgu (4)
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Figure 2. Flexure equation and its physical significance. “Restoring” forces (constant multiplied by the plate vertical deflection, u(x)) have
differing effects according to whether u(x) is positive when there is, by default, erosion of the plate to level zero; when negative, there may
be infill of basins created by flexural subsidence. Mantle forces are always present and damp subsidence due to surface loading but equally
damp uplift when flexure bends things above zero reference level.

Figure 3. The two types of flexure model derived from Eq. (2).
(a) The “fixed topography” situation in which subsidence matches
the prescribed topographic profile (associated with load density).
Load thickness is then equal to topography Topo(x) minus subsi-
dence u(x). (b) The fixed load case, equivalent to arbitrary forces.
Any “load” may be applied, generating subsidence. Calculating in-
fill of basins generated, should there be any, requires an iterative
procedure since the amount of accommodation space must first be
calculated explicitly and subsequently filled, hence creating more
accommodation space.

With the load term now entirely on the right-hand side of the
equation, we see it consists of two parts with the infill part,
ρFgu (right hand side), dependent on the deflection u(x) for
which we are solving. However, a fixed load ρLgq(x) is also
being applied, which is itself an arbitrary function of x. The
physical interpretation of this depends on how this fixed load
term is regarded. In most cases, it is probably assumed to
be some kind of imposed crustal load, such as a thrust sheet
or ice sheet, or, in oceanic cases, a seamount or volcanic is-
land. Under these circumstances, it is equally clear that infill

material cannot occupy space wherein the fixed load is ap-
plied unless the special circumstance applies that the top of
the fixed load at some point lies below the original reference
level, in which case a reduced accommodation space is avail-
able for infill material defined as the local sum u(x)+q(x). In
general, implementing a solution to this form of the problem
requires numerical methods, since arbitrary piecewise vari-
ations of load density may be required, and a solution will
need to be iterative due to the dependence of the infill load
term on u(x). It is also important to state that the fixed load
term ρFgq(x) is actually an applied force scaled for a par-
ticular load thickness. Hence, arbitrary “forces” can equally
well be applied to the lithosphere, whatever their origin is
assumed to be.

In general, it can be seen by examination that ifD = 0 (no
flexural bending occurs and hence no marginal basin forms
beyond the end of the load, so there is no basin infill load) the
solution will correspond to “Airy isostasy” (i.e. an “iceberg”
model) with

u(x)=

{
−
ρL

ρM
q(x) q(x) 6= 0

0 q(x)= 0
. (5)

An alternative development of the equation for solution is by
division through by (ρM− ρF)g, giving

Du′′′′

(ρM− ρF)g
− u=

ρL

(ρM− ρF)
q(x). (6)

Here we see immediately that in contrast to Eq. (4), a di-
rect, non-iterative solution is possible. This occurs because
the physical meaning of the equation in this form is quite
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Figure 4. Grid and finite-difference stencil for the solution of the
flexure equation with variable elastic thickness, showing the grid
elements involved in the discretisation of the problem pertaining to
the value of ui at grid node i. Variation in D (due to variation in h)
at any node i is achieved across grid nodes i−1, i, i+1. Hence, for
abrupt changes in D and h, the value of h must be adjusted for at
least three adjacent nodes in order to take full effect. The discreti-
sation of the derivative of u requires the five nodes i− 2, . . ., i+ 2.
Grid spacing dx gives the problem a physical dimension.

different. If we set D = 0 once more, then

u(x)=

{
−

ρL

(ρM− ρF)
q(x) q(x) 6= 0

0 q(x)= 0
. (7)

Equation (7) also represents a case of Airy isostasy. How-
ever, in this form, q(x) no longer represents a load thick-
ness, but rather a load surface topography (Fig. 3b), for
which the appropriate flexural compensation function u(x)
is calculated. Hence, the difference q(x)−u(x) gives the re-
sulting finite load thickness (in Fig. 3b we explicitly show
Topo(x) as the “load” term and q(x) as a term derived from
Topo(x)− u(x)). As can be seen from Eq. (7), however, a
problem with this formulation arises due to the different den-
sity terms employed, in particular the different values of ρL
and ρF. Only when ρF = ρL is a condition of Airy isostatic
balance of a load of density ρL actually calculated, and hence
the appropriate deflection u(x) and resulting load thickness
q(x)−u(x). In analytical solutions of this equation, the only
way to avoid this problem is by assuming ρF = ρL every-
where. Otherwise, for piecewise variable density terms, a nu-
merical solution is required.

In summary, the general equation of flexure of the litho-
sphere can be formulated in two different ways. In the first,
a flexure-dependent load term due to infill results, regardless
of density variations, and requires an iterative solution due to
the fact that regions with an imposed load cannot be simulta-
neously occupied by infill. Moreover, this form of the equa-
tion allows imposition of arbitrary forces to an elastic plate.
A second and more common formulation of the problem de-
scribes the flexural subsidence required to support a partic-
ular surface topography. Analytical solutions to any flexure
problem are generally unable to account for variable density
of different load components or to differentiate between fill
of basins created by flexural subsidence and removal of fill
in any positively deflected regions. Hence, we now consider
some numerical solutions to flexure problems.

2 Numerical flexure solutions

For the most part, finite-difference methods have been ap-
plied to solve the flexure equation numerically in both
the one-dimensional beam-type situation and for two-
dimensional, thin elastic sheets. For the simplest case of con-
stant flexural rigidity, D, the left-hand side of Eq. (3), for
instance, is discretised as (see Fig. 4)

D

dx4

(
ui+2− 4ui+1+

(
6−

ρMgdx4

D

)
ui − 4ui−1+ ui−2

)
.

(8)

Over the past 40 years, a number of numerical solutions to
flexure problems were proposed. A lot of this effort was
aimed at solving problems for the two-dimensional exten-
sion of the flexure equation to an elastic sheet with variable
elastic thickness and hence flexural rigidity (Van Wees and
Cloetingh, 1994). Van Wees and Cloetingh (1994) corrected
what was probably the earliest attempt at a numerical solu-
tion with variable flexural rigidity (Bodine et al., 1981). Rel-
atively few publications have dealt with the details of the nu-
merical, one-dimensional flexure equation discussed here for
both constant and variable elastic thickness cases. It should
also be noted that since the Van Wees and Cloetingh (1994)
initial publication, most of the succeeding work involving
numerical solutions of the flexure equation has been based on
their numerical derivation (Stewart and Watts, 1997; Van der
Meulen et al., 2000; Govers et al., 2009; Braun et al., 2013;
Wickert, 2016).

An early paper using a numerical solution (Stewart and
Watts, 1997) illustrates this form of the one-dimensional nu-
merical solution to the flexure equation with variable elastic
thickness. Taking Eq. (2), for instance, the product rule of
differentiation is applied prior to discretisation, and hence

Du′′′′+ 2D′u′′′+D′′u′′− ku= q. (9)

We note that this formulation of the problem, whilst mathe-
matically correct, has a clear, unambiguous physical impli-
cation. Any function describing the variation of elastic thick-
ness h(x) (and hence rigidity,D(x)) as a function of position
must be continuous and at least twice differentiable (see Ap-
pendix C). It will often be possible to get solutions to this
problem with other functions of D(x), but they are not con-
sistent with the way the problem is posed in Eq. (9). The
use of the product rule derivation of the problem extends to
all of the aforementioned publications concerning the two-
dimensional sheet-like problem as well (see passing from
Eq. 3 to 7 of Van Wees and Cloetingh, 1994). The resulting
finite-difference discretisation is given in Appendix B.

Perhaps surprisingly, there is an alternative and quite dif-
ferent method of discretising Eq. (2) available. This has
been termed the “half-station” method (Cyrus and Fulton,
1966, 1968) and avoids a product rule derivation prior to

Solid Earth, 14, 197–212, 2023 https://doi.org/10.5194/se-14-197-2023



D. Hindle and O. Besson: A corrected finite-difference scheme for the flexure equation 201

discretisation entirely. Instead, Eq. (2) is directly trans-
formed into a finite-difference approximation, replacing the
derivatives both within and outside the brackets with finite-
difference approximations to second derivatives (see Ap-
pendix B). The main effect of this is that no third or fourth
derivative terms in u (and hence also first and second deriva-
tive terms inD) explicitly arise. Instead, the fourth-order na-
ture of the differential equation as well as gradients in D are
implicitly contained in the numerical scheme. Somewhat re-
markably, this means that there is no restriction on the nature
of the function D(x). Any piecewise, arbitrary variation of
D(x) (and thus h(x)) is consistent with this discretised form
of the equation. The half-station method is generalisable to
two dimensions, meaning an alternative discretisation arises
with Eq. (3) of Van Wees and Cloetingh (1994) as a starting
point.

It must be noted here that both the half-station and whole-
station methods are proven (Cyrus and Fulton, 1966, 1968)
to be second-order accurate, finite-difference solutions to the
flexure equation. Both converge to the analytical solution
to the problem, effectively by a limited case of the Lax–
Milgram theorem (Adams and Fournier, 2003, as demon-
strated in Cyrus and Fulton, 1966). However, it is also clear
that the whole-station method will never give a correct (con-
vergent) solution for an abrupt variation (piecewise jump) in
coefficient (Appendix C). Hence, for any case involving a
piecewise linear or abrupt jump in the value of the coefficient,
only the half-station method is convergent (see Appendix C).

3 Comparison of the different numerical schemes

We now address the question of the different behaviours of
the numerical schemes with respect to variations of h(x). As
we have already discussed, for the product rule version of
the equation (so-called “whole-station” method; Cyrus and
Fulton, 1968) the formal derivation of the numerical scheme
actually requires a continuous, at least twice differentiable
function of h(x). There are a number of interesting and illus-
trative cases of elastic thickness variation, however, in which
abrupt changes are required. We note that both whole-station
and half-station discretisations contain, for any grid point or
node i, terms involving Di+1,Di , and Di−1 (see Fig. 4 and
Appendix B), meaning that a discontinuity in h(x) must be
present across at least three grid nodes to take full effect.
This was also commented upon by Wickert (2016) in the
case of the whole-station scheme, but without detailed anal-
ysis of the results. A recognised difficulty with varying elas-
tic thickness is how to find analytical solutions to which to
compare numerical results. An indirect way of doing this,
however, comes from Gunn (1943b), who showed analyti-
cally (see Eqs. 13 and 16, Gunn, 1943b) that for the same
point load, the maximum deflection of a broken plate (i.e.
one loaded at its end) is 4 times that of a continuous (in-
finite) plate equivalently loaded in its centre. Suppose we

take a continuous plate and reduce the elastic thickness to
zero over three nodes, creating an elastic “break”, and place
a “point” load at a single node, directly to the left or right of
the elastic break. We note that the load in this case is not at
a single point, but instead applied over a finite width equal
to the grid spacing used in the numerical scheme, so direct
comparison to an analytical solution is difficult. However, we
would expect the plate, when loaded just next to the elastic
break, to act like the end-loaded or broken plate, whereas
the same plate loaded equally but without an elastic break
should behave like the continuous one, so the relative max-
imum subsidence of the two numerical cases should change
by a factor of 4. Results of the experiments are shown in
Fig. 5. The half-station method gives exactly the result ex-
pected, showing that it corresponds to an end-loaded plate
when elastic breaks or discontinuities are present within a
larger plate. Due to the severe violation of the conditions of
continuity and twice differentiability in the function of h(x),
the whole-station method gives no meaningful result and is
unable to simulate a “broken” plate.

Another interesting case to test the numerical schemes is
that of what we can term an “isostatic raft” (Fig. 6). In this
case, we simulate an effectively infinitely stiff plate (h≥
500 km) with a central region of length ∼ 200 km, which
is bordered at each end by an elastic break. The “raft” is
loaded evenly across its centreline by a rectangular-shaped
load of width ∼ 40 km. The relative dimensions are chosen
purely to illustrate the point. If the plate segment were truly
infinitely stiff, it would undergo no bending at all, and the
load mass applied would be compensated for by escape of
an equal mass of mantle substrate. The half-station method
in this case produces an almost constant subsidence of the
plate segment and causes a tiny amount of flexural bending.
The resulting mass difference between displaced mantle and
load is < 0.2 %, showing the expected “raft-like” response.
Again, for such a case, the whole-station method produces a
spurious result.

A geological application of the raft analogue arises when
we consider tilted crustal blocks formed in compression
(McQueen and Beaumont, 1989). This refers to the con-
cept of short segments of crust and lithosphere bounded by
basement-transecting faults. McQueen and Beaumont (1989)
initially created a simple force balance model wherein hor-
izontal stress across a fault-bounded block generates a mo-
ment, which turns and tilts the block against the resisting
force of the mantle and is potentially augmented by the ef-
fects of erosion and sedimentation on the tilted block surface.
This idea was principally used to explore the amount of com-
pressive stress required to “break” the lithosphere in plate in-
teriors; however, a corollary of it was to explain subsidence
and basin formation as also due to the block-tilting process.
The model treats the block as completely rigid by default and
assumes that the horizontal compressive force is responsible
for the tilting, neglecting the effects of “self-loading” due to
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Figure 5. Comparison of broken and unbroken plate loading simulated with “line load” (for parameters used, see Table A1): (a) the “broken”
plate contains three node breaks of h= 0.01 m; (b) continuous plate, same load. The maximum subsidence in ratio ∼ 4 : 1 with a small
discrepancy due to the fact that the load is not a true “line” load but rather has a finite width equal to the grid spacing. This exactly
corresponds to the analytical results of Gunn (1943b). Figure prepared using GMT v6.0.0 (Wessel et al., 2019).

one block overriding another and also flexural bending in-
duced in the block.

Whilst our flexure model cannot be directly related to hor-
izontal compressional stresses potentially involved in break-
ing the lithosphere, it is trivial to produce a succession of
adjacent crustal segments by placing elastic breaks across a
plate, creating isolated segments of the desired dimensions.
By loading each segment at or near its end, thus creating a
turning force, and noting that any load can be treated as an
arbitrary system of forces which arise for many different rea-
sons, we produce a result similar to that of McQueen and
Beaumont (1989) but which also takes into account the flex-
ural bending in the segments. Figure 7 shows two situations

of identically loaded blocks with length 100 and 200 km. The
longer blocks undergo substantially more bending as a re-
sult of the mantle resisting force being spread over a greater
length and consequently holding the plate down more firmly,
allowing it to bend elastically to a greater degree under load-
ing. We note that a flexural model with a plate containing
elastic breaks effectively parameterises lithospheric structure
in terms of changes in elastic thickness. In the case of the
tilted block model, this parameterisation can be thought of as
the net effect of bounding faults, with the applied load char-
acterising any combination of the possible forces acting on
a block (e.g. moment on the block due to horizontal stress,
friction on the fault resisting tilting, self-loading due to one
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Figure 6. Isostatic “raft” model. With an effectively infinite thickness plate and a symmetrically loaded raft, which is detached at both ends
by elastic breaks (h= 0.01m for three nodes), the mass of mantle displaced (760 m thick layer) is almost exactly equal to the mass of the
applied load, demonstrating isostatic balance without flexure (for parameters used, see Table A1). Figure prepared using GMT v6.0.0 (Wessel
et al., 2019).

block overriding another). In our illustrative models here, we
have used 4 km thick, 15 km wide, distributed loads, corre-
sponding to a net force of 1.6× 1012 N. This produces rel-
atively small uplifts at block corners, although clearly, the
major component of the uplift of block corners is likely to
be due to steady transport of basement faults bounding adja-
cent tilted blocks due to shortening. The subsidence induced
in basins, by contrast, can be more directly related to the
response to loads on the crust. In the case of the Laramide
orogeny, for instance, maximum sedimentary thicknesses in
the associated basins are ∼ 2–4 km (Hagen et al., 1985),
which is quite close to the ∼ 3 km subsidence under the load
in our models.

All the preceding cases concern situations in which the
lithosphere is modelled as segmented or broken. In many
cases, however, we consider elastic thickness to vary more
steadily (e.g. Van der Meulen et al., 2000; Stewart and Watts,
1997). In such cases, the most straightforward spatial varia-
tion of h(x) is described by a piecewise linear function in-
terpolated between a few points of fixed value. We find that
in cases in which the gradient of the imposed linear change
is not too sharp, the whole-station approximation can return
reasonable results, including in cases in which h→ 0. Be-
low a certain threshold, however, the error (which we take
as the difference to the half-station solution) quickly reaches
≥ 2 %, which for studies fitting flexural curves to gravity sig-
nals, for instance (e.g. Stewart and Watts, 1997), will be crit-
ical. Figure 8 shows two cases with differing gradients in
h(x). While the gentle gradient yields a difference of 6 m
maximum subsidence (∼ 0.5 %) the sharper gradient reaches
340 m (∼ 30 %). As the gradient in h(x) increases still fur-

ther, the whole-station scheme will ultimately reach a point
at which it returns no solution at all, whilst the half-station
method is stable for any combination of loads and variations
of h(x).

4 Other numerical issues

A more general mathematical issue concerns the positivity of
any numerical solution to a fourth-order differential equation
of this kind. As can be verified (see Appendix B), all dis-
cretisations of the flexure equation using second-order finite-
difference approximations will yield an identical set of lin-
ear equations when the value of h is a constant. The dis-
cretised form then becomes that shown in Eq. (8). It can
also be seen that for constant values of D at least, for each
line, the sum across the columns (

∑
j

ai,j ) is ρMg, the man-

tle restoring force, since all other terms involving D sum to
zero. As a result, the residual term due to the mantle restor-
ing force is, according to the maximum principle (Axelsson,
1994), necessary for maintaining the positivity of the sys-
tem of equations represented by Eq. (8). Hence, the compo-
sition of the main diagonal, which itself consists of a sum of

two terms,
6D
dx4 and ρMg, becomes of critical importance.

This is due to the issue of round-off, whereby the capac-
ity of 64 bit representations of numbers to sum terms with
large contrasts in magnitude leads to the smaller term be-
ing partly or entirely lost as the maximum number of sig-
nificant figures available in arithmetic operations (approxi-
mately 15) is exceeded. In the large term, D will vary as a
function of h3, where elastic thickness h may reach values
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Figure 7. Tilted block model directly equivalent to the force balance model of McQueen and Beaumont (1989) but also incorporating flexure.
Calculations assume that basins are filled with infill material (red shading) and the plate surface is eroded to zero topography, removing
material (blue shading). For parameters used, see Table A1. (a) 100 km block length. Blocks are visually close to rigid and tilted (b) 200 km
blocks with identical loading, which undergo substantial bending (∼ 5 times that of the 100 km block). Elastic bending increases as the plate
is more strongly held down by the greater length over which mantle resistance forces can act. It is important to note, however, that the plate
segments have unconstrained boundaries and are held in place only by their interaction with the mantle. Figure prepared using GMT v6.0.0
(Wessel et al., 2019).

of 100 km on Earth (Kaban et al., 2018) and possibly even
300 km on Mars (Thor, 2016). Grid spacing dx requires val-
ues of ∼ 100 m or less to ensure convergence and also to al-
low reasonable resolution in the representation of loads. It
should be noted that currently, the highest-resolution, public,
and globally available topographic databases, SRTM (Earth
Resources Observation And Science (EROS) Center, 2017)
and ASTER GDEM (NASA/METI/AIST/Japan Spacesys-

tems And U.S./Japan ASTER Science Team, 2009), are both
on 1 arcsec (∼ 30 m) grids, whilst TANDEM-X data (DLR –
German Aerospace Center, 2018) are relatively freely acces-
sible to scientists on a 0.4 arcsec (∼ 10–12 m) grid. Hence,
6D
dx4 will quite conceivably be of magnitude 1019 or more in

“real” problems in geodynamics. The small term ρMg will al-
ways be of order 104. Under such conditions, round-off will
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Figure 8. Piecewise linear variation of h(x) (for parameters used, see Table A1) with a (a) relatively gentle gradient, for which the whole-
station and half-station schemes are in good agreement. (b) Sharper gradient for which there is a substantial difference between the whole-
station and half-station methods. Figure prepared using GMT v6.0.0 (Wessel et al., 2019).

lead to an “effectively singular” matrix and the numerical
problem will fail. One work-around is relatively easily avail-
able. The use of quadruple-precision (128 bit) representation
of floating-point numbers allows > 30 significant figures to
be taken account of in arithmetic operations. Although this
costs additional memory and some speed, it ensures that any
conceivable problem of flexure with “real-world” dimensions
and parameters will be correctly dealt with by the numerical
algorithm.

Besides the general issue described above, the additional
term for the plate-wide stress P (see Eq. 2 and Appendix B)
also has the potential to cause problems for the numerical

solution. In particular, P , which has always been assumed to
be constant throughout a plate, will interact with regions of
variable elastic thickness in a potentially problematic way.
For cases with elastic breaks, where D→ 0, for instance, a
constant value of P will often lead to failure of the numer-
ical solution. In such cases, it is probably reasonable to set
P → 0 on the three nodes of the discontinuity, thereby treat-
ing these as if they were an infinitely thin fault. Because the
nodes either side of the break have the normal value of P
applied, the continuity of P is respected to some degree.
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5 Implications

The half-station method of discretisation we have presented
here is clearly able to deal with a complete set of possible
variations of elastic thickness in the flexure equation. The
whole-station method (applying the product rule first), by
contrast, is unable to be relied upon to do so. Perhaps the
most worrying aspect of the whole-station method is that in
some circumstances, it will give results that appear plausi-
ble but are in fact in error by significant amounts (Fig. 8b)
and actually represent solutions among the set of transitional
variations of h just before the method fails completely. The
principal reason for the behaviour of the whole-station dis-
cretisation is the fact that, as posed, a condition of the equa-
tion is a twice differentiable, continuous function ofD. Were
we to apply such functions, the whole-station discretisation
would perform safely. However, it is also known that the
half-station method works with smoothly varying functions
of D, and in general, the errors associated with the half-
station method are always smaller than those of the whole-
station method (Cyrus and Fulton, 1968). It is also unjusti-
fiable to impose any such constraint on the nature of vari-
ations of elastic thickness of the lithosphere. Consequently,
it appears clear that the finite-difference discretisation of the
flexure equation should be carried out using the half-station
method.

The wider application of the half-station method to many
other differential equations with variable coefficients was
originally noted by Cyrus and Fulton (1966, 1968). The spe-
cific application of it to the one-dimensional wave equation
and the general rarity of its use have also been discussed by
Langtangen (2016, p. 44). It seems clear that this form of
finite-difference discretisation, which allows arbitrary piece-
wise variations of coefficients, is a potentially significant and
generally overlooked method for the wider spectrum of the
physical sciences.

The use of numerical solutions for the flexure equation
covers many aspects of geodynamics. On the one hand, the
determination of the elastic thickness of the lithosphere can
be done using a forward modelling approach with flexure
models used to match gravity data and topography (e.g. Wal-
cott, 1970a; Karner and Watts, 1983; Watts, 1992; Stewart
and Watts, 1997). In such cases it may well be necessary to
look for solutions incorporating variable elastic thickness, es-
pecially around mountain fronts in foreland basins. Flexure
models may also be used to study the dynamics of past flex-
ural events (Burkhard and Sommaruga, 1998; DeCelles and
Giles, 1996; Horton and DeCelles, 1997; Beaumont, 1981;
Hagen et al., 1985; Hindle and Kley, 2021) for which they
are often used to model subsidence patterns and explain basin
formation. In many of these cases too, variable elastic thick-
ness is likely to need taking account of. Increasingly, topics
relating to global sea level rise and the melting of the po-
lar ice caps will demand high-resolution models of flexural
responses, which may require taking account of changes in

elastic thickness of the lithosphere. More generally, the is-
sue of elastic breaks within continental lithosphere has yet to
be substantially explored and could have significant conse-
quences for topics such as intraplate seismicity and seismic
hazard. In short, it seems very important to make such nu-
merical approximations in as accurate a way as possible. Cur-
rent flexure models (Wickert, 2016) are based on the whole-
station (product rule) derivation of the numerical scheme and
should be revised.

6 Conclusions

Despite a long history of use in the literature and an appar-
ent sense of being work completed, in fact a host of prob-
lems arising from a simple numerical analysis of the discre-
tised flexure equation have remained untouched. When we
examine these, we find there are significant issues with the
method of discretisation used. It is not advisable under any
circumstances to use a product rule derivation of an equa-
tion of this type when the coefficient varies as a function of
coordinate. Realistic models of natural variations in elastic
thickness (and many other coefficients in many other equa-
tions arising in natural sciences in general) will require sharp
changes in those coefficients to be taken account of. A prod-
uct rule scheme cannot do this successfully, especially for
fourth-order differential equations.

Fundamental problems relating to the nature of the system
of linear equations arising from discretisations of the flexure
equation have also gone unnoticed so far. For small grid spac-
ings, something which will inevitably become increasingly
common as computer power increases, the numerical solu-
tion will rapidly become unstable and fail unless a 128 bit
floating-point representation is employed. If this is used, the
problem will probably be avoided at grid spacings≥ 1 m, but
below this threshold, instability could once more arise quite
easily. Although we have presented only one-dimensional
problems in this paper, it is nevertheless clear that every-
thing shown here extends to two-dimensional, thin elastic
plate formulations as well. To this end, we give the two-
dimensional half-station formulation and discretisation of the
problem (Appendix B). We will discuss two-dimensional so-
lutions using this scheme in forthcoming papers.

Appendix A: General aspects of the equation when
solved numerically

We begin with a general formulation of the flexure problem
with variable coefficient and specified load (not topography)
as follows. This form of the problem requires an iterative so-
lution. We give the form of the equation for the case in which
the gravitational constant is negative, i.e. g =−9.81, mean-
ing load thickness q(x) > 0 acts as a downwards force on the
lithosphere.

Solid Earth, 14, 197–212, 2023 https://doi.org/10.5194/se-14-197-2023



D. Hindle and O. Besson: A corrected finite-difference scheme for the flexure equation 207

Table A1. Parameters used for Figs. 5–8.

Parameter Fig. 5 Fig. 6 Fig. 7 Fig. 8

Background elastic thickness (km) 20 500 20 30
Weak zone minimum elastic thickness (km) 0.001 (5a) 0.01 0.01 15
Poisson’s ratio ν 0.25 0.01 0.01 15
Plate-wide stress (N m−1) 0 0.01 0.01 15
Static load density (kg m−3) 2700 2500 2700 2700
Infill load density 0 0 2300 2300
Crustal density 0 0 2700 2700
Mantle density 3300 0 2700 2700
Grid spacing (m) 100 0 2700 2700
Nodes 50 001 0 2700 2700

(D(x)u′′)′′+Pu′′− ρMgu= ρLgq(x)− ρFgu (A1)

u is the deflection of the plate at position x along its length.
D(x) (the flexural rigidity) varies in space and is explicitly
written as a function of x. The value of D(x) is given by
Eh(x)3/(12 · (1− ν2)), where E is the elastic modulus of
the lithosphere, h(x) is the effective elastic thickness of the
lithosphere and is the parameter inD(x) that varies in space,
and ν is Poisson’s ratio. P is a constant representing a plate-
wide horizontal stress. The term ρM ·g (left hand side) repre-
sents a restoring force due to displaced mantle. On the right-
hand side of the equation, ρLgq(x) is the imposed load term
which is chosen arbitrarily and has a density ρL that can be
set for whatever load is being modelled. However, this load
term can also be thought of as representing any type of force
loading the plate (for instance, forces across a fault resolved
in the vertical direction or torques from horizontal loads on
rigid blocks). ρFgu is the load force due to “infill” of basins.
However, due to its dependence on u, the term acts as a load
when u is negative and a positive force (pushing or pulling
the plate upwards) when u is positive. This upward pull can
be thought of as a force due to erosional removal of material,
and by default, the amount of erosion is equal to the value of
u as if the uplifted segment of plate were eroded to 0 m above
reference level (Fig. 2, main text). We may wish to make the
density of eroded material different to that of infill, for in-
stance a “crustal” density ρC . In this case, the full equation
is dependent on the sign of u(x) and can be written as

(D(x)u′′)′′+Pu′′− ρMgu=

{
ρLgq(x)− ρFgu u(x) < 0
ρLgq(x)− ρCgu u(x)≥ 0.

(A2)

Equally, basin fill is assumed to fill basins completely to the
same reference level. We note that different values for ero-
sion and fill levels (even spatially variable and piecewise) can
be implemented relatively easily with a numerical code. For
analytical solutions to the problem, it is implicit that there is
infill and erosion and that the density of all materials is the

same. We also state again that the first aim of the iterative
scheme is to separate regions filled with fixed load, where
there is subsidence given by u(x) but clearly no accommo-
dation space exists for infill, from the basins created outside
the regions occupied by the load. With a numerical method,
it is relatively easy to ensure that this is the case.

Appendix B: Discretisation schemes

B1 Half-station discretisation

We apply second-order finite-difference operators simulta-
neously for both second derivatives inside and outside the
brackets in Eq. (A1), which is something referred to as the
half-station method (Cyrus and Fulton, 1968).

Hence, if

f ′′ ≈ δ2f = (fi+1− 2fi + fi−1)/dx2, (B1)

where dx is the grid spacing, and i is the node number, then

(Du′′)′′ ≈ δ2(Dδ2u). (B2)

We discretise the whole term in brackets first on a grid i =
1, . . .,N :

δ2(Dδ2u)= ((Dδ2u)i+1− 2(Dδ2u)i + (Dδ
2u)i−1)/dx2. (B3)

Then, substituting the terms in brackets and advancing the
indices gives us

δ2(Dδ2u)= ((Di+1(ui+2− 2ui+1+ ui))

− 2(Di(ui+1− 2ui + ui−1))

+ (Di−1(ui − 2ui−1+ ui−2))/dx4. (B4)

Collecting terms, we obtain

δ2(Dδ2u)= (Di+1ui+2− 2(Di+1+Di)ui+1

+ (Di+1+ 4Di +Di−1)ui

− 2(Di−1+Di)ui−1+Di−1ui−2)/dx4. (B5)
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Discretising the remaining parts of the equation then gives

Di+1

dx4 ui+2

+

(
−2
(Di+1+Di)

dx4 +
Pi

dx2

)
ui+1

+

(
(Di+1+ 4Di +Di−1)

dx4 − 2
Pi

dx2 − ρM · g

)
ui

+

(
−2
(Di−1+Di)

dx4 +
Pi

dx2

)
ui−1

Di−1

dx4 ui−2

= (qo)i + q(ui),

(B6)

where the two load terms, (qo)i and q(ui), represent the
static, fixed load and the iteratively calculated infill load, re-
spectively.

If we gather all coefficients into a matrix A and form a
matrix equation, the resulting system is of the form

Au= q(u), (B7)

which is a non-linear series of equations in u. We reformu-
late this as a recursive matrix fixed-point problem, which we
solve using a pentadiagonal matrix algorithm (Sebben and
Baliga, 1995).

A similar procedure is used to discretise the specified to-
pography formulation (Eq. 3).

B2 Whole-station discretisation

The whole-station discretisation begins from the result of ap-
plying the product rule to Eq. (B1), giving us

Du′′′′+ 2D′u′′′+D′′u′′+Pu′′− ρMgu= ρLgq(x)− ρFgu. (B8)

Discretisation involves applying second-order finite-
difference schemes directly to all derivatives.

Hence,

Du′′′′ ≈
Di

dx4 (ui+2− 4ui+1+ 6ui − 4ui−1+ ui−2)

2D′u′′′ ≈
(Di+1−Di−1)

2 · dx4 (ui+2− 2ui+1+ 2ui−1− ui−2)

D′′u′′ ≈
(Di+1− 2Di +Di−1)

dx4 (ui+1− 2ui + ui−1).

(B9)

Adding the remaining terms from Eq. (B8) and explicitly
writing to show the relationship to Eq. (B9), we have the fol-

lowing.

(
Di

dx4 +
(Di+1 −Di−1)

2 · dx4

)
ui+2

+

(
−4

Di

dx4 −
(Di+1 −Di−1)

dx4 +
(Di+1 − 2Di +Di−1)

dx4 +
Pi

dx2

)
ui+1

+

(
6
Di

dx4 − 2
(Di+1 − 2Di +Di−1)

dx4 − 2
Pi

dx2 − ρM · g

)
ui

+

(
−4

Di

dx4 +
(Di+1 −Di−1)

dx4 +
(Di+1 − 2Di +Di−1)

dx4 +
Pi

dx2

)
ui−1

+

(
Di

dx4 −
(Di+1 −Di−1)

2 · dx4

)
ui−2

= (qo)i + q(ui )

(B10)

The same procedure as for the half-station discretisation is
employed to solve these equations. The iteration could be
made more efficient.

B3 Half-station, two-dimensional discretisation

As has been discussed, all two-dimensional, thin elastic sheet
type of solutions used up to the present day have been based
on the same product rule derivation of the numerical scheme
(whole-station). It is equally possible to apply a half-station
derivation, however. We start from Eq. (3) of Van Wees and
Cloetingh (1994), and assuming that ν is constant, we can
write

(Duxx)xx + (Duyy)yy + ν((Duxx)yy + (Duyy)xx)

+ 2(1− ν)(Duxy)xy +P1u− ρMgu

= ρLgq(x)− ρFgu, (B11)

where uxx =
∂2u(x,y)

∂x2 and so on. Defining partial finite-

difference operators on a two-dimensional grid (i,j ),

∂f

∂x
≈

1
dx
(fi+1/2− fi−1/2)

∂f

∂y
≈

1
dy
(fj+1/2− fj−1/2),

(B12)

and assuming λ := dx = dy, Eq. (B11) can be discretised
term by term in a way similar to the half-station method ap-
plied to the one-dimensional form. We have used maxima to

Solid Earth, 14, 197–212, 2023 https://doi.org/10.5194/se-14-197-2023



D. Hindle and O. Besson: A corrected finite-difference scheme for the flexure equation 209

derive the solution.

ui+2,j 2Di+1,j
+ui+1,j+1

[
−(ν− 1)Di+1,j+1

+(ν+ 1)Di+1,j + (ν+ 1)Di,j+1− (ν− 1)Di,j
]
+

ui+1,j
[
(ν− 1)Di+1,j+1− 2(ν+ 3)Di+1,j

+(ν− 1)Di+1,j−1+ (ν− 1)Di,j+1− 2(ν+ 3)Di,j
+(ν− 1)Di,j−1+ 2λ2Pi,j

]
+ ui,j+1

[
(ν− 1)Di+1,j+1

+(ν− 1)Di+1,j − 2(ν+ 3)Di,j+1− 2(ν+ 3)Di,j
+(ν− 1)Di−1,j+1+ (ν− 1)Di−1,j + 2λ2Pi,j

]
+ui,j

[
−(ν− 1)Di+1,j+1− 2(ν− 2)Di+1,j − (ν− 1)Di+1,j−1

−2(ν− 2)Di,j+1+ 4(3ν+ 5)Di,j − 2(ν− 2)Di,j−1
−(ν− 1)Di−1,j+1− 2(ν− 2)Di−1,j − (ν− 1)Di−1,j−1
−8λ2Pi,j − 2λ4ρMg

]
+

ui+1,j−1
[
(ν+ 1)Di+1,j − (ν− 1)Di+1,j−1

−(ν− 1)Di,j + (ν+ 1)Di,j−1
]
+

ui,j−1
[
(ν− 1)Di+1,j + (ν− 1)Di+1,j−1− 2(ν+ 3)Di,j

−2(ν+ 3)Di,j−1+ (ν− 1)Di−1,j + (ν− 1)Di−1,j−1+ 2λ2Pi,j
]

+ui,j+2 2Di,j+1+

ui−1,j+1
[
(ν+ 1)Di,j+1− (ν− 1)Di,j − (ν− 1)Di−1,j+1

+(ν+ 1)Di−1,j
]
+

ui−1,j
[
(ν− 1)Di,j+1− 2(ν+ 3)Di,j

+(ν− 1)Di,j−1+ (ν− 1)Di−1,j+1− 2(ν+ 3)Di−1,j
+(ν− 1)Di−1,j−1+ 2λ2Pi,j

]
+

ui−1,j−1
[
−(ν− 1)Di,j + (ν+ 1)Di,j−1+ (ν+ 1)Di−1,j

−(ν− 1)Di−1,j−1
]
+

ui,j−2 2Di,j−1+
ui−2,j 2Di−1,j
= 2λ4

[(qo)i,j + q(ui,j )]

(B13)

Appendix C: Convergence, numerical comparisons

Here we give a general proof of the limitations of the whole-
station discretisation as well as a comparison of a single case
of the application of a 1D half-station problem to an (approx-
imately) equivalent, 2D, finite-element, numerical solution.

C1 Proof of convergence

Consider the simplified beam equation:

(D(x)u′′(x))′′+α(x)u(x)= q(x) (C1)

for x ∈�= (0,L), and with the boundary conditions

u(0)= u′(0)= u(L)= u′(L)= 0. (C2)

The following result is a simple application of the Lax–
Milgram theorem (e.g. Adams and Fournier, 2003).

Theorem 1. Assume that

– D ∈ L∞(�), and there is some D0 > 0 such that
D(x)≥D0 a.e.,

– α ∈ L2(�), with α(x)≥ 0 a.e.

Then the problem in Eqs. (C1)–(C2) admits a unique solution
in the Sobolev space H 2

0 (�).
This theorem shows that the functionD can be very rough.
Now consider the following finite-difference operators.

δ1f (x)=
f (x+ dx)− f (x− dx)

2dx

δ2f (x)=
f (x+ dx)− 2f (x)+ f (x− dx)

dx2

δ3f (x)=
f (x+ 2dx)− 2f (x+ dx)+ 2f (x− dx)− f (x− 2dx)

2dx3

δ4f (x)=
f (x+ 2dx)− 4f (x+ dx)+ 6f (x)− 4f (x− dx)+ f (x− 2dx)

dx4

When numerically solving Eq. (C1), two different methods
can be used.

– One is the half-station method in which Eq. (C1) is re-
placed by the difference equation.

δ2(D(x)δ2u(x))+α(x)u(x)= q(x) (C3)

– Another is the whole-station method in which Eq. (C1)
is first developed as

D(x)u′′′′(x)+ 2D′(x)u′′′(x)+D′′(x)u′′(x)

+α(x)u(x)= q(x) (C4)

and then replaced by the difference equation

D(x)δ4u(x)+ 2δ1D(x)δ3u(x)+ δ2D(x)δ2u(x)

+α(x)u(x)= q(x). (C5)

The results given in the paper of Cyrus and Fulton (1966)
show that both methods are of the same order dx2 when the
function D is twice differentiable.

C2 Whole-station approach and regularity of D

Let us show that this formula makes sense only ifD is at least
twice differentiable. The whole-station discretisation can be
written as

1
dx4Di (ui+2− 4ui+1+ 6ui − 4ui−1+ ui−2)

+ 2
Di+1−Di−1

2dx
−ui−2+ 2ui−1− 2ui+1+ ui+2

2dx3

+
Di−1− 2Di +Di+1

dx2
ui−1− 2ui + ui+1

dx2

+αi ui

= qi .

Now consider the academic case L= 1 with two different
simple functions D:

1. D(x)= 1/2 for 0< x ≤ 1/2 andD(x)= 1 for x > 1/2,
so D is discontinuous at x = 1/2;

2. D(x)= 1/2+ x for 0< x ≤ 1/2 and D(x)= 1 for x >
L/2, so D is continuous and piecewise affine.

For case 1, when dx→ 0 the term
Di+1−Di−1

2dx
→∞ in the

neighbourhood of x = 1/2.

For case 2, when dx→ 0 the term
Di−1− 2Di +Di+1

dx2 →

∞ in the neighbourhood of x = 1/2.
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Figure C1. Comparison of a 2D linear elastic beam model with fourth-order, 1D, half-station approximation for a case with abrupt jumps in
elastic thickness. The maximum difference between the two models is∼ 3.5 % for a case with much larger strain than lithospheric examples.

Conclusion. In both cases it is impossible to verify the nu-
merical accuracy of the whole-station discretisation. More-
over, this scheme leads to incorrect numerical solutions when
D is not sufficiently regular.

Remark. In the half-station case, D′(x) and D′′(x) are not
explicitly computed. So the formula (C3) works even when
the function D is discontinuous in some places.

Remark. When the function D is at least twice continu-
ously differentiable, the whole-station and the half-station
methods give the same results.

C3 2D numerical comparison

In Fig. C1 we show a case in which only the half-station
method is able to give a result. We demonstrate a simple,
25 m long elastic beam pinned at both ends with no substrate.
Hence, the equation only concerns the elastic part of the flex-
ure problem and therefore the elliptic part of the differential
equation. The beam has a symmetrical shape, with a cen-
tral section, L= 15 m, half the thickness of its ends (h= 1).
Hence, there are two abrupt jumps in elastic thickness. We
model this in 1D with the half-station method using 10 001
nodes over the model length with changes in thickness in-
stantaneous over 1 node. We simulate the same problem with
a finite-element solution of the equations of elastic equilib-
rium in a 2D elastic beam, assuming an isotropic, elastic ma-
terial, using the FENICS finite-element code, and adapting
the 2D linear elasticity tutorial example for our case (Bleyer,
2018). The change in beam elastic thickness is simulated in
this case by a geometric reduction in finite beam thickness

across its central section. Both beams are self-loaded by their
own weight and associated body forces.

The results show a ∼ 3.5 % maximum difference between
results. It should be noted that the discretisation of the
finite-element solution is not exactly the same as the finite-
difference one due to the complexities of gridding. The strain
in this example is also several orders of magnitude larger than
lithospheric strains (see the bending value u′′).

Code availability. The codes used in the preparation of this pa-
per are available from the GitHub repository at https://github.
com/davidhindle/flexure-1d-hs (Hindle, 2021a) and on Zenodo
(https://doi.org/10.5281/zenodo.4643989; Hindle, 2021b).
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