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Figure S2: Model top views of the Sumax distribution for experiments with i-seed configuration over the entire run time. With
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Figure $4: Model top views showing the evolution of experiments with a v-seed configuration. For all intermediate angles,
the rift system broadens as the rift segments propagate. Red and black colors refer to strain rates (logarithmic) and plastic

strain, respectively.
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Figure S5: Model top views showing the evolution of experiments with an i-seed configuration. For an intermediate angle of
10°, the two rift segments link and form a straight continuous rift that accumulates strain mainly on the left-dipping normal
fault. For larger intermediate angles, the rift subsequently experiences more segmentation with small left stepping segments
towards the rear model part and a polarity flip of main strain accommodation along one prominent rift boundary fault. Red

and black colors refer to strain rates (logarithmic) and plastic strain, respectively.
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Figure S6: Model top views showing the evolution of experiments with a y-seed configuration. For an intermediate angle of
10°, the final rift geometry resembles that of a continuous straight rift segment. For larger intermediate angles, two individual
rear rift segments form and compete for linkage with the frontal rift segment. Plastic strain well illustrates the asymmetric
strain accommodation focused along the left-dipping rift boundary fault of the left rear segment, whereas the right rear
segment only experiences minor strain accommodation. Red and black colors refer to strain rates (logarithmic) and plastic

strain, respectively.



