

Supplement of

Mapping the basement of the Cerdanya Basin (eastern Pyrenees) using seismic ambient noise

Jordi Díaz et al.

Correspondence to: Jordi Díaz (jdiaz@geo3bcn.csic.es)

The copyright of individual parts of the supplement might differ from the article licence.

- **1** Supplemental Materials
- 2 3

3 Supplementary Material S1: Details of the RFs calculation

4

In order to obtain the RFs presented in this contribution, we have followed a classical approach, already used in
a prior RFs study in the eastern Pyrenees published by the same author team (Diaz el at., 2018).

7 The first step in data processing was to select teleseismic events with magnitude higher than 5.5, epicentral 8 distances between 35° and 95° and clear P arrivals. We then calculated the corresponding RF by frequency domain 9 deconvolution (Langston, 1979) of the vertical component from the horizontal components in the time window 10 corresponding to the P arrival and its coda. Prior to the RF calculation, data has been high-pass filtered with a 11 corner frequency of 0.1 Hz to avoid problems due to low-frequency signals. The deconvolution was performed 12 using the classical "pwaveqn" software (Ammon, 1997), using a value of 10 for the low-pass gaussian filter 13 parameter, equivalent to pulse width around 0.5 s, to preserve the high frequency content of the signals and hence 14 allow a better delineation of the crustal discontinuities. A standard value of 0.05 is used as water level parameter 15 to avoid numerical problems during deconvolution. An automatic workflow has been implemented to calculate 16 RFs, retaining only those signals with large signal-to-noise ratio of the incoming phases. In a second step, the 17 selected events have been visually inspected in order to discard unclear records. The number of finally retained 18 events ranges between 22 and 57, with a mean value of 46 retained RFs per station.

19

20 The traces shown in Figure 3 are obtained by applying Ps-moveout correction to a reference ray parameter of

21 0.065 s/km to the selected RFs and sum the corrected traces for each of the stations located along the Cerdanya

22 Basin.

23 References:

- 24 Ammon, C.J., 1997. An overview of receiver function analysis.
- 25 http://eqseis.geosc.psu.edu/~cammon/HTML/RftnDocs/rftn01.html.
- 26 Diaz, J., Vergés, J., Chevrot, S., Antonio-Vigil, A., Ruiz, M., Sylvander, M., Gallart, J., 2018. Mapping the
- 27 crustal structure beneath the eastern Pyrenees. Tectonophysics. https://doi.org/10.1016/j.tecto.2018.07.011.
- 28 Langston, C.A., 1979. Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J.
- **29** Geophys. Res., 84, 4749-4762.
- 30
- 31

- 32 Supplementary Material S2: Representative H/V measurements at broad-band stations (left panels) and
- 33 seismic nodes (right panels).
- 34

37 Supplementary Material S3: Seismic noise amplitude calibration. a) Correlation between the basement 38 depth estimations from Gabàs et al. 2016 (squares) and seismic power amplitudes measured in our dataset 39 (circles). Color palettes have been chosen to visualize the correlation between both datasets. Backgroung 40 shading represents topography. b) Adjustment between seismic noise amplitudes and basement depths. Blue line

41 shows the degree 2 polynomial adjustment.

- 43
- 44 Supplementary Material S4: Comparison of the basement depths retrieved from different methods.
- 45 Basement depths estimations from Gabas et al (2016) (black dots) compared with the values extracted from the
- 46 HVSR dataset (blue circles) and seismic noise amplitude (red circles). The inset map shows the basement depth
- 47 estimations of the Gabas et al (2016) profile and can be compared with the results of our study (Fig. 9b)

48 49