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Abstract. Using multiple scales of observation in studying
the fractures of the bedrock increases the reliability and rep-
resentativeness of the respective studies. This is because the
discontinuities, i.e. the fractures, in the bedrock lack any
characteristic length and instead occur within a large range
of scales of approximately 10 orders of magnitude. Conse-
quently, fracture models need to be constructed based on rep-
resentative multi-scale datasets.

In this paper, we combine a detailed bedrock fracture study
from an extensive bedrock outcrop area with lineament inter-
pretation using light detection and ranging (lidar) and geo-
physical data. Our study offers lineament data in an interme-
diary length range (100–500 m) missing from discrete frac-
ture network modelling conducted at Olkiluoto, a nuclear
spent-fuel facility in Finland. Our analysis provides insights
into multi-scale length distributions of lineaments and frac-
tures and into the effect of glaciations on lineament and
fracture data. A common power-law model was fit to the
lineament and fracture lengths with an exponent of −1.13.
However, the fractures and lineaments might follow distinct
power laws or other statistical distributions rather than a
common one. When categorising data by orientation, we can
highlight differences in length distributions possibly related
to glaciations. Our analysis further includes the topological,
scale-independent fracture network characteristics. For ex-
ample, we noticed a trend of decreasing apparent connectiv-
ity of fracture networks as the scale of observation increases.

1 Introduction

1.1 Multi-scale study of fracture networks

Multi-scale fracture studies have mainly focused on sedimen-
tary rock environments due to, for example, the significance
of fracture properties on hydrocarbon exploration (Nelson,
1985). More recently, the needs of geothermal reservoir char-
acterisation (e.g. Piipponen et al., 2022; Frey et al., 2022) and
contaminant transport modelling (e.g. Hartley et al., 2018)
have increased the number of studies conducted in crystalline
environments (e.g. Chabani et al., 2021; Bertrand et al., 2015;
Bossennec et al., 2021). In crystalline rocks, where the ma-
trix is largely impermeable, fracture networks form the main
pathways for fluid flow (Nelson, 1985; Davy et al., 2006).
Understanding the fluid flow in such a system is challenging,
since fractures typically lack a characteristic length (Heffer
and Bevan, 1990) and since fractures of all sizes may con-
tribute to the fluid flow (Davy et al., 2006). Fracture lengths
and the collective fracture network sizes span approximately
10 orders of magnitude (Marrett et al., 1999) from microfrac-
tures within individual mineral grains to continental-scale
tectonic structures (Bonnet et al., 2001). Modern methods
of fracture and lineament interpretation, used in multi-scale
studies, typically include outcrop-based fracture digitisation
and digital elevation model and geophysics-based lineament
interpretation (Bertrand et al., 2015; Hardebol et al., 2015;
Dichiarante et al., 2020; Loza Espejel et al., 2020; Chabani
et al., 2021; Palamakumbura et al., 2020).

Characteristics of the fracture and lineament networks,
such as length and orientation distributions, typically have
similarities across the whole scale range (see Heffer and Be-
van, 1990; Bonnet et al., 2001, and references within), and in
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such cases, the properties are said to be scalable. However,
establishing robust scaling laws with the capacity to predict
fracture characteristics across multiple scales of observation
requires collecting fracture and lineament data using a com-
bination of methods and preferably from multiple scales of
observation. Firstly, this approach will resolve if the frac-
tures and lineaments have fractal or self-similar properties.
Secondly, the multi-scale approach will increase the overall
applicability and reduce the uncertainty associated with frac-
ture network investigations (Bonnet et al., 2001; Bour et al.,
2002; Davy et al., 2010; Bertrand et al., 2015; Heffer and
Bevan, 1990; Odling, 1997; Marrett et al., 1999; Chabani
et al., 2021; Palamakumbura et al., 2020). For a given frac-
ture network, scalability may apply to either all the charac-
teristics or a limited set of specific characteristics of the net-
work, such as the commonly studied lengths (e.g. Bertrand
et al., 2015; Dichiarante et al., 2020) or azimuth distribu-
tions (e.g. Odling, 1997), while other properties appear to be
scale dependent. Comparisons between multiple scales often
include the lengths, intensities and azimuths (e.g. Bertrand
et al., 2015; Hardebol et al., 2015), but recent interest has de-
veloped in using multi-scale data to evaluate the scalability
of topological fracture network characteristics (e.g. Loza Es-
pejel et al., 2020; Dichiarante et al., 2020), as the topological
characteristics are scale independent by definition. However,
in reality, recent studies (e.g. Ovaskainen, 2020; Nixon et al.,
2012) have shown that e.g. the inherent differences in source
rasters used in lineament or fracture interpretation (e.g. dig-
ital elevation model for lineaments vs. RGB image for frac-
tures) could influence the resulting topological network pa-
rameters.

Other uncertainties within the multi-scale investigations
may relate to the method, the geological character of the site
or the scale of the study. The chosen survey method within
a site-specific study will limit the scale of observation, in-
cluding e.g. the observed minimum and maximum fracture
lengths (Bonnet et al., 2001; Heffer and Bevan, 1990) or fil-
tering of the smallest fractures, due to the limited resolution
of aerial images (Prabhakaran et al., 2019). Similar issues
regarding the uncertainty occur across studies, and conse-
quently, systematic data gaps occur across fracture datasets
(Marrett, 1996; Loza Espejel et al., 2020; Chabani et al.,
2021). The character of the investigation site may affect the
selection of the study method but may also cause uncer-
tainty in the continuity and extent of the observation. For
field surveys conducted in areas of glacial drift, such as Fin-
land, it is typically impossible to map structures longer than
a couple of tens of metres due to masking by quaternary de-
posits and a consequent lack of continuous outcrops. Fur-
thermore, different geological phenomena operate at differ-
ent scales with different intensities, such as glacial erosion,
which preferentially erodes intensely fractured deformation
zones (Glasser et al., 2020; Dühnforth et al., 2010; Skyttä
et al., 2015). In contrast, polishing and abrasion dominate
in more intact parts of the bedrock (Dühnforth et al., 2010;

Woodard et al., 2019) where individual fractures play an in-
significant role in channelling the erosion. The possibility
that brittle structures from different scales have variance in
their fractal nature (Davy et al., 2010) further emphasises
the importance of multi-scale studies. An example regarding
the absence of fractures in a specific scale of observation is
provided from Olkiluoto, a nuclear-waste-disposal facility in
Finland, where there is a lack of data on intermediate-length
fractures (100–500 m; Fox et al., 2012). This is an issue in the
discrete fracture network (DFN) modelling because without
published data from the intermediate-length gap, the determi-
nation of common power-law exponents for fracture and lin-
eament length data suffers from a significant uncertainty. The
significance of data from this gap is highlighted, as fractures
of these lengths are considered to be potentially hazardous to
the integrity of spent-fuel containers at nuclear-waste repos-
itories due to potential for reactivation (Cottrell, 2022) and
due to the DFN model affecting the subsequent contaminant
transport modelling (Hartley et al., 2018).

1.2 Agenda of our study

By conducting a multi-scale lineament and fracture network
investigation at the mesoscopically isotropic rapakivi gran-
ites at the Åland Islands, Finland, we provide a significant ad-
dition in terms of data and modelling to the currently limited
pool of multi-scale studies conducted in crystalline rocks.
This dataset, and the subsequent multi-scale analysis of it,
will answer research questions on whether the fractures and
lineaments follow common trends (e.g. a power law) in their
lengths across multiple scales. Furthermore, it is of specific
interest whether we can fill the gap of brittle structures with
intermediate lengths (100–500 m) recognised to be missing
in the Olkiluoto fracture dataset. The geologic setting of
the Åland Islands provides unique benefits for a multi-scale
study, as it lacks ductile features. The absence of ductile fea-
tures enhances the recognition of the effects of glacial flow
on the fracture and lineament characteristics, such as inten-
sity, as our results enable the cross-validation of lineament
characteristics with those of fractures without the interfer-
ence from ductile control. Further insight is also gained re-
garding comparisons of topological network characteristics
from fracture networks extracted from multiple scales which
are not commonly included in multi-scale studies, although
they are crucial for realistic discrete fracture network mod-
elling (Maillot et al., 2016; Libby et al., 2019).

We mapped brittle bedrock structures in three different
scales of observation, outcrop (1 : 10), semi-regional (1 :
20 000) and regional (1 : 200 000), and used a combination of
comparable remote-sensing methods to digitise fractures and
interpret lineaments. We characterised the fracture network
properties of all three scales using geometric and topologi-
cal characteristics, including intensity (fracture intensity P21
and dimensionless intensity P22/B22; Sanderson and Nixon,
2015), azimuth, length distributions (e.g. power-law fit at-
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tributes including exponent; Clauset et al., 2009) and con-
nectivity (e.g. connections per trace/branch; Sanderson and
Nixon, 2015).

The results of this paper highlight that scalability studies
using multiple methods and data from multiple scales of the
fracture networks increase the reliability of the fracture net-
work models as compared to ones conducted in a fixed scale.
For example, we highlight a possibility of N–S-oriented lin-
eaments being remains of glacial flow rather than bedrock
structures. Also, our results for the topological connections-
per-branch parameter (Sanderson and Nixon, 2015) show a
trend of increasing values as the scale of observation de-
creases from the outcrop fractures to lineaments, though the
cause might be related to methods rather than natural phe-
nomena. The presented methods and results will be useful in
geothermal bedrock construction and nuclear-waste-disposal
projects, and they further provide a useful framework for fur-
ther field analogue and characterisation studies of local brittle
structures.

2 Geological setting

The bedrock of the main island of Åland is comprised of the
1.58 Ga Åland batholith (Laitakari et al., 1996; Rämö and
Haapala, 2005; Kosunen, 1999), which is a crystalline ra-
pakivi granite consisting mainly of wiborgite and pyterlite
(Geological Survey of Finland, 2017). In comparison to other
complex, polydeformed, crystalline bedrock in southwest-
ern Finland, the rapakivi batholith is overall homogeneous
in character. The emplacement of the rapakivi batholiths
has been generally attributed to crustal extension (Korja and
Heikkinen, 1995; Nironen, 1997), associated with an upward
bulging of the mantle (Haapala and Rämö, 1992; Luosto
et al., 1990). The mesoscopic texture of the rocks is isotropic
(unfoliated), as these rocks were not subjected to signifi-
cant tectonic ductile events associated with major orogenies.
Some authors have associated the emplacement of rapakivi
granites with pre-existing fault and shear zones (Karell et al.,
2014; Kosunen, 1999) within a strike–slip regime (Vigner-
esse, 2005). The largest deformation zone within the vicin-
ity of the Åland batholith is the South Finland shear zone
(Torvela and Annersten, 2005; Väisänen and Skyttä, 2007),
which is a 200 km long E–W- to NW–SE-trending zone that
experienced localised ductile deformation at the end of the
Svecofennian orogeny between 1.85–1.79 Ga (Torvela et al.,
2008). The shear zone ends at the boundary of the batholith,
at least at the current erosional level (Torvela et al., 2008).

The fracture traces that represent the outcrop scale data
within this study are from the northern shoreline of Getaber-
get (Fig. 1), where recent contributions have revealed that the
Åland batholith was subjected to brittle faulting and genera-
tion of associated fracture systems (Ovaskainen et al., 2022;
Skyttä et al., 2023). The observed fractures comprise joints,
extension fractures, veins and faults, which display a range of

Figure 1. Lithological suites (Geological Survey of Finland, 2017),
target areas for lineament extraction (1 : 200 000 covers most of the
main island, while 1 : 20 000 areas only cover the northern and east-
ern parts) and glacial striations mapped by the Geological Survey of
Finland (Geological Survey of Finland, 2014).

lengths from a few centimetres to 200 m. Outside larger fault
zones, joints are arranged in three mutually orthogonal sets
with roughly N–S and E–W sub-vertical and sub-horizontal
orientation. Smaller faults are oriented mostly roughly in E–
W and N–S trends but with variation. The E–W faults have
both dextral and sinistral kinematics and are parallel to sub-
parallel with the E–W joints. The sinistral E–W faults are as-
sociated with kinematically coupled NE–SW extension frac-
tures in their damage zones, whereas the N–S faults have lim-
ited damage zones (Skyttä et al., 2023).

The topography and quaternary deposits on the Åland Is-
lands are shaped by several glaciation cycles during the Pleis-
tocene. Glacial striations (Fig. 1) and distinct glacial land-
forms such as flutings, typically visible in digital elevation
models (e.g. Ojala and Sarala, 2017), indicate that the glacier
moved in approximately N–S directions during the latest
glacial periods. Besides the smooth-abrasion-related glacial
erosion (see above), the fracture systems within the bedrock
contributed towards glacial quarrying, which was particu-
larly intense within individual larger faults (Skyttä et al.,
2023).
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Table 1. Definitions of scales of observation used in this study.
The name of each scale comes from the representative factor that
roughly represents the resolution of the raster used as the base map.
The resolution of each named scale is given as the cell size of the
raster. Areal extent is given as the total target area of the target ar-
eas used in the digitisation of fractures or the interpretation of lin-
eaments.

Representative Cell size Total target
factor/name [m] area [m2]

1 : 10 0.0055 20 708
1 : 20 000 5.0000 230 726 255
1 : 200 000 150.0000 1 096 918 465

3 Data & methods

We identify the different scales of observation used for frac-
ture and lineament interpretation by the representative factor,
i.e. the ratio between a distance on a map and the distance on
the ground (Goodchild, 2011). As an example, 1 : 10 states
that 1 m on the map represents 10 m in nature. However, the
representative factor used for representing the scale of digi-
tal data displayed on a computer screen is not well defined.
This is due to various factors, such as differences in software
and display hardware (Goodchild, 2011). To better specify
the scale of observation, the use of areal extent and resolu-
tion of data are preferred (Goodchild, 2011, 2001), and we
display these characteristics in Table 1, with resolution given
as the cell size of the raster and the areal extent given as the
total target area. The used representative factors should only
be considered to be a convenient naming schema, as the res-
olution better defines the scale of observation. Generation of
traces at all the involved scales is conducted remotely from
aerial datasets, which allows comparisons between the well-
represented sub-vertical features, while the sub-horizontal
ones are underrepresented and hence not further discussed
in this paper.

3.1 Data

Brittle bedrock discontinuities can be classified based on sev-
eral characteristics, including fracture filling, kinematics and
geometry, resulting in a number of terms that can be used to
refer to the different types (e.g. joint, vein, fault and fracture;
Odling et al., 1999). We use the most general term fracture
when referring to brittle discontinuities in general, as we do
not discriminate between different types in the analysis. Cat-
egorisation of the outcrop fractures digitised from orthomo-
saics could be done in the field, but to gather representative
data on circa 40 000 fractures would require significant re-
source and time investment. In addition, the results would be
difficult to integrate with the remotely digitised data, as the
scale of observation would likely be different. Furthermore,
field verification of lineaments is much more difficult due to

Figure 2. (a) Overview of the Getaberget outcrop with local lithol-
ogy (Geological Survey of Finland, 2017). Figure from Ovaskainen
et al. (2022). (b) Drone-imaged orthomosaics superpositioned with
fracture digitisation target areas and digitised fracture traces. Data
from Ovaskainen et al. (2022).

quaternary cover and preferential erosion of the depressions.
We consequently attempt to analyse the data without specific
prior knowledge of the types of features the fractures and lin-
eaments represent. We refer to the networks of both fractures
and lineaments as fracture networks and use it as a general
term for the collections of fracture or lineament traces.

We used existing fracture trace data published by
Ovaskainen et al. (2022) from the northern shore of the Åland
Islands as the outcrop-scale 1 : 10 dataset (Fig. 2). The data
contain fractures with lengths from centimetres to roughly
30 m. The available trace data were originally digitised from
orthomosaics spanning an area of circa 20 700 m2 using
13 circular two-dimensional target areas along the E–W-
trending Getaberget shoreline. The circle diameters ranged
from 20 to 50 m, and the number of digitised traces within
the circles varied from 358 to 7319. The dataset requires no
modifications for the purposes of this study. However, rather
than investigating each target area individually, we merge the
trace data (n= 42 499) into a single dataset of traces that are
cropped specifically to the associated target areas, resulting
in a trace count of 41 544. There are significant variations in
fracture network properties between the target areas but with-
out apparent spatial trends that could be used to correlate the
characteristics with their location (Ovaskainen et al., 2022).
Therefore, the merging of the data produces an aggregated
dataset of the fracture characteristics, representative for the
entire Getaberget shoreline study area.
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Lineaments in this paper are defined as sub-linear lines on
the surface of the Earth (see e.g. Tyrén, 2011; Nur, 1982)
which are visible in one or more datasets, such as in a digi-
tal elevation model or in a geophysical raster. All lineaments
digitised for this paper are interpreted remotely by three op-
erators working collaboratively, and cross-verification of in-
terpretations between operators was done to try to minimise
subjective bias (see e.g. Andrews et al., 2019; Bond et al.,
2007, for further discussion on subjective biases). The lin-
eaments have not been geologically verified in the field. We
used the publicly available airborne light detection and rang-
ing (lidar) point data published by the National Land Sur-
vey of Finland (2010) to create a digital elevation model
(DEM) for the purposes of lineament interpretation in the
1 : 200 000 and 1 : 20 000 scales. The used point data have a
point cloud density of 0.5 points m−2, and the mean altitude
error is 0.3 m. Specifically, a cell size of 150 m is used for
the 1 : 200 000 scale, and a cell size of 5 m is used for the
1 : 20 000 scale interpretation. We visualise the DEM using a
multi-directional oblique hillshade on top of the DEM raster
to highlight the topographical valleys and slopes (Palmu
et al., 2015). The hillshade has a z factor of 1, the used al-
titude of light is 45◦, and the illumination azimuths are 225,
270, 315 and 360 in degrees. We overlaid the transparent (al-
pha value 0.3) white-to-black hillshade upon the blue-to-red
DEM raster to allow the optimal recognition of linear struc-
tures with variable trends. Furthermore, we calculated the
colour scales of both rasters from the current extent of the
canvas; i.e. the colouring is recalculated dynamically as the
interpreter pans or zooms the map. In the 1:20 000 scale, we
interpreted topographical lineaments from target areas of ca.
231 km2.

In addition to the lidar DEM topographical raster, we inter-
preted geophysical lineaments in the 1 : 200 000 scale using
regional low-altitude magnetic and electromagnetic aerogeo-
physical rasters (Hautaniemi et al., 2005). The flight altitude
and flight line spacing during the acquisition of magnetic
data were 30 and 200 m, respectively, and the acquired raw
data were further processed into various rasters with a 50 m
cell size. We resampled all the geophysical rasters we used
for the 1 : 200 000 scale interpretation to a cell size of 150 m
to match the resolution of the resampled 1 : 200 000-scale li-
dar DEM. The target area for the 1 : 200 000 lineament inter-
pretation covers an area of ca. 1097 km2.

We used the following three magnetic rasters: (i) to-
tal definitive geomagnetic reference field 65 (DGRF-65)
greyscale, (ii) sharp-filtered total field DGRF-65 greyscale
and (iii) tilt derivative (Verduzco et al., 2004). Based on these
three magnetic raster maps, we interpret lineaments along
the recognised linear magnetic maxima and minima, which
ideally correlate with deformation zones characterised by
metamorphically generated magnetite or pyrrhotite or fluid-
induced alteration and leeching, respectively (see Paananen
and Posiva Oy, 2013; Middleton et al., 2015, and references
within both).

We used one electromagnetic raster from the same na-
tional surveying programme, a 3 kHz quadrature component
greyscale map, which we used to interpret electromagnetic
lineaments. Lineaments from this map are interpreted along
the local minima which correspond to either (i) electrically
conductive brittle damage zones (with water and/or conduc-
tive minerals) or (ii) linear topographic depressions caused
by the preferential erosion of brittle damage zones and con-
taining conductive soils with clay minerals and peat along-
side rainwater (see Paananen and Posiva Oy, 2013; Middle-
ton et al., 2015, and references within both).

After the interpretation of lineaments from each source
(the lidar DEM, the magnetic maps and the electromag-
netic map), we integrated the lineaments into a single dataset
where lineaments interpreted from different sources were
merged based on their superposition following (Engström
et al., 2023). Overlapping lineaments were merged along
the overlapping parts, while the deviating segments such
as splays were preserved. This integrated lineament dataset
is the representative dataset used for the 1 : 200 000 scale
in all analyses. We use QGIS 3.14 (QGIS Development
Team 2020) and ARCMAP 10.6.1 to digitise the lineaments
as georeferenced polylines. Similarly to Ovaskainen et al.
(2022), we used the snapping functionality present in both
software packages in order to honour the true abutment rela-
tionship between the traces and consequently to document re-
alistic topological relationships of the network (Nyberg et al.,
2018). To verify the topological consistency of the linea-
ments, the traces are validated with a Python package, FRAC-
TOPO, which provides a validation utility to find e.g. V nodes
and overlapping lineament sections (Ovaskainen, 2022). The
1 : 200 000-scale lineaments were digitised by three persons,
including the main author, while the 1 : 20 000-scale linea-
ments were digitised solely by the main author. The interpre-
tations were done in circular target areas to remove the uncer-
tainty related to the shape of the interpretation area (Mauldon
et al., 2001; Rohrbaugh et al., 2002; Ovaskainen et al., 2022).

3.2 Lineament and fracture network characterisation
and comparison

The interpreted lineament dataset is comparable to the used
fracture trace data because it has been digitised and vali-
dated similarly and is therefore analysable using the same
tool used by Ovaskainen et al. (2022), FRACTOPO. All func-
tionality required for the multi-scale analysis of the linea-
ment and fracture trace data of this paper are implemented
in the main FRACTOPO software repository (Ovaskainen,
2022). The FRACTOPO software itself is based on a num-
ber of open-source Python packages which enable the spe-
cialised geospatial analysis and plotting within this paper.
Most prominently, MATPLOTLIB (Hunter, 2007), GEOPAN-
DAS (Jordahl et al., 2022), NUMPY (Harris et al., 2020),
SHAPELY (Gillies et al., 2022) and POWERLAW (Alstott
et al., 2014) were used. To allow easier reproducibility of
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the results of this study, including most figures and tables,
the methods and associated code are presented in a separate
open repository (Ovaskainen, 2023).

For each scale of observation, 1 : 10, 1 : 20 000 and 1 :
200 000, we present a set of network characterisation results.
Fracture intensity P21 is calculated from the total trace length
that occurs within an area. The derivatives of it, dimension-
less intensity P22 and B22, are calculated by multiplying the
value of fracture intensity P21 by the characteristic trace or
branch length, respectively (Sanderson and Nixon, 2015). As
these two derivative parameters have no units (i.e. they are
dimensionless), they are well suited for intensity compar-
isons between scales. We used equal-area length-weighted
rose plots to visualise the azimuth distributions (Ovaskainen
et al., 2022; Sanderson and Peacock, 2020) and further sub-
divided them into sets that occur in all or in at least two
of the scales. To analyse network topology and to present
topological network characteristics, we determined the topo-
logical branches and nodes (Manzocchi, 2002; Mäkel, 2007;
Sanderson and Nixon, 2015; Nyberg et al., 2018) of the
network using FRACTOPO. Nodes represent interactions be-
tween traces or trace abutments in isolation. Specifically, Y
nodes represent trace abutments to each other, X nodes rep-
resent traces cutting through each other, and I nodes repre-
sent non-connected nodes (Manzocchi, 2002; Mäkel, 2007;
Sanderson and Nixon, 2015). The node types can be gen-
eralised to be connected or unconnected where the X and
Y nodes are connected (C) and where I nodes are uncon-
nected (I). Using this generalisation, the branches, which are
the trace segments between the nodes, can be given types of
C–C, C–I and I–I, where the type is determined by the end
nodes of each segment (Sanderson and Nixon, 2015). The
branches and nodes were analysed for scale-independent es-
timates of network connectivity by plotting the relative pro-
portions of different types of nodes and branches into ternary
plots (Manzocchi, 2002; Sanderson and Nixon, 2015) and by
calculating the parameters of connections per trace and con-
nections per branch (Sanderson and Nixon, 2015).

Regarding the fracture and lineament lengths, we deter-
mined power-law, lognormal and exponential distribution fits
to trace length data using FRACTOPO, which in turn uses
the POWERLAW package (Alstott et al., 2014) for maximum
likelihood estimation of the fits using the probability density
function Clauset et al. (2009). Following Bonnet et al. (2001)
and Clauset et al. (2009), the power-law-modelled distribu-
tion of lengths n(l) is represented as a function of the power-
law exponent a and a constant A as follows:

n(l)= A× la . (1)

Along with the length distribution fits, the POWERLAW
package automatically determines the cut-off value for the
length data below which lengths do not seemingly fit the
same power-law exponent. This truncation cut-off at the tail
end of the distribution is attributed to the fixed scale of obser-
vation (see e.g. Bonnet et al., 2001; Pickering et al., 1995, for

a discussion on the truncation and censoring of sampling is-
sues for fractures). For fracture trace data, the need for a trun-
cation cut-off is attributed to the insufficient ability to digitise
the smallest fractures visible in the images due to insufficient
resolution (Pickering et al., 1995; Bonnet et al., 2001). To
visualise the length distributions, we plotted the lengths on
the x axis and the complementary cumulative number of the
length distribution on the y axis. Both axes, x and y, are log-
arithmically scaled. Cumulative number in this study means
a running integer number starting from 1 (the shortest frac-
ture), then counting upwards and ending at the longest. The
prefix “complementary” means that the cumulative number
is then inversed so that the longest fracture has the small-
est value. If the data are power-law distributed, the scatter
data on the plot will follow a sub-linear trend with an ex-
pected deviation from the trend at some cut-off value. We
tested the goodness of fit of a power-law trend by compar-
ing the fit to the fit of a lognormal distribution. We display
the log-likelihood ratio R and ratio significance p values of
the likelihood comparisons (Alstott et al., 2014). The log-
likelihood ratio R is positive when the power-law trend is
more likely, and it is negative when the lognormal trend is
more likely. High statistical significance of the comparison is
described by low p values, where a p value of less than 0.1 is
considered to be statistically very significant (Clauset et al.,
2009). Because the power-law fit typically requires a cut-off
when comparing the different distributions, all comparisons
are made to the cut-off-truncated (i.e. cut) data rather than
to the full-length data to enable the comparison of the fits
as recommended by Clauset et al. (2009). Furthermore, we
analysed the lengths of the network branches and used the
same determination method as used for the traces to fit dif-
ferent potential distributions to the branch length data. The
lengths of topological branches are less subject to subjec-
tive bias related to the interpreter (Sanderson and Nixon,
2015; Loza Espejel et al., 2020; Sanderson and Nixon, 2018).
Consequently, the results of the length distribution analysis
of branches are potentially better suited to comparisons be-
tween scales of observation in this study or to comparisons
to other studies of branch length distributions (Sanderson
and Nixon, 2015; Loza Espejel et al., 2020; Sanderson and
Nixon, 2018; Lahiri, 2021). In the Appendix, we also display
power-law, lognormal and exponential fits to the full-length
data for both traces and branches along with their associated
statistical characteristics (Fig. B1 and Table B1 in Appendix
B, respectively). This analysis is included in the Appendix
due to the inability to compare the fits statistically to fits
to data with the applied cut-offs. Figure B1 in Appendix B
shows that the power law cannot model the lengths without a
cut-off for small lengths, as it disproportionately follows the
horizontal trend of the tail lengths.

In addition to the truncation effect, our trace data are prob-
ably also affected by censoring, i.e. the inability to sample
the longest traces due to limited target areas (Bonnet et al.,
2001; Pickering et al., 1995). To investigate the effects of
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censoring on trace length data, we plot the power-law expo-
nent, the truncation cut-off and the total cut-off proportion
as a function of censoring cut-offs. The visual inspection of
these plots can be used to compare the different scales re-
garding the effect of censoring. However, these plots cannot
be used to statistically determine the censoring cut-off. How-
ever, they can provide alternative power-law exponent values
for all scales if censoring is interpreted or assumed to affect
the data. Although this analysis could be expanded with the
addition of lognormal and exponential fit characteristics and
comparisons to the power law, further analysis is out of scope
of this study, as the power law is the basis for multi-scale
length analysis. The effect of censoring on branch lengths
has not been widely studied and is probably of less signifi-
cance than for traces (Sanderson and Nixon, 2015). Thus, it
is not examined in this study.

As we had trace length data of structures from multiple
scales of observation, we could investigate the potential frac-
tal nature of the lengths by plotting all trace length data onto
a single plot and fitting a power-law function to the data (Sor-
nette et al., 1990; Davy, 1993; Bonnet et al., 2001; Davy
et al., 2010). We conducted this analysis as there is physical
rationale for brittle structure trace lengths to follow power-
law distributions across different scales of observation (Bon-
net et al., 2001). To normalise the scale of observation we
divided the complementary cumulative numbers (CCMs) of
each scale dataset by the total area of the target area to get the
area-normalised complementary cumulative numbers (ANC-
CMs) following Bonnet et al. (2001). Rather than using all
the trace length data, we used the truncation cut-offs, de-
termined from individual length distributions, to remove the
tails (lowest trace lengths) from the distributions before fit-
ting the multi-scale trend. The trace length data might also
be affected by censoring, which might skew the multi-scale
length distribution. No method is known to the authors that
could reproducibly determine both the truncation and cen-
soring cut-offs simultaneously for all scales in multi-scale
length analysis. Therefore, we refrained from using a cen-
soring cut-off. We base this decision both on the lack of a
reproducible method and due to our fitting procedure using
the complementary cumulative number. The use of the cu-
mulative number causes the number of data points to affect
the weighting of the fit. Subsequently, the tail lengths would
disproportionately affect the trend of the fit due to the high
quantity of low lengths compared to the head lengths, which
have a negligible effect on the trend. Consequently, using
truncation cut-off for the tail lengths is more important than
using a censoring cut-off for the head lengths. The trunca-
tion cut-offs can also be reproduced, although our procedure
only determines them from the single-scale length data. To
fit the power-law trend, we could not use the POWERLAW
package, as it does not support automatic fitting to multi-
ple, separate distributions simultaneously. Rather, we used
a least-squares polynomial-fit function, POLYFIT from the
NUMPY Python package (Harris et al., 2020), and assessed

the multi-scale goodness of it with the mean squared log-
arithmic error (MSLE). The fit is done to the logarithm of
the length and ANCCM data, as implemented in FRACTOPO
(Ovaskainen, 2022). This is in contrast to using the proba-
bility density function, as was done for single-scale length
distributions. However, the resulting exponents are still com-
parable. Using multi-scale azimuth sets determined from a
visual inspection of rose plots of the scales of observation,
we could further investigate the possibility of fitting multi-
scale power-law trends to multi-scale length data that are cat-
egorised by azimuth set. The approach has the potential to re-
veal differences between the length distributions of fractures
and lineaments in different azimuths (e.g. Skyttä et al., 2021;
Ceccato et al., 2022). Of particular interest is whether the ef-
fect of glacial erosion has caused differences in the length
distributions of features in different azimuths.

4 Results

4.1 Lineament interpretation

Lineament interpretation and subsequent integration of to-
pographic and geophysical lineaments in the Åland Islands
resulted in 201 integrated lineaments in the 1 : 200 000 scale.
The number of lineaments from each different interpretation
source in the 1 : 200 000 scale is displayed in Table 2. The
addition of geophysical rasters to complement lidar DEM-
based interpretation resulted in a significant number of addi-
tional lineaments. Specifically, a significant number of geo-
physical lineaments with a NW–SE-trending azimuth were
added (Fig. 3). The effect of glacial erosion in the N–S di-
rection is apparent in the lidar raster but is not visible in any
of the geophysical rasters. Practically, no N–S-oriented linea-
ments were interpreted from the geophysical rasters, whereas
in the lidar raster, a significant number of such lineaments
were digitised in the 1 : 200 000 scale. Lineament digitisation
in the scale 1 : 20 000 was limited to the lidar DEM raster,
as the geophysical rasters lacked the resolution for the more
accurate extraction possible in the 1 : 20 000 scale. The digi-
tisation resulted in 609 lineaments, which are visualised in
Fig. 4a. The northern target area for 1 : 20 000 lineament in-
terpretation covers the Getaberget hill area and the surround-
ing terrain (Fig. 1). Because the hill area is distinctly better
exposed than the neighbouring terrain, the interpreted linea-
ment density is higher in this more exposed and elevated area
(Fig. 4a)

4.2 Multi-scale network characterisation

Scalar network characteristics of each scale dataset are col-
lected in Table 3. The characterisation consists of geometric
and topological parameters which can be used to compare
the scales. Of special interest are the dimensionless param-
eters (dimensionless intensity P22 and B22, connections per
trace, connections per branch, and trace and branch power-
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Figure 3. All panels (a–c) contain the 1 : 200 000-scale lineaments that were interpreted using the displayed raster. In the case of panel (b) two
other magnetic maps were used (total field DGRF-65 and tilt derivative DGRF-65) to interpret the displayed lineaments (see Appendix A).
(a) Map of a light detection and ranging (lidar)-based digital elevation model (DEM) with a hillshade overlay. (b) Map with greyscale-
visualised sharp-filtered DGRF-65 magnetic data. (c) Map with greyscale-visualised 3 kHz quadrature component electromagnetic data.
(d) Same map as panel (a) but with the integrated lineaments overlaid on top.

Figure 4. Lidar DEM overlaid with digitised 1 : 20 000-scale lineaments and the two separate target areas. (a) Northern area of Getaberget.
(b) Eastern area near Godby.

Solid Earth, 14, 603–624, 2023 https://doi.org/10.5194/se-14-603-2023



N. Ovaskainen et al.: Detailed investigation of multi-scale fracture networks at Åland Islands, Finland 611

Table 2. Counts of digitised fractures and lineaments from each
source that intersect their respective target areas.

Raster source Count

Lidar 1 : 200 000 150
Magnetic 1 : 200 000 48
Electromagnetic 1 : 200 000 21
Integrated 1 : 200 000 201
Lidar 1 : 20 000 609
Orthomosaics 1 : 10 41 544

law exponents), as these are especially suited for compar-
isons between scales of observation (Sanderson and Nixon,
2015; Goodchild, 2001). The scale-dependent fracture inten-
sity P21 has an expected trend of higher intensity with higher
scale, with the 1 : 10 scale having the highest value and the
1 : 200 000 scale having the lowest. The trend is opposite
for dimensionless intensity B22, with the 1 : 200 000 scale
having the lowest value. Connections per trace and connec-
tions per branch display a trend with values decreasing as the
scale increases, with the 1 : 10 scale having the lowest value.
While the values of connections per branch are quite simi-
lar for the 1 : 20 000 and 1 : 200 000 scales (1.75 and 1.85,
respectively), the difference is amplified by the limited range
of values for connections per branch (0.0–2.0; Sanderson and
Nixon, 2015).

The individual azimuth and length analysis results for each
scale are visualised in Fig. 5, where trace azimuths are rep-
resented with equal-area length-weighted rose plots (Sander-
son and Peacock, 2020) and where trace and branch lengths
are modelled with power-law, lognormal and exponential fits.
Based on the displayed rose plots (Fig. 5a), three distinct
azimuth sets occur in all scale datasets (Table 4). The sets
occur with different intensities in different scales, which is
recorded in Table 4 with the following numbering: 1 equals
the most abundant set, and 3 equals the least abundant set.
Relative abundance is based on the displayed percentages
of the total trace length of each set in Fig. 5a. The relative
abundance of the sets differs greatly between the scales, and
when the set is labelled as the least abundant (3), the occur-
rence of it in the scale is vague. For example, the N–S set is
barely visible in the 1 : 10-scale rose plot (Fig. 5a), with only
a minor local maximum detectable at around 175◦. Similarly,
the WNW–ESE set is barely detectable in the 1 : 20 000-scale
rose plot without any detectable local maximum.

The exponents of the fitted power-law trends for trace
lengths vary drastically when comparing fractures and
lineament scales: the 1 : 10- and 1 : 20 000-scale fracture
traces have fitted trace power-law exponents of −2.095 and
−2.259, respectively, whereas the 1 : 200 000 traces have
an exponent of −1.14 (Fig. 5b). However, 1 : 10- and 1 :
200 000-scale branch lengths have relatively similar expo-
nents of −3.37 and −2.96, respectively, whereas the 1 :

20 000-scale branch lengths have an exponent of−2.47. Fur-
ther characterisation of the trace length distributions is dis-
played in Table 5, where the power-law fit is compared to
the lognormal fit (see rows with “All”) and the cut-off pro-
portions are displayed. Comparisons to exponential fits are
not displayed, as even visual inspection shows that it does
not model the cut length distributions well (Fig. 5b). For
all scales, the lognormal fit is more probable according to
the R values. However, based on the p values, the lognor-
mal fit is significantly more probable than the power-law fit
for the 1 : 200 000 scale (p value less than 0.1), while the
power law remains a possible alternative for both the 1 : 10-
and 1 : 20 000-scale datasets. The cut-off proportion (i.e. the
amount of data removed by the application of the cut-off) for
the 1 : 10 scale is very high, with 97.82 % of data being cut
off. The proportion is similarly high for the 1 : 20 000 traces,
with a value of 88.08 %, and is significantly lower for the
1 : 200 000 traces, with a value of 35.92 %.

Table 5 also contains fit results to azimuth set-wise-
categorised trace lengths for each scale. For all scales, the
set-wise fits do not drastically differ from the fits to all traces
in terms of power-law exponents. The power-law fits for
1 : 10-scale azimuth set lengths remain candidate fits, expect
for the WNW–ESE set, where the lognormal fit is signifi-
cantly more probable with a p value of 1.45×10−5. For both
the 1 : 20 000 and 1 : 200 000 scales, all azimuth set-wise fits
have p values of over 0.1, indicating that the power-law fit
cannot be ruled out as a candidate model for the trace lengths
of each set. However, for these comparisons, it should be kept
in mind that the azimuth sets occur with very different inten-
sities across the scales of observation (Table 4). Furthermore,
as the traces are subdivided into sets, the sample count within
each set decreases, which lowers the reliability of the results,
especially for the 1 : 200 000-scale lineaments (Table 4). Re-
gardless of these uncertainties, a common trend is noticeable
where the WNW–ESE set traces have the highest power-law
exponents in all scales.

The effect of censoring on individual-scale trace data is
visualised in Fig. 6, where the power-law exponent (Fig. 6a,
d and g), cut-off (Fig. 6b, e and h) and cut-off proportion
(Fig. 6c, f and i) are plotted as a function of censoring cut-
offs ranging from the minimum trace length to the maximum.
For 1 : 10-scale fracture trace data, the application of a cen-
soring cut-off of approximately 25 m seems to cause the auto-
matic truncation cut-off determination to dramatically lower
the truncation cut-off and simultaneously decrease the pro-
portion of data that is removed by the cut-offs for the power-
law fit from the original proportion of circa 98 % (Table 5)
to circa 84 % (Fig. 6b and c). Simultaneously, the power-law
exponent increases to a value in the range of −1.6 to −1.5
(Fig. 6a). For the 1 : 20 000-scale data, the cut-off proportion
is dramatically lower (circa 62 %), with a censoring cut-off
of circa 10 000 m, but the proportion then increases as the
censoring cut-off is lowered more (Fig. 6f). The trends for
1 : 20 000-scale data have similarities with the 1 : 10 data, as
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Table 3. Basic network descriptions of all scales of observation, with units displayed when applicable. EM – electromagnetic 3 kHz quadra-
ture. Mag – magnetic rasters.

Name 1 : 10 1 : 20 000 1 : 200 000

Data source(s) Orthomosaics Lidar Lidar + EM +Mag
Number of tracesa 40 654 539 157
Number of branchesa 93 125 1965 1151
Number of traces (Real)b 41 618 621 206
Area [m2] 20 707.55 2.31× 108 1.10× 109

Trace max length [m] 34.86 13 223.49 32 635.24
Trace mean length [m] 1.0 1290.21 6698.69
Branch max length [m] 9.57 2789.28 8501.36
Branch mean length [m] 0.45 407.75 1198.38
Fracture intensity P21 [ m

m2 ] 2.01 3.47× 10−3 1.26× 10−3

Dimensionless intensity P22 2.01 4.48 8.43
Dimensionless intensity B22 0.9 1.42 1.51
Trace power-law exponent −2.09 −2.26 −1.14
Branch power-law exponent −3.37 −2.47 −2.96
X 9771 (10 %) 419 (27 %) 423 (57 %)
Y 32 929 (36 %) 588 (39 %) 148 (20 %)
I 48 380 (53 %) 490 (32 %) 167 (22 %)
C-C 52 586 (57 %) 1460 (77 %) 946 (85 %)
C-I 31 343 (33 %) 391 (20 %) 160 (14 %)
I-I 8311 (9 %) 44 (2 %) 2 (0 %)
Connections per trace 2.1 3.74 7.25
Connections per branch 1.48 1.75 1.85

a Based on node counting (Sanderson and Nixon, 2015). b The absolute (i.e. the real) count of trace geometries.

Table 4. Visually determined multi-scale trace azimuth sets along with the relative abundance in each scale, where 1 equals the most abundant
of the sets and equals 3 the least abundant.

Relative abundance

Azimuth set label and range (degrees) 1 : 10 1 : 20 000 1 : 200 000

N–S (155–25) 3 1 2
NE–SW (25–75) 2 2 3
WNW–ESE (85–135) 1 3 1

the exponent with the censoring cut-off of circa 10 000 m is
also in the range of −1.6 to −1.5 (Fig. 6d). Both 1 : 10 and
1 : 20 000 results are in contrast to the 1 : 200 000-scale data,
where the application of a censoring cut-off somewhat con-
sistently increases the proportion of data removed by the cut-
offs in power-law fitting (Fig. 6i) and decreases the value of
the power-law exponent (Fig. 6g).

The multi-scale power-law fit to all traces is visualised in
Fig. 7a along with fits to trace lengths categorised by the pre-
viously determined azimuth sets in Fig. 7b–c. Based on vi-
sual inspection of the plot with all trace data (Fig. 7a), the 1 :
10-scale fractures and the 1 : 200 000-scale lineaments seem
to follow a common power-law trend, while the 1 : 20 000
lineaments deviate from it. However, the tail cut-offs ma-
jorly affect the distributions and the resulting fits. Also, the
largest length traces (head) within each scale deviate from the

common trend. When comparing the azimuth set-categorised
multi-scale length distributions (Fig. 7b and c), the WNW–
ESE set is somewhat anomalous compared to the rest. Due
to having lower cut-offs, determined from individual dis-
tributions (Table 5), a higher proportion of length data is
used with the WNW–ESE data, which increases the mean
squared logarithmic error (MSLE), but, based on visual in-
spection, a common trend seems more likely for 1 : 10-scale
fractures with intermediate lengths (length data around the
cut-off value of 1.75 m) rather than the higher-length frac-
tures at the head of the distribution (Fig. 7d). The exponent
values of the power-law trends are quite similar across the
different arrangements (Fig. 7). The NE–SW set has the high-
est exponent of −1.12, closely followed by the exponent of
all traces (Fig. 7a–d) and the exponent of the N–S set trace
lengths (−1.19). The WNW–ESE-trending traces have the
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Figure 5. (a) Equal-area length-weighted rose plots of trace azimuths of each scale along with the percentage of the total length that each set
contains. The determined sets do not cover all azimuths, and therefore, the percentages do not add up to 100 %. (b) Length distributions of
traces of each scale on plots with complementary cumulative number (CCM) on the y axis and trace length on the x axis. The distributions
are fitted with power-law, lognormal and exponential fits, and the automatically determined power-law truncation cut-off is indicated with
the vertical dashed line and text. (c) Length distributions of branches with the same setup as subfigure (b), except for the x axis, which has
branch lengths rather than trace lengths.

lowest exponent of −1.30, which deviates slightly from the
other exponents (Fig. 7d) and is in contrast to the set having
the highest exponents when analysing the length distributions
individually (Table 5). The trend of the individual 1 : 10 frac-
ture and 1 : 20 000 lineament distributions in Fig. 7a and b
seems to indicate a power-law exponent lower than the trends
of the lineaments, as is also evidenced by fits to the individ-
ual distributions where the exponent is−2.095 for the 1 : 10-
scale fractures and −2.26 for the 1 : 20 000-scale lineaments
(Fig. 5).

The proportions of topological node types (X, Y and I) and
branch types (C–C, C–I and I-I) from Table 3 are visualised
in Fig. 8 with ternary plots (Manzocchi, 2002; Mäkel, 2007;
Sanderson and Nixon, 2015). From both the node ternary plot
(Fig. 8a) and the branch ternary plot (Fig. 8b), a trend can
be observed where the apparent connectivity of the network
increases as the scale of observation becomes smaller; i.e.
the resolution used for interpretation is poorer. Specifically,
both the proportion of X nodes and C–C branches increases
as the scale becomes smaller, and this is the highest for the 1 :
200 000-scale network. The trend is also observable from the
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Table 5. Parameters of length distribution fits for traces and branches for all scales, along with set-wise fits of traces for all scales. PL –
power law. LN – lognormal. The R value is the log-likelihood ratio, where a positive value indicates that the power-law fit is more likely and
a negative value indicates that the lognormal fit is more likely. The p value represents the significance of the likelihood where low values
(< 0.1) correspond to high statistical significance.

n PL exp. PL cut-off [m] Cut-off % LN sigma LN Mu PL vs. LN R PL vs. LN p

Name

1 : 10 traces all 41 618 −2.09 5.87 97.82 1.5 −2.07 −1.48 0.14
1 : 10 branches all 94 014 −3.37 2.77 99.11 0.95 −1.46 −1.41 0.16
1 : 10 traces N–S (155–25) 9266 −1.81 3.53 94.53 2.42 −8.28 −0.61 0.54
1 : 10 traces NE–SW (25–75) 11 220 −2.34 5.13 97.55 1.48 −2.68 −0.61 0.54
1 : 10 traces WNW–ESE (85–135) 16 138 −1.56 1.75 82.95 1.45 −1.58 −4.34 1.45× 10−5

1 : 20 000 traces all 621 −2.26 3544.37 88.08 0.86 7.27 −0.96 0.34
1 : 20 000 branches all 2037 −2.47 683.96 83.26 0.67 6.09 −2.59 9.71× 10−3

1 : 20 000 traces N–S (155–25) 199 −2.33 3451.3 79.9 0.73 7.64 −0.86 0.39
1 : 20 000 traces NE–SW (25–75) 180 −1.56 1483.87 66.67 1.88 2.97 −0.47 0.64
1 : 20 000 traces WNW–ESE (85–135) 142 −1.35 1046.52 66.2 1.54 5.04 −0.67 0.5
1 : 200 000 traces all 206 −1.14 4178.75 35.92 1.35 7.7 −1.8 0.07
1 : 200 000 branches all 1195 −2.96 2382.63 87.11 0.57 7.39 −1.65 0.1
1 : 200 000 traces N–S (155–25) 72 −1.22 3854.44 34.72 1.44 7.1 −0.9 0.37
1 : 200 000 traces NE–SW (25–75) 56 −1.2 5621.01 50.0 1.12 8.46 −1.03 0.3
1 : 200 000 traces WNW–ESE (85–135) 63 −1.14 4692.67 31.75 1.55 7.19 −0.84 0.4

Figure 6. Plots of power-law characteristics as a function of a range of censoring cut-offs from the maximum trace length to the minimum.
The relationships are shown for the trace lengths of the three scales. (a, d, g) Power-law exponent as a function of censoring cut-offs.
Exponents below −5.0 are included as ticks at the bottom of the plot. (b, e, h) Automatically determined power-law truncation cut-off as a
function of censoring cut-offs. (c, f, i) The total proportion of data cut-off by both censoring and truncation cut-offs as percents as a function
of censoring cut-offs.
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Figure 7. Plots of multi-scale length distributions with similar plot arrangement to panels (b) and (c) of Fig. 5. However, instead of com-
plementary cumulative number, we use the area-normalised complementary cumulative number (ANCCM). The goodness of fit is estimated
using the mean squared logarithmic error (MSLE). The fit is done on the part of the trace length data that is above the truncation cut-off
determined from each individual scale (Fig. 5b; Table 5). (a) Multi-scale power-law fit to all trace length data. (b–d) Fits to trace length data
categorised by defined azimuth sets (Table 4).

values of connections per branch and connections per trace
(Table 3).

5 Discussion

5.1 Gap between outcrop and lineament data

Our use of the 1 : 20 000 scale of observation in digitis-
ing topographical lineaments has the potential to reduce the
uncertainty related to the brittle structures of intermediate
length (100–500 m) which are commonly missing from stud-
ies based on outcrop digitisation and lineament interpreta-
tions (Marrett et al., 1999; Strijker et al., 2012; Loza Espejel
et al., 2020; Fox et al., 2012). These missing length data were
found to be a problem during the creation of a DFN model for
the Olkiluoto spent-fuel-disposal facility where fracture or

lineament data could not be empirically collected with these
lengths (Fox et al., 2012). The DFN model required the cre-
ation of fractures of all sizes using a common scaling law (or
laws), including ones in this missing length range. Without
empirically detected fractures within this size range, an un-
certainty remained regarding the validity of generating frac-
tures of these sizes. The generation was done using a length
distribution model derived from outcrop fracture data or al-
ternatively from lineament data (or both). All three options
required the extrapolation or interpolation into the unknown
intermediate length range (Fox et al., 2012). In our study, al-
though we produce lineament length data in the 100–500 m
length range (Fig. 5b), the optimisation of the power-law fit
to all of the 1 : 20 000-scale length data resulted in a trun-
cation cut-off of 3544 m (Fig. 5; Table 5). With the use of a
censoring cut-off of 10 000 m that was visually optimised for
the lowest cut-off proportion, the truncation cut-off could be
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Figure 8. (a) Ternary plot of topological XYI node proportions
for each scale. (b) Ternary plot of topological (C–C, C–I and I–I)
branch proportions.

lowered to circa 1300 m (Fig. 6e and f). These cut-offs, 3544
and circa 1300 m, can be estimated to be the lowest length
lineaments which we can consistently interpret without trun-
cation effects caused by the resolution of the lidar DEM in
this scale when assuming that the lineament trace lengths
follow a power law without or with taking into account the
possible censoring of lengths, respectively. In the statistical
comparison between the lognormal and power-law fits to the
1 : 20 000 length data, the lognormal is favoured (Table 5),
but the power law is not ruled out due to the p value being
above 0.1. If this assumption is challenged and lineaments
are assumed to instead follow scale-dependent distributions,

such as the lognormal, the problem of missing data in the
100–500 m length range is solved. However, all possibility
to interpolate length distributions to any other gaps is ruled
out, as the interpolation depends on the lengths following a
scale-independent distribution, such as the power law. Con-
sequently, uncertainty remains around the length data gap be-
tween the 1 : 10 outcrop scale and the 1 : 20 000-scale linea-
ment scale (Fig. 5). The resolution of the lidar DEM could
enable the interpretation of lineaments within this length gap
by using a larger scale of observation (e.g. 1 : 10 000). How-
ever, in the vast majority of the 1 : 20 000 area, based on
visual observation of the lidar DEM (Figs. 3 and 4), the
landforms would become less sub-linear and more uncertain
with regard to whether or not they reflect the structures of
the underlying bedrock. In contrast, where quaternary de-
posits do not overlay the bedrock, such as at the Getaber-
get shoreline outcrops, the bedrock features are directly ob-
servable from the DEM. These areas are, however, limited
when considering both their shape and areal extent and are
better surveyed with drone photography, as the photos have
a significantly higher resolution than the DEM. An alterna-
tive to drone photography is the use of satellite images (e.g.
Bertrand et al., 2015; Mercuri et al., 2023). However, they
generally have lower resolution than drone images and do not
provide any penetration through vegetation, which limits the
area in which they are useful to the same area as the drone im-
ages. Digitisation of fractures longer than the diameter of the
circular target areas used at Getaberget (50 m) could be possi-
ble, but they could not be sampled using circular target areas,
as the width of the polished part of the outcrops is limited
to not much higher than the diameter of 50 m (Ovaskainen
et al., 2022). Using non-circular, irregularly shaped target ar-
eas would add uncertainty to the orientation distributions we
sample from the target area, which would consequently de-
crease the significance of the results (Mauldon et al., 2001;
Rohrbaugh et al., 2002; Ovaskainen et al., 2022). This lim-
its the use of creating lower-resolution drone images for the
purpose of creating lower-scale interpretations from the same
drone-imaged areas as we have done with the lidar lineament
interpretations where we used resampled resolutions of 5 and
150 m. We could digitise traces from scales such as 1 : 20,
but the maximum length of fracture traces would still be lim-
ited to roughly 50 m regardless of the image data used as the
source (drone or satellite).

5.2 Factors affecting analysis

A distinct difference in the data between the three scales is
the significantly higher number of traces within the 1 : 10
scale compared to either of the lineament trace datasets (Ta-
ble 3). Previous studies on the representative trace count re-
quired for trace length distribution analysis have suggested
minimum trace counts of 150 to 300 (Priest, 1993) and be-
low (Bonnet et al., 2001; Zeeb et al., 2013). The 1 : 200 000-
scale lineament trace count of 201 (Table 5) is lower than
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the upper threshold by (Priest, 1993) but is higher than the
minimum recommendations of 200 and 110 by Bonnet et al.
(2001) and Zeeb et al. (2013), respectively. The study by
Ovaskainen et al. (2022) on the Getaberget trace dataset,
which we use as the 1 : 10-scale data, suggested that the sam-
ple area (and simultaneously, the trace count) could be sig-
nificantly reduced to still result in the same characterisation
results for the Getaberget area. But we cannot rule out the
possible effect of low lineament trace counts on the analysis
of trace lengths for the 1 : 200 000 scale. The effect of lower
counts of lineaments might also cause the subjective bias re-
lated to the interpreters of the lineaments to have more effect,
as each individual choice in the lineament interpretation has
more weight.

The lineament interpretation in scale 1 : 20 000 is solely
based on the lidar DEM, whereas interpretation in scale
1 : 200 000 uses geophysical rasters in addition to the DEM
to enhance the detection of bedrock structures. This could
cause the interpreted structures to differ between the scales,
where the structures with high geophysical but low topo-
graphical signals would be more likely to be detected in the
1 : 200 000-scale interpretation. This could explain the lack
of a detectable WNW–ESE set in the 1 : 20 000-scale linea-
ments (Fig. 5; Table 4), which is detected in the geophysical
rasters (albeit as mostly NW–SE-trending lineaments) in the
1 : 200 000 scale (Fig. 3) and corresponds, azimuth-wise, to
the major South Finland shear zone (SFSZ) that seemingly
abuts next to the main Åland island (Torvela et al., 2008). The
WNW–ESE set is represented by a single long lineament that
cuts through the entire eastern 1 : 20 000 target area (Fig. 3b).
However, because it cuts the target area from both ends, it
is removed from any further analysis due to the boundary-
weighting methodology implemented in FRACTOPO (Fig. 5
by Ovaskainen et al., 2022). The set is otherwise represented
by only very few small lineaments (Fig. 5a) The similar az-
imuth trend compared to that of the SFSZ could indicate
that the structures of the Åland rapakivi batholith might in-
herit a structural trend from the SFSZ, which would, conse-
quently, increase the geological significance of the WNW–
ESE-oriented lineaments. The set is more detectable in the
1 : 10-scale fracture traces, of which some correspond to
field-surveyed faults (Skyttä et al., 2023; Ovaskainen et al.,
2022). Based on these observations, we suspect that the lack
of geophysical data in the 1 : 20 000 scale could result in a
lack of structures that have relatively low topographical sig-
nals in that scale, with only the largest WNW–ESE struc-
tures being detectable (Fig. 4b). Consequently, we recom-
mend the supplementation of the 1 : 20000-scale interpreta-
tion with high-resolution geophysical data, as it would in-
crease the certainty of lineament interpretation in that scale.
These uncertainties limit the possibility of using the full reso-
lution of the lidar DEM to map lineaments with intermediary
lengths (100–500 m; continued discussion from Sect. 5.1).
However, geological differences in the quaternary cover and
glacial erosion might make the use of the 1 : 20 000 scale

more successful in other study areas and other geological
bedrock settings.

The bedrock within the 1 : 200 000-scale target area lacks
precursor fabrics caused by tectonic deformation, as the
batholith was emplaced after the Svecofennian orogeny
(Rämö and Haapala, 2005). Consequently, we do not expect
the fracture or lineament pattern to be controlled by local
ductile anisotropies, such as foliations and folds. This simpli-
fies the multi-scale analysis of the fractures and lineaments,
as investigating the controlling effect of such structures is not
required. We do not expect the 1 : 10-scale fracture lengths to
be strata bound, as the lithology is homogeneous crystalline
rock within the entire 1 : 200 000-scale target area (Fig. 1).
However, we cannot have the same expectation for linea-
ments, especially digitised in the 1 : 200 000 scale, as their
interpreted lengths can span tens of kilometres (Table 3) and
they are therefore comparable in size to the sheet-like bod-
ies of rapakivi granite with estimated thicknesses of circa
5–10 km (Rämö and Haapala, 2005). The possible partly
strata-bound nature of lineaments might be noticeable in their
length distributions, where the lognormal distribution fit to
the 1 : 200 000-scale trace length distribution is better, with a
p value of less than 0.1 in the comparison of power-law and
lognormal fits indicating high statistical significance of the
lognormal preference (Table 5; Fig. 3).

We expect that the digitised lineaments which are oriented
roughly N–S are partly affected by the glacial landforms,
e.g. in the form of enhancing their length, as discussed in
a similar study by Ovaskainen (2020). The N–S-oriented lin-
eaments are, based on visual observation of Figs. 3a and 4,
quite continuous, and the effect of glacial erosion is appar-
ent from the lidar raster maps in the form of visible lin-
ear quaternary land features such as possible roches mou-
tonnées. Inspection of the length distributions of the N–S-
oriented lineaments using power-law modelling (Table 5)
shows that the N–S-striking lineaments have the lowest expo-
nents compared to other sets or to all lineaments within both
the 1 : 20 000 and 1 : 200 000 scales, with values of −2.33
and −1.22, respectively. However, the difference is small
compared to other sets for the 1 : 200 000 scale, and the sam-
ple counts of lengths within each set are low enough to pos-
sibly affect the reliability of the results. Some evidence of a
bedrock-related nature of N–S-trending lineaments is present
as local fracture azimuth maxima in individual Getaberget
target areas and in previously surveyed fault data (Figs. 6 and
9 by Ovaskainen et al., 2022). In contrast, there is a lack of
a dominant N–S set of fractures in the aggregated Getaber-
get trace data (Fig. 5a; Table 4) The N–S trend is not vis-
ible in the geophysical magnetic or electromagnetic rasters
either (Fig. 3b and c). In conclusion, through our multi-scale
cross-validation, the inclusion of the N–S-striking lineament
characteristics in e.g. DFN modelling should be done with
caution, and the verification of the existence of N–S-striking
bedrock structures should be done in further studies. How-
ever, the existence of dextral faults trending N–S (Fig. 9 by
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Ovaskainen et al., 2022) provides some evidence of N–S-
striking bedrock structures.

5.3 Multi-scale analysis

Within all panels of Fig. 7, the length distributions seem
to follow the trend of the fitted power law to some degree,
although both the slope and location (below or above the
power-law trend) of individual distributions vary. The differ-
ences in slope compared to the fitted multi-scale power law
can be explained for the 1 : 10 and 1 : 20 000 scales by the
individual power-law exponents of circa −2.0 that deviate
clearly from the 1 : 200 000-scale exponents of circa −1.2.
The difference in location could indicate problems with the
normalisation of the trace length distributions in the multi-
scale plot. On closer inspection of the 1 : 10 length distri-
butions in Fig. 7, the trend that has been fitted to the linea-
ment trace lengths could fit the centre part (which has lengths
below the cut-off) of the 1 : 10 length distributions. If the
cut-off was around 1 m, that part would be included in the
fitting, and the trend would have a better continuation, at
least visually. However, the head (highest length traces) of
the 1 : 10 distribution would still not fit the multi-scale power
law, possibly indicating the need for both a tail (i.e. trunca-
tion) and a head i.e. (censoring cut-off). The heads of both
1 : 20 000- and 1 : 200 000-scale distributions similarly devi-
ate from the trend. Using a censoring cut-off of circa 25 m
for 1 : 10 fracture trace data would result in an exponent
of circa −1.6 (Fig. 6a), which is closer to the 1 : 200 000-
scale exponent of −1.14, further showing the possible need
for cut-offs at both ends of the distribution. The use of a
global optimisation algorithm that considers all distributions
and chooses cut-offs, possibly for both head and tail, to fit
a single multi-scale power-law trend rather than determining
only the tail-end cut-off from the individual length distribu-
tions could majorly improve the process while still allowing
the full reproducibility of the fitting process. However, the
option also remains that the fractures and lineaments have
scaling properties that correlate with the scale of observation
rather than having common ones (Kruhl, 2013; Davy et al.,
2010). The possibility of using normalisation methods other
than area normalisation should also be simultaneously inves-
tigated (Bonnet et al., 2001), and the use of the probability
density function in place of the complementary cumulative
number might have more merit when analysing multi-scale
length data (Bour et al., 2002). The occurrence of partly
scale-independent azimuth sets (Fig. 5; Table 4) within our
data might be indicators of hierarchical organisation of the
fracture network, where the different sets cause differences
in the scaling laws between scales of observation, similarly
to a study by Ceccato et al. (2022), where this option was
discussed for their multi-scale fracture and lineament dataset
with scale-variant azimuth sets.

The topological characteristics of the multiple scales fol-
low a set trend where the connections-per-branch values de-

crease when the scale increases from 1 : 200 000 to 1 : 10
(Fig. 8; Table 3). A very similar trend was observed in a
multi-scale study done in the Loviisa region, southeast Fin-
land, within a crystalline rapakivi batholith (Ovaskainen,
2020). The trend could be the result of e.g. source raster
differences (Nixon et al., 2012) or possible differences in
the actual topological characteristics between fractures and
lineaments of different scales. Another option related to the
raster differences is the possible difficulty or subjective bias
in identifying two Y nodes in cases where they are close to
each other and instead labelling the intersection as a single
X node (Andrews et al., 2019). In any case, the possibility of
this kind of trend should be kept in mind when determining
topological characteristics from only a single scale of obser-
vation, as the value might only represent features within that
observation scale. This has implications for DFN modelling
if topological characteristics are included as input parameters
(Libby et al., 2019). Based on the high proportion of X nodes
for the 1 : 200 000-scale lineaments, the connectivity of the
fracture network would be estimated to be higher than the es-
timated connectivity from the 1 : 10-scale fractures, at least
based on this strictly two-dimensional analysis. Future stud-
ies could include the estimation of the sub-horizontal frac-
turing, detected in field surveys (Skyttä et al., 2023), on the
connectivity to extend the analysis to the third dimension.

6 Conclusions

– Based on azimuth analysis of our study area, which
covers most of the main island of Åland, the regional
fracture pattern is dominated by WNW–ESE- and N–
S-oriented lineaments. In particular, the WNW–ESE-
oriented lineaments can be expected to correspond to
large brittle bedrock structures that cut the Åland ra-
pakivi batholith, as they are prominent in geophysical
rasters, whereas N–S-trending lineaments might mostly
represent glacial deposits rather than bedrock structures.

– Using the scale of observation of 1 : 20 000, we gen-
erated lineament data within the 10 to 500 m interval
from which brittle structure data are lacking in past
studies. However, the lineament data we collected did
not fit a common power-law trend for fractures digitised
from the 1 : 10 scale and lineaments interpreted from the
1 : 200 000 scale. Further method development on how
to address this length gap is therefore still required.

– The length distribution analysis of traces of each scale
results in power-law exponents of −2.09, −2.26 and
−1.14 for the 1:10, 1 : 20 000 and 1 : 200 000 scales, re-
spectively. However, lognormal trends are statistically
more likely for all three scales, and the effects of cen-
soring are not taken into account for these values, which
causes high uncertainty in whether these power-law ex-
ponent results are significant for individual-scale length
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distributions. A common power-law exponent fitted to
all scale length distributions simultaneously has an ex-
ponent of −1.13, but the individual distributions might
follow distinct power laws better than a common one.

– Investigation of possible censoring of long traces shows
that 1 : 10-scale fracture and 1 : 20 000-scale lineament
traces might be better modelled with a power law when
using a censoring cut-off in addition to a truncation cut-
off. A power law with an exponent of circa −1.6 was
found to fit both scales individually, with censoring cut-
offs of circa 25 m and 10 000 m, respectively.

– A trend is observed where the 1 : 10-scale outcrop frac-
tures show a lower degree of X nodes and values of con-
nections per branch compared to lineaments from scales
1 : 20 000 and 1 : 200 000. Furthermore, the 1 : 200 000-
scale lineaments have the highest degree of X nodes and
values of connections per branch. This kind of trend in a
theoretically scale-independent characteristic should be
kept in mind in future studies, especially when restricted
to a single scale of observation. The trend might be re-
lated to specific methods of digitisation or data rather
than natural phenomena.

– The lineament data interpreted for the purposes of this
paper are openly available. The data can be used in any
applications where the brittle characteristics of the lo-
cal bedrock are of interest in the Åland Islands, includ-
ing for geothermal-site characterisation purposes or tec-
tonic brittle geological studies.

– The methodological development related to multi-scale
fracture network characterisation displayed in this paper
is freely available as part of the open-source FRACTOPO
package. As a recommendation for future method devel-
opment, the methodology around multi-scale length dis-
tributions requires further development and e.g. the de-
velopment of an algorithm for the purpose of automatic
cut-off optimisation. We welcome all contributions and
discussion related to our open and freely available code
and methods on GitHub.

Appendix A: Other magnetic rasters

The total field DGRF-65 greyscale and tilt derivative DGRF-
65 greyscale magnetic maps are displayed in Fig. A1.

Figure A1. Magnetic lineaments that were interpreted using all
three magnetic maps (sharp-filtered DGRF-65, total field DGRF-
65 and tilt derivative DGRF-65) overlay both of the panels. (a) Total
field DGRF-65 greyscale magnetic map used in magnetic lineament
interpretation. (b) Tilt derivative DGRF-65 greyscale magnetic map
used in magnetic lineament interpretation.
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Appendix B: Lognormal and exponential fits to
full-length data

Full-length distributions of traces and branches for all scales
are presented in Fig. B1, and the associated statistical charac-
teristics are presented in Table B1. The lognormal fit is more
probable than the exponential fit for all traces and branches,
with the exception of 1 : 200 000-scale branch lengths, where
the exponential fit is more probable with high statistical sig-
nificance. The p values for the comparisons between lognor-
mal and exponential fits are statistically significant (< 0.1),
with the exception of 1 : 20 000-scale branch lengths with a
value of 0.15.

Figure B1. (a) Length distributions of traces of each scale on plots with complementary cumulative number (CCM) on the y axis and trace
length on the x axis. The distributions are fitted with power-law, lognormal and exponential fits. (b) Length distributions of branches with
the same setup as subfigure (a), except for the x axis, which has branch lengths rather than trace lengths.
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Table B1. Parameters of power-law, lognormal and exponential length distribution fits for traces and branches for all scales without cut-offs.
PL – power law. LN – lognormal. Exp – exponential. D – Kolmogorov–Smirnov distance. The R value is the log-likelihood ratio, where a
positive value indicates that the lognormal fit is more likely and a negative value indicates that the exponential fit is more likely. The p value
represents the significance of the likelihood where low values (< 0.1) correspond to high statistical significance. Since the power law fails to
model the lengths without cut-offs (Fig. B1), it is not compared statistically to the lognormal and exponential distributions.

n PL exp. LN sigma LN Mu Exp Lambda LN D Exp D LN vs. exp R LN vs. exp p

Name

1 : 10 traces 41 618 −0.02 0.99 −0.49 0.91 0.04 0.12 40.85 0.00× 100

1 : 10 branches 94 014 −0.02 0.96 −1.25 2.2 6.61× 10−3 0.07 66.76 0.00
1 : 20 000 traces 621 −0.02 1.02 6.89 6.04× 10−4 0.02 0.07 5.58 2.46× 10−8

1 : 20 000 branches 2037 −0.02 0.94 5.67 2.36× 10−3 0.06 0.09 1.43 0.15
1 : 200 000 traces 206 −0.02 0.95 8.73 1.02× 10−4 0.05 0.09 3.69 2.26× 10−4

1 : 200 000 branches 1195 −0.02 1.14 6.65 8.09× 10−4 0.09 0.05 −5.65 1.57× 10−8
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