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Abstract. We investigate, using observations from seismic
reflection data, the lateral variability in breakup extrusive
magmatic addition along the strike of the Pelotas segment
of the austral South Atlantic rifted margin and its control
on post-rift accommodation space and sediment deposition.
Our analysis of regional seismic reflection profiles shows
that magmatic addition on the Pelotas margin varies substan-
tially along strike from extremely magma-rich to magma-
normal within a distance of ~ 300km. Using 2D flexu-
ral back-stripping, we determine the post-rift accommoda-
tion space above top volcanics. In the north, where volcanic
seaward-dipping reflectors (SDRs) are thickest, the Torres
High shows SDRs up to ~ 20km thick, and post-breakup
water-loaded accommodation space is much less than in the
south, where magmatic addition is normal and SDRs are thin-
ner. We show that post-breakup accommodation space corre-
lates inversely with SDR thickness, being less for magma-
rich margins and more for magma-normal/intermediate mar-
gins. The Rio Grande Cone, with large sediment thickness,
is underlain by small SDR thicknesses allowing large post-
breakup accommodation space. A relationship is observed
between the amount of volcanic material and the two-way
travel time (TWTT) of first volcanics: first volcanics are ob-
served between 1.2 and 2.2 s TWTT for the highly magmatic
Torres High profile, while, in contrast, for the normally mag-
matic profiles in the south, first volcanics are observed be-
tween 4.2 and 6.5s TWTT. The observed inverse relation-
ship between post-breakup accommodation space and SDR
thickness is consistent with predictions by a simple isostatic
model of continental lithosphere thinning and magmatic ad-
dition melting during breakup. The methodology that we use

in this paper provides a new approach for investigating the
complex magmatic and sedimentary evolution of rifted con-
tinental margins.

1 Introduction

Much recent continental margin research has been focused
on either magma-rich margins showing thick sequences
of magmatic extrusives or, in contrast, magma-poor mar-
gins showing domains of exhumed mantle between thinned
continental crust and new magmatic ocean crust. Sapin et
al. (2021), however, point out that these represent end-
members of rifted margin magmatic type and that a con-
tinuous spectrum may exist between them. In this paper
we investigate, using observations from seismic reflection
data, lateral variability in breakup volcanic addition along the
strike of the Pelotas segment of the austral South Atlantic
rifted margin and its control on post-rift accommodation
space and sediment deposition. Breakup along the austral
segment of the South Atlantic occurred by the propagation
of rift systems accompanied by extensive magmatism, result-
ing in classical volcanic margins characterised by seaward-
dipping reflectors (SDRs) (Koopmann et al., 2014). While
SDRs have been mapped and described in detail through
dip sections along the austral segment at both conjugate
margins (Chauvet et al., 2021), much less is known about
the along-strike evolution of the magmatic system. Stica et
al. (2014) and Franke et al. (2007) described the along-strike
evolution of the magmatic breakup, suggesting that the mag-
matic system was laterally continuous, with breakup evolu-
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tion being controlled by the Tristan mantle plume resulting in
the Parana-Etendeka magmatic province (Thompson et al.,
2001; Peace et al., 2020). In contrast, a more recent study by
Sauter et al. (2023) shows that the magmatic budget along
large parts of the austral segment does not need a hot-mantle
booster and that higher magmatic budgets can only be ob-
served north of the Chui—Cape Cross Fracture Zone when
approaching the Parand-Etendeka magmatic province. How-
ever, Sauter et al. (2023) only analysed the magmatic budget
recorded in the first oceanic crust. There are important re-
maining questions: do variations in magmatic addition occur
along the Pelotas margin, and, if variations do occur, how
are they manifested in the margin architecture and how do
they control margin accommodation space and depositional
history?

The approach we use in our investigation is to restrict our
observations from seismic reflection data to those which do
not depend on speculative interpretations. As a consequence,
our methodology is as follows:

i. We do not consider the nature of the basement onto
which extrusive magmatism is deposited; the identifi-
cation of whether basement is thinned continental crust,
oceanic crust or hybrid is imprecise and ambiguous.

ii. We focus on the more proximal extrusive magmatism
and avoid taking measurements where it transitions into
oceanic layer 2.

iii. We only take measurements for extrusive magmatism
and do not consider intrusive magmatism which cannot
be reliably observed or quantified.

iv. We do not consider the formation processes of extrusive
magmatism; we focus on measured observations from
seismic reflection data.

v. We preferentially take our measurements from time
domain seismic reflection sections which are the pri-
mary observational data set. Depth-converted seismic
sections are model-dependent on the seismic velocities
used in depth conversion; at magma-rich margins, seis-
mic velocities are highly heterogeneous and uncertain
(McDermott et al., 2019) and the resultant depth sec-
tions are unreliable.

Our study focuses on the Pelotas margin of the austral South
Atlantic located north of the Chui—Cape Cross Fracture Zone
and offshore of the southeastern border of the Parand mag-
matic province (Fig. 1). We use four parallel deep long-
offset seismic reflection dip lines that allow us to deter-
mine the along-strike variation in volcanic thickness, sedi-
ment thickness and post-breakup accommodation space. We
first examine the relationship between thicknesses of SDRs
and sediments in two-way travel time (TWTT). We then use
2D flexural back-stripping of depth-converted sections to de-
termine post-rift accommodation space and its relationship
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with breakup volcanic addition. Our results reveal a direct
relationship between the volume of breakup volcanics and
post-breakup sedimentary fill along the Pelotas rifted mar-
gin.

SDRs with long flow lengths and large thicknesses, which
form by extrusive magmatism in a sub-aerial environment,
have been extensively studied (Mutter et al., 1982; Planke et
al., 2000; McDermott et al., 2019; Harkin et al., 2020). How-
ever, volcanic SDRs also form in a deep marine environment
as voluminous effusive sheet flows (Planke et al., 2000), as
shown in Hinz et al. (1999; Fig. 14), Planke et al. (2000;
Fig. 9) and Sapin et al. (2021; Fig. 6), with the top of these
deep marine SDRs often showing perfect distal continuity
with the top of oceanic layer 2. In this paper, we use the term
SDRs to denote the general observation of volcanic seaward-
dipping reflectors not only applied to those formed in a sub-
aerial environment but also to those formed in deep water.

2  Geological setting

The Pelotas margin resulted from the assumed magma-rich
breakup and separation of the Pangaea supercontinent during
the Early Cretaceous. It is located offshore southern Brazil
and is underlain by basement belonging to SW Gondwana.
The continental basement is made of granitoids, schists and
high-grade metamorphic rocks inherited from the Protero-
zoic Dom Feliciano Belt that records successive subduction
and collision phases related to terrane accretion responsible
for a strong NE-SW-trending fabric (Chemale, 2000). The
overlying pre-breakup sedimentary succession was deposited
in the intracratonic Paleozoic Parand Basin, which is capped
by the volcanic Serra Geral Formation (Rossetti et al., 2018)
of the Parana—Etendeka large igneous province (LIP). These
Lower Cretaceous flood basalts correspond to the Parand—
Etendeka large igneous province that is tightly linked with
the breakup of the austral segment of the South Atlantic (Za-
1an, 2004; Stica et al., 2014).

The Pelotas margin formed during the breakup of western
Gondwana leading to the formation of the South Atlantic.
This breakup may be regionally divided into equatorial, cen-
tral and austral segments with the Pelotas margin belonging
to the latter (Stica et al., 2014). Stica et al. (2014) present
a detailed compilation of the rift and breakup evolution of
the Pelotas and conjugate Namibia margins. There is consen-
sus that the austral South Atlantic opening is diachronous,
starting in the south and migrating northward (Franke et
al., 2007). It is generally considered that final rifting and
breakup of the Pelotas margin occurred in the Lower Cre-
taceous, with massive magmatic activity and the emplace-
ment of high volumes of volcanic rocks forming prominent
SDR sequences. The syn- to post-breakup sedimentary in-
fill of the Pelotas margin can be subdivided into three main
mega-sequences: (i) a transgressive mega-sequence (Aptian—
Turonian) which includes the final rift phase, with deposi-
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Figure 1. (a) Map of the austral South Atlantic (adapted from Cassel et al., 2022) showing the location of the four Pelotas margin seismic
reflection profiles examined in this study, the distribution of seaward-dipping reflectors from Chauvet et al. (2021), crustal basement from
Stica et al. (2014) and the Parand large igneous province (LIP) adapted from Rossetti et al. (2018). (b) Regional palaco-map of western
Gondwana adapted from Heilbron et al. (2008) showing the Parand LIP and cratons.

tional environments grading from continental deposits, in-
cluding alluvial conglomerates and lacustrine facies, to shal-
low marine evaporite, carbonate and siliciclastic facies de-
posited during breakup; (ii) an aggradational mega-sequence
(Turonian—Priabonian) with clastic fans in the more proximal
domain and deeper marine shales and siltstone interbedded
with turbiditic deposits in the distal domain; and (iii) a re-
gressive mega-sequence starting in the Oligocene and lasting
to the present, made of clastic fans and deltas that prograde
oceanward over the distal deposits, forming a large regressive
sedimentary wedge (Abreu and Anderson, 1998).

Recently, Cassel et al. (2022) demonstrated how along-
strike variations in tectonic domains along the Andean Con-
vergence Zone respond to the South Atlantic Mid-Ocean
Ridge spreading rate and control the margin evolution. While
many of the previous studies have focused on the down-dip
and along-strike magmatic evolution of the margin (Stica et
al., 2014; Chauvet et al., 2021), little is known about the
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along-strike variations in the post-rift sediment accommo-
dation and sediment architecture and how they are linked to
the volcanic addition. Here we focus on investigating the link
between lateral variations in volcanic additions (e.g. SDR se-
quences) and the subsequent development of accommodation
space and sedimentary infill along the Pelotas margin.

3 Along-strike variation in volcanic addition and
post-breakup sediment thickness

In this study, we interpret four parallel long-offset time-
domain seismic reflection sections provided by TGS, the
locations of which are shown in Fig. 1. We identify in
the seismic sections the following units: (a) basement,
(b) SDR package and (c) sedimentary package. These units
are bounded from top to bottom by the seafloor, the top of
SDRs, the base of SDRs, and the Moho.

Solid Earth, 15, 1265-1279, 2024
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Figure 2. (a) Seismic profiles in TWTT showing interpreted surfaces and units for profile S1. (b) Seismic profiles in TWTT showing
interpreted surfaces and units for profile S3. (c) Locations of the four seismic profiles superimposed on a map of crust thickness from gravity
inversion (adapted from Graca et al., 2019): profile S1 is located in the northern Pelotas margin along the Torres High. Profile S3 is located

in the southern Pelotas margin crossing the Rio Grande Cone.

The basement unit is characterised by chaotic, discon-
tinuous, low-amplitude reflectors (Fig. 2). Lines S1 and S3
(Fig. 2a and b) continentward of distance 100 km show that
the top continental basement tapers down to about 9s TWTT.
Oceanward of 100 km, the top basement remains parallel to
the distal end of the seismic sections. The top basement in-
terface is a smooth horizon onto which the SDRs down-lap.
The SDR package is characterised by several sequences of
oceanward-dipping, oceanward-diverging high-amplitude re-
flectors. SDRs are well expressed on line S1, forming a thick
volcanic package tapering oceanward and overlying both the
tapering and the box-shaped (i.e. uniform thickness) base-
ment. In contrast, for line S3, the SDRs are thin and overlie
only the crustal taper. The interface topping the SDR pack-
age corresponds to a sharp, high-amplitude reflection inter-
preted to separate magmatic extrusives from the post-rift sed-
imentary package. The latter is well stratified, and its reflec-
tors have good lateral continuity and high frequency, show-
ing parallel, sub-parallel, oblique and sigmoidal internal pat-
terns.

Comparison of the four seismic sections in a regional
along-strike perspective (Fig. 3) shows some major differ-
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ences. While in line S1 the continentward termination of
the SDR sequence starts at approximately 30 km at about
2s TWTT, in other sections the SDR package starts further
oceanward at about 4 s TWTT (Fig. 3). The oceanward termi-
nation of the SDR package occurs, except for line S1, at the
inflection point of the top basement, i.e. at the change from a
tapering to a box-shaped basement. Strong along-strike vari-
ations in the thickness of the volcanic (SDR) and sedimen-
tary packages are shown in Table 1 and Fig. 4.

Although all four seismic sections (S1-S4) show vol-
canic SDR packages, the thicknesses of volcanics and
post-breakup sediments show notable changes in verti-
cal thickness along strike. Figure 4a shows a plot of
vertical-sediment-thickness TWTT against corresponding
SDR-thickness TWTT for each profile out to a distance of
300 km. It shows a clear difference between the value ranges
of SDR and sediment thickness between the northern pro-
file S1 (with high SDR and low sediment thickness) and the
southern profiles S3 and S4 (with low SDR and high sedi-
ment thickness). Profile S2 shows an intermediate relation-
ship. The relationship between maximum SDR TWTT thick-
ness and the corresponding sediment TWTT thickness for
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Table 1. Summary of vertical thickness measurements in TWTT
taken from profiles S1-S4, as shown in Fig. 3.

Profile = Maximum Maximum Ratio

vertical vertical between

thickness thickness vertical

of SDR of overlying  SDR and

(s, TWTT) sedimentary sediment

package thickness

(s, TWTT)

S1 6.06 3.80 1.59
S2 2.53 4.00 0.62
S3 1.01 6.00 0.16
S4 0.84 5.80 0.14

each profile is shown in Fig. 4b. An inverse relationship can
be seen; as volcanic (SDR) thickness in TWTT increases, the
corresponding sediment TWTT decreases.

4 Variation in post-breakup accommodation space and
dependency on volcanic addition

In the previous section, we observed an inverse correlation
of post-breakup sediment thickness with volcanic addition.
However, margin sediment thickness is dependent not only
on accommodation space but also on sediment supply, which
is controlled by factors external to margin formation. In this
section, we determine the water-loaded post-rift accommo-
dation space so that we can observe its relationship to vol-
canic addition. This requires flexural back-stripping and de-
compaction to be applied to depth-converted sections.

Solid Earth, 15, 1265-1279, 2024

Figure 5a and c show the depth-converted seismic in-
terpretations for the Torres High and the Rio Grande
Cone profiles shown in Fig. 2. The depth conversion for
post-rift sediment thickness uses a depth-dependent seis-
mic velocity function V(z) =V, +k -z, where z is depth
(in km), Vo =1.75kms™! and k =0.3kms~!km~!. Fig-
ure 8d in McDermott et al. (2019) shows k values between
0.4 and 0.5kms~' km~! for sediments immediately above
top SDRs. However, at depth, these k values produce an un-
realistically high-interval seismic velocity for profiles S2,
S3 and S4 with thick sediment; hence we use a lower val-
ues of k = 0.3kms~! km~!. Decreasing the k values results
in a lower depth-converted thickness of post-rift sediment,
which in turn results in a lower estimate of post-rift accom-
modation space. Our calculation of post-breakup accommo-
dation space is therefore a conservative lower estimate. For
simplicity, we used 6.5kms~! interval seismic velocity for
depth-converting SDRs for all profiles (S1, S2, S3 and S4) to
generate the depth sections shown in Fig. 5. McDermott et
al. (2019) show a laterally variable “skin” of lower-interval
seismic velocity SDRs about 2 km thick above deeper SDRs
with 6.5kms~!. The average interval velocity for the whole
SDR pile is therefore slightly less than 6.5kms~!. Because
we only back-strip the post-breakup sediments (and not the
SDRs), SDR thickness has no influence on the determined
water-loaded post-breakup accommodation space. Errors in
the depth conversion of post-rift sediment thickness does af-
fect the magnitude of water-loaded accommodation space de-
termined by flexural back-stripping and decompaction. How-
ever, these errors are likely to be consistent between profiles;
therefore the relative differences in the determined accom-
modation space between profiles and our overall observa-
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tions and interpretations are not changed. The uncertainty
in seismic velocity required for depth conversion highlights
why we focus in Figs. 4 and 8 on measurements in TWTT;
the primary seismic reflection observation is in TWTT, while
a depth conversion is a model with often substantial uncer-
tainty.

Post-rift accommodation space has been determined
from the depth-converted sections using 2D flexural back-
stripping. This process consists of calculating the isostatic
load of sediments and the consequent isostatic lithosphere
rebound resulting from the removal of that load. This iso-
static rebound is applied to the top basement depth to deter-
mine the bathymetry that would exist at present if no post-
rift sedimentation had occurred. Note that the result of flex-
ural back-stripping and decompaction is not a restoration
to base post-rift; reverse post-rift thermal subsidence is not
included. A detailed description of the 2D flexural back-
stripping methodology is given in Kusznir et al. (1995) and
Roberts et al. (1998). The magnitude of the sediment load
depends on the thickness of the sediment and on the density
increase with depth due to compaction. We assume that the
post-rift sediments are normally pressured and have a shaly
sand lithology. Compaction parameters for a shaly sand are
used (Sclater and Christie, 1980). The SDRs are assumed to
have experienced negligible compaction. 7, = 3km is used
to define the flexural strength of the lithosphere for the flex-
ural back-stripping for removal of post-rift sediment loading
(Roberts et al., 1998). Sensitivity tests to T, are shown in
Fig. S1 in the Supplement.

The resulting water load accommodation space for the Tor-
res High and Rio Grande Cone profiles is shown in Fig. 5b
and d. These are directly compared in Fig. 6. For the same
lateral position, the Rio Grande Cone profile shows signifi-
cantly more accommodation space than the Torres High pro-
file. While the predicted accommodation space is sensitive
to the T, value used in the flexural back-stripping, the signif-
icant difference between accommodation post-rift space for
the S1 and S3 profiles remains.

The southern South American continental margins and ad-
jacent ocean basins, including the Pelotas margin segment,
experienced significant subduction dynamic subsidence in
the Cenozoic as a consequence of Andean subduction of
Nazca oceanic lithosphere (Martinod et al., 2010; Shep-
hard et al., 2012). This recent dynamic subsidence also con-
tributes to the present-day water-loaded post-rift accommo-
dation space. A correction of 500 m for present-day dynamic
subsidence (a probable underestimate) decreases the compo-
nent of post-rift accommodation space attributable to Creta-
ceous continental breakup. This component, directly related
to the formation of the margin, when corrected for subduc-
tion dynamic subduction, is almost twice as large for the
magma-normal southern profile (Rio Grande Cone) than for
the magma-rich northern profile (Torres High).

The along-strike variation in post-rift accommodation
space corrected for Oligocene—Miocene subduction dynamic
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subsidence is shown in Fig. 7. Both Figs. 6 and 7 show that
post-rift accommodation space increases substantially from
north to south. This anti-correlation with the decrease in
volcanic addition observed from north to south is shown in
Figs. 3 and 4.

5 Discussion

5.1 Along-strike variation in magmatic addition along
the Pelotas margin

The austral segment of the South Atlantic margin of South
America is often assumed to be magma-rich along its whole
length; however, our analysis of the seismic reflection in
Sects. 3 and 4 (Fig. 3) demonstrates that this is clearly
not correct. While the northern profile S1 along the Torres
High shows very large thicknesses of volcanic addition indi-
cated by SDR packages up to 20 km thick, the southern pro-
files S3 and S4 across the central and southern Pelotas mar-
gin segments display magmatic thicknesses more consistent
with those of a normal margin, with oceanic crustal thick-
ness ~ 6.5 km (Bown and White, 1994; Dick et al., 2003).

Total magmatic addition on a rifted margin consists of the
sum of magmatic intrusives emplaced within and at the base
of thinned continental crust (often termed magmatic under-
plate) and volcanic extrusives. It is not possible to reliably
quantify magmatic intrusives using seismic reflection and re-
fraction data because their geophysical properties are similar
to those of lower-continental basement rocks (Karner et al.,
2021). In our analysis, we use the thicknesses of volcanic
extrusives (SDRs) as a proxy for total magmatic volume. Es-
timates of the ratio of volcanic extrusives to magmatic intru-
sives/underplate range from approximately 1 : 2 for the vol-
canic margins of the Faroe Islands and Hatton Bank (White et
al., 2008) to 2 : 1 for the Demerara Plateau (Gomez-Romeu
et al., 2022). In all cases, measured thicknesses of volcanic
extrusives represent a lower bound of total magmatic volume.

The north-to-south variation along strike of the volcanic
addition seen in Fig. 3 (in TWTT) and Fig. 7 (in depth)
can be summarised by plotting the TWTT of the maximum
volcanic (SDR) interval against latitude. This north-to-south
variation is shown in Fig. 8a and illustrates that the Pelotas
margin is clearly not uniformly magma-rich. Within a dis-
tance of less than 300km, volcanic addition varies from
extremely magma-rich with SDRs up to 20km thick for
the Torres High profile (S1) to magma-normal for the Rio
Grande Cone profile (S3) in the south.

This large variation in extrusive magmatic volumes along
the strike of the Pelotas margin is consistent with the obser-
vation reported in Sauter et al. (2023). This variation also cor-
relates with the distribution of Serra Geral volcanics (Parana
large igneous province) on land (Figs. 1 and 7). Profiles 3
and 4, with normal magmatic volumes, are located offshore
to where the Serra Geral is absent. In contrast, profile S1,

Solid Earth, 15, 1265-1279, 2024
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which shows the very large SDR thicknesses on the Torres
High, is located offshore where the Serra Geral is very thick
and reaches the coast. The absence of Serra Geral in cen-
tral and southern Rio Grande do Sul coincides with the pres-
ence of cratonic lithosphere on the Sul-Riograndense Shield
(Chemale, 2000). In contrast, on land to the north, the dis-

tribution of Serra Geral coincides with that of the Palaeo-
zoic Parand Basin. As discussed in Sauter et al. (2023), this
observed rapid decrease in magmatic volumes along strike
may suggest that the large magmatic volumes observed in
the north of the Pelotas margin (e.g. Torres High) are gen-
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of the Sul-Riograndense Shield (SRS) where Serra Geral is absent.

erated by a component of mantle inheritance rather than the
usually assumed hot mantle plume mechanism alone.

https://doi.org/10.5194/se-15-1265-2024

5.2 Along-strike variation in accommodation space as
a consequence of magmatic addition

Examination of seismic reflection profiles S1-S4 indicates
that there is an inverse correlation of sediment TWTT with
SDR TWTT thickness (Fig. 3), as shown in the cross-plot
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explanation.

in Fig. 4. Sediment thickness is controlled by many factors,
including source area erosion, sediment transport, deposi-
tion and preservation. As a consequence, we prefer to ex-
amine the lateral along-strike variation in accommodation
space rather than sediment thickness. Post-rift (post-SDR)
accommodation space, determined using 2D flexural back-
stripping, shows large variations along strike (Figs. 5-7),
which inversely correlates with the thickness of extrusive
volcanics.

During rifting leading to continental breakup, syn-rift sub-
sidence occurs in response to thinning of the continental

Solid Earth, 15, 1265-1279, 2024

crust, which is partly offset by thermal uplift from geotherm
elevation (McKenzie, 1978). After breakup, re-equilibration
of the elevated geotherm results in post-rift thermal subsi-
dence. The amount of accommodation space available for
post-rift sedimentation depends on the sum of accommoda-
tion space generated by post-rift thermal subsidence and that
remaining unfilled from the syn-rift stage.

In the north of the Pelotas margin, where magmatic addi-
tion was very large, syn-rift accommodation space was filled
by extrusive volcanics producing almost 20 km of SDRs on
the Torres High (profile S1). These SDRs have long lateral
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flow lengths, which are interpreted to indicate that the top of
the SDRs were deposited at or above sea level (Mutter et al.,
1982; Planke et al., 2000). As a consequence, the accommo-
dation space available for post-rift sedimentation observed
today and shown in Figs. 5-7 consists of only that generated
by post-rift thermal subsidence. In contrast, in the south of
the Pelotas margin (profiles S3 and S4), where magmatic ad-
dition is much less, syn-rift accommodation space was under-
filled, providing an additional contribution to add to accom-
modation space generated by post-rift thermal subsidence.
As a consequence, more accommodation space is available in
the south of the Pelotas margin for sediment deposition above
volcanic extrusives. The observed inverse correlation of ac-
commodation space with the thickness of extrusive volcanics
can therefore be explained by the control of residual syn-rift
accommodation space by the volume of extrusive volcanics.
Put simply, syn-rift accommodation space filled by extrusive
volcanics is no longer available for post-rift sedimentation.

The Pelotas margin has two major present-day offshore
physiographic features: the Torres High in the north (imaged
in profile S1) and the Rio Grande Cone in the south (im-
aged in profile S3). The former exists because of magma-
rich breakup generating very thick SDRs, and the latter is
located where the breakup occurred with much less mag-
matic addition and provided a larger amount of accommo-
dation for thick post-rift sedimentation. Both physiographic
features control oceanic drifts by deflecting ocean currents,
but they have different origins. The variation in magmatic
addition along the Pelotas margin exerts a strong control on
depositional environments.

5.3 Significance of TWTT depth of first proximal
volcanics on seismic reflection sections

Examination of the seismic reflection sections in the time do-
main shows that the TWTT for the first appearance of proxi-
mal SDREs is also very variable. The observed north-to-south
variation in TWTT of first volcanics is plotted as a function
of latitude in Fig. 8b. For the purpose of showing the uncer-
tainty in the measurement, two measurements of the TWTT
of first proximal SDRs are plotted for each profile corre-
sponding to lower and higher measured values. The term
SDR sensu stricto simply means ‘“‘seaward-dipping reflec-
tor”, and, while the common use of the term is applied to vol-
canic seaward-dipping reflectors, seaward-dipping reflectors
can also be generated by sedimentary sequences within fault-
controlled half-grabens. The lower TWTT values shown in
Fig. 8b may correspond to either the onset of volcanics or
sedimentary accumulations; their exact nature cannot be re-
liably determined using the available seismic data alone. In
contrast, the higher TWTT values shown in Fig. 8b repre-
sent a much more certain measurement for the onset of vol-
canics. The TWTT of first volcanic SDRs, using either lower
or higher measured values, shows an inverse correlation with
the magnitude of volcanic addition shown in Fig. 8a.

https://doi.org/10.5194/se-15-1265-2024

The lower and higher measurements of first proximal
SDRs are shown in Fig. 8c for the magma-rich margin pro-
file S1 over the Torres High in the north and in Fig. 8d for the
magma-normal margin profile S3 in the south. For profile S1,
TWTT measurements lie in the range of 1.2 to 2.2s. These
values are similar to those reported by Mutter et al. (1982)
and Planke et al. (2000) for the long-flow-length SDRs on
the Voring segment of the Norwegian margin which formed
at or above sea level and have subsequently thermally sub-
sided. For profile S3, TWTT measurements lie in the range
4.2 to 6.5 s, similar to those reported by Planke et al. (2000)
and Hinz et al. (1999) for the deep-marine-erupted SDRs on
the Exmouth Plateau on the Argentine margins.

We explore this observed inverse correlation using a sim-
ple isostatically balanced model of a rifted margin with vary-
ing amounts of magmatic addition. The simple model, de-
scribed in more detail in Chenin et al. (2023), calculates the
isostatically balanced crustal cross section for the idealised
rifted margin produced by a prescribed thinning taper ap-
plied to continental crust and lithosphere and shows the re-
sulting bathymetry, the remaining thickness of the continen-
tal crust, and the thickness of the new magmatic addition.
The amount of decompression melt is calculated from the
thinning-factor taper using a parameterisation of the decom-
pression melt model of White and McKenzie (1989). Isostat-
ically balanced cross sections are produced for thermally re-
equilibrated lithosphere and at syn-breakup time by includ-
ing lithosphere thermal uplift from the syn-tectonic elevated
geotherm consistent with McKenzie (1978). Magmatic addi-
tion is partitioned into one-third as extrusives overlying the
thinned continental crust and two-thirds as intrusives (under-
plate); in the oceanic domain, these two layers correspond
approximately to oceanic layers 2 and 3. The model is used
to examine the magma-rich or magma-poor consequences for
margin architecture and accommodation space resulting from
increasing or decreasing the amount of decompression melt
with respect to the 7 km generating normal oceanic crust and
also the timing of melt initiation with respect to crustal thin-
ning.

Figure 9 shows isostatically balanced margin cross sec-
tions at breakup (with thermal uplift) and full thermal re-
equilibration for an idealised margin with normal magmatic
addition (left) and magma-rich addition (right). The magma-
normal model assumes a maximum of 7 km magmatic addi-
tion (forming normal-thickness oceanic crust) with decom-
pression melting starting at B = 3, consistent with the de-
compression melt model of White and McKenzie (1989).
The magma-rich model has a maximum magmatic addition
of 10 km (producing a 10 km oceanic crust) with decompres-
sion melting starting at 8 = 2, with the onset of decompres-
sion melting slightly advanced with respect to crustal thin-
ning.

At breakup, the magma-rich model (Fig. 9b) shows the up-
per surface of proximal volcanics at or above sea level con-
sistent with SDRs with long flow lengths, as seen on the Tor-
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res High seismic section S1. In contrast, the normal mag-
matic addition model (Fig. 9a) shows the upper surface of
first volcanics at ~ 2 km water depth corresponding to sub-
marine lava flows erupted onto thinned continental crust and
consistent with the observation that the tops of distal deep-
water SDRs often merge seamlessly with the top of oceanic
layer 2 (Hinz et al., 1999). The water depth of first volcanics
is controlled by the isostatic consequences of the relative tim-
ing of crustal/lithospheric thinning and the onset of melt pro-
duction by decompression melting (see Chenin et al., 2023).
Early melt production relative to crustal/lithospheric thinning

Solid Earth, 15, 1265-1279, 2024

reduces the bathymetry of first volcanics. Factors advancing
the initiation of melt production with respect to crustal/litho-
spheric thinning are elevated lithosphere and asthenosphere
temperature, inherited lithosphere chemical enrichment, and
lithosphere deformation mode (Lu and Huismans, 2021). The
corresponding cross sections after thermal re-equilibration
and subsidence are shown in Fig. 9c and d.

Warner (1987) observed that the Moho TWTT on marine
deep long-offset seismic data was consistently at about 10's
TWTT for thermally equilibrated lithosphere and was re-
markably constant (flat) in time irrespective of the complex-
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ity of the geology above, including sediment thickness vari-
ation. Invoking Warner’s 10 s rule for the Moho TWTT for
thermally equilibrated lithosphere allows the cross sections
shown in Fig. 9c and d to be converted into the time domain
as shown in Fig. 9¢ and f. To do this, basement thickness
is converted to interval TWTT (using a basement velocity
of 6.5kms™!) and subtracted from 10s to give the TWTT
of the top basement; this estimate of the TWTT of the top
basement is therefore independent of the interval TWTT of
bathymetry and post-rift sediments. In the time domain, first
volcanics are predicted to occur at ~ 1.5s TWTT for the
magma-rich model, while, for the magma-normal magmatic
addition model, first volcanics occur at ~ 5.5 s. These model
predictions are consistent with the observed TWTT of first
proximal volcanics between 1.2 to 2.2 s for the Torres High
profile (S1) and 4.2 to 6.5 s for the Rio Grande Cone pro-
file (S3) shown in Fig. 8. It should be noted that the model
prediction assumes a fully equilibrated lithosphere thermal
structure, while the Pelotas margin with Early Cretaceous
breakup age is not yet fully re-equilibrated.

A common classification of rifted margins is whether a
margin is magma-rich, magma-normal or magma-poor. An
obvious approach to distinguishing a magma-rich from a
magma-normal margin, or a margin’s position in between
these two end-members, might appear to be through mea-
surement of the volume of magmatic addition. However, the
problem arises, as highlighted by Tugend et al. (2020), that,
in practice, thinned continental crust at a rifted margin can-
not reliably be distinguished from volcanic extrusives above
it and from magmatic intrusives (underplate) below it for rea-
sons explained by Karner et al. (2021). As a consequence,
it is not possible to accurately measure the volume of mag-
matic addition at a rifted margin. Tugend et al. (2020) and
Chenin et al. (2023) also show that the relative timing of de-
compression melting with respect to crustal thinning may be
as important as magmatic volume in generating a magma-
rich margin. As shown above, the TWTT of first proximal
volcanics may represent a practical and efficient method of
distinguishing a magma-rich from a magma-normal margin
or for placing a margin in between these two end-members.

6 Summary

— The amount of magmatic addition on the Pelotas mar-
gin varies substantially along strike from extremely
magma-rich to magma-normal within a distance of ~
300 km.

— In the north, where the SDR package is thickest, the Tor-
res High shows SDR thicknesses of ~ 20 km, and post-
breakup water-loaded accommodation space is much
less than in the south, where magmatic addition is nor-
mal and SDR thicknesses are small.
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— Post-breakup accommodation space correlates inversely
with SDR thickness, being less for magma-rich margins
and more for magma-normal/intermediate margins.

— The Rio Grande Cone is underlain by small SDR
thicknesses, allowing large post-breakup accommoda-
tion space and the accumulation of large sediment thick-
ness.

— The observed inverse relationship between post-
breakup accommodation space and SDR thickness is
predicted by a simple isostatic model of continental
lithosphere thinning and decompression melting during
breakup.

— In the time domain, a magma-rich margin with sub-
aerial SDR flows shows first volcanics between 1.2 to
2.2s TWTT, while a “normal” magmatic margin has
first volcanics between 4.2 and 6.5 TWTT.

— Our study shows that the TWTT of first volcanics
may provide an alternative approach for distinguishing
magma-rich margins from margins with normal mag-
matic addition compared to estimating total magmatic
volumes.

— The methodology that we use in this paper provides a
new approach for investigating the complex magmatic
and sedimentary evolution of rifted continental margins.
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