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Abstract. Seismic phase picking and magnitude estimation
are fundamental aspects of earthquake monitoring and seis-
mic event analysis. Accurate phase picking allows for pre-
cise characterization of seismic wave arrivals, contributing to
a better understanding of earthquake events. Likewise, accu-
rate magnitude estimation provides crucial information about
an earthquake’s size and potential impact. Together, these
components enhance our ability to monitor seismic activ-
ity effectively. In this study, we explore the application of
deep-learning techniques for earthquake detection and mag-
nitude estimation using continuous seismic recordings. Our
approach introduces DynaPicker, which leverages dynamic
convolutional neural networks to detect seismic body-wave
phases in continuous seismic data. We demonstrate the ef-
fectiveness of DynaPicker using various open-source seis-
mic datasets, including both window-format and continuous
recordings. We evaluate its performance in seismic phase
identification and arrival-time picking, as well as its robust-
ness in classifying seismic phases using low-magnitude seis-
mic data in the presence of noise. Furthermore, we integrate
the phase arrival-time information into a previously pub-
lished deep-learning model for magnitude estimation. We ap-
ply this workflow to continuous recordings of aftershock se-
quences following the Turkey earthquake. The results of this
case study showcase the reliability of our approach in earth-
quake detection, phase picking, and magnitude estimation,
contributing valuable insights to seismic event analysis.

1 Introduction

Seismic phase picking, which plays an essential role in
earthquake location identification and body-wave travel
time tomography, is often performed manually. In order to
achieve adequately automated seismic phase picking, many
conventional approaches have been studied over the past
few decades. Common algorithms developed for seismic
phase picking include short-time average/long-time average
(STA/LTA) (Allen, 1978) and Akaike information criterion
(AIC) (Leonard and Kennett, 1999). The STA/LTA is math-
ematically formulated as the ratio of the average amplitude
over a short time window to the average amplitude over a
long time window. In STA/LTA, an event is detected when
the ratio is greater than the defined threshold. The AIC so-
lution is subject to the assumption that the seismogram can
be split into auto-regressive (AR) segments, where the mini-
mum AIC value is usually defined as the arrival time. How-
ever, neither STA/LTA nor AIC can achieve satisfactory per-
formance for low signal-to-noise ratios (SNRs).

The past decades have witnessed a sharp increase in the
number of available seismic data owing to the advancement
of seismic equipment and the expansion of seismic moni-
toring networks. This has increased the demand for a ro-
bust seismic phase picking method to deal with large vol-
umes of seismic data. Deep learning has the merit of fa-
cilitating the processing of large numbers of data and ex-
tracting their features which makes it successful in diverse
areas, especially in image processing (LeCun et al., 2015).
The implementation of seismic phase picking can be con-
sidered similar to object identification in computer vision.
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Thus, the use of deep learning has been widely embraced in
first-motion polarity identification of earthquake waveforms
(Chakraborty et al., 2022a), seismic event detection (Perol
et al., 2018; Mousavi et al., 2019b; Fenner et al., 2022; Li
et al., 2022b), earthquake magnitude classification and es-
timation (Chakraborty et al., 2021, 2022b, c), and seismic
phase picking (Ross et al., 2018; Zhu and Beroza, 2019;
Mousavi et al., 2020; Li et al., 2021a, 2022a). Stepnov et al.
(2021) stated that seismic phase picking approaches can be
roughly divided into two main streams: continuous seismic
waveform-based and small window-format-based methods.
The former is to process continuous seismic waveforms such
as earthquake-length windows of fixed duration with more
complex triggers. The output of this type of model is the
probability distribution over the fixed window length. The
latter is to split the seismic waveform into small windows
(e.g., 4–6 s (Ross et al., 2018)), where only one centered pick
or noise is included. Then, each window is identified as one
of three classes: P-wave, S-wave, and noise. Stepnov et al.
(2021) concluded that for the former scenarios, these mod-
els can work well when scanning archives, whereas they are
only suitable for pre-recorded data processing because of the
restriction imposed by the required input window length. On
the contrary, considering that the ground motion data are con-
stantly received in small chunks, small windows allow for the
processing to be subsequently adapted to real-time monitor-
ing as well (Stepnov et al., 2021). As a result, the length of
the long waveform can be formed by sequentially adding the
successive chunk to the previous continuous data, and each
chunk can be directly fed into the pre-trained model for class
identification.

Most deep-learning-based seismic phase classification
model architectures largely rely on convolutional neural net-
works (CNNs). A CNN is capable of extracting meaning-
ful features from the input data, which enables the neural
network to achieve a good performance. However, most of
the prevalent CNN-based models perform inference using
static convolution kernels, which may limit their representa-
tion power, efficiency, and ability for interpretation. To cope
with this challenge, dynamic convolution (Chen et al., 2020)
is proposed by aggregating parallel convolution kernels via
attention mechanisms (Vaswani et al., 2017). Compared to
static models, which have fixed computational graphs and pa-
rameters at the inference stage, dynamic networks can adapt
their structures or parameters to different inputs, leading to
notable advantages in terms of accuracy, computational effi-
ciency, adaptiveness, etc. (Han et al., 2021). However, it is
challenging to jointly optimize the attention score and the
static kernels in dynamic convolution. To mitigate the joint
optimization difficulty, Li et al. (2021b) revisited it from the
matrix decomposition perspective by reducing the dimension
of the latent space.

In this work, we pioneer a novel deep-learning-based so-
lution, termed “DynaPicker”, for seismic body-wave phase
classification. Furthermore, the phase classifier trained on

Figure 1. Schematic diagram for the proposed dynamic convolution
decomposition (DCD)-based model. The model architecture repre-
sented on the left side includes a convolutional layer, 1D-DCD lay-
ers, and the classifier. The 1D-DCD block displayed on the right
side is the backbone of the 1D-DCD layer, which is adapted from
the work of Li et al. (2021b) and converted into the 1D case in this
study. In a 1D-DCD block, the input x first goes through a dynamic
branch to generate 3(x) and 8(x), and then to produce the convo-
lution matrix W(x) using Eq. (3).

the short-window data is used to estimate the arrival times
of the P-wave and S-wave on the continuous waveform on
a long time scale. In DynaPicker, the 1D dynamic convolu-
tion decomposition (DCD) adapted from the work of Li et al.
(2021b) on image classification is used as the backbone of
the solution (see Fig. 1 for illustration).

In order to complete seismic body-wave phase classifi-
cation and phase onset time picking, the main steps in this
study are included as follows. First, the impact of different
input data lengths on the performance of seismic phase de-
tection and arrival-time picking are studied on the subset of
the STanford EArthquake Dataset (STEAD) (Mousavi et al.,
2019a). Then, the SCEDC dataset (Center, 2013) without
specific phase arrival-time labeling collected by the South-
ern California Seismic Network is used to train and test
the model in seismic phase identification. Finally, the pre-
trained model is further applied to several open-source seis-
mic datasets to evaluate the model performance in phase
arrival-time picking performance. To this aim, in this study,
the STEAD dataset (Mousavi et al., 2019a), the Italian seis-
mic dataset for machine learning (INSTANCE) (Michelini
et al., 2021), and the dataset across the Iquique region of
northern Chile (Iquique) (Woollam et al., 2019) are used to
verify the model performance in seismic phase picking.

The main contributions of this case study are summarized
as follows:

– This case study first introduces a deep-learning-based
seismic phase identification solution, called “Dy-
naPicker”, which is capable of reliably detecting P- and
S-waves of even very small earthquakes, e.g., the local
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magnitude of the SCEDC dataset ranges from −0.81 to
5.7 ML.

– The results tested on the data of varying lengths indi-
cate that DynaPicker is adaptive to different lengths of
input data for seismic phase identification. Moreover, it
is proved that DynaPicker is robust in classifying seis-
mic phases even when the seismic data are polluted by
noise.

– The testing data and the training data used for seismic
phase identification and phase picking have no overlap,
which proves that DynaPicker is capable of generalizing
entire waveforms and metadata archives from different
regions.

– The CREIME model (Chakraborty et al., 2022b) is used
to perform magnitude estimation for waveform win-
dows for which the P-wave probability surpasses the
threshold of 0.7. The results are highly dependent on
this threshold, and it should be chosen after carefully
looking at the data. It might also be necessary to use
different thresholds for different stations.

2 Methodology

In this study, we develop a 1D-DCD-based seismic phase
classifier to handle seismic time series data. Our model takes
a window of the normalized three-channel seismic waveform
as input and predicts its label as P-phase, S-phase, or noise.
Then, the pre-trained model is employed to automatically
pick the arrival time on the continuous seismic data. Fig-
ure 1 schematically visualizes the proposed model architec-
ture, which consists of convolutional layers, batch normaliza-
tion, dropout, DCD-based layers, and a 1D dynamic classifier
adapted from the work of Li et al. (2021b).

2.1 Dynamic convolution decomposition (DCD)

Dynamic convolution achieves a significant performance im-
provement over convolutional neural networks (CNNs) by
adaptively aggregating K static convolution kernels (Yang
et al., 2019; Chen et al., 2020). As shown in the paper by Li
et al. (2021b), based on an input-dependent attention mecha-
nism, dynamic convolution succeeds in aggregating multiple
convolution kernels into a convolution weight matrix, which
can be described as Eqs. (1) and (2):

W(x)=
K∑
k=1

πk(x)Wk (1)

s.t. 0≤ πk(x)≤ 1,
K∑
k=1

πk(x)= 1, (2)

where the attention scores {πk(x)} are used to linearly aggre-
gate the K convolution kernels {Wk(x)}.

However, the vanilla dynamic convolution suffers from
two main limitations: firstly, the use ofK kernels will lead to
the lack of compactness; secondly, it is challenging to jointly
optimize the attention scores {πk(x)} and static kernels {Wk}

(Li et al., 2021b).
To address the aforementioned issues, Li et al. (2021b)

revisited dynamic convolution from a matrix decomposition
viewpoint. They further proposed dynamic channel fusion to
replace dynamic attention over the channel group to reduce
the dimension of the latent space and to mitigate the diffi-
culty of the joint optimization problem. An illustration of a
DCD layer is given in Fig. 1. The general formulation of dy-
namic convolution using dynamic channel fusion is given as
(Li et al., 2021b):

W(x)=3(x )W0+P8(x)QT , (3)

where 3(x) represents a C×C diagonal matrix (C denotes
the number of channels), and W0 denotes the static kernel. In
the matrix 3(x), the element λi,i(x) is a function of the input
x. The matrix 8(x) of size L×L fuses channels in the latent
space RL associated with the dimensionality L dynamically.
The two static matrices Q ∈ RC×L and P ∈ RL×L are used
to compress the input x into a low-dimensional space and
expand the channel number to the output space, respectively
(More details can be found in the paper by Li et al. (2021b)).

2.2 Seismic phase classifier network architecture

As presented in Fig. 1, the first convolutional layer is ap-
plied to process a three-channel window of seismic data in
the time domain in order to generate a feature representation.
Then, a batch normalization layer (BN) is used to accelerate
the training process and provide stability for the network fol-
lowed by an activation function using a rectified linear unit
(ReLU) (Agarap, 2018). Finally, a max-pooling block (Si-
monyan and Zisserman, 2015) is added to reduce the size of
the feature map, which is followed by a dropout layer (Sri-
vastava et al., 2014) to avoid overfitting. The second part of
the framework comprises several DCD-based layers, which
are used to leverage favorable properties that are absent in
static models. The right part of Fig. 1 shows the diagram of
the 1D-DCD block, where a dynamic branch is used to pro-
duce coefficients for dynamic channel-wise attention 3(x) of
size C×C and dynamic channel fusion 8(x) of size L×L
(Li et al., 2021b). In the dynamic branch, the average pooling
is first applied to the input x and then is followed by two fully
connected (FC) layers associated with an activation layer be-
tween them. For the two FC layers used, the former aims to
reduce the number of channels, and the latter tries to expand
them into C+L2 outputs. Similar to a static convolution, a
DCD layer also includes a BN and an activation (e.g., ReLU)
layer followed by a dropout layer. Finally, the dynamic clas-
sifier uses this information to map the high-level features to
a discrete probability over three categories (P-wave, S-wave,
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and noise wave). The dynamic classifier is also based on a
1D-DCD block.

It is worth noting that the model introduced in this study
can be easily adapted to address inputs with different win-
dow sizes by simultaneously adjusting the sizes of the first
layer and the dynamic classifier layer, respectively. With the
goal of verifying the model robustness, the impact of differ-
ent length data on seismic phase identification is investigated
in the following section. The pre-trained model is extensively
applied to pick arrival time on continuous data. The process
of the arrival-time picking using different window sizes when
feeding the same continuous seismic waveform is schemati-
cally visualized in Fig. 2.

2.3 Phase arrival-time estimation

To achieve seismic phase picking, the following steps are in-
cluded, where the main steps are the same as in GPD (Ross
et al., 2018) and CapsPhase (Saad and Chen, 2021). The
pipeline for phase arrival-time picking on continuous seis-
mic data using the pre-trained phase classifier is visualized
in Fig. 3.

– First, each waveform is filtered using the bandpass fil-
ter. For instance, the data from the STEAD dataset are
filtered within the frequency range 2–20 Hz, following
the CapsPhase (Saad and Chen, 2021).

– Then, the waveform is sampled at 100 Hz followed by
normalization using the absolute maximum amplitude.
For example, for the STEAD dataset, each waveform
has a size of 6000× 3 after pre-processing.

– Afterwards, the data of filtered are divided into several
windows. Each window contains a 4 s three-component
seismogram (400 samples since the sampling rate is
100 Hz), while the window strides with 10 samples such
that the number of overlapping samples between neigh-
bor windows is 390 samples. Therefore, the total num-
ber of windows is as follows:

Nwin =
Ltotal−Lwin

nshift
+ 1, (4)

where Ltotal and Lwin denote the length of the original
waveform after sampling and the length of the window
(e.g., 400 samples in this study), respectively. nshift is
the number of the shift between windows in samples,
and in this work it is empirically set as 10, the same as
CapsPhase (Saad and Chen, 2021).

– Then, the pre-trained classifier is utilized to predict
three sequences of probabilities for each window as-
sociated with P-phase, S-phase, and noise, respectively.
Following the work of Chen et al. (2020), a temperature
softmax function (Goodfellow et al., 2016) is used in

this study to smooth the output probability as follows:

δk =
exp(zk/T )∑
j exp(zj/T ),

(5)

where zk is the output of the classifier layer, and T is
the temperature. The original softmax function is a spe-
cial case when T = 1. As T increases, the output is less
sparse. In this study, the value of T is experimentally set
to 41.

– Finally, the arrival-time detection is declared using the
following equation:

t(P/S) = 0.01× (Winindex× nshift+ nc)+ tstart, (6)

where Winindex denotes the window index of the largest
probability, and tstart is the trace starting time. nc de-
notes the added constant that is 0.5× the window length
for generalization since in the SCEDC dataset (Cen-
ter, 2013) the P-wave and S-wave windows are centered
around the arrival time.

3 Data and labeling

In this work, the dataset provided by Southern California
Earthquake Data Center (SCEDC) (Center, 2013) is used
for model training and testing in seismic phase identifica-
tion. The magnitude range of the data is−0.81 < ML < 5.7.
This dataset comprises 4.5 million three-component seismic
signals with a duration of 4 s including 1.5 million P-phase
picks, 1.5 million S-phase picks, and 1.5 million noise win-
dows. The P-wave and S-wave windows are centered on the
arrival pick, while each noise window is captured by starting
5 s before each P-wave arrival. Finally, the absolute maxi-
mum amplitude discovered on the three components is used
to normalize each three-component seismic record. In this
study, 90 % of the seismograms from the SCEDC dataset
(Center, 2013) are used for model training, and the remain-
ing 5 % of seismograms are employed to test the model per-
formance. Furthermore, we compare the seismic phase clas-
sification performance with a capsule neural network-based
seismic data classification approach, termed “CapsPhase”
(Saad and Chen, 2021), and our previous work, 1D-ResNet
(Li et al., 2022b).

To achieve seismic phase identification, DynaPicker takes
a window of three-channel waveform seismogram data as in-
put, and then for each input, the model predicts the probabil-
ities corresponding to each class (P-wave, S-wave, or noise).
This model has three output labels: zero for the P-wave win-
dow, one for the S-wave window, and two for the noise win-
dow.

1It is important to mention that the pre-trained versions of GPD
and CapsPhase have the softmax function T value, used for seismic
phase classification, set to 1. Therefore, in this study, the tempera-
ture T is specifically set to 4 solely for the phase picking process.
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Figure 2. Visualization of arrival-time picking using DynaPicker for a given normalized seismic waveform. Here, panel (c) shows only one
channel of a real seismogram from the STEAD dataset (Mousavi et al., 2019a). The figure presents the model performance for different input
window lengths of 2, 4, and 6 s; the windows are shifted by 10 samples at a time (for further details on this, refer to the Methodology section).
The subsequent windows are denoted by different colors and shown explicitly in panels (b) and (d). Note that we only show specific windows
around P- and S-arrivals in panels b and (d), respectively, as they are most relevant for the corresponding picks; (a) and (e) show the predicted
probability of P-phase and S-phase arrivals, respectively, for the entire waveform. Each window visualized in panel b is mapped to a vertical
line of the corresponding color in panel (a) at the window index wi representing that window. Similarly, each window visualized in panel
(d) is mapped to a vertical line of the corresponding color in panel (e) at the window index representing that window. The dashed blue and
pink vertical lines in panel (c) represent the true P-phase and S-phase arrival times (provided in the metadata for the dataset), respectively;
analogously, the solid dashed and dotted blue vertical lines in panel (a) indicate the window indices corresponding to the predicted P-arrival
for models trained on 4, 2, and 6 s windows, respectively, and the solid, dashed, and dotted pink vertical lines in panel (e) indicate the window
indices corresponding to the predicted S-arrival for models trained on 4, 2, and 6 s windows, respectively. The P- and S-arrival samples are
considered to be at the center of the picked windows.

In order to further evaluate the model performance in
phase arrival-time picking pre-trained on the SCEDC dataset
(Center, 2013), several subsets of three open-source public
seismic datasets, namely, the STEAD dataset (Mousavi et al.,
2019a), the INSTANCE dataset (Michelini et al., 2021), and
the Iquique dataset (Woollam et al., 2019), are used. Each
waveform in the first two datasets is either 1 or 2 min long.
They can be viewed as good generalization tests of our pro-
posed method. DynaPicker is compared with the general-
ized phase detection (GPD) framework (Ross et al., 2018)

based on CNNs, CapsPhase (Saad and Chen, 2021) based
on capsule neural networks (Sabour et al., 2017), and AR
picker (Akazawa, 2004) to evaluate the performance of phase
arrival-time picking on continuous seismic recordings.

4 Evaluation metrics for seismic phase classification

In this article, noise labels are not treated differently from
phase labels, and thus classifying a noise window correctly
has the same weight as confirming a phase window. The seis-
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Figure 3. Pipeline of arrival-time picking for continuous seismic waveforms given the pre-trained classifier.

mic phase detector can be viewed as a three-class classifier
that decides whether a given time window contains a seismic
phase (P or S) or only noise. Here, the “noise” windows do
not contain P- or S-phases. We can evaluate a deep-learning
model by processing labeled testing data where the true out-
put is known. The accuracy defined below is a simple mea-
sure of a classifier’s performance:

Accuracy=
NC

NT,
(7)

where NC denotes the number of correctly labeled samples
and NT represents the total number of testing samples.

To evaluate the detector’s effectiveness, a confusion ma-
trix (Stehman, 1997) is adopted to reflect the classification
result, and then precision and recall can be defined as fol-
lows:

Precision=
TP

TP+FP
(8)

Recall=
TP

TP+FN.
(9)

The F1-score is computed from the harmonic mean of pre-
cision and recall for each class:

F1-score= 2×
Precision×Recall
Precision+Recall,

(10)

where TN, FN, FP, and TP are the number of true negative,
false negative, false positive, and true positive, respectively.

5 Experiments and results

5.1 Seismic phase classifier training

In this study, for dynamic convolution decomposition units,
all the weight and filter matrices are initialized with a nor-
mal initializer and bias vectors set to zeros. For optimiza-
tion, we use the ADAM (Kingma and Ba, 2014) algorithm,

which keeps track of first- and second-order moments of the
gradients and was invariant to any diagonal rescaling of the
gradients. We used a learning rate of 10−3 and trained the
DynaPicker for 50 epochs, the same as CapsPhase (Saad and
Chen, 2021). In this work, DynaPicker was implemented in
PyTorch (Paszke et al., 2019), and all the training was per-
formed on an NVIDIA A100 GPU. The model was trained
using a cross-entropy loss function with the ADAM opti-
mization algorithm, in mini-batches of 480 records. We used
a dropout rate of 0.2 for all dropout layers.

5.2 Investigation of different input data lengths

Here, we investigate the impact of different input data lengths
on the performance of seismic phase detection and arrival-
time picking using the STEAD dataset. The details of arrival-
time picking using a pre-trained phase classifier can be found
in the following subsections and the Methodology section.

5.2.1 Different length of the input data on phase
classification

To this end, we select 58 018 earthquake waveforms from
the STEAD dataset (Mousavi et al., 2019a) and create three
datasets within different durations (2, 4, and 6 s). There is a
total of 174 054 waveforms including P-wave, S-wave, and
noise wave in each dataset. In this experiment, all data are
re-sampled at 100 Hz and each three-component waveform is
normalized by the absolute maximum amplitude observed on
any of the three components. Similar to the SCEDC dataset
(Center, 2013), P-wave and S-wave windows are centered on
the respective arrival-time picks. Noise windows are captured
from pure noise waveforms. Note that these three datasets
consist of the same events, and only the window length is
different.

Then, each dataset is split into a training dataset (90 %)
and a testing dataset (10 %). The overall testing accuracy
for different-length input data is estimated to be 95.52 %,
97.99 %, and 98.02 % in line with 2, 4, and 6 s, respectively.
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The result demonstrates that DynaPicker can work well with
the input of different time durations.

The confusion matrices corresponding to the input data
with different duration are shown in Fig. 4. We can observe
that the model developed here reaches a high detection accu-
racy for each class, especially in noise window detection as
shown in Fig. 4, where noise waveform is more easily distin-
guishable from P and S arrivals than they are from each other
in the cases of 4 and 6 s data.

In the end, the testing results indicate that our model is
adaptive to different lengths of input data. At the same time,
our model achieves a compatible performance in seismic
phase picking even with low-volume training data.

5.2.2 The impact of different lengths of input data for
continuous seismic records

In this part, the pre-trained DynaPicker on the seismic data
with different time duration is further evaluated on contin-
uous seismic data. Moreover, the model is compared with
EPick (Li et al., 2022a), a simple neural network that in-
corporates an attention mechanism into a U-shaped neural
network. Here, the pre-trained and saved model of EPick is
directly used without retraining. Besides, there is no overlap
between the training data used for seismic phase identifica-
tion and the data adopted in testing the model performance
in phase picking. The testing results are summarized in Ta-
ble 1. Here, we can observe that EPick achieves the best per-
formance in phase picking over DynaPicker by using differ-
ent window sizes. The potential reason is that EPick is pre-
trained on the data labeled with the specific phase arrival time
from the STEAD dataset. Secondly, a larger window size re-
duces the number of the P-phase with an error less than 0.5 s.
Thirdly, in the case where the window size is 4 s, the number
of the S-phase with an error less than 0.5 s is larger than in
the other two cases, e.g., 2 and 6 s.

5.3 Seismic phase classification on 4 s SCEDC dataset

As discussed in the previous subsections, the proposed
model, DynaPicker, can be adapted to the data with differ-
ent lengths and achieves compatible performance.

Here, DynaPicker is further retrained and tested on the
SCEDC dataset (Center, 2013) collected by the Southern
California Seismic Network (SCSN) 2. Then, we compared
our model with CapsPhase (Saad and Chen, 2021) and our
previous work, 1D-ResNet (Li et al., 2022b), with the same
test set. The testing accuracy of DynaPicker is 98.82 %,
which is slightly greater than CapsPhase (Saad and Chen,
2021) (98.66 %) and 1D-ResNet (Li et al., 2022b) (98.66 %).

Different evaluation metrics, such as the Precision, Recall,
and F1-score for DynaPicker, CapsPhase (Saad and Chen,

2For further information regarding the retraining of CapsPhase
and GPD, and the alterations made to DynaPicker, please refer to
the Discussion section.

2021), and 1D-ResNet (Li et al., 2022b), are summarized in
Table 2. As one can see from Table 2, compared with the
baseline methods, DynaPicker can achieve superior perfor-
mance in terms of the F1-score. For precision and recall, Dy-
naPicker also achieves a comparable performance.

Finally, in order to investigate the model performance
when facing more noisy data, the same subset selected from
the STEAD dataset used in 1D-ResNet (Li et al., 2022b) is
utilized. Here, the signal-to-noise ratio (SNR) of the selected
data before adding noise ranges from 0 to 70 dB, and the SNR
is the mean value of SNR over three components for each
signal. The magnitude of the data ranges from 1.0 to 3.0. To
study the impact of different noise levels on model perfor-
mance, the subset is masked by the Gaussian noise (similar
to the method used in EQTransformer (Mousavi et al., 2020))
with mean µ= 0 and standard deviation δ = 0.01, 0.05, 0.1,
and 0.15, respectively. Afterward, these noisy data are fed to
the pre-trained phase classifier to test the model performance.
The testing accuracies of different models are summarized in
Table 3. The results in Table 3 show that (a) large noise re-
duces the model performance, (b) DynaPicker outperforms
CapsPhase and 1D-ResNet, and (c) DynaPicker is robust in
identifying seismic phases when the seismic data are polluted
by noise.

5.4 Seismic arrival-time picking on continuous seismic
records

We next demonstrate the applicability of our model to pick
the seismic phase arrival time for continuous seismic data
in the time domain. The main parameters related to phase
arrival-time picking are studied in the following section. In
this work, DynaPicker is implemented for seismic phase
identification given short-window seismic waveforms same
as GPD and CapsPhase. Hence, DynaPicker is first com-
pared with two window-based methods including GPD and
CapsPhase on both the STEAD dataset and the INSTANCE
dataset. Second, we compare DynaPicker with one of the
state-of-the-art sample-based seismic phase pickers, EQ-
Transformer (Mousavi et al., 2020), on the Iquique dataset
(Woollam et al., 2019). The reason is that, on the one hand,
EQTransformer is a multi-task deep-learning model designed
for earthquake detection and seismic phase picking, which is
trained on the STEAD dataset labeled with specific phase ar-
rival time. On the other hand, the original INSTANCE paper
(Michelini et al., 2021) reported that EQTransformer is used
in picking the first arrivals of P- and S- waves. Therefore, in
this study, the subset of the Iquique dataset (Woollam et al.,
2019) is further applied to achieve a fair comparison between
DynaPicker and EQTransformer.

5.4.1 Comparison with window-based methods

– Application to the STEAD dataset. We randomly select
2×104 earthquake waveforms from the STEAD dataset,
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Figure 4. Confusion matrices for seismic phase classification given different input data lengths: (a) 2 s, (b) 4 s, and (c) 6 s using DynaPicker.

Table 1. Body-wave arrival-time evaluation using different window lengths on the STEAD dataset.

Method No. of No. of µP σP No. of µS σS
undetected abs(e)≤ 0.5 s abs(e)≤ 0.5 s

events for P-pick for S-pick

DynaPicker (2 s) 0 8236 0.027 0.146 3014 −0.048 0.200
DynaPicker (4 s) 0 3734 0.011 0.136 3855 −0.120 0.182
DynaPicker (6 s) 0 2819 0.058 0.218 1733 −0.127 0.224
EPick 0 9873 −0.002 0.052 9663 0.002 0.122

µP and σP are the mean and standard deviation of errors (ground truth − prediction) in seconds, respectively, for P-phase picking. µS and
σS are the mean and standard deviation of errors (ground truth− prediction) in seconds, respectively, for S-phase picking.

out of which 1×104 have a time difference greater than
4 s between P-wave arrival and S-wave arrival, while for
the remainder this difference is less than 4 s and the epi-
central distances are less than or equal to 35 km. Here
we use 4 s as the threshold for waveform selection since
the SCEDC dataset (Center, 2013) with the duration of
4 s is used to train and test the model performance on
seismic phase classification. To study the impact of the
time difference between P and S picks, the events of dif-
ferent time differences are used to verify the robustness
of our model in seismic arrival-time picking for contin-
uous seismic data.
As presented in GPD (Ross et al., 2018) and CapsPhase
(Saad and Chen, 2021), a triggering method is used to
locate arrival picks by setting a threshold. However, the
picking performance is impacted by the threshold. To
overcome this drawback we use the window index with
the largest probability to locate the P and S picks as this
empirically yields the best results.
Table 4 summarizes the testing results of arrival-time
picking on the STEAD dataset. From Table 4, we can
see that (a) our model succeeds in correctly detecting all
seismic events, while about 174 and 115 seismic events
cannot be detected by GPD (Ross et al., 2018) and Cap-
sPhase (Saad and Chen, 2021) for the earthquake sig-
nal with Sarrival−Parrival > 4 s, and about 338 and 139
seismic events cannot be detected by GPD (Ross et al.,
2018) and CapsPhase (Saad and Chen, 2021) for the
earthquake signal with Sarrival−Parrival < 4 s; (b) com-

pared with GPD (Ross et al., 2018), CapsPhase (Saad
and Chen, 2021), and AR picker (Akazawa, 2004), most
of the error between the located P-wave or S-wave picks
and the ground truth are within 0.5s when using Dy-
naPicker. We use 0.5s for our analysis following Cap-
sPhase (Saad and Chen, 2021); (c) DynaPicker is robust
for seismic events of different time differences between
P and S picks. In summary, our proposed model outper-
forms the baseline methods.

– Application to the INSTANCE dataset. We also eval-
uate the picking performance of our model using
the INSTANCE dataset (Michelini et al., 2021) and
compare the picking error with the benchmark meth-
ods. This dataset includes about 1.2 million three-
component waveforms from about 5× 104 earthquake
events recorded by the Italian National Seismic Net-
work. In the metadata, the recorded earthquake list
ranges from January 2005 to January 2020, and the
magnitude of the earthquake events ranges from 0.0 to
6.5. All the recorded seismic waveforms have a duration
of 120 s and are sampled at 100 Hz. We randomly se-
lect 2×104 earthquake waveforms from the INSTANCE
dataset (Michelini et al., 2021), out of which 1× 104

have a time difference greater than 4 s between P-wave
arrival and S-wave arrival, while for the remainder this
difference is less than 4 s and similarly, the epicentral
distances are less than or equal to 35 km.
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Table 2. Results of evaluation metrics on the test dataset Center (2013) for phase classification.

Category Model Precision Recall F1-score Ref.

P-phase
DynaPicker 99.15 % 98.54 % 98.84 % This study
CapsPhase 98.93 % 98.45 % 98.69 % Saad and Chen (2021)
1D-ResNet 98.88 % 98.64 % 98.76 % Li et al. (2022b)

S-phase
DynaPicker 98.87 % 99.04 % 98.96 % This study
CapsPhase 98.89 % 98.63 % 98.76 % Saad and Chen (2021)
1D-ResNet 98.72 % 98.94 % 98.83 % Li et al. (2022b)

Noise
DynaPicker 98.43 % 98.86 % 98.65 % This study
CapsPhase 98.17 % 98.90 % 98.54 % Saad and Chen (2021)
1D-ResNet 98.52 % 98.54 % 98.53 % Li et al. (2022b)

The best-saved model of CapsPhase is directly used here without retraining and, unlike the original
CapsPhase(Saad and Chen, 2021), the output threshold for each class is not used in this work since it reduces the
CapsPhase performance in the testing phase. Bold values represent the best performance.

Table 3. Testing results of different noise levels for phase identification on the STEAD dataset.

Noise level 0.01 0.05 0.1 0.15

CapsPhase (Saad and Chen, 2021) 95.28 % 95.43 % 92.80 % 88.90 %
1D-ResNet (Li et al., 2022b) 96.30 % 96.46 % 93.22 % 89.16 %
DynaPicker 96.88 % 96.73 % 94.49 % 91.26 %

The best-saved model of CapsPhase is directly used here without retraining and unlike the original
CapsPhase (Saad and Chen, 2021), the output threshold for each class is not used in this work since it reduces
the CapsPhase performance in the testing phase. Bold values represent the best performance.

As summarized in Table 5, we can observe that the pro-
posed model outperforms the baseline methods. On one
hand, the proposed model succeeds in identifying the
true label corresponding to each input, which means all
seismic events are detected compared with the baseline
methods used. On the other hand, our model achieves a
lower arrival-time picking error, and it is robust for dif-
ferent time differences between P and S picks. In par-
ticular, our model achieves the lowest mean error in S-
phase arrival-time picking for both cases.

5.4.2 Comparison with sample-based method

The Iquique dataset comprises locally recorded seismic ar-
rivals throughout northern Chile and is used in several previ-
ous studies (Woollam et al., 2019, 2022; Münchmeyer et al.,
2022) to train a deep-learning-based picker. It contains about
1.1× 104 manually picked P-/S-phase pairs, where all the
seismic waveform units are recorded in counts. In this study,
1× 104 P-/S-phase pairs are used, and DynaPicker is fur-
ther compared with the advanced deep-learning model Earth-
quake transformer (EQTransformer) (Mousavi et al., 2020)
to evaluate onset picking. In particular, it is worth noting that
neither DynaPicker nor EQTransformer is retrained on the
Iquique dataset.

First, the confusion matrices for P- and S-phase arrival
picking results of the experiment using DynaPicker and EQ-

Transformer are shown in Fig. 5a and b. We find that out
of the selected 1× 104 signals, EQTransformer misses 243
events, which means that for these misclassified earthquake
events, no arrival pick is detected. Compared with EQTrans-
former, DynaPicker is capable of detecting all earthquake
events including all P-phase and S-phase arrival-time pairs.

Two examples from the Iquique dataset using EQTrans-
former and DynaPicker are displayed in Fig. 5c and d, re-
spectively. The picking result of EQTransformer is imple-
mented by using Seisbench (Woollam et al., 2022), and in
DynaPicker, only the sample of the largest probability is rec-
ognized as P- or S-phases. It can be observed that in Fig. 5c
the P-phase detected by EQTransformer is with a low prob-
ability, and the S-phase is missing, while the P-phase esti-
mated by DynaPicker is of high probability, and S-phase is
also detected as shown in the bottom subplot of Fig. 5c. In
Fig. 5d, EQTransformer detects multiple picks including one
incorrectly detected P-phase, and DynaPicker also picks mul-
tiple P-phase and S-phases. In contrast to EQTransformer, in
DynaPicker only the sample with the largest probability is re-
garded as the true prediction for both P- and S-phases. How-
ever, as shown in the bottom subplot of Fig. 5d, DynaPicker
is capable of determining the truly predicted P- and S-phases
with a larger probability compared to EQTransformer.

Finally, the absolute error between deep-learning-based
model-predicted picks (e.g., EQTransformer and Dy-
naPicker) and manual picks that are below 0.5 s is taken
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Table 4. Body-wave arrival-time evaluation using different methods on STEAD dataset including (a) Sarrival−Parrival > 4 s and (b) Sarrival−
Parrival < 4 s. In each case, 1× 104 samples are used. Following Saad and Chen (2021), the event whose pick predicted by a model has an
absolute error larger than 0.5 s is recognized as false positive.

(a) Sarrival−Parrival > 4 s

Method No. of No. of µP σP No. of No. of µS σS No. of
events abs(e)≤ 0.5 s abs(e)> 0.5 s abs(e)≤ 0.5 s abs(e)> 0.5 s

detected for P-pick for P-pick for S-pick for S-pick

DynaPicker 10 000 9055 0.0002 0.151 945 7696 0.011 0.203 2304
GPD 9826 8975 −0.0036 0.149 851 2623 −0.043 0.193 7203
CapsPhase 9885 8766 −0.018 0.149 1119 5545 −0.112 0.184 4340
AR picker 10 000 7963 0.079 0.133 2037 4011 0.205 0.176 5989

(b)Sarrival−Parrival < 4 s

Method No. of No. of µP σP No. of No. of µS σS No. of
events abs(e)≤ 0.5 s abs(e)> 0.5 s abs(e)≤ 0.5 s abs(e)> 0.5 s

detected for P-pick for P-pick for S-pick for S-pick

DynaPicker 10 000 9405 0.0048 0.091 595 7597 0.0075 0.179 2403
GPD 9662 8890 0.0059 0.092 772 4393 −0.012 0.164 5269
CapsPhase 9861 8767 −0.020 0.084 1094 5545 −0.061 0.164 4316
AR picker 10 000 7755 0.015 0.075 2245 7369 0.126 0.161 2361

µP and σP are the mean and standard deviation of errors (ground truth − prediction) in seconds, respectively, for P-phase picking. µS and σS are the mean and standard
deviation of errors (ground truth − prediction) in seconds, respectively, for S-phase picking. Bold values represent the best performance.

Table 5. Body-wave arrival-time evaluation using different methods on INSTANCE dataset including (a) Sarrival−Parrival > 4 s and
(b) Sarrival−Parrival < 4 s. In each case, 1× 104 samples are used. Following Saad and Chen (2021), the event whose pick predicted by
a model has an absolute error larger than 0.5 s is recognized as false positive.

(a)Sarrival−Parrival > 4 s

Method No. of No. of µP σP No. of No. of µS σS No. of
events abs(e)≤ 0.5 s abs(e)> 0.5 s abs(e)≤ 0.5 s abs(e)> 0.5 s

detected for P-pick for P-pick for S-pick for S-pick

DynaPicker 10 000 8707 0.030 0.130 1293 7530 0.019 0.199 2470
GPD 9623 8231 0.028 0.123 1392 4726 −0.032 0.179 4897
CapsPhase 9598 7948 0.014 0.140 1650 5837 −0.103 0.186 3761
AR picker 9999 7545 0.052 0.118 2454 3274 0.218 0.168 6725

(b)Sarrival−Parrival < 4 s

Method No. of No. of µP σP No. of No. of µS σS No. of
events abs(e)≤ 0.5 s abs(e)> 0.5 s abs(e)≤ 0.5 s abs(e)> 0.5 s

detected for P-pick for P-pick for S-pick for S-pick

DynaPicker 10 000 8690 0.012 0.079 1310 7815 0.0085 0.160 2185
GPD 9833 8109 0.022 0.075 1724 6647 −0.019 0.134 3186
CapsPhase 9872 7984 0.019 0.091 1888 5447 −0.072 0.143 4325
AR picker 10 000 8296 0.016 0.077 1704 5778 0.149 0.168 4222

µP and σP are the mean and standard deviation of errors (ground truth − prediction) in seconds, respectively, for P-phase picking. µS and σS are the mean and standard
deviation of errors (ground truth − prediction) in seconds, respectively, for S-phase picking. Bold values represent the best performance.

into account. For both P- and S-waves, EQTransformer
performs slightly better than DynaPicker in terms of both
the root mean square error (RMSE) and the mean abso-
lute error (MAE). Here, the MAE and RMSE of both P-
and S-waves using EQTransformer are MAE(P)= 0.091 s,

RMSE(P)= 0.095 and MAE(S)= 0.159 s, and RMSE(S)=
0.126 s. And the MAE and RMSE of both P- and S-waves us-
ing DynaPicker are MAE(P)= 0.127 s, RMSE(P)= 0.128 s,
and MAE(S)= 0.198 s, RMSE(S)= 0.137 s. However, it is
worth noting that the original EQTransformer is trained on
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Figure 5. Visualizations of the testing result on the Iquique dataset. In (a) and (b) the confusion matrices from in-domain experiments for
DynaPicker and EQTransformer, respectively, are shown. Here, the pre-trained model of EQTransformer is directly used without retraining
and adopted from Seisbench (Woollam et al., 2022), where DynaPicker is able to detect all earthquake events compared with EQTransformer.
Panels (c) and (d) plot the EQTransformer and DynaPicker predictions on two waveform examples from the Iquique dataset. In (c) and (d),
the upper three subplots are the three-component seismic waveforms where the red and blue vertical lines correspond to the ground truth
arrival time of P- and S-phases from the dataset metadata, respectively, and the bottom subplots display the predicted probability for P- and
S-phases by using EQTransformer and DynaPicker, respectively, where the dashed vertical lines in red and blue depict the locations of the
maximal predicted probabilities of P- and S-phases, respectively. For EQTransformer, in (c) only the P-pick is detected at a low probability,
whereas the S-pick is missing, and in (d) multiple picks are predicted, in particular one incorrectly detected P-phase is detected at a high
probability. For DynaPicker, both the true P- and S-phases are detected with a higher probability compared with EQTransformer.

labeled arrival-time seismic data of the STEAD dataset,
while DynaPicker is only trained on the short-window
SCEDC dataset without phase arrival-time labeling.

5.5 Earthquake detection

In this subsection, we further test the performance of Dy-
naPicker in P-wave onset detection using the published
CREIME model (Chakraborty et al., 2022b) for magni-
tude estimation. We selected varying time intervals of data
recorded on 6 February 2023 to test the detection of diverse
aftershocks (see Table B1). The data correspond to seismo-
grams from stations that are part of the seismic network op-
erated by the Kandilli Observatory and Earthquake Research
Institute, known as KOERI (Kandilli Observatory And Earth-
quake Research Institute, Boğaziçi University, 1971). The in-
formation regarding arrival times, locations, and magnitude

estimations was obtained from the catalog of the Bogazici
University Kandilli Observatory and Earthquake Research
Institute National Earthquake Monitoring Center.

We begin by feeding the aftershock waveform of the 2023
Turkey earthquake data into DynaPicker to obtain the P-
phase probabilities for each sample. We then use both the
waveform windows for which the P-phase probability ex-
ceeds 0.7 as input for the CREIME model to estimate the
magnitude of the aftershocks. Finally, a seismological ex-
pert cross validates the estimated magnitude with the Turkey
earthquake catalog (see Table B1). The results of this anal-
ysis are presented in Fig. 6. The waveform is first analyzed
by DynaPicker. Subsequently, the windows for which Dy-
naPicker P-pick probability is higher than 0.7 are fed to the
CREIME model for magnitude estimation. The magnitudes
predicted by CREIME are shown by the red circles in Fig. 6
and the catalog magnitudes are shown by the purple squares.
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Figure 6. A visualization for combining DynaPicker and CREIME on a seismic recording. DynaPicker uses three-component waveforms
to output probabilities corresponding to P- and S-arrivals. The waveform windows with a P-pick probability higher than 0.7 are fed to
the CREIME model for magnitude estimation. The red circles represent CREIME predictions while the green squares represent catalog
magnitude. A CREIME prediction of less than −0.5 (marked with the dashed purple line in (a)) represents noise. Please note that the time
axis correlates with the Z component of the seismogram, shown in black.

A slight underestimation is observed, which can be attributed
to noise in the data and the use of different magnitude scales.
This will be looked into in future works. A predicted magni-
tude of less than−0.5 by CREIME represents noise. Figure 7
shows two earthquakes that had at least three stations within
1◦. One earthquake is successfully detected at two stations
while the other is detected only in one station.

6 Discussion

6.1 Model retraining

We also performed retraining on all the models, including
DynaPicker, GPD, and CapsPhase, using the SCEDC dataset
and applying the early stopping technique, the same as GPD

(Ross et al., 2018) and CapsPhase (Saad and Chen, 2021).
The SCEDC dataset was divided randomly into a train-
ing dataset (90 %), a validation dataset (5 %), and a test-
ing dataset (5 %). Besides, different from the original Dy-
naPicker, here we employ a large kernel size and replace the
first static convolution layer with the 1D-DCD block. The
testing results for three models are as follows: DynaPicker,
98.96 %; GPD, 98.85 %; and CapsPhase, 98.45 %. The re-
sults indicate that incorporating a larger kernel size and re-
placing the initial static convolution layer with the 1D-DCD
block in the original DynaPicker model indeed contribute
to improving its performance. However, these modifications
did not result in a significant enhancement for DynaPicker.
Conversely, the accuracy of CapsPhase was observed to be
lower compared to the reported findings in the original pa-
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Figure 7. Two example earthquakes from the recent Turkey earth-
quake series and how they were detected using DynaPicker. Green
stations correspond to a successful detection, and dotted red ones to
an unsuccessful detection. The earthquake epicenter is marked with
a star, together with a 1◦ radius around it, the targeted range for Dy-
naPicker. Additionally, we show the active faults in the region, as
taken from Zelenin et al. (2022), with red lines.

per (Saad and Chen, 2021). Moreover, the retrained versions
of DynaPicker and GPD exhibit a greater margin of error
when it comes to seismic phase picking, in contrast to the
original DynaPicker and the pre-trained GPD (Ross et al.,
2018). Consequently, for the seismic phase picking task in
this study, we will utilize the pre-trained models of GPD and
CapsPhase.

6.2 Challenges

In Table B1, it is noted that in some cases, DynaPicker
struggles to detect the phase pick for the continuous wave-
forms of the Turkey earthquake. These challenges necessitate
further investigation and improvement in future endeavors.
Firstly, DynaPicker divides the continuous seismic record
into 4 s overlapping windows, which means its detection per-
formance depends on the arrival-time difference between P-
and S-phases and on the shifted numbers applied. Secondly,
when evaluating the magnitude using CREIME, there seems
to be an underestimation of the magnitude compared to the
catalog values. This discrepancy could be attributed to data
noise or variations in magnitude scales utilized in the catalog.
Last but not least, the data fed for DynaPicker are filtered by
the bandpass filter; hence, the picking performance is contin-
gent upon the quality of the seismic data. Our forthcoming
work aims to address these challenges comprehensively.

7 Conclusions

This study first introduces a novel seismic phase classi-
fier based on dynamic CNN, which is subsequently inte-
grated into a deep-learning model for magnitude estimation.
The classifier consists of a conventional convolution layer
and multiple dynamic convolution decomposition layers. To

train the proposed seismic phase classifier, we use seismic
data collected by the Southern California Seismic Network.
The classifier exhibits promising results during testing with
earthquake waveforms recorded globally, demonstrating its
good generalization ability. Extensive experiments demon-
strate that this model yields a superior performance over sev-
eral baseline methods on phase identification and phase pick-
ing. The results from our work contribute to the existing body
of literature on supervised deep-learning-based methods for
seismic phase classification and demonstrate that with ap-
propriate considerations regarding overfitting and general-
ization, such methods can improve seismological processing
workflows, not just for large catalogs, but also for varying
datasets. Moreover, the proposed model is further validated
for the monitoring task of the 2023 Turkey earthquake after-
shocks.

Appendix A: Parameter investigation

In this part, the impact of different temperatures in the soft-
max function (see Eq. 5 for illustration) and the different
shift numbers (nshift) on the model performance of phase
arrival-time picking for continuous seismic waves is inves-
tigated. Here, 1× 104 samples are randomly selected from
the STEAD dataset (Mousavi et al., 2019a). The distribution
of earthquake magnitudes, earthquake source depth, earth-
quake source distance, and time difference between P-phase
and S-phase arrival time are displayed in Fig. A1.

A1 Impact of different temperatures

In this part, the impact of different temperatures in the
softmax function used on the model performance of phase
arrival-time picking for the continuous seismic wave is inves-
tigated, as summarized in Table A1, in which nshift is fixed
as 10. From Table A1, in this work the temperature T is em-
pirically set to 4.

A2 Impact of shift numbers

This part studies the effect of different shift numbers (nshift)
on seismic onset arrival-time estimation, where the tempera-
ture T is set to 4. From Table A2, we can conclude that the
results of nshift = 5 and nshift = 10 are close, while accord-
ing to Eq. (4), a lower shift number increases the number of
sliding windows, and more time is used to locate the arrival-
time. Hence, in this study, the shift number nshift is set as 10.
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Table A1. Body-wave arrival-time evaluation using different temperatures on the STEAD dataset.

T No. of No. of µP σP No. of µS σS
undetected abs(e) ≤ 0.5 s abs(e)≤ 0.5 s

events for P-pick for S-pick

1 0 8926 0.018 0.132 7168 −0.003 0.199
4 0 9032 0.005 0.125 6984 0.002 0.196
10 0 9063 0.0008 0.123 6857 0.004 0.196
20 0 9084 −0.001 0.122 6797 0.004 0.196

µP and σP are the mean and standard deviation of errors (ground truth − prediction) in seconds, respectively, for
P-phase picking. µS and σS are the mean and standard deviation of errors (ground truth − prediction) in seconds,
respectively, for S-phase picking.

Table A2. Body-wave arrival-time evaluation using different shift numbers on the STEAD dataset.

nshift No. of No. of µP σP No. of µS σS
undetected abs(e)≤ 0.5 s abs(e)≤ 0.5 s

events for P-pick for S-pick

5 0 9050 −0.005 0.120 7032 −0.004 0.195
10 0 9032 0.005 0.125 6984 0.002 0.196
20 0 8947 0.016 0.119 6975 0.003 0.201
100 0 8652 0.012 0.111 5803 0.024 0.248

µP and σP are the mean and standard deviation of errors (ground truth− prediction) in seconds, respectively, for P-phase
picking. µS and σS are the mean and standard deviation of errors (ground truth− prediction) in seconds, respectively, for
S-phase picking.

Figure A1. Distribution of (a) earthquake magnitudes, (b) earth-
quake source depths, (c) earthquake source distances, and (d) time
difference between P-phase and S-phase arrival time of the subset
from the STEAD dataset (Mousavi et al., 2019a).
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Appendix B: Magnitude estimation by combining
DynaPicker and CREIME on the aftershock sequence of
Turkey earthquake.

Table B1. Statistical results of magnitude estimation. Mag (MLv) and MagAv (MLv) are the individual magnitudes of each station and the
magnitude average values from all stations, respectively, according to the KOERI-RETMC catalog (Bogazici University Kandilli Observatory
and Earthquake Research Institute National Earthquake Monitoring Center, 2023). µmag and σmag are the mean and standard deviation of
the magnitude calculated by CREIME for consecutive time windows for which the P-arrival probability calculated by DynaPicker exceeds
the threshold of 0.7.

Station Event_P_arrival_Time Mag (MLv) MagAv (MLv) µmag σmag

SLFK 6 February 2023 02:35 4.05 4 0
KRTS 6 February 2023 13:09 4.38 4.4 1.76 0.15
KRTS 6 February 2023 13:36 3.39 4 2.68 0.14
ARPRA 6 February 2023 03:46 5.3 4.9 3.08 0.12
SARI 6 February 2023 22:45 3.73 3.9 3.21 0.13
SARI 6 February 2023 23:21 4.07 3.6 3.47 0.3
DARE 6 February 2023 22:45 3.63 3.9 0
DARE 6 February 2023 22:55 3.66 4 0
DARE 6 February 2023 23:02 3.32 3.4 3.34 0.1
DARE 6 February 2023 23:21 NO 3.6 0
DARE 6 February 2023 23:56 3.8 3.7 3.42 0.24
IKL 6 February 2023 05:44 2.77 3.4 3.19 0.21
KRTS 6 February 2023 05:36 3.94 4.6 2.32 0.16
TAHT 6 February 2023 02:23 5.6 5.3 0
TAHT 6 February 2023 02:48 3.86 4.1 0
URFA 6 February 2023 03:29 4.39 4.6 2.95 0.17
KRTS 6 February 2023 02:23 4.96 5.3 2.85 0.11
KRTS 6 February 2023 02:48 4.12 4.1 2.15 0.11
GAZ 6 February 2023 13:18 5.29 5.2 4.44 0.31
GAZ 6 February 2023 03:58 3.79 4.6 0
CEYT 6 February 2023 05:36 4.24 4.6 3.43 0.27
CEYT 6 February 2023 02:23 5.22 5.3 4.27 0.24
CEYT 6 February 2023 02:48 3.9 4.1 0
GAZ 6 February 2023 02:31 4.63 4.8 3.61 0.08
GAZ 6 February 2023 22:42 3.57 3.9 3.27 0.18
GAZ 6 February 2023 22:51 3.2 3.3 3.54 0.14
GAZ 6 February 2023 22:55 4.3 4 3.34 0.31
GAZ 6 February 2023 23:13 4.18 4.2 3.61 0.25
GAZ 6 February 2023 23:27 NO 3.6 3.17 0.62

µmag and σmag are the mean and standard deviation of the estimated magnitude. Here, NO means there are
magnitude data in the catalog.

Data availability. The seismic dataset of the Southern Califor-
nia Earthquake Data Center used in this study can be ac-
cessed at https://scedc.caltech.edu/data/deeplearning.html (Califor-
nia Institute of Technology, 2023). The STEAD data can be
downloaded from https://doi.org/10.1109/ACCESS.2019.2947848
(Mousavi, 2023), and the INSTANCE dataset is freely available
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